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ABSTRACT

We consider 4d 5U(2) lattice gauge thecry and report a high statisties MC investi-
gation of correlations between Polyskov loops in the adjoint SU{2) representation,
For large EL ~values and on lattices with small sized spatial volumes these corre-
lations allow glueball estimates improving results of the literature by several

orders of magnitude.

Let us address the problem of the spectrum of 4d SU(2) lattice gauge theory with

the Wilson action

C=71%) (- ™%y

Analytic methods allow to calculate the spectrum in the strong coupling (SC) ‘l-;o
limit /1, 2/. The mass gap of the theory is the mass of the ot glueball. In the
"erossover”" region at & A~ 2.0 the m(0°) SC series of %ef. /2/ bresks, however,
down and Padé extrapclations /3/ to the physical limit (first volume V=¥ 90 then
?,—)GO ) are unreliable due to the complicated singularity structure.

Monte Carlo variational (MCV)} ecalculations /L4/ on an L3Nt lattice allow reliable
mass gep calculations beyond the region where the 3C expansion breaks down. More
precisely: Upper bounds on the mass gap are obtained from correlations at rather
small distances t = 0, 1, 2 and to some extend alsc t = 3. These bounds are supposed
to be reliable final estimates up to fS L 2.4, Beyona ﬁ 2, 2.k the projection
of the considered operators on the mass gap wave function becomes negligible small,
Consequently only a bad upper bound is obhained frém short distance correlations,
whereas at larger distances the correlstions disappear inte the statistical noise.
For the SU{3) gauge group some improvement has been achieved by means of a high
statistics MC cold wall calculaticn /5/. But at large % -values the method becomes
again impractical, because the cold wall projects no longer significantiy ento the
mass gap wave function. This method does not even give bounds on the true mass gap,

as positivity is lost.

The cutlined shortcomings of MC calculations prevented so far to study the crossover
to another notable limit in which analytic mass gap calculations are feasible /6/
namely the limit %-é‘oof a L* x 00 continuous box. The natural control parameter

for the finite volume thecry is
L, (2)

It may be thought of as the box lengbh in physical units of the correlation length.
For large L =z rises linearly with L, but as L-—% 0 the weak coupling expansion

{ P-Jy ©C } applies and z goes Lo zero only logarithmically. Lilschers /6/ wesk
coupling calculation of m(O+deH§ breaks down around z ~.1,5, and for decreasing

7 $1.5 one finds m( O+)[Aﬁé extremely rapidly rising. Therefore the crossover to
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the asymptotic beheviour m(0 )/ ﬁg-—a const for z-%»O0is probably very sherp.
This is not unexpected because of the finite temperature phase transition, which

exists on an L x ©00° ¥ oo system.

In case of the 24 0{3} & -model the gap between MC calculations and the finite
volume weak coupling expansion has been bridged recently /7/. In this letter we
meke a similaer attempt for the hd SU{2) lattice gauge theory. In-the ¢ -model the
MC calculation of Ref. /T/ is possible, because the spin field seems to have a
reasonably good projection on the mess gap wave function at small ‘and at large
-values {spscelike lattice length fixed}. By dimensional reascns no local opera-
tor with this property exists for 4d lattice gauge theories. We therefore consider
correlations between the simplest non-local operstor which couples to the glueball
wave function. This is the Polyakov loop in the adjoint SU(2) representation. An
advantage of this operator, relevant at intermediate g -values, is that it allows
multi-hit improved measurements /8/. This has extensively been used for investigating
the Polyakov loop in the fundemental SU{2) representation /9/, where the Polyakov
loop does not couple to the glueball wave function, but is relsted to the stfing

tension.

Let us denote the three spacelike directions of our latbice by x, y and z. By means
of the periodic boundary conditions we close the Polyakov loop in z-direction.
Summing over the x,y-positions we project out momentum 3 =0, i.e. we have construc-
ted 2 translation invariant cperator P™{t) ("a" stands for adjoint). One may further
project on appropriate irreducible representations of the cubic group /1, 10/.

For this first study we, however, discard this option and measure directly the

correlations

C(t)=<o|\’“(o) Pm\tHo (3)

commected

Previous results on the string tension are also improved by analysing the correlations

between Polyskov loops in the fundamental representation.

