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Abstract

We study the Schrödinger-Poisson (SP) method in the context of cosmological large-

scale structure formation in an expanding background. In the limit ~ → 0, the SP

technique can be viewed as an effective method to sample the phase space distribu-

tion of cold dark matter that remains valid on non-linear scales. We present results

for the 2D and 3D matter correlation function and power spectrum at length scales

corresponding to the baryon acoustic oscillation (BAO) peak. We discuss systematic

effects of the SP method applied to cold dark matter and explore how they depend

on the simulation parameters. In particular, we identify a combination of simulation

parameters that controls the scale-independent loss of power observed at low redshifts,

and discuss the scale relevant to this effect.
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1 Introduction

The Large-Scale Structure (LSS) of the universe is a powerful cosmological probe,

with current data from galaxy surveys becoming competitive compared to Cosmic

Microwave Background (CMB) measurements [1] for certain parameters within the

standard ΛCDM model, and also providing complementary information compared to

the CMB in extended cosmological models [2–6]. During the next decade an even

higher level of precision around the Baryonic Acoustic Oscillation (BAO) peak will be

reached with ground- and space-based surveys including Euclid [7], DESI [8], PFS [9]

and LSST [10].

In view of the exquisite observational precision of future surveys, at or below the

percent level for many LSS observables, it is timely to scrutinize existing frameworks

that are used to obtain theoretical predictions and also explore alternative approaches.

Focusing on dark matter clustering, the standard technique based on N -body simula-

tions [11, 12] is being pushed to higher volumes and resolution, and refined in order to

increase the level of precision. Nevertheless, reaching percent accuracy with acceptable

computational effort is not a trivial task [13]. The major alternative are well-known

perturbation theory techniques and variants thereof [14–23], as well as effective de-

scriptions such as the halo model [24].

The various approaches may be regarded as different methods of sampling the

phase space distribution of dark matter, and obtaining (approximate) solutions of the

Vlasov-Poisson equations that describe its evolution. Inevitably, each method has

its advantages and disadvantages. The collisionless fluid approximation breaks down

after shell-crossing, but works well in the weakly non-linear regime. N -body simu-

lations capture non-linear scales and sample regions of high density very well. This

is advantageous for studying, for example, dark matter halo properties and statis-

tics. Nevertheless, low-density regions are poorly sampled, while being interesting for

probing e.g. modifications of gravity [25, 26] and neutrino masses [27]. Furthermore,

reconstructing higher moments of the distribution function, including the velocity di-

vergence and vorticity as well as the velocity dispersion tensor, requires to go beyond

the standard N -body method [28–30]. As a matter of principle, it is therefore desirable

to investigate alternatives to the N -body technique.

One such alternative is provided by the Schrödinger-Poisson framework. This

approach is commonly considered in the context of “fuzzy” dark matter (FDM) – an

axion-like bosonic particle with mass m ∼ 10−22eV [31] – that has a macroscopic de

Broglie wavelength ~/mv of the order of kpc scales, leading to a variety of distinct

observational signatures, see e.g. [32]. On cosmological scales, FDM is described by

a condensate, that, in the non-relativistic limit and when neglecting any interactions

apart from gravity, obeys a Schrödinger equation governed by the gravitational poten-

tial that is self-consistently determined from the wave-function.
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As proposed already by Widrow and Kaiser [33], the Schrödinger-Poisson (SP)

system can also be viewed as a technique to sample the phase space distribution of cold

dark matter, with a coarse-graining in phase space determined by ~/m. In this case,

~/m plays a role similar to the number of particles N in a N -body simulation, and in

the limit ~/m→ 0 one expects to recover a solution of the full Vlasov-Poisson system.

This expectation has been scrutinized and confirmed analytically and numerically in

various setups [34–41]. Here, a key point is that the SP system for the wave-function

is solved directly, which, in contrast to the fluid-like Madelung representation, is free

of singularities for any value of ~/m. A conceptual advantage of the SP method is

that the coarse-grained six-dimensional phase space can be sampled with only two

real-valued, three-dimensional functions (i.e. the real and imaginary part of the wave-

function). Nevertheless, the SP method remains valid after shell-crossing and can

capture the complex features of the distribution function on non-linear scales. It is

therefore particularly interesting for investigating higher moments of the distribution

function [36, 37], and addressing questions like vorticity generation [37, 38, 40, 41].

In this work, we discuss several systematic effects that control the accuracy of

the SP method when applied to cold dark matter clustering on cosmological scales in

an expanding background. We investigate how they depend on the box size L of the

simulation volume, the number of points N in each spatial dimension, the time step,

as well as the coarse-graining parameter ~/m, and scrutinize the problem of amplitude

loss [40]. The structure of the article is as follows: In section 2, we set up our notations

for the SP system and briefly review how the fluid, N -body and SP methods sample

the phase space distribution. In section 3 we provide details about the numerical im-

plementation. Section 4 explores systematic effects in two dimensions, and in section 5

we comment on the three-dimensional case before concluding in section 6. The appen-

dices contain comments on the convergence of the SP code, the energy conservation

test, the initialization redshift, the computational time and the convergence in the

one-dimensional case.

2 Sampling Vlasov phase space

The phase space distribution f(x,p, τ) for collisionless cold dark matter obeys the

Vlasov equation [15]

df

dτ
=
∂f

∂τ
+

pi
am

∂f

∂xi
− am∇iV ·

∂f

∂pi
= 0 , (2.1)

where τ is the conformal time, x are comoving coordinates, and the gravitational

potential V for modes deep inside the horizon is given by the Poisson equation

∆V = 4πGa2ρ̄(τ) δ(x, τ) ,

∫
dDp

(2π)D
f(x,p, τ) = 1 + δ(x, τ) . (2.2)
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Here D denotes the number of spatial dimensions, ∆ = ∇2 is the D-dimensional

Laplace operator with respect to comoving coordinates, ρ̄(τ) the average matter den-

sity, and δ(x, τ) = ρ(x, τ)/ρ̄(τ) − 1 the density contrast. The Vlasov equation (2.1)

is a non-linear partial differential equation in 2 ×D + 1 dimensions, and hence quite

hard to solve directly.

