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Abstract 

ISSN 0418-9833 

Starting from the Lagrangian of a charged particle in an electromagnetic 

field, the Hamiltonian for non-linear coupled synchro-betatron oscillations of 

ultra-relativistic charged particles (protons) is derived. The canonical va­

riables are x, Px• z, p20 o, n which are well-known from the six dimensional 

linear theory (SLIM). Keeping only terms up to second order in the canonical 

momenta Px, p2 , the equations of motion are then solved for various kinds of 

magnets (quadrupole, skew quadrupole, bending magnet, synchrotron-magnet, so­

lenoid, sextupole, octupole, dipole kicker) and for cavities, taking into ac­

count the effect of energy deviation on the focusing strength. The equations 

so derived can serve to develope a non-linear, six dimensional (symplectic) 

tracking program for ultra-relativistic protons. 
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1. Introduction and Motivation 

In the following we derive a system of non-linear equations for coupled syn­

chro-betatron oscillations based on a Hamiltonian which is written in terms of 

the variables x, Px• z, Pz• o and n which are commonly used in the six­

dimensional linear formalism (A. Chao) 1
•

2
•

3
) and which, as shall be shown, are 

also canonical in this non-linear formalism. If one only keeps terms up to 

second order in the canonical momenta (so that the effect of energy deviation 

on the focusing strengths is automatically accounted for), these equations, 

which are symplectic, may be used to obtain solutions for the 6-dimensional 

motion for specific magnet types (quadrupole, skew-quadrupole, combined func­

tion dipole, solenoid, sextupole, octupole and kicker) as well as for linear 

and non-linear rf-cavities (o is a canonical variable). Since they are written 

in canonical form, these equations can provide the basis of a non-linear, 

6-dimensional tracking program. 

Among the several applications of such a program the most interesting is the 

study of chaotic behaviour: 

Because the equations of motion are in Hamiltonian form, the mappings repre­

senting the motion are symplectic. Thus, it is possible to study chaotic beha­

viour4l in the 6-dimensional case taking into account non-linear fields and 

energy dependence of the focusing. 

Other applications are the studies of: 

Non-linear resonances: Because of the non-linearity of the equations of mo­

tion, not only the linear but also the non-linear resonances of synchro-beta­

tron motion can be investigated. In particular, the tracking program proposed 

above would enable the position and width of both linear and non-linear satel­

lite stopbands to be estimated with reasonable precision since the non-linear 

coupling between the synchrotron and betatron motion is specified in exact ca­

nonical form. 

Resonance crossing: Although we are dealing here with a 6x6 formalism, the ba­

sic equations are organised so that by giving a constant energy deviation: 

n = 

the required equations for simple betatron motion are available. 
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Thus, if we consider only the transverse part of the motion, the horizontal 

and vertical tune shifts 

oQx = Ox(n) Ox(O) 

oQz = Oz(n) Oz(O) 

resulting from the energy dependence of the quadrupole focusing strength can 

be calculated for fixed values of n. Owing to the synchrotron oscillations, 

these oQx, oQ2 oscillate around zero and it may happen that they oscillate 

across resonances located nearby. With the program mentioned it should be pos­

sible to study the resulting blow up of the transverse amplitudes due to reso­

nance crossing and to ensure that the motion is at the same time fully sym­

plectic. 

Chromaticity effects: As is well-known the chromaticity can be corrected with 

the help of sextupoles so that for off energy particles the Q-shifts oQx and 

6Q 2 are eliminated 5
). In this case, the resonance crossing no longer occurs. 

Unfortunately, these sextupoles generate additional non-linear resonances 

which can also present stability problems. Thus, it is necessary to choose an 

arrangement of sextupoles which minimizes this effect. With the proposed 

tracking program the efficacy of such a sextupole arrangement could be checked 

(symplectically) using particles executing energy oscillations and not just 

with fixed energy particles as is usually the case. This will also automati­

cally take into account the effects of 1 inear and non-1 inear satellite stop­

bands. 
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2. Derivation of the eguations of motion 

2.1. The Lagrangian for a charged particle 

As a starting point we consider the relativistic Lagrangian of a charged par­

ticle of charge e and mass m0 in an electromagnetic field: 

where 

tials 

'£ = - m c2 /1 v2 e .+ + 
• + (r • A) - e. 'l' 

0 c2 c 

(v = I~ I) 
+ . + + 
r 1s the position vector and A and cp are the vector and scalar 

+ + 

from which the electric field € and the magnetic field B are given 

+ 
+ 
€ = - grad cp 1 aA 

c at 
+ + 
B = rot A 

(2.1) 

poten­
by 

(2.2a) 

(2.2b) 

As usual, the equations of motion are derived from the Euler-Lagrange equa­

tions and in cartesian coordinates we have 

a'i + _at_ 0 dt + + 
ar er 

d (2.3) 

2.2. Introduction of the natural coordinates x, z, s 

The position vector r in Eq. (2.1) refers to a fixed coordinate system. How­

ever, in accelerator physics, it is useful to introduce the natural coordina­

tes x, z, s 3
). With this in mind we assume that' an ideal closed orbit (design 

orbit) exists describing the path of a particle of constant energy E0 (neglec­

ting of course energy variations due to radiation loss and assuming that there 

are.no field errors or correction magnets). We also assume that the closed or­

bit comprises piecewise flat curves which lie either in the horizontal or ver­

tical plane so that it has no torsion. The design orbit which will be used as 
+ 

the reference system will in the following be described by the vector r 0 (s) 
+ 

where s is the length along the design orbit. An arbitrary particle orbit r(s) 

is then described by the deviation o~ of the particle orbit ~(s) from the de-
+ 

sign orbit r 0 (s): 

+ + + 
r(s) = r 0 (s) + or(s) • 
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The vector o~ can as usual be described using an orthogonal coordinate system 

("dreibein") accompanying the particles and comprising 

a unit normal vector 

a unit tangent vector 

and a unit binormal vector 

+ 
v( s), 

+ 
-r(s), 

+ + + 
B(s) = -r(s) x v(s). 

We require that the vector t(s) is directed outwards if the motion takes place 

in the horizontal plane and upwards if the motion takes place in the vertical 

p 1 ane 3 ). 

Choosing the direction of \i(s) in this way, implies that the curvature K(s} 

appearing in the Fresnet formulae: 

+ d + ( - +r -r(s) = ds r 0 s) = r 0 (s) (2.4} 

+ d-r + crs=- K(s) •v(s) 

d+ 
CJ¥ = K(s) • ~(s) (2.5} 

is always positive in the horizontal plane and negative in the vertical plane 

if and only if the centre of curvature lies above the reference trajectory. 

+ 
In the natural coordinate system we can represent or(s} as: 

-+ -+-+-+ ++ + 
or ( s) = (or • v) • v + (or • B) • B 

(since the "dreibein" accompanies the particle the 1:-component of o~ is always 

zero by definition). 

However this representation has the disadvantage that the direction of the 
+ 

normal vector v(s) changes discontinuously if the particle trajectory is going 

over from the vertical plane to the horizontal plane and vice versa. There­

fore, it is advantageous to introduce new unit vectors 1:, "tx and ez which 

change their directions continuously. 
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This is achieved by putting 

+ = { ~(s), if the orbit lies in the horizontal plane; 
ex(s) 

-B(s), if the orbit lies in the vertical plane; 

+ {~(,). if the orbit lies in the horizontal plane; 
ez(s) = 

v( s), if the orbit lies in the vertical plane. 

