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We refine a previously introduced Monte Carlo method for simulating random sur­

faces. This allows us to calculate with high precision critical indices for planar 

random surfaces without spikes. We assume standard scaling 
. 4 . . 1 

only a few percent our results ~n d~mens~ons are: Y = 4• 
laws. Within errors of 

1 r = ,. ~H = 4• 't = .. 
In contrast to planar random surfaces with spikes the model is non-trivial: The 

two point function has an anomalous dimension '1. ;. 0. 
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Within the last years there has been a continuous interest in the study of random 

surfaces. Most prominently they are studied because of their connection to QCD, 

but also their relation to surface problems in solid state physics and many other 

aspects are of interest. For a review see Ref. /1/. The simplest lattice model 

are planar random surfaces (PRS) with fixed Euler characteristics /2/. Unfortuna­

tely it has been proven by Durhuus, FrOhlich and Jonsson /3/ that PRS are trivial. 

This means the anomalous dimension ~ of their two point function vanishes and in 

the critical limit they describe a (generalized) free field theory. 

Independently from the investigations of Ref. /3/ one of the present authors, in 

collaboration with Billoire and Foerster /4, 5/, started a numerical investigation 

of lattice random surfaces, In this context planar random surfaces without spikes 1 ) 

(PRSWS), called 11 fermionic random surfaces" in Ref. /4, 5/, were introduced. By 

reasons sketched at the end of this letter the triviality proof of Ref. /3/ does 

not apply to PRSWS. Our numerical results presented here show that PRSWS are non­

trivial and consequently belong to a different universality class than PRS. 

Our model is defined by the following loop Green functions: 

G, tf., ... , f .. l = L e-fUSI 
h •lf ••... ,f,.l 

(1) 

p~ p. 
The sum goes over the set )HYt~··· 1 1~ l. of all link-wise connected PRSWS with 

boundary 1~ U ... U y,. given by n loops Yt, .. , 1 Yn in ~d. IS\ is the area 

(= number of plaquettes) of surface S. The difference to Ref. /3/ is that there 

,l(f., ... ,f.l is a set of connected PRS with spikes allowed. 

In our numerical work we simulate surfaces with a common fixed plaquette, In other 

words, the boundary consists of one loop Op, given by the four links of this 

plaquette, The partition function of our model is 

z = G, l 'Glp. \ 
and by technical reasons /4/ we generate surfaces with respect to the modified 

partition function 

(2.a) 

1
) A spike is consisting out of two connected surface plaquettes, occupying the 

same lattice plaquette, For a figure see the second paper of Reference /4/, 



z = 
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I... tsle-' 1s1 
s •• ,~ ... , 

(2.b) 

The results of Ref. /2, 3/ imply that the partition function converges for p large 

enough. A critical point Pc is supposed to exist such that in the limit ~- ~c T 0 

the loop Green functions ( 1) define an Euclidean quantum field theory. 

Critical indices are defined as follows 

mtpl ( P- Pc)., ( 3.a) -
xcpl .... ( p- Pc ,-t ( 3.b) 

Gp<ap •• ip) - I Xp- Xp.I-C d-2. • '\ \ (3.c) 

Here m( ~ } is the mass gap, X ( ~ \ the susceptibility and 'l denotes the anomalous 

dimension of the 2-point function at the critical point ( _. <~ I X p- X p,l <.< m ( ~)- \ 

~-~,tol. 

Let n(A) be the number of surfaces with area lSI 

function (2). We assume 

n(Al = c: AE. e"cA ( 1 ... 

A contributing to the partition 

( 4 I 

Q ( 4/ A )) as A._,. 00 . 