In the following sections we briefly review how the phase space distribution f is

described in the fluid approximation (section 2.1), in N -body simulations (section 2.2),

and via the Schrödinger-Poisson system (section 2.3). We stress again that in the limit

~ → 0, the SP method should be regarded as an alternative method to sample the

(coarse-grained) phase space distribution of cold dark matter, rather than a dual to

the fluid system [33, 34, 36–38]. In particular, the map between the fluid and the

SP description through the Madelung representation contains singularities in the limit

~ → 0 and fails after shell-crossing. While the fluid approximation breaks down, the

SP system is free of singularities also after shell-crossing.

2.1 Euler-Poisson (EP)

The Vlasov equation can be converted into a coupled set of equations for the cumulants

of the phase space distribution in momentum space. The generating function for the

cumulants is given by

exp [C(x, l, τ)] ≡
∫

dDp

(2π)D
exp

[
il · p

am

]
f(x,p, τ) . (2.3)

The lowest order cumulants are related to the density contrast δ, the bulk velocity field

u and the velocity dispersion σij by

C|l=0 = ln(1 + δ), ∇lC|l=0 = u, ∇li∇ljC|l=0 = σij . (2.4)

The Vlasov equation (2.1) yields the equation of motion for the generating function [42]

∂C
∂τ

+ aH(l · ∇l)C +∇C · ∇lC + (∇ · ∇l)C = −l · ∇V . (2.5)

By Taylor expanding in l one obtains a coupled hierarchy of equations for the cumu-

lants, with the lowest two being the familiar continuity and Euler equations [15]

∂τδ = −∇ · [(1 + δ)u] , (2.6)

∂τui + aHui + (u · ∇)ui = −∇iV −
1

1 + δ
∇j[(1 + δ)σij] . (2.7)

The Euler equation depends on σij. Its equation of motion is obtained from the second-

order Taylor expansion of (2.4), and in turn depends on the third cumulant due to the

last two terms on the left-hand side of (2.4). Proceeding further, one obtains a coupled

hierarchy of equations for the cumulants.
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The perfect pressureless fluid (PPF) approximation corresponds to neglecting σij.

The perturbative solution of the continuity and Euler equations leads to the well-known

Standard Perturbation Theory (SPT). In terms of the generating function, the perfect

pressureless fluid approximation corresponds to the ansatz C = A+ l ·B, with a linear

dependence on l. It can be readily checked that this ansatz indeed provides a self-

consistent solution of (2.4), and therefore of the full Vlasov equation. This particular

class of solutions corresponds to the phase space distribution given by a D-dimensional

hypersurface in 2D phase space,

fPPF (x,p, t) = (1 + δ(x, τ))(2π)Dδ(D)[p− amu(x, τ)] , (2.8)

that describes a single stream of dark matter particles. Therefore, the PPF approxi-

mation has to break down once shell-crossing occurs. Formally, the density contrast

would become singular at the space-time location of the first shell-crossing within the

PPF approximation, such that the PPF solution of the full Vlasov equation cannot

be continued to later times. Instead, non-zero velocity dispersion σij as well as higher

order cumulants are generated in regions with multiple streams. For realistic initial

conditions, shell-crossing occurs first on the smallest scales, while larger scales are still

close to the single-stream regime. This motivates the Effective Field Theory (EFT)

approach that consists of a fluid description for large-scale modes, complemented with

an effective expression for σij on the right-hand side of the Euler equation. At low-

est order, the effective velocity dispersion tensor can be parameterized by an effective

pressure and viscosity as well as possibly a stochastic noise component [18, 43–45]. For

an approach using a truncation of the hierarchy at the third order, see [46].

2.2 N-body

TheN -body simulation technique can be regarded as a sampling of the 2×D-dimensional

dark matter phase space distribution with discrete point particles with mass m. For a

simulation with comoving box size L and with Nbodies particles, the mass of the hypo-

thetical point particles is chosen such that mNbodies/L
D = ρ̄(t)aD. The corresponding

Klimontovich phase space distribution has the form

fK(x,p, τ) =
m

ρ̄

Nbodies∑

i=0

δ(D)[x− xi(τ)] (2π)Dδ(D)[p− pi(τ)] . (2.9)

It is expected to approximate the continuous phase space distribution f in the limit

Nbodies → ∞. By construction, the resolution of fK is higher in the densest regions

but very poor in void regions. This sampling is advantageous when studying the

distribution and properties of dark matter halos, but makes it more challenging to

reconstruct, for example, the velocity field or the velocity dispersion. In addition,

warm dark matter models with a suppressed linear power spectrum are challenging

4



due to artificial structures on small scales related to the discreteness of the phase

space sampling [47]. For an extension of the N -body technique based on phase space

interpolation, see refs. [28–30].

2.3 Schrödinger-Poisson (SP)

The Schrödinger equation

i~∂τψ = − ~2

2am
∆ψ + amV ψ , (2.10)

with the potential given by

∆V = 4πGρ̄(τ)a2(|ψ|2 − 1) , (2.11)

describes a classical bosonic condensate interacting through gravity. One can also think

of this condensate as a superfluid, mapped by the Madelung representation

ψ =
√

1 + δ eiφ/~ , (2.12)

such that the density (normalized to the average density) is given by ρ/ρ̄ ≡ |ψ|2. The

phase φ represents a velocity potential, with bulk velocity given by u ≡ ∇φ/(am).

From this definition, one finds

u =
i~

2(1 + δ) am
[(∇ψ∗)ψ − (∇ψ)ψ∗] , (2.13)

and we can recover the fluid equations:

∂τδ = −∇ · [(1 + δ)u] , (2.14)

∂τu + aHu + (u · ∇)u = −∇V +
~2

2a2m2
∇
(

∆
√
ρ

√
ρ

)
. (2.15)

The last term is often called “quantum pressure” and is not present in the perfect

pressureless fluid equations described in section 2.1. This term – at least at linear order1

– prevents structure formation at very small scales. Comparing to the gravitational

force term, this corresponds to a (comoving) Jeans scale [31, 48] (see also [32])

kJ =
2(πGρ̄a2)1/4(am)1/2

~1/2
= (6Ωm)1/4

√
a2Hm

~
. (2.16)

This can be understood as a consequence of the Heisenberg uncertainty principle, in

which at physical (not comoving) scales smaller than
√

~/(mH) the velocity dispersion

increases. This effect in our result will become evident in section 4.1.