Thus, the orbit-vector ~(s) can be written in the form 

+ + + + 
r(s,x,z) = r 0 (s) + x(s) • ex(s) + z(s) • ez(s) (2.6) 

and the Fresnet formulae (2.5) now read 

d + + as ez(s) = Kz(s) • -r(s) (2.7) 

with 

Kx(s) • Kz(s) = 0 (2.8) 

where Kx ( s), Kz ( s) designate the curvatures in the x-direction and the z­

direction respectively. 

For later considerations we mention that the connection between the curvatures 

Kx, Kz and the guide fields B~ 0 J, B~o) is given by~• 3 ) 

e B (o) = 
Eo z 

e • B (o) = 
Eo X 
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From Eqs. (2.4), (2.6) and (2.7) one then has 

X • z • 

so that for the expressions 

and 
• + (r . A) 

in Eq. (2.1) we have 

. + 
+ X • ex + z 

1/z 
+ ( 1 + Kx • x + Kz • z) 2 

• s 2 ]} 

• + ) 
Cr·A) = x·Ax+z•Az+s(1+Kx•x+Kz•z}·As * 

In the new coordinate system x,z,s, the Lagrangian in Eq. (2.1) then becomes 

(2.10) 

and the equations of motion take the form 

d ai = at 
dt ax ax 

d ai at (2.11) -= 
dt az az 

d a:£ a 'f. 
dt as as 

*) The components of a vector a with respect to the (ex, ez, ~) coordinate sys­

tem are defined by the equation 
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2.3. The Hamiltonian in the natural coordinates x, z, s 

In order to obtain the equations of motion in canonical form we now use the 

Lagrangian (Eq. (2.10)) to construct the corresponding Hamiltonian: 

~ = Px • x + Pz 
. . _;t . z + Ps • s 

where Pp Pu Ps are the canonical momenta 

Px = 
a'i 

Pz = at = a'i . Ps . 
ax az as 

Using Eq. (2.10) these are given by 

Px = 

Pz = 

Ps = 

m0 z 

2 I v 
c2 

v 2 I 
11 --c2 

. 
m0 s 

11 
2. v 

-C2 

+ :=_ A 
C X 

+ :=_A 
c z 

•(1 + Kx· x + Kz· z) 2 +:=. ( 1 + Kx • x + Kz • z) • As c 

Putting now Eqs. (2.13) and (2.10) into (2.12) we have 

m c2 
0 

2 I v 
-(;2 

+ e • 'P 

(2.12) 

(2.13) 

. 

(2.14) 

(thus, as is we 11 known, ~ here is the sum of the mechani ca 1 and fie 1 d 

energy). 
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In this equation, the momenta are still written in terms of the velocity. 

However, using the relation 

+ 

v2 
1 - (2 

( 2 .15) 

we may finally write the relativistic Hamiltonian for the motion of a particle 
+ 

of charge e and mass m0 in an electromagnetic field given by the potentials A 

and <p as 

( 
Ps + """1 __ ....;;_ __ _ 

+ Kx • x + K2 • z 
-Z As } /z + e • <p • 

] 

2 
1 

{2.16) 

The equations of motion are then derived from the canonical equations 

. aX 
X = aPx P• = - a~ 

x ax 

z = a:lf 
apz Pz =- ~ az {2.17) 

. a'JC s = aps 
. 
Ps = 
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2.4. The arc length as independent variable 

In Eq. (2.17) the time t appeared as independent variable. In order, as is 

usual in accelerator physics, to introduce the arc length s of the design or­

bit as independent variable we recall that Eq. (2.17} is equivalent to a ver­

sion of Hamilton's principle 

t2 
6 J dt. {x • Px + i • Pz + s • Ps -:fe(x,z,s,px,PvPs,t)} = 0 
tl 

ox(t 1 ) = oz(t 1 ) = os(t 1 ) = o 

ox(tzl = 6z(t2) = os(tz) = 0 

ot(t 1 ) = ot(t2l = o ' 

(2.18) 

where the variables x, z, s, Px, Pz, Ps• t are varied independently of each 

other and are held constant at the end points. (For the usual derivation of 

the Hamilton equations (2.17) from the variational principle (2.18) the varia­

tion of time t is actually not needed 6
). However, in order to be able to carry 

out the derivation of Eq. (2.10) it is useful, nevertheless, to allow t to 

vary; see Appendix I). 

Eq. (2.18) can now be rewritten using dt = ~ ds as 7 ): 

with 

t2 
of ds• {x''Px + z'•pz + t'• (-'Je) + Ps(x,z,t,Px,Pz,-~,s)} = 0 

tl 

ox(sl) = oz(sl) = ot(sl) = 0 

ox(s2) = 6z(s2) = 6t(s2) = 0 

6s(s 1 ) = 6s(s 2 ) = 0 

y 1 = ¥s (y = X, Z > t) 

6px(s 1 ) = opz(s 1 ) = o'Jr(s 1 ) = o 

opx(s2) = 6pz(S2) = o'£(s2) = 0 

(2.19) 

(where we make independent variations of the variables x, z, t, Px• Pz, (-~), 

s; and s is the independent variable). 
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The required equations with s as independent variable are then obtained from 

the Euler equations of the variational problem (2.19}: 

xl aK I aK 
= p = -- ; apx x ax 

z1 aK I aK ( 2. 20) = Pz = - az apz 

tl aK (-~~) aK 
= 

a(-ffli 
= 

at 

with 

K = - Ps 

= - (1 + Kx. x + Kz • z) • { ( ~ ~2 ecr) 2 m~ c2 - ( Px - % Ax) 2 - ( Pz - % Az) 2} 1/2 

- (l+Kx•x+K2 •z) • fAs (2.21) 

Thus, we once again have a set of equations with canonical structure but this 

time the Hamiltonian is 

K = K(x, z, t, Px• p2 , - ~. s) 

and the canonical variables 7
•

8
•

9
•

10
) are 

(x, Pxl (z, Pz) (t, ->ff) 

In the following we choose a gauge in which 

"' 
= 0 (2.22} 

Then from Eq. ( 2.14) 

~= m c2 
0 - E 

11 
2 I v 

c2 

(2.23) 

(the energy of the particle} 

and if we now use the variables (- ct) and n 

n= 
E - E0 

Eo 
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instead of t and !$e, Eq. (2.20) gives 

X I aK ~I aK 
= Px = 

~ ax aPx 

z1 = 
aK ~I aK 

Pz = (2.24} ~ az apz 

(- ct) 1 aK 
n~ 

aK 
= - -

an a(- ct) 

with 

-(l~Kx•x+K2 ·z) 
e . EAs 
0 

(2.25) 

~ c - c ~A Px = E Px -- m Ux + 
Eo E X 

0 0 
(2.26} 

~ c c e 
Pz = - Pz =- m Uz + -Az 

Eo Eo Eo 

Since the variable t(s) increases without limit, it is more useful to introdu­

ce the variable 

a= s - c • t(s) (2.27) 

which describes the delay in arrival time at position s of a particle travel­

ling at the speed of light c. 