If the susceptibility X(~) diverges, as ~ -pc, i.e. if E). - 2, then 

t = ~ ... & 
( 5) 

Our numerical simulation will directly determine f and the Hausdorff dimension dH 

defined by 

t 
(X )A = c A!-• as A-- (6) 
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Here the expectation value ( • )A is given by averaging over all surfaces of 

area lSI =A and x~ = (x - xp ) 2 is the squared distance of the plaquette pc S 
p 0 

from the fixed plaquette p
0

• The other critical indices follow from standard 

scaling relations 

-· y a cfH 

1• v(2-'l.l 

( 7 .a) 

(7 .b) 

We now like to present our numerical results. In Ref. /5/ ~c; was calculated in 

d = 5 dimensions to high precision. We obtain now similar results also in d = 4 

and d = 8 dimensions: 

1.507 > 
1.195 > 

(For completeness: 1.305 

on expanding ( ~ < p,) and 

~' 
~' 

) 

> 

1.502 

1.180 

< p, < 1. 310, d = 
contracting ( ~ > p,) 

(d 

(d 

8) 

4). 

(8.a) 

(8.b) 

5). As in Ref. /5/ the results rely 

surfaces. The largest involved sur-

faces had an area of approximately 8000 plaquettes. 

In Ref. /5/ also an attempt was made to determine the entropy coefficient € of 

equation (4) by calculating for p > ~' the average area (A) with respect to 

the modified partition function Z (2,b). Fitting the asymptotic behaviour<A">"" ~~i. 
for (3-+ 13, + 0 yields, in principle, € • This approach is, however, plagued by large 

statistical errors and unknown systematic errors. The reason is that for ~ > ~' the 

MC procedure /4/ spends most of the CPU time on small surfaces and the divergence 

is only indicated by occasional excursions to (very) large surfaces. For the present 

investigation we therefore decided to measure (x~) A in a way similar to the 

microc'anonical approach as successfully applied in Ref. /6/. (Unfortunately the 

model considered in Ref. !6! has severe diseases /7/.) This is done by using our 

MC method at jl < ~' to generate lattice surfaces. We prevent these surfaces from 

growing ad infinitum by inserting an upper bound A for the area. Any shift of 
. max 

our MC procedure which would increase the area beyond Amax is rejected, This re-

jection does not destroy detailed balance, but ergodicity is only maintained for 

surfaces of sufficiently smaller area A= lSI than Amax' By this method we calculate 
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(x2 ) A and get reliable results even for surfaces of areas as large as A~ 5000, 

whereas by simulating Z for ~ > ~' /5/ similar results already became unreliable 

around A s::t 50. 

Table 1 contains (in 11 iterations") the high statistics that we have collected with 

two different upper bounds A and for various A -values. Each proposed shift for 
max r 

a 1 0 1'70 1.160 1.165 , .no 

A max 300 5 000 5 000 5 000 

Iterations 3 • 10 9· 54 • 109 54 • 10 9 54 • 10 9 

- - -- . -- - - ' ----

TABLE 1 

Statistics of our MC calculation 

a single plaquette is counted as one iteration. The acceptance rate is ~ 15%. 

Altogether the calculation relies on approximately 900h CPU time on the Fujitsu­

Siemens 7.882 computer of Hamburg University, 

Table 2 gives an impression about our measurements of ( x 2
) A. For close by surfaces 

the results are strongly correlated and practically identical. This is expected 

because these surfaces emerge fro~ one another by small deformations. During the 

simulation (x 2 ) A fluctuates heavily, but moves slowly. This is due to the fact 

that deforming the shape of the surface requires a large amount of subsequent itera­

tions and unfortunately the entropy of surfaces of area A is not sharply peaked 

around x2 "' ( x 2) A. This can be seen from Figure 1. Nevertheless our very high 

statistics results are quite indicative for the Hausdorff dimension. Using 

dw = 2 ln(7:;-J / Ln( < x'> .... ) 
1 , 

( lC )AJ. 
A1>>A, (8) 

A,- oo 
we obtain~"' 4.3 ~ 0,2 for A1 ~ 271, A2 "' 131 and dH"' 4.2 ± 0.2 for A1 "'4955 

A2 = 131 or A2 = 271. In the last case we have combined our three values for 

( x 2 ) 
4955 

to < x 2 ) 
4955 

= 28 ± 2. In the same way we me.y use other values of A 
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and get very similar results. Within statistical errors and a presumably small 

positive systematic error (due to the finite value of Amax) our data give 

"H = 4 
( 9) 

in agreement with an old conjecture /8/. 