1At higher orders in wave-perturbation theory, the quantum pressure can act with the same sign

as gravity [40].
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Using the Madelung transformation (2.12), one may be tempted to claim that

the usual PPF fluid equations are recovered in the limit ~ → 0. This affirmation is

somewhat simplistic, since the Madelung transformation leads to singularities in the

limit ~→ 0 and an ambiguity as ρ→ 0. Typically, the wave-function develops strongly

oscillatory features shortly after shell-crossing, including space-time points where both

the real and imaginary parts vanish such that ρ → 0. This implies that the mapping

of the wave-function to a fluid description becomes ambiguous after shell-crossing.

However, this does not affect the description based on the wave-function ψ, which

remains valid throughout the shell-crossing regime.

We adopt here the point-of-view that the SP system is not a dual of the fluid

model but an alternative method for sampling the (coarse-grained) phase space of dark

matter [33, 34, 36–38]. The properties of the SP method for this purpose are different

from the characteristics of the EP or N -body approach, as we discuss below, and may,

therefore, allow to address different questions compared to conventional techniques.

When employing the SP method to describe cold dark matter, the value of ~ should

be regarded as an effective parameter that controls the resolution in phase space. In

this sense, ~ is on the same footing as the parameters that are related to the discrete

sampling in N -body simulations (i.e. the N -body particle mass m and force softening

length; these parameters are not required for the SP method).

To simplify the notation hereafter, we define a rescaled potential and a parameter

κ that is related to the Jeans scale (2.16) [36],

κ(t) =
~

a2mH(t)
and V̄ =

mV

~H
. (2.17)

Furthermore, for simplicity, we assume a background cosmology described by a matter-

dominated universe, with ρ̄ = ρ0/a
3 and Friedmann equation

H2 =
8πG

3a3
ρ0 . (2.18)

Changing the time variable to η = ln a, we can write the Schrödinger and the Poisson

equation as

i∂ηψ = −κ(η)

2
∆ψ + V̄ ψ , (2.19)

∆V̄ =
3

2κ(η)
(|ψ|2 − 1) . (2.20)

The cosmic background expansion enters only via the time-dependence of κ. Note that

a static background could be described by the same set of equations, with constant κ.

In the case of a matter-dominated universe one finds

κ(η) =
~
m

1

a2H(η)
=

~
mH0

1

a1/2
=

~
mH0

exp (−η/2) , (2.21)

where κ0 is the value of κ today. Notice that ~ enters explicitly only via κ.
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Reconstructing the phase space in SP

In order to reconstruct the phase space density distribution from the wave function,

one can perform a Wigner transformation

fW (x,p, τ) =
1

(π~)3

∫
d3x′ exp

[
2
i

~
p · x′

]
ψ(x− x′, τ)ψ∗(x + x′, τ) . (2.22)

Since the Wigner phase space distribution can assume negative values and features

oscillations on ~ scales, its relation with the classical (Vlasov) distribution function is

deficient [34]. One can instead filter both classical and Wigner distribution functions on

these scales, making the correspondence of the coarse-grained versions in phase space

evident [49]. This is equivalent to eliminating quantum uncertainties (see e.g. figure 1 of

[49]). By convoluting the Wigner distribution with a Gaussian kernel in both position

and momentum space, with widths σx and σp, respectively, one obtains a non-negative

result if σxσp ≥ ~/2. If this inequality is saturated, the coarse-grained distribution

function can be constructed in a simpler way via the Husimi transformation

ψH(x,p, τ ;σx) =

∫
dDyKH(x,y,p;σx)ψ(y, τ) , (2.23)

with the kernel

KH(x,y,p;σx) =
exp

[
−|x−y|2

4σ2
x
− ip·y

~

]

(2π~)
D
2 (2πσ2

x)
D
4

, (2.24)

such that the final distribution is given by

fH(x,p, τ) = |ψH |2 , (2.25)

which is non-negative by construction.

3 Numerical implementation

In this section, we discuss the algorithm used to solve the SP equations and for setting

up the initial conditions. After studying the impact of the initial redshift, we discuss

the evolution of the density field and the power spectrum in 2D.

3.1 Initial conditions

For setting up the initial conditions for the wave function ψ we use the Madelung

representation (2.12), which is valid up to shell-crossing and should be broken only

at low redshifts for the scales resolved in our simulation. The complex phase φ is set

by the velocity potential (2.13). To set its initial condition, we use the Zel’dovich

approximation [50]
φ

~
= − δ

κ∆
. (3.1)
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To reduce cosmic variance, we initialize the density contrast δ with the absolute value

given by the square root of the power spectrum [51], and a random phase ζ,

δ(k) =
√
P (k)LDeiζ(k) . (3.2)

For the initial conditions in the 1D and 2D cases we define

P1D =
k2

2π
P3D and P2D =

k

π
P3D , (3.3)

where P3D denotes the linear power spectrum for a ΛCDM cosmology generated by

Boltzmann solvers like CAMB [52] or CLASS [53]. The definition above ensures that

the (n-th) direction-independent moments of the power spectrum are the same in the

different dimensions
∫ ∞

−∞

dk

(2π)
kn P1D =

∫
d2k

(2π)2
kn P2D =

∫
d3k

(2π)3
kn P3D . (3.4)

With this normalization, the BAO peak in the linear correlation function has compa-

rable numerical values in the case of 1D, 2D and 3D. For the linear input spectrum,

we used a ΛCDM cosmology with parameters as in [54]. The D-dimensional matter

correlation function is then given by

ξ(x) =

∫
dDk

(2π)D
eix·kP . (3.5)

Explicitly, for 1D, 2D and 3D in the isotropic case one finds

ξ1D(x) =

∫
dk

(2π)
eixkP1D , (3.6)

ξ2D(x) = 2π

∫ ∞

0

dk J0(xk)kP2D =
1

(2π)2
H0[P2D] , (3.7)

ξ3D(x) =
2

(2π)2

∫ ∞

0

dk
sin kx

kx
k2P3D = − 1

(2π)2

1

x
Im{FT(kP3D)} , (3.8)

where J0 is the zeroth Bessel function and H0 is the Henkel transform of zeroth order.