This further change of variables can be achieved using the generating function 

= - Px • x - Pz • z - a • n + s • n + f ( s) ...._ ./ 
y 

identity transformation 
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The corresponding transformation equations: 

(- ct) 
aF3 

(which leads to - ct a = s - ct ; ) = -- = (J - s 
an 

aF3 
(which leads to n) n= a a n = 

then immediately give (with f(s) = s) Hamiltonian equations of the form 

A 

xl aK AI aK = --:::- Px = -
apx ax 

A A 

z1 aK AI aK (2.28) = A Pz = 
apz az 

A 

Gl aK nl aK = = an a a 

with the Hamiltonian 

K = (1 + n) • {1 -

' 
(2.29) 

where the (
m

0
c2)2 

term -%;) in Eq. (2.25) has been dropped since we assume that 

(m~:2 r « 1 

and can be neglected. 

The canonical equations (2.28) together with the Hamiltonian (2.29) give the 

defining equations for non-1 in ear coupled synchro-betatron motion and they 

will serve as the starting point for the developments to follow. 
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Finally we point out that since I(Py- ~ Ayll = \..£.. muy\ « 1 (y; x,z) the 
Eo Eo 

square root 

[1 -

in Eq. (2.29) can 

[1 -

1 1 
= 

2 

( ~ - ~A )2 
Px E x 

0 

(1 + n) 2 

be expanded in 

(~. - ~A )2 Px E x 
0 

(1 + n) 2 

(Px-f-Axl 2 
0 

(1 + n) 2 

(1 + n) 2 

a series: 

(iiz - :o Az)2 1/2 
J = 

(1 + n)2 

(Pz - ~ Az) 2 
1 Eo + (2.30) 
2 (1 + n) 2 

so that in practice the particle motion can be conveniently calculated to va­

rious orders of approximation. 
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Remarks 

1) From Eq. (2.28} and (2.29} we can obtain the differential equation for a: 

aK a' =- = 
an 

1 
1- (1+Kx•x+K2 • z)·-------~--~~------~-----

(px - :o Ax)2 (Pz - Eeo Az)2 1/2 

[ 1 - __ _..::.___ ----'"---] 
(1 + n) 2 (1 + n) 2 

which with 

aK (1+n} 
x 1 = -.,...- = + ( 1 + Kx • x + Kz • z) • --------'----------

apx (Px - Ee Ax)2 (Pz - Eeo Az)2 1f2 
[ 1 - __ _..:::..0 -- ___ ;:___] 

(1 + n) 2 (1 + n) 2 

aK (1+n) z I = -.,...- = + ( 1 + K • X + K • z) • ______ __:_ __ :..._ _____ _ 

ap z x z (A e A ) 2 

can also be written as 

Px-- X 
Eo 

[ 1 - ---"---
(1 + n) 2 

1/2 
a 1 = 1 - [ ( 1 + Kx • x + K2 • z) 2 + ( x 1 

) 
2 + ( z 1 

) 
2 ] 

_.:=._Az)2 I 
E 1 2 

0 ] 

(1 + n) 2 

This result could also have been obtained directly from Eq. (2.27} (together 

with Eqs, (2.4, 6, 7) 

da = ds- c •dt = ds- ldtl 

2) To derive the Hamiltonian K in Eq. (2.21} we began from a Lagrangian. It 

was then simple to derive the generalised momenta Px, p2 , Ps (Eq. (2.13)) 

conjugate to the natural coordinates x, z, s without using a canonical 

transformation. The function K of Eq. (2.21) agrees with that given by 

C.J.A. Corsten 10 ) but differs from that given by Courant and Snyder 8 l. For 

a derivation of the Courant and Snyder version see Ref. 9}. 
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2.5. Vector potentials for various magnet types 

In order to utilize the Hamiltonian of (2.29), the vector potential, 

+ + 
A = A(x, z, s, t) , (2.31) 

+ 

for the commonly occuring types of accelerator magnet must be given. Once A is 
+ + 

known the fields e: and B can be found using Eq. (2.2). In the variables 

x, z, s, a these become n) 

with 

+ e: = 
;a + 
-A . ;a (J , 

Bx = * •{ ;a'"z (h • As) - ;a'"s Az} 

Bz = l. { ..2... A - ..2... ( h • A ) } h ;as x ;ax s 

Bs = {..2...A _..2...A} 
<JX Z <JZ X 

h = 1 + Kx • X + Kz • Z • 

(2.32a) 

(2.32b) 

(2.33) 

Using the freedom of gauge, we can choose any vector potential which leads to 

the correct form of the fields. Suitable vector potentials are as follows and 

have been chosen for their simplicity. 

2.5.1. Cavity 

For a longitudinal electric field 

e:x = 0 

e:z = 0 (2.34) 

e:s = e:(s,o) 

we write 

A = 0 X 

Az = 0 (2.35) 

(J 

As = f do· e:(s,O') ' ao 

which by (2.31) immediately gives e:s· 
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Using a thin lens representation we may write 

e:(s,cr) ·v . [k 211 = •s1n •-ocr 
L 

+ <l>] o o ( s - s0 ) (2.36a) 

and we obtain using (2.35) 

L o V o cos [ k o 2 11 o a + <l>] o o ( s - So) ' 
21l o k L 

(2.36b) 

in which the phase <l> is defined so that the average energy radiated away in 

the bending magnets is replaced by the cavities and k is the harmonic number. 

For protons (for which there is no energy loss) one has <l> = 0. The influence 

of averaged radiation loss on the motion can be taken into account by inclu-
• ding in the Hamiltonian K (Eq. 2.29)) an additional term 

with 

This causes a shift of the closed orbit (see the term c0 in Ref. 3), 

Eq. (4.2b)). Thus, in this approach, energy loss effects can be treated cano­

nically. For protons, this term can be neglected. 

2.5.2. Transverse magnetic fields 

2.5.2.1. Transverse magnetic fields in a straight section 

• A = 0 • z ; 

Kx = Kz = 0 ; 

A 

K = 
•2 

(1 + n) 0 {1 - [1 - "(1:-P....:.;x~ + n)2 

, 

Bs = 0 • 

2.5.2.1.1. Quadrupole 

The quadrupole fields are 

Bx = z 0 ( cocoBxz) x=z=O , 

Bz = x o ( :Bxz) x=z=O 

( 2. 37) 
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so that we may use the vector potential 

As = {aBz) • 1. (z2 - x2) 
ax x=z=O 2 

In the following we rewrite the e term- As 

1 ( 2 
Eo 

e x2) ; -As = - g0 • z -
Eo 2 

= e ( aBz) 9o -· Eo ax x=z=O 

2.5.2.1.2. Skew guadrupo l e 

The fields are 

r· 1 [aBx aBz) 
- az x=z=O 

• X 
2 ax 

Bz 
1 ( aBx aBz) = -- • z 
2 ax az x=z=O 

so that we may use 

As 
1 [ aBx - aBz) • xz = 
2 ax az x=z=O 

or 
e N • xz -As = 
Eo 0 

where 
( aBx _ aB 2 J . 