Remark: If one assumes that (x2 ) A grows logarithmically with A, that is ~ = OGI, 

the results obtained from A1 = 271, A2 = 131 and A1 = 4955, A2 = 131 or 271 .are not 

consistent with each other in the sense, that they lead to completely different 

values for the constants appearing in (x 2) A= a ln A +b. So we conclude that 

dH = oo is ruled out for PRSWS. 

Our method allows to measure accurately the exponent € of equation ( 4). The MC 

. . . ~ At"'l tp~-PIA 

procedure generates large surfaces •,nth the probab~l~ty n"',CA) =- Cp e 1 

where we have neglected 0( 1/A) corrections. This yields: 

n~~ lAal/ n~, tA1l - c~~(:t f"i'" e-p,A,.p.A. 
1 ( 10) 

E e.nd the constants c p~ are unknown. We now take A1 € {large surfaces} and 

A2
E {"small11 surfaces} with A1 - A2 

= l::t. A = 4718. By varying A
2 

in the range 

161 ' A2 ' 261 least square fits to our data, as depicted in Figure 2, give the 

result 

E =- 1.74 ± 0.03. ( 11) 

Despite the fact that the constant ct~ in equation ( 10) is~ 1 , 2-dependent, we find 

consistent £-results for the three different ~ -values. They are: E = - 1.723 

(~ 2 = 1,160), E =- 1.729 lp 
2 

= 1,165) and € =- 1.765 (~ 
2 

= 1.170), Treating 

these results as independent, we find £ = - 1. 739 ± 0.013. They are, however, corre­

lated because the small surfaces are identical in all three cases, To analyse these 

correlations we have divided each dataset into three bins. This gives 3 x (3x3) 

combinations and for each combination we have separately carried out the least 

square fit. The thus obtained distri~ution of £ -values is displayed in Figure 3. 

It is approximately Gaussian and gives confidence in the stability of the final 

result. Taking the average over these 27 least square fits gives E =- 1.725 and 

the bias, as compared with equation ( 11) 1 is well within the given error. The error 
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bar of equation (11) is obtained by looking for each set of large surfaces at the 
3 diagonal bin-bin combinations with the set of "small" surfaces. 

Together with the scaling laws (5) and (7) our results (9) and (11} imply: 

1 
)I :: 4• y = 0.24 ± 0.03 and ?. = 1. 04 ± 0. 12 ( 12) 

Equation (12) is the precise formulation of the results stated already in the 
abstract, and for the Hausdorff dimension we have assumed that it takes on an 
integer value, 

To strengthen the reliability of our method, we have carried out a similar analysis 
for closed random walks without spikes. In previous equations the area A = lsi 
of a surface has to be replaced by the length L = 1~1 of a path. We obtain the 
numerical results~= 2.07: 0.03 and € =- 1.97 ~ 0.02. Within expected small syste­
matic errors this is in good agreement with exact results dH = 2 and£ =- 2 /9/. 

In summary our numerical investigation overcomes various shortcomings of previous 
numerical work /5, 10/ concerning lattice surfaces. 

The result { 11) is to some extend surprising, because naively one may have argued 
PRSWS to be in the same universality class as PRS. Then Ref, /3/ would imply either 
E ~- 1.5 ore<- 2. But universality classes of random surfaces are not at all 

well-understood, mainly because there is no straightforward method to determine the 
corresponding Lagrangian field theory {if there is any), It is instructive to pin 
down the reason, why the proof of Ref. /3/ collapes for PRSWS. Let now 

GpCb,b'l-= G,lJlbl, flb'n 
be a PRS 2-loop function with loops located on the links b, b'. The key step in the 
proof of Ref, /3/ is to write 

Gp (bIb' ) L e-P•s• 
s. .l(b,l:i) 

= L e_,,R, 
Ri 1llb,i:l 
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rr ( 1 
lti R 