3.2 SP algorithm

In this section, we explain the numerical algorithm used for solving the Schrödinger-

Poisson equations. The time evolution in terms of the (time-ordered) Hamiltonian

operator H = −κ
2
∆ + V̄ is given by

ψ(x, η + ∆η) = T e− i
~
∫ η+∆η
η H dηψ(x, η)

= T e−i
∫ η+∆η
η (−κ2 ∆ψ+V̄ ψ)dηψ(x, η) , (3.9)

8



where T denotes time-ordering. Before proceeding, it is convenient to remove the time

dependence in the kinetic term by changing to a new time variable s that is defined via

dη/ds = κ. Next, for a small time step ∆s, this can be written in term of the rotation

operators (using leapfrog integration)

ψ(x, s+ ∆s) = UK(∆s/2)UV (∆s)UK(∆s/2)ψ(x, s) , (3.10)

where we defined

UK(∆s) = exp

(
− i

2
∆s k2

)
, (3.11)

and

UV (∆s) = exp

(
−i
∫ s+∆s

s

(V̄ /κ) ds

)
. (3.12)

The leapfrog integration produces in principle an error of order [UK , [UK , UV ]], in case

the operators UK and UV are evaluated at the correct order. In particular, the integral

in the potential term has to be calculated to the order O(∆s2). The time dependence

of |ψ2| is at early times moderate such that the main time dependence in UV results

from the explicit factor 1/κ2 (notice V̄ ∝ 1/κ in (2.20)).

However, there is another constraint that one has to fulfill, coming from the

time ordering of the Hamilton operator. In practice, we find that one has to limit the

maximal angle θmax that can occur in a time step in arg(UK) or arg(UV ). For θmax . 0.4

the precision of the final ψ indeed scales as ∆s2 (or θ2
max) and the error in ψ is beyond

what we require (of order 10−5). For larger values of θmax, however, the precision

quickly deteriorates and the error in ψ becomes of order unity. In summary, leapfrog

integration improves precision greatly, but unfortunately this does not translate into

a faster algorithm compared to a simple integration. In this work we used θmax = 0.1.

For this choice, the main discretization error comes from spatial discretization. See

appendix A for more details about the convergence of the wave-function.

In appendix C, we investigate the dependence on the initial redshift. For our

fiducial choice of parameters, we find that the power spectrum changes by less than

∼ 2% when varying zini between 50 and 150, which is compatible with the expected

sensitivity for Zel’dovich initial conditions in N -body simulations.

3.3 Density field evolution

We evolve the 2D wave function in time starting from z = 147 on a box with comoving

side length L = 1000 Mpc/h, N = 8192 grid points in each dimension, and κ0 = 1

Mpc2/h2. In figure 1 we show the density contrast δ for the 2D SP system at three

different redshifts. At z ∼ 19, the density fluctuations are still almost Gaussian and

δ is small. At z = 1.72, structures become visible and, at z = 0, one may recognize

a “cosmic web”. We also display the density PDF in figure 1, confirming the growth

of non-linear structures. For the PDF we apply a top-hat filter in position space with

9



10−1 100 101

ρ/ρ̄

10−3

10−2

10−1

100

101

P
D

F

z = 147.41
z = 53.6
z = 19.09
z = 6.39
z = 1.72
z = 0.0

Figure 1. Density contrast at three different redshifts (z = 19.09, z = 1.72 and z = 0) for

the 2D Schrödinger-Poisson system for L = 1000 Mpc/h, κ0 = 1 Mpc2/h2 and N = 8192. In

the bottom-right, the density PDF at various redshifts is shown.

smoothing length 2 Mpc/h. For a given set of simulation parameters, the PDF without

filtering has similar shape as the smoothed one, apart from the high-density tail.

The matter power spectrum is shown in figure 2. The time evolution of the SP

system imprints three different types of features on the power spectrum, which we list

below:

1. A strong exponential (Jeans) suppression at small scales (section 4.1);

2. Sampling noise on large scales that were not present in the initial conditions

(section 4.3);

3. A slight loss of power for all modes at low redshift (section 4.2).

The first effect is a physical property in fuzzy dark matter models related to the

Jeans scale (2.16), but should be considered as a systematic limitation when applying

the SP method to describe the phase space evolution of cold dark matter. Notice that,
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10−2 10−1 100 101

k [h/Mpc]

10−3

10−2

10−1

100

P
(k
,z
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P

li
n
(k
,z

)

z = 53.6
z = 19.09
z = 6.39
z = 1.72
z = 0.0

Figure 2. Matter power spectrum divided by the linear power spectrum at redshifts z =

0, 1.72, 6.39, 19.09, 53.6.

at late time, the Jeans scale does not suppress all power on small scales. So non-linear

growth seems to be less affected than one would expect from the linear analysis of the

system. As shown below, the second item is essentially analogous to sampling noise

in N -body simulations, which is related to the finite number of modes. The third

feature has already been recognized in the context of fuzzy dark matter [40], and is a

systematic error of the (discretized) SP method for both fuzzy and cold dark matter.

4 The systematics of the Schrödinger-Poisson method

In this section, we quantify each one of the three systematics effects mentioned above

and evaluate their dependence on the simulation parameters, including the box size

L, the number of lattice points in each dimension N , and the phase space resolution

controlled by the value of ~. Since the latter enters in the rescaled SP equations (2.19)

only via the function κ(η) (see (2.17)), we trade ~ for κ0, the present value of κ. We

study variations around the fiducial values L = 1000 Mpc/h, N = 4096 and κ0 = 1

Mpc2/h2, which we found to be parameters that describe the BAO peak reasonably

well while requiring a feasible amount of computational time (see appendix D). Fur-

thermore, we use a fixed initial redshift z = 147. For comparison, the original work

[33] used N = 256 and L = 150 Mpc/h in 2D.

In figure 3, we show the dependence of the PDF on the simulation parameters

(N , on the left; L in the middle and κ0 on the right). In the strict limit of (infinitely)

cold dark matter, the PDF is not expected to converge uniformly (without any coarse-

graining) when increasing N/L, since smaller and smaller structures are resolved [55].

However, for the Schrödinger-Poisson system with fixed ~ (i.e. fixed κ0), the Jeans

scale acts as a coarse-graining length which should improve convergence. We find

that increasing the number of lattice points enhances the deviation from a Gaussian

distribution, and increases the tails of the PDF. Nevertheless, for N = 8192 the PDF
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Figure 3. Dependence of the PDF of the matter density on the simulation parameters: For

different grid sizes N on the left; for different box sizes L (in units of Mpc/h) in the middle,

and for different κ0 ∝ ~ (in units of Mpc2/h2) on the right. We use a top-hat filter in position

space with a smoothing scale of 2 Mpc/h.

did not converge yet. As mentioned before, for the PDF we apply a top-hat filter

in position space with smoothing length 2 Mpc/h (see also appendix E, in which we

explore the convergence for the 1D case). Decreasing the box size L with N fixed also

improves the resolution of the non-linear modes, while increasing the box size too much

leads to a loss of resolution. Decreasing κ0 leads to similar effects that are accompanied

by an overall loss of power in the fluctuations. Larger values of κ0, in turn, increase

the quantum pressure what also suppresses non-linearities. For intermediate values of

κ0 the result is relatively stable. While no clear picture emerges for the PDFs, the role

of the different parameters will become more clear in the following when we study the

power spectrum.