No 
1 e = 
2 Eo ax az x=z=O 

2.5.2.1.3. Sextupole 

so that 

·with 

B = X 

~A 
E s 

0 

'-o = 

• xz 

= - 1- • l ( x 3 
- 3xz 2) 

0 6 

in (2.37) as 

(2.38a) 

(2.38b) 

(2.39a) 

(2.39b) 

(2.40a) 

(2.40b) 
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2.5.2.1.4. Octupole 

1 (a3

Bx) 
6 az3 x=z=O 

• (z 3 
- 3x 2 z) 

1 [a3
Bx) 

6 az3 x=z=O 
• (3xz 2 

- x3) 

so that 
~A = llo .1._ (z 4 - 6x 2 z2 + x") E s 24 0 

with e [ a
3
B ) 

llo = -. 
a z3x x=z=O Eo 

2.5.2.1.5. Dipole 

A 

= iiBz • o(s - s0 ) 

so that 

~A = 
E s 

0 

2.5.2.2. Synchrotron-Magnet 

Ax = '~z = 0 

(Kx,Kz) t- (0,0) Kx • Kz = 0 

A 

iiBz • x] 

K = ( 1 + n) • {1 - ( 1 + Kx • x + K2 • z) • [1 

- ( 1 + Kx • x + K2 • z) • ~ A E
0 

s ; 

P2 1;2 
- z ] 

( 1 +n) 2 

1 ·aaz[(1+Kx•x+Kz•z)•As] 
1 + Kx • x + Kz • z 

Bz=- 1 ·aax[(l+Kx•x+Kz•z)·As] 
1 + Kx • x + Kz • z 

(2.41a) 

(2.41b) 

(2.42a) 

(2.42b) 

} -

(2.43) 
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The field of a synchrotron magnet (combined function magnet) is 

Bx B(o) + z [ aBz) = • ax x=z=O X 

Bz B ( o) + X , [ aBz] = 
• -ax x=z=O z 

so that for the vector potential we may write 8
•

9
•

10
) 

= _l [1 +..!:.... •B(o) •x-..!:.... •B(o) •z] + 
2 Eo z Eo X 

+l•..!:.... (aaB/) •(z2- x2) + ••• 
2 Eo x=z=O 

or using Eq. (2.9) 12 l: 

Eeo As =-} ·(1 + Kx • x + Kz. z) +} 9o. (z2 - x2) + ••• 

with 

2.5.3. Solenoid fields 

A e 
(Px - E Ax)2 

K = (1 + n) • {1 - (1 - ---0
"---­

(1 + n)2 

Bx 
a 

= -- Az as 

Bz 
a =+-A as x 

Bs 
a a 

=-A --A ax z az x 

Br = v's2 + s2 ' 
X Z (radial field). 

(2.44) 

(2.45) 

(2.46) 
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z 

s z X 

Figure 1 

In the current free region {Fig. 1) the radial field Br and the longitudinal 

field Bs can be written as power series l3) 

"' 
Br{x,z,s) = I 

V=O 

"' 
Bs(x,z,s) = I 

\1=0 

Putting {2.47a,b) into the 

+ 
div B = 0 

+ 
rot B = 0 

one obtains 
"' 

b(zv+l){s)• 
z \)+ 1 

r 

bzv{s) • rzv 

Maxwell equations 

l. ~ (r • B ) = 
r ar r 

a a 6 - B =- s as r ar 

"' 

a 
-- Bs as 

I b(Z\1+1){S) • (2\1 + 2) • 
2\1 I 2\1 d 

r - - r • ds bzv{s) 
\1=0 \) =0 

"' 

(2.47a) 

(2.47b) 

"' d 
I rZ\1+1 • as b(zv+ds) = I b( 2v+ 2)(s) • (2v + 2) ·r

2
\1+ 1 

v =o \) =0 

By equating coefficients of each power one then obtains 

1 
b ( 2v + 1 J( s ) - - 7( 2:::-v-=-+ -::2~) • b~v (s) 

(2.48) 

b < 2\1 + 2 )( s ) = + ...,.( 2-v-=-! -2-:-) • b(2V+ 1) (s) 

( \) = 0, 1, 2, ••. ) 
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Thus, if the longitudinal field on the s-axis 

(2.49) 

is known, the coefficients 

can be calculated. The field components in the field free region are then 

given by 
00 

Bx(x,z,s) = ~ • B = X • I b(Z\!+ l)(s) • (x 2 + z2)v r r 
v=O 

00 

Bz(x,z,s) = l.. B = z • ) b(ZV+ l)(s) • (x2 + z2)v (2.50) 
r r v;;O 

"' 
Bs(x,z,s) = I 

\!=0 
bzv(s) • (x2 + z2)zv • 

The vector potential leading to the solenoid field of Eq. (2.50) is then: 

Az = + I 1 • b(zv) (s) •rzv ·x 
, 1 (2v + 2) 

(2.51) 

As = 0 . 
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3. Solution of the equations of motion 

Now that the potential A(x,z,s,t) for each magnet type is known it is possible 
to derive the equations of motion for the various magnets. For this purpose, 
we truncate the series expansion of the Hamiltonian at second order in the ca­
nonical momenta: 

~ e 
(Px -- Axl 2 

[1 - -,.----E-"o~­
(1 + n) 2 

= 1 1 
2 

~ e 
(Px - - Ax)2 

E0 1 
(1+n) 2 2 

= 
(1 + n) 2 

(1 + n) 2 
, (3.1) 

so that it is possible to solve the equations of motion exactly as shown in 
the following. 

3.1. Cavity 

From Eq,. (2.29) and (2.36) and using (3.1) (with Kx = 0, Kz = 0) one obtains 
the approximate Hamiltonian K 

~ 

Px 2 

-;"0'"....:.:...---,- + l 
(1 + n) 2 

(3.2) 

and the corresponding non-linear canonical equations according to (2.28) are 
~ 

x' = 
Px (3.3a) 

(1 + n) 

AI 

0 (3.3b) Px = 
A 

z' Pz (3.3c) = 
(1 + n) 

~. 

0 (3.3d) Pz = 
A2 ~2 

a' = 1 { Px Pz } _l[(x')2 +(z')2] (3.3e) 
2 (1 +n) 2 + (1 +n) 2 = 2 

~ 

n' eV . 2n ( - so) (3.3f) = - • Sln [ k •- • a + Wl • o S E L -
0 
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From (3.3c) and (3.3f): 

o(s0 + O) = o(s 0 - 0) 

n(s0 + 0) = n(s0 - 0) + eV • sin [k• 211 
• o(s - O) + <!'] 

Eo L o 

Also, by (3.3a) and (3.3b) 

d 
Os [ ( 1 + n) ' X ') = 0 [ 1 + n ( S ) ] ' X ' ( S ) = COnS t; 

[1 + n(s0 + 0)] • x'(s0 + 0) = [1 + n(s 0 - 0)] • x'(s0 - 0) ; 

X' ( s0 + 0) = 
1 + n(s0 - O) 
__ ___.:;...___ • x' (s

0 
- O) 

1 + n(s0 + O) 

Correspondingly from (3.3c) and (3.3d) 

and finally 

z' ( s0 + 0) = 
1 + n ( s0 - O) 
-----'-- • z' (s0 - 0) 
1 + n(s0 + O) 

x(s0 + 0) = x(s0 - 0) 

z(s0 + 0) = z(s0 - O) 

( 3. 4a) 

(3.4b) 

(3.4c) 

(3.4d) 

(3.4e) 

(3.4f) 

Eq. (3.4a-f) provide a complete solution to the non-linear canonical equations 

for cavity fields. 

Remarks 

1) From Eqs. (3.4c) and (3.4d) it follows that the terms 

x'(s)•y(s) and z'(s)• y(s) 

with y = 

are invariants of motion in the longitudinal cavity fields. 
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2) In the case 

I k • 2: . (J I « 1 

one can, in place of (3.4b,c,d), use the approximation 

n{s0 + O) n(s0 - 0) 
eV . eV 2

L1T • cos q, • a( s0 
= +- • Sln<\i +- • k • - 0) 

Eo Eo 

x'(s0 +0) " [1 + n(s 0 - O) - n(s0 + O)l ·x'(s 0 - 0) 

~ 

X' ( S0 - 0) eV . • x'(s0 - 0) " --•s1n1> 
Eo 

z' ( s0 + 0) z'(s 0 - 0) 
eV . •z'(s 0 -0) " --•s1n1> . 
Eo 

Alternatively, in matrix terms, also using (3.4a,e,f) we get: 

where 
+T (x, x' z' 0, TJ) y = z, ; • • 
.... 