+ L e-,a•s• ) 
s..rcn 

= (1 + GC~))1 L e-~·uiRl 
Rl ft(b,lll 

( 13) 

where G(~) = G~(b) and ~ eff = ~ -2log (1+G{~ )). Heret\{b, b') C .A(b,b'l 
is such that the surfaces R E ft (b, b') are partially two-link irreducible, The 
precise definition is: 'R (b, b') contains all surfaces, which by cutting any two 
links either remain connected or decay in surfaces 51 E Jllb, l) and $ 1 ' ,glb,l) 
where l is the link along which is cut ted. All surfaces S E J(b,lj) are obtained 
by glueing to surfaces R E. 'R<b,b') at each link l E; R all possible surfaces 
S 6 .>8 ( l) or the zero-area surface, For each link l E: R we always get the same 
factor independently of the local geometry. This is of central importance and pre­
cisely not true in case of PRSWS, As spikes are forbidden we have to distinguish 
between links at edges and at flat pieces of R. Consequently the equation for ~ eff 
breaks down. This is decisive as for deriving '1 = 0 one needs ~ eff = ~ -2 log •-r t •-r ( 1+c+( ~ -~c.) ) , ( ~-.pel and for PRSWS the contribution ~ - ~,} for p- ~c. 
cannot be guarenteed anymore, 

One may imagine that for large enough d the flat pieces of PRSWS R 6 1l. ( b, b') 
are no longer important. Then only edges would matter and a similar recursion like 
equation ( 13) would hold, This is satisfactory because the large d expansion /3, 11/ 
predicts free field theory behaviour, The upper critical dimension has conjectured /8/ 
to be d = 8, and it is tempting to argue € = - 1.5 for PRSWS in eigth dimensions. 
To calculate E in eight dimensions is a straightforward extension of our present 
calculation, which we plan to carry out as a next step. 
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In conclusion we claim to have identified the simplest non-trivial lattice model 

of random surfaces. Although our PRSWS do not interact, the corresponding field 

theory is non-trivial as can be conclud8d from the anomalous dimension of the 

two point function. It is a theoretical challenge to identify the Lagrangian 

version (if there is any) of the corresponding Euclidean quantum field theory. 
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A = 280 A = 5000 max max 

~ = 1.170 p = 1.160 ~ = 1.165 ~ = 1.170 

A "Me (A) (x2) A A "Me (A) (x') A "Me (AI (x2) A "Me (AI (x') A 

131 1.2 10' 5.00 ( .03) 4951 1.1 . 10' 29.0 ( 1.8) 1.2 . 1 o' 24.9 (2.0) 1.2 108 29.3 ( 1.8 I 

135 1.3 10' 5.06 ( .03) 4955 1.3 10' 29.0 ( 1.8) 1.3 108 24.9 (2.0) 1.3 108 29.3 ( 1.8 I 

139 1.4 10' 5.16 ( .03) 4959 1.4 • 108 29.1 ( 1.8) 1.5 10' 24.9 (2.0) 1.4 10' 29.3 ( 1.8) 

263 1.1 10' 6.91 ( .04) 4963 1.6 1 o• 29.1 ( 1.8) 1.6 108 24.9 (2.0) 1.6 106 29.3 ( 1.8) 

267 1.1 10' 6.96 ( .05) 4967 1.8 10' 29.1 ( 1.8) 1.8 10' 24.9 (2.0) 1.7 10' 29.3 ( 1.8) 

271 1.2 10 1 7.00(.05) 4971 2.0 •.o-108 29.1 ( 1.8) 2.0 10' 24.9 (2.0) 1.8 108 29.3 ( 1.8 I 

Measurements of <.x 2 ) A for selected values of A. nMC (A) gives the total number of surfaces of area A generated 

by our MC procedure, The error bars are estimated by dividing each sample into five independent bins. For Amax 5000 
we· have discarded the first 5% of our data to reach equilibrium. In case of Amax = 280 the minimal surface of area 
A = 1 is reached so often that we can conclude to be in equilibrium immediately. 
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