4.1 Jeans suppression

The exponential loss of power at some scale kfall related to the Jeans scale (2.16) is a

characteristic property of the SP system. The Heisenberg uncertainty principle inhibits

the formation of structures that are smaller than the Jeans scale. In the context of

using the SP method to describe cold dark matter, the Jeans suppression has to be

considered as a source of systematic errors. In the left panel of figure 2, we can see

that shortly after initializing the simulation, the Jeans suppression strongly affects

the power spectrum above around ∼ 1h/Mpc. To quantify the scale kfall where the

exponential suppression appears, we define it to be the largest mode for which the

ratio of the power spectrum to the corresponding linearly evolved ΛCDM input power

spectrum Plin(k, z) is smaller than 90%

kfall = min(k) for which
P (k, zref )

Plin(k, zref )
< 0.9 . (4.1)

We measure this scale at η = −4 (zref = 53.6), when the other systematic effects are

still irrelevant and the system already had enough time to develop Jeans suppression

after being initialized with a ΛCDM spectrum at z = 147. For the fiducial simulations

used here we find kfall ' 0.3h/Mpc.

12



10−1 100
√

1/κ [h/Mpc]

10−1

100

k
fa

ll
[h
/M

p
c]

DEFAULT
κ0

Figure 4. Schrödinger-Poisson systems in the linear regime feature a characteristic length

scale below which structures are strongly suppressed due to the uncertainty principle. We

quantify this scale in Fourier space as kfall, which we found to be proportional to
√

1/κ.

The diamonds correspond to a variation of κ0 around its fiducial value (shown by the black

point). The line corresponds to kfall = 0.8
√

1/κ(zref ).

In figure 4, we show the dependence of this cutoff scale on κ0, which we find to

be the single parameter that affects kfall. Reducing κ0 allows structures on smaller

scales to form and therefore shifts the exponential suppression to larger wavenumbers,

as expected. Parametrically, we find

kfall ∝
1√
κ
, (4.2)

which implies a slight time-dependence of this scale (in comoving momenta) of κ−1/2 ∝
exp(η/4) ∝ a1/4. This confirms the interpretation as suppression related to the Jeans

scale (2.16). Note that the interpretation of the wave-function obtained from the

SP equations in terms of the Madelung representation, and the associated quantum

pressure, are potentially ambiguous at these scales, as discussed above. Nevertheless,

the Jeans analysis appears to predict the correct scaling of kfall at early redshifts. At

low redshift, additional structure on smaller scales starts to form as mentioned before.

4.2 The amplitude problem

The simulations show another effect that is a little bit more subtle and harder to

understand. It is a loss of power towards the end of the simulation. This loss of power

is evident for the smallest wavenumbers where one would expect linear evolution. In

figure 5, we display the evolution of the power spectrum as a function of η for three

different modes (continuous lines). We compare with the linear evolution (dashed

lines). It is possible to visualize a specific time, close to the end of the simulation

(η = 0) for which each of the perturbation modes decouples and stops growing. The
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amplitude loss is essentially given by the amount of linear growth after this decoupling.
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Figure 5. Amplitude loss of the (2D) power spectrum versus time η = ln(a), for three

different wavenumbers. Solid lines show the simulation result and dashed lines the expected

linear growth. The perturbations decouple and stop growing at a particular time, which

depends on the simulation parameters (see main text, the plot is for our fiducial choice).

To quantify this loss in power, we fit a straight-line coefficient A2 to the ratio

of the measured P (k) to the rescaled power spectrum of the initial conditions Pinit as

expected by the linear growth function (for the modes k < kfall)

A2 =

〈
P

Pinit,rescaled

〉

k<kfall

. (4.3)

In the left panel of figure 6, we display the evolution of A2 with time η. For our fiducial

set of simulation parameters, the power loss sets in at η ' −2 (z ' 6.4), when the

non-linear evolution becomes more relevant. For larger N , the SP power loss is less

than 2% up to η ' −1 (z ' 1.7).

In the right panel of figure 6, we display the dependence of the amplitude loss at

z = 0 on the simulation parameters N , L, and κ0. We find that the amplitude loss

depends only on the combination κ0N/L. It has the unit of a distance, and we find

the critical length scale above which the amplitude loss effect becomes irrelevant to be

κ0N

L
& lcrit,0 ' 10 Mpc/h . (4.4)

This can also be written as a condition on the lattice spacing L/N ,

L

N
≤ κ0

lcrit,0

=
~
m

1

H0 lcrit,0

. (4.5)

In Ref. [32] it was speculated that the lattice spacing L/N has to be smaller than

the de Broglie wavelength λ = ~/mv, where v is the typical group velocity of a wave
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Figure 6. Left: Amplitude loss versus time η for the fiducial choice of parameters (black)

and for a higher resolution (N = 8192, green). Right: Dependence of the amplitude loss

at z = 0 on the combination of the simulation parameters κ0N/L. The different symbols

correspond to variation of either N , L or κ0 while keeping the other parameters fixed at

their fiducial values. The dashed line corresponds to the scaling A2 ∝ (κ0N/L)4/3, which is

inferred in the text.

packet. This suggests that the length scale lcrit is related to the velocity

lcrit =
1

Ha

√
〈u2〉 , (4.6)

with u determined from the wave-function as given by (2.13). Here, we defined lcrit not

at redshift zero but at general redshift as it would be measured on the lattice without

introducing additional factors a or H according to (2.13), see discussion below.

To obtain the value of lcrit applicable to cold dark matter, one has to extrapolate

the numerical results for 〈u2〉 to ~→ 0 since u also suffers from a suppression just as

the power spectrum. We find that lcrit,0 ' 15 Mpc/h. Alternatively, one can estimate

lcrit in linear theory. Using the linear growing mode relation u = −aH∇δ/∆ for the

EdS background considered here gives

llincrit =

(∫
d3k

(2π)3

Plin(k, z)

k2

)1/2

, (4.7)

which yields llincrit,0 ' 10 Mpc/h. This fits well with the scale inferred from the behavior

of the power loss.