(0, 0, 0, evsin1>) c = o, o, 
Eo 

(3.5a) 

M!l!l = 1 ( !l = 1, 2 , ••• , 6) 

eV 2rr M65 = - • k •- • cos 1> 
E0 L 

(3.5b) 

M!lv = 0 otherwise 

and 

'M 'M eV . v 22 = v 44 = - - • s 1 n 1> 
Eo 

oM[lV = 0 otherwise. (3.5c) 
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This is the form for the solution of the cavity equations given in 

Ref. (1,2,3) where the coupled synchro-betatron motion was studied in strictly 

linear terms. In that case, the o~ matrix is non-symplectic and leads to dam­

ping of the transverse phase space. This is of course consistent with 

Eq. (3.4c) where, if the cavity phase 1! is not zero (or n) (o~ # Q) so that 

the particle is accelerated (decelerated), the transverse phase space in terms 

of variables x, z, Px• Pz must be conserved since the equations are canonical, 

but the phase space in terms of the variables x, x', z, z' changes with energy 

(see Remark 1) above). 

(For a discussion of transverse electric dipole fields, see Appendix II.) 

3.2. Transverse magnetic fields 

3.2.1. Transverse fields in straight sections 

3.2.1.1. Quadrupole 

From Eq. (2.37), (2.38) and (3.1), the Hamiltonian for a quadrupole is 

given by 

K = .!. 
2 

A 2 

Px 1 _...:..;.._+-
(1 + n) 2 

A 2 
Pz 1 

-~-+-go•(x2- z2). 
(1 + n) 2 

The corresponding canonical equations are then (see Eq. (2.28)) 

x' = 
Px 

(1 + n) 

g0 • x 

z' Pz 
= (1 + n) 

AI 

+ 9o. z Pz = 

A 2 A 2 
o' = 1 { Px + Pz } _.!.[(x')2 + (z')2] -

2 (1 + n) 2 (1 + n) 2 2 

n' = o 

(3.6) 

(3.7a) 

(3.7b) 

(3.7c) 

(3.7d) 

(3.7e) 

(3.7f) 
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By eliminating Px (and Pz) in Eq. (3.7a,b) (and Eq. (3.7c,d)) one has 

X 11 =-g·x 

Z 11 = + g • z 

where (see Eq. ( 2. 38b)) 

go ~E • (aaBxz) • 
x=z=O 

g = (1 + n) = 

Writing now the solution of Eq. (3.8) in the form 

+ + 
y(s) = ~(s,O) y(O) 

with :? = 
,., 

(x, Px, 
r' 

z, Pz) 

~X - x' 

Pz - Z I 

we obtain for the ~-dimensional transfer matrix ~(s,O) 

a) g > 0 : 

M11 (s,O) = cos( f9 • s) 

M12 (s,O) =-1-sin(yg•s) 
V9' 

M21 (s,O) = -Vg sin(vg•s) 

M22 (s,O) = M11 (s,O) 

M33 (s,O) =cosh( V9'· s) 

M34 (s,O) = - 1- sinh( Vg• s) 
(9 

M43 (s,O) = Yg sinh( v'9· s) 

M44 (s,O) = M33 (s,O) 

otherwise 

(3.8a) 

(3.8b) 

(3.9) 

(3.10a) 

(3.10b) 

( 3.11) 

(3.12a) 
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b) 9 < 0 : 

M
11 

(s,O) = cosh( fT9T · s) ' 

M
12 

(s ,0) = k sinh( 1191 • s) 
19 I 

M21 (s,O) = 1191 sinh(Vi91• s) 

M22 {s,O) = M11 
(s,O) ; 

M
33 

(s,O) = cos(IT9l·s) 

M34 (s,O) = k sin( v'T9T • s) 
19 I 

M43 (s,O) = - fT9T sin( /"GI• s) 

M44 (s,O) =M 33 (s,O) ; 

Mik(s,O) = 0 otherwise 

From Eq. (3.7f) 

n(s) = n(O) 

and finally from Eq. (3.7e) 

s 
a(s) = a(O) _1. J ds·{[x 1 (s)F + [z 1 (s)F} 

2 0 

= a(O)- * {x 2 (0) • [s- M11 (s,O) • M12 (s,O)l 

-t {x 12 (0) • [s + M11 (s,O) • M12 (s,O)l + 

-t • x(O) • x 1 (O) • M12 (s,O) • M21 (s,O) -

1 - 2 . z ( 0) • z I ( 0) • M 34 ( s, 0) • M 43 ( s '0) 

(3.12b) 

(3.13) 

(3.14) 
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3.2.1.2. Skew quadrupole 

From Eqs. {2.37) and (2.39) the Hamiltonian for a skew quadrupole is given by 

K - l -:-:-P~x -2 ..,.. + l 
2 (1 + n) 2 

and the corresponding canonical equations of motion are 

x' = 
{1 + n) 

z' = 
( 1 + n) 

a' = - l [(x') 2 + (z') 2 ] 
2 

n, = o . 

From Eq. (3.16a,b) and {3.16c,d) we obtain 

X II = N • z 

z" = N • x 

where (see Eq. {2.39b)) 

N = 

{3.15) 

{3.16a) 

{3.16b) 

{3.16c) 

{3.16d) 

{3.16e) 

{3.16f) 

{3.17a) 

(3.17b) 

{3.18) 
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Thus the transfer matrix ~(s,O) (see Eq, (3.10)) can be written as 

M11 
(s,O) = 1. {cosh ( VN' • s) + cos ( vN' • s)} 

2 

M12 (s,O) = -
1

- {sinh( vN'·s) 
2 vN' 

+sin( VN' • s)} 

M
13 

(s,O) = l {cosh( vN' • s) - cos( v'N'· s)} 
2 

M
1

., (s,O) = 1 {sinh( VN' • s) sin( IN'· s)} 
2vN' 

M21 (s,O) = v; {sinh( vN' • s) - sin( Vfii'. s)} 

M22 (s,O) = M11 (s,O) 

M23 (s,O) = ~{sinh( IN'· s) +sin( Viii'· s)} 

M
2

., (s,O) = M13 (s,O) 

M
31 

(s,O) = M13 (s,O) 

M32 (s,O) = M1., (s,O) 

M
33 

(s,O) = M11 (s,O) 

M3.,(s,O) = M12 (s,O) 

M., 1 (s,O) = M23 (s,O) 

M.,2 ( s, 0) = M2., ( s, 0) 

M., 3 (s,O) = M21 (s,O) 

M.,., (s,O) = M11 (s,O) (3.19) 
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Eq. (3.16c), on integration, gives: 

s 
cr(s) = cr(O) ~ f ds • {[x 1 (s)F + [z 1 (s)J2} 

0 
\. 