Qur MC calculations for various lattices and ? -values are summarized in Table 71,
where the final statistics is given for each case. To reach eguilibrium we have

carried out between 1000 and 2000 sweeps without measurements. The SU(2) gauge group

was approximated by using the 120 element icosaeder subgroup and multi-hit improved

measurements were done every 10 sweeps.

The multi hit iﬁprovement is efficient when the dominant fluctustions are short range.
This is true when L is large as compared to the correlation length. At the high

‘5 -values % = 2,70 (except ¥ = 6) and %.: 2.85 CPU time was saved by deing only
normel measurements. In any case normal measurements were done for the sske of

comparison.

Our mass gap estimates are collected in Table 2. We define the effective mass at

distance t,m(t),by the implicit formula,

~-wit - -t
- LI ¢y [Ny~ 2]

= ()
Ct-4)

3lt) =
gt B-A | o it )N -2+ ]

Neglecting the "cosh effect" this reduces to the usual definition.
m(t) = 1n3(t),

in Table 2 the number in parenthesis gives the distancet from which the final estimate
was taken. In case of stable correlations over several distances the error bars can
be corrected towards lower values, For twa example poinbs ( = 2.55, L3 32 and

= 2,70, RS 64} the thus obtained t-dependence of mass gap estiwmates, m(o") (&),
is illustrated in Table 3. From the viewpoint of t-» 09 stability the correlations
at F = 2.70 (hB + 6L lattice) are among our micest, Altogether the results are very
encouraging: The signael cen be followed to much larger distances than in previous
MOV caleulations and we are able to obtain alsc results at a much larger correlation
length then before. At il = 2.85 (63 » 64 lattice) the correlation length is close
to ‘é = 3, whereas previously the largest correletion length at which reliable re-

sults could be obtained was only slightly above‘E = 1.

The z-dependence of our mass gap dats is summarized in Figure 1a). For compariscn

we depict in Figure 1b) the mass gap results obtained at distance t = k. (At small

e, —values t = L gives of course rather large error bars.) In both Figures the cross-
over from small z-behaviour to large z—behaviour is extremely shai‘p. Around zé 2
the mass gap rises rapidly for decreasing z and approaches the weak coupling expan-

sion /6/ from the right. In converting the results of Ref. /6/ to the I\ L—scale We
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‘:;ave used the 1-lcop perturbative resultA " = 19.82AL (B=M) and neglected

/a —corrections. Because of the extremely rapid increase of m for decreasing small =z
the picture would, however, remain unaffected including 143 ~corrections, and & more
detailed analysis like the one carried out in Ref, /7/ seems to be impossible for La

lattice gauge theory.

We have encircled MC data from different g -values supporting a universal curve in
the m-z-plane. Up to an instability of the \3 = 2,55 (h3 + 32} result both Figures
ave consistent and we obtain nearly identical shapes indicating the z-dependence OF

the mass gap. For large z the MC data approsch
m(o") = (175 £ 25) A (5)

in good agreement with previous MC estimates /l/. Figure 1 clearly reveals that
Lilschers wesk coupling expansion does not yield information sbout the z -3 O limit,

In case of 24 € -models the situation is more subtle, see Ref., /7/.

Pollowing the lines of Ref. /8, 9/ we obtain the string tension K from correlations
between Polyskov locps in the fundamental representation. Teble 4 summarizes our final
estimates for ﬁ(in analogy to Tavle 2 for m{ 0*}), and Table 5 illustrates for

two example points (again $ = 2,55, ¥3 . 32 and e)= 2,70, L3 .6l lattice) the
t-dependence of the string tension estimates k{t) {in analogy to Teble 3}. The sta-
bility over many distances is quite impressive. Pigure 2 plots W( in units ofAL)

versus the variable

2 =35\ L, (6)

The factor 3.5 is introduced to achieve

AN VE N (1)

where % is defined by equation (2), For completeness we have also i_ncluded MC data
of Ref. /9/ in Pigure 2. The results are now as follows: For decreasing z' 5_. 3 the
string tension rises sharply, but the crossover seems to be smoother than in case of
the mass gap. For Ll( z! < 5 our MC date indicate universal behaviour and a value
hBAL 4 VIT(SOAL. For larger z' (up to z' NQ.S)JEE rises smoothly by about

10% - 20%. Tt is, however, not completely clear whether this behaviour is indeed
universal or has to be attributed to using too small lattices. For the sake of

definiteness, we have plotted the z behaviour of the finite size string tenzion

_51.

implied by the Coulomb correction /12/
VK = JK [/ A- = (8)
o t
3 -1 /a8Y .
Using our data for z 3 b, a least square fit to equation {(8) gives ﬁ = 61AL.