Here, a couple of comments are in order. First, u relates to the average peculiar

velocity in the fluid and has no direct connection to the microscopic motion of the

particles or wave packets. Hence, ~/(m
√
〈u2〉) strictly speaking does not represent

the de Broglie wave length. Nevertheless, it appears to provide a valid estimate of the

amplitude loss effect. In fact, the suppression of the power spectrum probably arises

from the fact that a maximal velocity exists on the lattice [38], and is probably not
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intrinsic of our numerical scheme. Due to the spatial discretization ∇φ/~ < πN/L

which turns into the bound
|u|
aH

< κπ
N

L
. (4.8)

So the relation (4.5) can be read as a requirement on the lattice spacing to resolve all

relevant velocities in the simulation. We tested this by studying the relative phases

between neighboring grid points. In Fig. 7 we show the suppression factor A2, the

average of the relative phases and the fraction of large relative phases (> π/4). The

suppression happens in tandem with the occurrence of large relative phases. As a cross-

check we also confirmed that energy is approximately conserved in our simulations (see

Appendix B) which would indicate a failure of our numerical integration of the equation

of motion.
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Figure 7. The plot shows the suppression factor A2, the average of the relative phases and

the fraction of large relative phases (> π/4) versus time.

Second, note that the quantity 〈u2〉 is dominated by long wavelength modes. In

linear approximation, this is apparent in Fourier space, noticing that |u2| ' |δ|2(aH)2/k2.

The integral over the corresponding power spectrum in (4.7) is dominated by modes

k . 0.1h/Mpc. This property fits quite well with the observation that the suppression

in the power spectrum is rather wavenumber-independent.

Third, we find that at finite redshift (4.5) is generalized to

L

N
≤ κ

lcrit

=
~
m

1

a2H lcrit

' ~
am
√
〈u2〉

, (4.9)

Notice that the time-dependence in (4.7) implies lcrit ∝ a in the linear regime and

hence κ/lcrit ∝ a−3/2. Therefore, the amplitude loss sets in when

a ≥ acrit '
(
κ0N/L

lcrit,0

)2/3

. (4.10)
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For the simulation parameters shown in the left panel of figure 6, this corresponds

to ηcrit = ln acrit ' −0.4 (−0.94) for N = 8192 (4096), in good agreement with our

numerical findings. The observation that the power spectrum essentially saturates

after the power loss sets in leads to another prediction. Because A2 is dominantly

determined by large scales, for which the conventional linear power spectrum grows as

a2, (4.10) implies that

A2 ∝ (κ0N/L)4/3 (4.11)

within the regime acrit � 1, and A2 → 1 for acrit � 1. This expectation is confirmed

by our numerical results shown in the right panel of figure 6.

Finally, we checked that the amplitude loss stems only from the spatial discretiza-

tion. Changing the time-like discretization has no impact on the effect, as seen in

appendix A.

4.3 The (sampling) noise problem

The initialization of the wave-function that is used in this work features random phases

for each Fourier mode, while the amplitude is fixed (see section 3.1). The absence

of random fluctuations in the initial amplitude tends to decrease sampling variance.

Nevertheless, due to the non-linear dynamics, the measured power spectrum is affected

by (sampling) noise resulting from the initial random phases as set up in (3.2). As

expected, in the power spectrum this noise becomes smaller with k due to the grow-

ing number of Fourier modes contained in the simulation volume. This is seen in

figure 8, where we display the variance measured from 64 simulations with different

initial seeds (and otherwise fiducial parameters). For very small wavenumbers, the

noise is suppressed due to our choice of initial conditions, and since the dynamics is

almost linear. For larger wavenumbers, one expects that the variance of the power

spectrum normalized by P (k) scales as 1/
√
k in 2D and 1/k in 3D, which is repro-

duced in our simulations. For very large wavenumbers, the variance further decreases,

but a drop in the power spectrum leads to the increasing noise in figure 8 due to the

normalization chosen. We could not identify any ‘shot noise’ in the simulations in the

sense of a wavenumber-independent noise component.

For a fixed comoving momentum, the noise can be reduced by increasing the sim-

ulated volume, since this increases the number of modes that represent this momentum

in Fourier space by (kL/2π)D−1. The sampling noise may also be further suppressed

by using the technique of paired initial phases proposed in [51] for N -body simulations.

In 3D the noise is always strongly reduced due to the different scaling 1/k.

4.4 Summary of systematic effects

When using the SP method to describe cold dark matter, one would, in principle, like

to take the limit κ0 ∝ ~ → 0 the same way one would want to set the particle mass

as small as possible in N -body simulations. The price to pay when decreasing κ0 is
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Figure 8. Sampling variance of the power spectrum at z = 0 obtained from 64 realizations,

normalized to the power spectrum as a function of the wavenumber. We also show a line

that corresponds to the expected scaling based on the number of Fourier modes in 2D.

twofold: First, the computational time increases because the argument of potential

rotations UV becomes larger, which requires to reduce the time step [see (2.17)]. Sec-

ond, lowering κ0 makes the amplitude loss problem described above more severe. The

best alternative would then be to reduce κ0 while increasing N , at the cost of more

demanding simulations.

In order to mitigate the loss of power at late times, one can either increase κ0 or

make the lattice spacing L/N smaller. The first alternative comes with the price of an

exponential suppression at a smaller kfall. Increasing N increases the computational

cost (see appendix D), while decreasing L increases the sampling noise. For the 2D

simulation with L = 1000 Mpc/h, κ0 = 1 Mpc2/h2 and N = 8192, we measured the

amplitude loss, Jeans suppression and sampling noise at z = 0, to be

A2 = 0.8 , (4.12)

kfall = 0.3h/Mpc , (4.13)

σ/P ∼ 10% . (4.14)

In this context, it is interesting to explore the 1D case, for which we can substantially

increase the resolution (see appendix E). In that case, we can decrease the loss in power

for the SP system for N = 80.192 down to the percent level.

Instead of increasing κ0N/L, one may wonder whether it is possible to apply a

correction that compensates for the amplitude power loss. The simplest possibility is to

rescale the power spectrum by 1/A2. However, the extent to which this naive rescaling

captures non-linear growth is unclear. Nevertheless, we followed this approach to

investigate the correlation function around the BAO peak (see below). Alternatively,

one could run the simulation somewhat longer in the hope that this captures the non-

linear effects better than just a rescaling. However, it turns out that this only works
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poorly since the growth rate of the power spectrum features a plateau once the power

loss sets in, see figure 5.