= cr(O) - i • [x 2 (0) + z2 (0)] • {M 11 (s,O)·M21 (s,O) + M31 (s,O)•M 41 (s,O)} 

+ t N • x(O) • z(O) • { s - M11 (s,O)•M 12 (s,O) - M13 (s,O)•M 14 (s,O)} 

-t X
1 (0) • Z

1 (0) • {M 11 (s,O)•M 1., (s,O) + M31 (s,O)•M 34 (s,O)} 

- [x(O) • x 1 (0) + z(O) • z 1 (0)] • M12 (s,O) • M21 (s,O) -

(3.20) 

and finally from Eq. (3.20) 

n(s) = n(O) (3.21) 
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3.2.1.3. Sextupole 

From Eq. (2.37} together with Eq. (2.42) the Hamiltonian for a sextupole is 

given by 

A 2 

Px + 1 
(1+11) 2 

A 2 A 
Pz +_2.•(x3- 3xz2) 

(1+11) 6 
(3.22) 

and the canonical equations of motion are 

A 

xl = Px 
(1 + 11) 

(3.23a) 

AI 1 • (x2 - z2) Px = --A 2 0 
(3.23b) 

A 

z1 Pz = (1 + 11) 
(3.23c) 

AI 
+ Ao • x z Pz = (3.23d) 

ol = -l[(x 1F + (z1)2J 
2 

(3.23e) 

111 = 0 (3.23f) 

From Eq. (3.23a,b) and (3.23c,d) one has 

(3.24a) 

Z 11 = A • xz (3.24b) 

where (see Eq. (2.40b)) 

A = (3.25) 
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In the case where the sextupole is a thin lens with 

A = A • o(s - s0 ) (3.26) 

Eq. (3.23) may be easily integrated, and from Eq. (3.23e,f) 

cr(s 0 + O) = cr(s 0 0) (3.26a) 

n(s0 + 0) = n(s0 - O) (3.26b) 

Then from Eq. (3.24a,b) one obtains 

x(s0 + 0) = x(s0 - 0) (3.26c) 

(3.26d) 

z(s0 + O) = z(s0 - 0) (3.26e) 

~ 

z'(s0 + 0) = z'(s0 - O) + A•x(s0 - 0) •z(s0 - 0). (3.26f) 
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3.2.1.4. Octupole 

The Hamil toni an for an octupo le can be written in the form (see Eqs. ( 2. 37) 

and (2.41): 

~ 2 ~ 2 

K = 1 Px +l Pz - 1.. llo • (x4 
2 (1 + n) 2 (1 + n) 24 

and the corresponding canonical equations read 

~ 

x' = Px 
(1 + n) 

~. 

l ll • (x 3 - 3xz 2) Px = 6 0 

~ 

z' 
Pz = 

(1 + n) 

~. lll • (z• - 3x 2z) Pz = 6 0 

a' = -l[(x')2 
2 

+ (z')2] 

n' = 0 

From Eq. (3.27a,b) and (3.27c,d) one gets 

x" = 1 • (x 3 
- 3xz2) -j.l 

6 

z" = 1 
-j.l 
6 

• ( z• - 3x2z) 

with (see Eq. (2.41b)) 

llo 
..,.,..:...:;:.__..,- = 
(1 + n) 

e 
E 

(
a

3
B ) 

az•x x=z=O 

- 6x 2z2 + z4 ) ( 3. 27) 

(3.27a) 

(3.27b) 

(3.27c) 

(3.27d) 

(3.27e) 

(3.27f) 
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Considering the octupole as a thin lens with 

~ = p • 8 ( s - s0 ) 

one obtains by integration 

~ 

x'(s0 +0} = x'(s0 -0} + .l!..[x 3 (s0 -0)- 3·x(s0 -0)•z2(s0 -0)]; 
6 

~ 

Z 1 (So+ 0) = Z 1 (So - 0) + .!!. • [z 3 (So - 0) - 3 • X 
2 (So- 0) • Z (So- 0)] • 

6 

3.2.1.5. Dipole 

(3.28} 

(3.28a) 

(3.28b} 

(3.28c} 

(3.28d} 

(3.28e} 

(3.28f} 

The Hamiltonian for a thin lens dipole (Kx = Kz = 0) (see Eqs. (2.37} and 

(2.42)) is: 

K = 1 
2 

~ 2 

Px + 1 
(1 + n) 2 

~ 2 

Pz e 
( 1 + n) - Eo • 8 ( s 

and the canonical equations of motion are 

~ 

Px 
( 1 + n) 

z' = 
(1 + n) 

+ ..::.... • 8 ( s 
~ 

~. 

s0 ) • liBx Pz = - ; 
Eo 

a' = _l [(x')2 + (z')2] 
2 

n' = 0 . 

~ ~ 

- s 0 ) • [liBx • z - liBz • x] (3.29) 

(3.29a} 

(3.29b} 

(3.29c} 

(3.29d} 

(3.29e} 

(3.29f) 
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By eliminating Px and Pz one has 

e 
A 

x" = - - • o(s so). £\Bz 
E 

e A 

z" = + - • o( s - sol· £\Bx 
E 

and by integrating Eq. (3.29e,f) and (3.30a,b) one obtains 

x(s0 + 0) = x(s0 - 0) 

e A 

X 1 (So + 0) = X 1 (So - 0) - - • £\Bz 
E 

z(s 0 + 0) = z(s0 - 0) 

o(s0 + O) = o(s0 0) 

n(s0 + 0) = n(s0 - O) 

3.2.2. Synchrotron magnet 

(3.30a) 

(3.30b) 

(3.31a) 

(3.31b) 

(3.31c) 

(3.31d) 

(3.31e) 

(3.31f) 

Using Eqs. (2.43) and (2.45) together with (3.1) the Hamiltonian for a syn­

chrotron magnet is 

where 

A2 A2 

K = 1 Px + l 
2 (1 + n) 2 

Pz 
-:-( 

1
--=-+-n-:-) - (Kx • x + K2 • z) • n + 

+ l G(o). x2 + l G(o). z2 + l 
2 1 2 2 2 

G(o) K2 
1 = x + go 

(3.32) 

(3.33a) 

(3.33b) 
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canoni ca 1 equations of motion are 
A 

xl Px 
= 

(1 + n) 

AI G(o)•x+K ·n Px = - 1 X 

A 

z1 Pz 
= 

(1 + n) 

AI 

Pz - - G(o)•z+K ·n 
2 z 

a' - - (Kx • x + K2 • z) _l [(x 1) 2 + (z 1) 2
] 

2 

n I = o ' 

(3.34a) 

(3.34b) 

(3.34c) 

(3.34d) 

(3.34e) 

(3.34f) 

whereby the four equations (3.34a-d) can be replaced by second order equations 
by eliminating Px and p2 : 

with 

Writing 

with 

{

x" = - G • x + K • n 
1 x 1 + n 

z" = - G • z + K • n 
2 z 1 + n 

G1 = 1 • G(o) 
(1 + n) 1 

G = 2 (1 
1 • G(o) 
+ n) 2 

now Eq. (3.35) in the form 

+ + + 
y(s) = M(s,O) y(O) + q 

YT = (x, Px• z, Pz): 

+T 
q = (q1, q2, q3, q4) 

(3.35a) 

(3.35b) 

(3.36a) 

(3.36b) 

(3.37a) 

(3.37b) 

(3.37c) 

(3.37d) 



- 37 -

(compare (3.10)-(3.11) then 

a) for G1 > 0, G2 < 0 : 

M11 (s,O) = cos( VG";· s) 

M12 (s,O) = fr., • sin( VG;"'· s) 
I 

M21 (s,O) = -v'G,' •sin( VG;"'•s) 

M33 (s,O) = cosh(v'TGJ·s) 

M34 (s,O) = ~ • sinh( v\GJ • s) 
I 21 

M43 (s,O) = v'TGJ ·sinh( VTGJ' · s) 

q 1 (s,O) 
Kx ll • [1- cos(~· s)l = +-. 
G1 ( 1 + ll) 

q 2 (s,O) 
Kx ll • sin( VG;.' • s) = +--

vG,' ( 1 + ll) 

q 3
(s,O) 

Kz 
( 1 : ll) • [ 1 - cosh ( v'TGJ . s) J = +-. 