The estimate
VEeo = (612 5V A (9.2)

encloses all the used data. Equation (8) rellies on unproven relations between non-
sbelian gauge theories and string theory. Assuming instead of equation (8) an expo-

nential approach to the asymptotic value R would lead to the estimate
= + ‘
VEz (54 2 A, (5.0)

and is in good agreement with previous results of Ref. /9/. Seec also /k, 12/.

Table 2 and Table 4 show that one may very well push for results at even larger
p —values and lattices, We plan to do this in a. similar investigaticn for the 8U(3)
gauge group, hoping that the 1. order deconfinement phase transition which occurs

on al xo0 xed lasttice will not be an obstacle.
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2.25 2.40 2,55 2.70
Lattice
2'm, 186 * 5 (3) 230 %13 (4 228 :19 (5 362k (5]
hsNt 194 = 5 {3) 176 £ 19 (u) 180 £ 10 {s) 260 *+ 10 (6)
63Nt noise 180 * 16 (%) 159 + 10 {53 204 £ 15 (4)
ESNt 1.25 £ 0.03 (3) 1.06 £ 0.06 (&) 0.72 % 0.06 (35) 0.81 £ 0.06 (5)
[ 1.30 * 0.03 (3} 0.81 + 0,04 (L) 0.57 * 0.03 (5) 0.56 % 0.02 (6)
63‘1\1t noise 0.83 £ 0.07 () 0.50 £ 0.03 (5) o4 £ 0.0k (k)
TAELE 2

Final mass gap estimates in units of!\L and in lattice units. The number in

from which the final estimate was taken.

parenthesis

2.85

339 £ 7 (5)

0.50 £ 0.07 (3)

0.37 + 0.02 (5}

give the distance
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Lattice 2.25 2.40 2.55
23Nt 52.0 £0.8 (5-12) 64.8 1.6 (7-1h) B82.5 o+ 1.0 (6-1k) 10g.2
hamt boubh £ 0.6 {5-8) k9.6 + 1.1  (6-12) 60.0 + 1.0 (S-1k)  Th.T
63Nt 55.8 t 2.0 (L-6) L5686 20,7 (5-10) LW7.0 & 1.0 (B-15) ©59.k4
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631\1t 0.374 = 0.013 (L-6) 0.210 + 0.003 (5-10)  0.1L8 * 0.003 {8-15) 0.128

TABLE b

Final \!string tensicn estimates in units of I\L and in lattice units. The Tirst number

from which the final estimate was taken, the second number indicates the distznce up to

2.70 2,85
2.8 (8-18)
* 1.0 (5-18) 99.1 * 3.k (6-18)

+ 1.0 (5-18) T7.% =+ 1.h  (3-10)

+ 0.006 (86-18)
* 0.002 (5-18) 0.1L6 * 0.005 (6-18)

*+ 0,002 (5-18)  0.114 +.0.002 (3~10)

in parenthesis gives the distance t

which consistency is achieved.
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Figure captions

Fig. 1:

Fig, 2:

Mass gap m as function of 2 in units of A L Lettice sizes are indicated

as follows:} 23Nt, EbaNt and i 63Nt. The sttached numbers give the

g —values corresponding to the data points. The two full lines are from the
small z-expansion of Ref. 16/, if]\ W= 19.82}\L is used. Pigure ia relies
on the estimates of Table 2, whersas Figure 1b deplcts for comparison

m{t=h), Data points supporting universal behaviour are encircled.

J String tension as function of z' = 3.5 JK L in units ofj\ . Lattice

sizes are indicated as in Figure 1. For completeness the following data
points from Ref. /9/ are included: R;= 2.3, (6% - 2k, 87 « 2k}, B = 2.4,
(8% - 16) and B>= 2.5, 16% - 2b, 123 . 243, The 8% - Ny lattices are
indicated ‘oy} and the 12% « 2b lattice by i }
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