Another naive approach would be to compensate the loss of power by a rescaling

the power spectrum. By construction, this would lead to the correct overall normal-

ization of the power spectrum but will also fail once non-linear features are relevant.

In figure 9, we display the correlation function measured at two redshifts, which is

obtained by averaging over 64 simulations (with N = 4096). We also display the result

of a single simulation (with N = 8192) for comparison, as well as the linear correlation

function and the prediction in Zel’dovich approximation. Here we rescaled the corre-

lation function obtained from SP by 1/A2, where A2 is the redshift-dependent power

loss determined in section 4.2. The origin of the noise in the correlation function can

partially be attributed to sampling variance, and partially to fluctuations of the SP

system at smaller wavenumber. The averaging over 64 simulations reduces the noise

considerably, as expected, such that the BAO peak becomes visible. Notice that the

correlation function at larger redshift appears to be less noisy, which is due to the

suppression of small scale fluctuations by the Jeans scale (c.f. the power spectrum in

figure 2).

The corresponding correlation function is close to the Zel’dovich approximation

at both redshifts, except in the vicinity of the BAO peak. The broadening of the BAO

peak is less pronounced compared to Zel’dovich approximation. Several systematics

could induce the lack of BAO broadening: Apart from the dynamical range that is

limited by the box size and the Jeans suppression scale at small and large wavenumber,

also the amplitude power loss could play a role. The latter effectively shuts off the

growth of perturbations on (and above) BAO scales, leading to a lack of non-linear

BAO damping that cannot be compensated by linear rescaling of the amplitude. We

quantitatively checked this by calculating the Zel’dovich approximation including the

power loss but found that it does not seem to be the main reason for the lack of BAO

broadening. On the other hand, the existence of a maximal velocity in the simulation

qualitatively explains the lack of broadening in the correlation function as well as the

lack of power in the power spectrum (see section 4.2). Still, there seems to be no simple

way to counteract this effect and simulations with finer grids seem indispensable.

5 Towards 3D in the Schrödinger-Poisson method

In this section, we present solutions of the Schrödinger-Poisson system in 3D. The main

motivation is not to present any physical results – which will be numerically even more

demanding than in 2D. The purpose of this section is to validate if the three systematics

identified in 2D show the same parametric dependence and to estimate the scale lcrit.

We choose simulation parameters L = 600 Mpc/h, N = 512 and κ0 = 4 Mpc2/h2. In
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Figure 9. Correlation function x2ξ(x) for redshift z = 0 (left) and z = 1.72 (right). We

show the SP result obtained from averaging over 64 simulations with fiducial parameters,

from a single simulation with parameters as in figure 2, in linear theory and for Zel’dovich

approximation.

figure 10, we display the overdensity field for three different redshifts in a slice of the

simulation volume, after calculating the mean of 10 bins along the z axis.

In the bottom right panel of figure 10, the PDF of the density field for different

redshifts is shown. Even though the PDF departs from its initial shape, developing

some skewness and kurtosis, it is still far from developing the non-linear shape found

in 2D (see e.g. figure 2).

The power spectrum is shown in figure 11. It features Jeans-like suppression at

large k as in 2D, as well as an overall amplitude loss at low redshift. For the 3D simu-

lation, the parameters characterizing the overall power loss and the Jean suppression

scale defined in section 4 are found to be (at z = 0)

A2 = 0.6 , (5.1)

kfall = 0.15h/Mpc . (5.2)

Notice that the power loss in terms of A2 is in accordance with the parametric depen-

dence on simulation parameters identified in the 2D case. In particular, for the 3D

simulation κ0N/L ' 3.4 Mpc/h, which implies that lcrit is close to the 2D value.

In order to obtain acceptable values of the power loss, the box size has been re-

duced and κ0 increased compared to 2D. The latter leads to a smaller kfall. In principle,

one could increase kfall while keeping A2 fixed by decreasing κ0 and L. However, this

is not possible since the BAO peak has to fit into the box. Ultimately, one will have

to keep the box size fixed and increase N . The sampling noise is substantially reduced

compared with the 2D case, because the number of modes for a fixed momentum |k|
is larger and scales as (k L)2.

The correlation function (see figure 12) extracted from a single realization is sub-

stantially less affected by noise as compared to 2D. As before, we rescaled ξ(x) ex-
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Figure 10. Density field at three different redshifts (z = 19.09, z = 1.72 and z = 0) for the

3D Schrödinger-Poisson system. We projected the density field taking the mean of 10 slices.

In the bottom right panel, the PDF of the density field at various redshifts z is shown.
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Figure 11. Power spectrum obtained from a 3D SP simulation at various redshifts z, using

L = 600 Mpc /h, N = 512 and κ0 = 4 Mpc2/h2.
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(right).

tracted from the simulation by 1/A2 at each redshift. The result is then found to be

relatively close to the Zel’dovich approximation for z = 1.72, while a slight lack of

BAO broadening is visible at z = 0, similar to the 2D case.

6 Conclusion

We studied the growth of large-scale structure at BAO scales using the Schrödinger-

Poisson approach for cold dark matter. The main question is if large-scale simulations,

competitive with N -body simulations, are feasible in this setup. The appeal of a second

independent approach to large-scale structure is that the Schrödinger-Poisson method

comes with a different methodology for initial conditions, dynamics, no gravitational

softening and hence different systematic uncertainties. Besides, it makes higher mo-

ments of the phase space distribution function and velocity correlation functions more

readily available. We identified three systematic effects (for most parts already seen

previously in refs. [31, 40, 48]) and studied their parametric dependence on the sim-

ulation parameters. There is a Jeans damping scale, an overall suppression of the

amplitude (due to a lack of resolution of the wave packets) as well as sampling noise.

We provide a quantitative criterion to determine the redshift after which amplitude

suppression sets in, and find a particular combination of simulation parameters it de-

pends on. In order to avoid this effect, the simulation parameters should obey

L

N
≤ κ

lcrit

' ~
am
√
〈u2〉

. (6.1)

We interpret this criterion in terms of an effective de Broglie wavelength and the

existence of a maximal velocity in the simulation.