G2 

11 ·sinh( /jG"J ·s)] 
( 1 + ll) 

(3.38a) 
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b) for G1 < 0, G2 > 0 : 

Mu (s,O) = cosh( VTGJ. s) 

M12 (s,O)= 1 ·sinh(v'TG;T·s) 
v'iG,T 

M21 (s,O) = VTGJ • sinh( vTGJ • s) 

M22 (s,O) = Mu (s,O) 

M33 (s,O) = cos(~·s) 

M34 (s,O) = - 1- • sin{~ • s) 
VG; 

M 43 ( s , 0) = - v'"G; sin ( v'"G; • s ) 

q 1 (s,O) ll ·[1-cosh(v'lG,T·s)] 
( 1 + ll) 

q2 (s,O) • ll • sinh(Vi'GJ·s) 
(1 + ll) 

Kz 
q3 (s,O) = +- • ll • [1- cos(v'"G;•s)J 

G2 (1 + n) 

Kz 
= +--

R, 
ll •sin(v'"G,'•s). 

(1 + ll) 
(3.38b) 
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Furthermore, from Eq. (3.34e): 

s 
cr(s) = cr(O)- f ds·[Kx· x + Kz· z] 

0 

s 1 f ds· [(x')2 + (z•)2J 
2 0 

= _.!. • {s- M (s,O)·M (s O)}·[x 2 (0)•G + K~ • [...!L.J
2

- 2·x(O)•Kx· _!l_]-
4 11 12 • 

1 G 1 + n 1 +n 
I 

1 Kx n 
--

2 
•M 12

(s,O) •M 21 (s,O) • [x(O) • x'(O)- x'(o) •- • -]-
G1 1 +n 

2 

x'(O) Kx n 
- Kx• x(O)•M 12(s,O)- Kx • G • [1- Mn(s,O)]- G • 

1
+n • [s - M1/s,O)] -

I I 

2 ( )2 1 2 Kz n n 
-- • {s- M (s O)·M (s O)}•[z (O)•G 2 +-• - - 2·z(O)•Kz ·-]-

4 3 3 • 34 • G 2 1 + n 1 + n 

-t · {s + M33 (s,O) • M34 (s,O)} • z' 2 (0) -

1 Kz n 
--

2
. ·M 34 (s,O) • M43 (s,O) • [z(O) • z'(O) - z'(O)·- • -]-

G2 1 +n 

2 

z'(O) Kz n 
- Kz•Z(O)·M (s,O)- Kz • • [1- M33(s,O)]- -·-· [s- M (s,O)] • 

34 G2 G2 1+n 34 

(3.39) 

Finally, from Eq. (3.34f) 

n(s) = n(O) (3.40) 
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Remarks 

If we take into account field errors 6Bx, 68 2 in the guide field, Eq. (2.45) 

must be replaced by 

~A 
E s 

0 

1 =--·[1 
2 

• ( 1 + Kx • x + Kz • Z) + l g0 • ( z 2 - x 2 ) . 
2 

In this case the (approximate) Hamiltonian takes the form 

~ 2 ~ 2 

2 
Px 1 K = 

(1 + n) 
+ 1 

2 
Pz 

( 1 + n) - (Kx • x + Kz • z) • n + 

+ l G(o) • x2 + 
2 1 

6B 
+ _x_.K •z+ 

(o) z 
Bx 

l G(o) • z2 

2 2 

68 2 --•K•x+ 
( 0) X 

Bz 

+ 

l [1 
2 

and the corresponding canoni ca 1 equations of motion are 

~ 

x' Px 
= 

(1 + n) ' 

~. G(o) • x + K • n 
6B 2 

Px = - --· K - 1 X ( 0} X 
Bz 

~ 

z' Pz = 
(1 + n) 

~. (o) 6Bx 
Pz = - G 2 • z + Kz • n - -- •K 

( 0) z 
Bx 

cr' = - (Kx • x + Kz • z) _l[(x')2 + (z')2] 
2 

n' = 0 

now 

(3.41) 

(3.41a) 

(3.41b) 

(3.41c) 

(3.41d) 

(3.41e) 

(3.41f) 
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A '· 

By eliminating Px and Pz one obtains from {3.32a,b} and (3.32c,d}: 

X 11 = - G • X + n • Kx -
llBz 

• Kx 
1 (1 + n) B(o) 

z 

z" = - G • z + n • Kz -
llBx 

• Kz 
2 (1 + n) B(o) 

z 

Comparing these equations with (3.35a,b} one sees that, due to the field er­

rors, additional inhomogenious terms 

and 

appear which give rise to closed orbit shifts. 

3.3. Solenoid fields 

The Hamiltonian for a solenoid is obtained using Eqs. (2.46) and (2.51a,b} and 

by keeping only the first order terms in Ax and A2 : 

K = 1 
2 

(Px + Ho· z) 2 1 
+ 

(1 + n) 2 

(pz- Ho• x)2 

(1 + n) 

with (see Eq. (2.49}) 

H0 = lJL.b0 (s):; 
2
1 f-·Bs(O,O,s) 

2 Eo o 

The corresponding canonical equations of motion are then 

xl 1 • ( Px + H0 • z) = 
(1 + n) 

AI 1 
• ( Pz H0 ·x}·H0 Px = 

(1 + n) 

z1 1 • ( p Z - Ho • X) = 
(1 + n) 

AI 1 • (Px + H0 • z) • H0 Pz = - ( 1 + n) 

1 (px+H·z)2 (pz- H ·x)2} = _1. [{xl)2 
ol = { ( 1 

+ 
2 + n) 2 ( 1 + n) 2 2 

nl = 0 

(3.42a) 

{3.42b} 

{3.43a} 

{3.43b} 

{3.43c) 

(3.43d) 

+ {zl )2] {3.43e} 

(3.43f) 
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In order to integrate Eqs. (3.34a-d) it is useful to use new variables namely: 

A 

N Px 
Px = 

(1 + n) 
(3.44a) 

A 

N Pz 
Pz = 

(1 + n) 
(3.44b) 

Then, with 

H 1 • H e Bs(O,O,s) = - - . 
(1 + n) 0 E 

(3.45) 

we obtain from Eq. (3.44a-d) 

+ 
y' = A • 

+ (3.46) y 

where 

+T (x, N 

Pz) (3.46a) y = Pxo z, 

0 1 H 0 

0 0 H 

A = (3.46b) 

-H 0 0 1 

0 -H 0 

so that the transfer matrix M defined by 

y(s) = !:1_(s,O) y(O) (3.46c) 
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is, in the case of H = const (sharp edged field) 2
•

3 l: 

) 

M 11 ( s, 0) = ~ • ( 1 + cos 2 8) 

M12 (s,O) = 1 •sin28 
2H 

M13 (s,O) = 1 •sin28 
2 

M I~ ( s. 0) = 
1 • ( 1 - cos 2 8) 

2H 

M21 (s,O)= - H • 1 
•sin28 

2 

M22 (s,O) = M
11 

(s,O) 

M23 (s,O) = - H • t • (1 - cos 2 8) 

M 2~ (s,O) = M13 (s,O) 

M
31 

(s,O) = -M
13 

(s,O) 

M32 (s,O) = -M 1~ (s,O) 

M33 (s,O) = M11 (s,O) 

M34 (s,O) = M12 (s,O) 

M41 (s,O) = -M23 (s,O) 

M42 (s,O) - - M13 (s,O) 

M43 (s,O)= M21 (s,O) 

M44 (s,O) = M11 (s,O) 

(3.47) 
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with 

8 = H • s • 

Finally from Eq. (3.43) we obtain 

cr(s) = cr(O) _l s • {H 2 • [x 2 (0) + z2 (0)] + 
2 

+ 2H • [Px(O) • z(O) - Pz(O) • x(O)] + 

and from Eq. (3.43f) 

n(s) = n(O) 

(3.48) 

(3.49) 
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4. Summary 

Starting from the Lagrangian of a charged particle in an electromagnetic field 

we have investigated the Hamiltonian formalism of non-linear coupled syn­

chro-betatron oscillations for ultra-relativistic charged particles. The cano­

nical variables are x, Px• z, Pz• o, n, which are well-known from the six-di­

mensional linear theory (SLIM). By expanding the Hamiltonian in a power se­

ries in these variables, one may obtain various orders of approximation of the 

canonical equations. In this work we keep terms up to second order in the ca­

nonical momenta Px• Pz and take into account the effect of energy deviation on 

the focusing strength. These equations of motion are then solved for various 

kinds of magnets (quadrupole, skew quadrupole, bending magnets, synchro­

tron-magnet, solenoid, sextupole, octupole, dipole) and for cavities. The 

equations so derived can be very conveniently coded for computers: To calcula­

te the betatron-oscillations one has only to multiply four-dimensional trans­

fer matrices together. The variable o can be expressed in terms of the ele­

ments of these transfer matrices and the variable n changes its value only in 

the cavities. 

The general form of the Hamiltonian can be the starting point for a non-linear 

theory in the framework of the six-dimensional formalism. By only taking in­

to account terms up to second order in all variables one obtains just the Ha­

miltonian of the linear theory used in Ref. 2) and 3). 
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Appendix I 
========== 

Variational principle for the canonical equations 

The aim of this appendix is to show that the variational problem of 

Eq. (2.18): 

oJ = o (1) 

with t2 
J = J 

tl 
L • dt (2) 

and 

L = I {q; • Pi 
i 

- ~(q, p, t)} (3) 

(ql' q2, q3) - (x, z, s) ; 
(4) 

(pl' p2. p3) - (Px• Pz• Psl 

leads to the canonical equation (2.17) when the coordinates qi and the momenta 

Pi as well as the time t are allowed to vary independently of each other but 

are held fixed at the end points t = t 1 and t = t 2 : 

oq;(tl) = oqi(tz) = 0 

opi(tl) = opi(tzl = 0 

ot(t 1 ) = ot(t 2 ) = o 

(5) 

With this in mind we can write the integrand of oJ: 

as 

tz .. • d .. 
= J {L(q+oq, q+aq, p+ap, t+ot)·-(t+ ot) -L(q,q, p, t)}·dt 

tl dt 

t 
= J 2 

{[L ( q + aq, ci + oci, p + ap, t + at) -
tl 

L ( q, q, p, t)] + L ( q, q, p, t) • _d ot} • dt 

~-----------y--------------- dt 

o(L • at) 

OL 

= (a L + L • ..2._ ot) • dt 
dt 

(6) 

(7) 
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and using 

d • d 
= dt liq; - q; • dt lit 

we then obtain 

'i' {. d • d 
+ dt • t. q · • o p · + [- o q · - q; • - ot J • P; -i 1 1 dt 1 dt 

d~ - -. -· liP;} - dt d~ • - • at 
at 

d d'de J:i' } = dt·{-- (~·at) +[---J·ot + 
dt dt at 

+dt· I {-[a:Je_q;)·op·-[a~+p·)·oq· + 
i ap; 1 a q i 1 1 

+ ddt [oq;. P; J} . (8) 

Since 

dt at 
' { -a?Je • a!,f 9 
!.. - • q; +- • P;} 
; aq; ap; 

-- -= 

J'Je • • alre • • 
= I { [- + P;]. q; + [- - qi]. P; } 

1 aq; ap; 

Eq; (8) can then be rearranged to give 

o( L • ot) = d t • d~ n o q; • P; - Ot • 't} + 
1 

J!re • • 
+ [--q;J·(P;·ot-op;)} 

ap; 
(9) 
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so that the variation oJ can be rewritten as 

oJ = 

- opi )} + [I oq; ·Pi -
i 

(10) 

Because the variations vanish at the end points (see Eq. (5)) the last term in 

Eq. (10) is zero. The remaining integral can now only be. zero for arbitrary 

variations oqi, opi, at if the conditions 

;l:Je • 
0 -+p· = aq i , 

( 11) 

Jlle - qi = 0 
a pi 

are satisfied. However, (see Eq. (4)) these are just the Hamilton's equations 

(2.17). 
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Appendix II 
=========== 

Equations of motion for transverse electric dipole fields 

The vector potential for a constant transverse electric dipole field 

(1) 

can be written according to Eqs. {2.2) and (2.32) 

Ax(x,z,s,t) = 6sx • (-ct) = 6sx • (a s) 

Az(x,z,s,t) = 6sz • (-ct) = 6sz • (a s) (2) 

As(x,z,s,t) = 0 

Using the Hamiltonian of Eq. (2.29) and expanding to second order in x, Px• z, 

Pz, a, n we then have: 

~ 1 ~ e (a - s)F 
1 ~ e (a - s) F K = 2 [Px -- 6s • +- [pz -- 6sz • E X 2 E . 

0 0 

{3) 

and the resulting canonical equations are 

~ e (a - s) x' = Px -- 6s • E X 
0 

{4a) 

~. 

0 P_x = {4b) 

z' 
~ e (a - s) = Pz -- 6sz • 

Eo 
(4c) 

~. 

0 Pz = {4d) 

a' = 0 (4e) 

n' x' e + z' e = • E6sx • -6s · E z 
0 0 

(4f) 
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By eliminating Px and Pz one obtains from Eq. (4a,b} and (4c,d} together with 

Eq. ( 4e) the equations 

x" e = - fosx 
Eo (5) 

z" e = - !osz 
Eo 

and their solution 

X 1 
( S) = X 1 

( Q) + ~ {ot; • 5 
Eo X 

(6a) 

x(s) = X ( Q) + X 1 
( Q) • S + l ~ fot; • S 2 

2 E X 
0 

(6b} 

Z I ( 5) Z I (0) e = + - !osz • s ; E . 
0 

(6c) 

z(s) z(O} + Z 1 (0) • s +l e 52 = - !osz • 
2 Eo 

( 6d) 

Using Eq. (6b} and (6d} together with Eq. (4f) one also has 

n(s) = n(O) + ~ tosx • [x(s) - x(O)] + ~ lls2 • [z(s) - z(O)] 
Eo Eo 

= n(O} + ~ fosx • [x 1 (0} • s 1 e s 2) +- - fos • + 
Eo 2 E X 

0 

+ f !osz • [z 1 (0) • s +l e s 2) (6e) - f.ls 2 • 
0 2 Eo 

Finally, from Eq. (4e) 

o(s) = o(O) (6f) 

These equations can of course be extracted by elementary methods. The aim here 

is to show how they arise by applying our Hamiltonian formalism. 
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