The main challenge in 3D is to clearly separate all the occurring scales in the

simulations (see figure 13). Ideally, the Jeans scale should be substantially smaller
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Figure 13. Schematic illustration of all the length scales occurring in the Schrödinger-

Poisson simulation. In order to control the exponential fall, the Jeans suppression scale lJ
ought to be smaller than the BAO scale lLSS . The noise is suppressed when the size of the

box L is much larger than the BAO scale. To overcome the overall amplitude loss, the grid

size dgrid must be smaller than κ0/lcrit (see section 4.2 and (6.1)).

than the BAO scale and the box size substantially bigger. Furthermore, the grid

spacing should be substantially smaller than the effective de Broglie wavelength, see

(6.1). All in all, this requires large grid sizes for accurate simulations (N > 16k in

all dimensions) and the simulations are rather memory bound than compute bound.

Overall, we find it realistic that the Schrödinger-Poisson simulations for cold dark

matter clustering could become competitive with N -body simulations. The algorithm

used in the present analysis is very basic and hopefully more sophisticated techniques

will be developed in the future and tap into the true potential of the Schrödinger-

Poisson method.
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A Convergence test

As explained in section 3.2, to ensure the convergence of the wave function, we define

a maximum angle θmax for the rotations UK and UV in equation (3.11). If either the

rotation angle of the potential or the kinetic part is higher than this value, we reduce

the time step ∆s. In case one of the angles for one of the modes is too large, a sizable

error accumulates quickly.

In figure 14, we show the effect of reducing the value of θmax – and therefore

increasing the computational time – in the overdensity distribution (left) and in the

power spectrum (right). In this work we used θmax = 0.1 and here we compare with
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Figure 14. Convergence of the SP solution when reducing the time step. In the left,

the PDF obtained for θmax = 0.01 and θmax = 0.1 is shown. The PDFs overlap, being

indistinguishable. In the right, the relative difference in the power spectrum is shown.

using θmax = 0.01 instead. In the left panel, both PDFs overlap. In the right panel, we

show the relative difference of the density power spectrum, which is below 10−3 over

the entire range of scales considered in this work. The relative difference of the wave-

function ψ is of the order of ∼ 10−6. We conclude that using θmax = 0.1 is sufficient to

guarantee numerical stability.

B Energy conservation

As proposed in [37] we also perform the Layzer-Irvine test of energy conservation in

our simulations. In our setup, the kinetic and potential energies are naturally defined

as

K = −κ
2

∫
ψ∗∆ψ , (B.1)

W =
1

2

∫
V̄ ψ∗ψ . (B.2)

Energy conservation is then spoiled by the explicit time dependence of κ in K and also

in V̄ (see Eq. (2.20)). This yields the relation

∂η(K +W ) = −1

2
K +

1

2
W . (B.3)

This motivates the definition

δK =
∂η(K +W )−W/2 +K/2

K
. (B.4)

In Fig. 15 we show δK for 1D (L = 1000 Mpc/h, N = 16384 and κ0 = 1 Mpc2/h2),

2D (L = 1000 Mpc/h, N = 4096 and κ0 = 1 Mpc2/h2) and 3D (L = 1000 Mpc/h,

N = 256 and κ0 = 1 Mpc2/h2) simulations.
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Figure 15. The plot shows δK as a function of time for simulations in 1D, 2D and 3D.

The Layzer-Irvine test is passed (δK � 1) in all cases. See text for the parameters of the

simulations.

C Initialization redshift

In figure 16 we show the impact of initializing the SP evolution at two different redshifts

zinit = 147.4 and zinit = 53.6 using L = 1000 Mpc/h, N = 8192 and κ0 = 1 Mpc2/h2.

The initial redshift has a relatively strong influence on the PDF at z = 0. The relative

difference of the matter power spectrum is below 2% for k . 0.25h/Mpc. N -body

simulation results using Zel’dovich approximation as initial conditions also find similar

discrepancies [13].
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Figure 16. Left: PDF for the matter density field at z = 0 using redshifts zinit = 147.4 and

zinit = 53.6. Right: Relative difference of the matter power spectrum at z = 0 obtained for

the two initial redshifts zinit.
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D Computational time

In this appendix, we comment on the computational CPU time required for the

Schrödinger-Poisson code. All the simulations were performed on the DESY Theory

Cluster. For the Fourier transformations, we used the FFTW3 package [56].
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Figure 17. Dependence of the CPU core time required for the 2D Schrödinger-Poisson

simulations on the simulation parameters κ0 ∝ ~, N and L. The figure shows variations

around the fiducial values.

In figure 17 we present the dependence of the simulation time (in core hours) on

κ0, L and N for the 2D case. Increasing N has a twofold impact on the computational

time: First, the time for each discrete Fourier transformation increases. Second, more

non-linear scales are populated, increasing the argument of the potential rotations UV .

This requires to decrease the time step ∆s, as discussed in section 3.2. Reducing the

box size L also has similar effects on UV (note that we use the combination κ0N/L on

the horizontal axis in figure 17). Since arg(UV ) ∝ 1/κ0 and arg(UK) ∝ κ0, extreme

values of κ0 also reduce the time step and correspondingly lead to an increase in

computational time.

E The 1D case

In this appendix, we present results for the one-dimensional case. As pointed out in the

main text, even though the maximal possible resolution in the 1D case is the highest,

the (sampling) noise is very large due to the small number or modes. Nevertheless, we

find it instructive to consider the 1D case for studying the convergence when increasing

the resolution.

In figure 18 we show the overdensity field at three different redshifts, for a simula-

tion with L = 1000 Mpc/h, κ0 = 1 Mpc2 andN = 217 – a substantial increase compared

with both 2D and 3D cases. It is possible to see that a small initial fluctuation, for

instance, at x = 250 Mpc/h, evolves to form an overdense region.

26



Figure 18. Overdensity field in the 1D SP system at three different redshifts.

In the left panel of figure 19, we show the overall amplitude loss in the 1D case,

defined as in equation (4.3) together with the averaged relative phases that indicate

the failure of the grid to resolve the highest velocities. In the right panel of figure 19,

we show the PDF obtained for different values of N . For N & 214, the PDF starts

to converge. We also run simulations with larger volume and larger κ to confirm the

reduction of a power loss in these cases. We average over 10 different initial conditions

to reduce noise and finite volume effects.
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Figure 19. Left: The plot shows the suppression factor A2, the average of the relative

phases and the fraction of large relative phases (> π/4) versus time (analogous to Fig. 7 for

2D). Right: PDF for different grid sizes N averaged over 10 different initial conditions.
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