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ABSTRACT 

We investigate a class of Abelian models which lead to a linear potential between op­

posite charges. For uniformly moving charges with opposite velocities, the electromagnetic 

fields and the confining domains are obtained asymptotically for large separations. 
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In high-energy e+e- colliding beam acccelerators the majority of the hadronic events, 

the two-jet events, are naturally interpreted as due to e+e--). qq. The hadronization of 

the quark pair involves the creation of additional quark pairs from the color field and the 

recombination of the various quarks and antiquarks into primordial mesons and baryons 

[1 ]. 

As a first step in understanding such a process in the context of the classical quasi­

Abelian model [2], it is necessary to generalize from the previously treated static case 

to that of uniformly moving charges. Remarkably, the zeroth-order nonlinear partial dif­

ferential equation for large separations can still be solved exactly in this more general 

situation. 

The models considered here are the time-dependent versions of those studied previ­

ously [3], and may be viewed as Lorentz invariant nonlinear electrodynamics. In other 

words, the fields f>, ii, E, and ii satisfy Maxwell's equations 

where the constitutive relations are 

and 

v.iJ=p, 

• aii 
VxE=-at, 

v. jj = 0, 

• afl • 
VxH=at+J, 

jj = <(.E' - B')E 

fi = <(E2 - B 2)B, 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

withE:::: lfl and B:::: liil. Note that the same t.(E 2 - B 2) must appear in (5) and (6) in 

order to preserve Lorentz invariance. The special feature of this class of models is that 

<(E 2
- B') = 0, for - B5 ~ E 2 - B 2 ~ E5. (7) 

It is useful to formulate these models in terms of a variational principle, 

68::::0, (8) 
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with 

s ~I d3 x dt {£[E(x,t)'- B(x,t)'J + l(x,t). i(x,t)- 10(x,t)p(x,t)), 

where, as usual, 

• al(i,t) • ) E(i,t) ~--a-t-- v10 (x,t, 

B(i,t) ~ v X A(i,t). 

In order to obtain (5) and (6) from {8), we choose 

£(<) ~! [de' <(e). 

(9) 

(10) 

(11) 

(12) 

Throughout this note, we are interested in the case of two uniformly moving charges of 

opposite sign. For t > 0, 

p(i, t) ~ Q[c(z- vt)- c(z + vt)jc(x)c(y), (13) 
which implies 

J(i,t) ~ e,vQ[c(z- vt) + c(z + vt)jc(x)c(y). (14) 

Because of Lorentz invariance, there is no loss of generality in choosing the velocities of 

the two charges to be opposite to each other. 

The substitution of (9) and (12) into (8) gives 

cs ~ I d'i dt [<(E'- B')(E. ci- ii. cii) +f. oX- pc10] ~ o. (15) 

Consequently, there are two domains. In dorr..ain (I), which contains the two charges, 

(1)-(6) hold with E 2 - B' > E5. In domain (II), <(E 2 - B') ~ 0, and hence, D ~ fi ~ 0. 

Let 8 denote the boundary between these two domains. The variation of S with 

respect to 8 shows that 

£[E(i,t) 2 - B(i,t) 2 j is continuous across 8. (16) 
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Since €(~) is taken to be positive for € > E5, it follows from (16) with (12) that D(.i,t) = 
H(i,t) ~ 0 fm (i,t) on 8. 

For the charge and current as given by (13) and {14), rotational symmetry obtains 

and the nonzero field components in cylindrical coordinates are Dz, Dp, Ez, Ep, H0, and 

Bo. For p > 0, (1) implies 

I 
a,n, +- a,(pD,) ~ o. 

p 

Thus, D can be expressed in terms of a flux function [2] W(p, z, t) as 

1 
pDz = ~ B/I!, 

2• 
1 

pDP= --azw. 
2• 

In terms of this W, ( 4) implies, again for p > 0, 

and 

Therefore, 

1 
a,(H,- -a,w) ~o 

hp 

1 
a,p(H,-- a,w) ~ o. 

2•p 

p(Ho- -
1
- at~)= function oft. 

2•p 

But this function oft can be absorbed in ~- Therefore, 

I 
Ho=-Bt~· 

2•p 

Thus, all field components can be expressed conveniently in terms of \{1". 

(17) 

(18) 

(19) 

(20) 

(21) 

Since D = H = 0 in domain (II), W is a constant there. Without loss of generality, 

this constant can be taken to be zero: 

w~o (22) 

in domain (II). It then follows from (16) that 

'W'=Bn'W'=O (23) 
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on the boundary B. In other words, B is a free boundary. 

For the present problem, since E 2 - B 2 is positive in domain (I), it is useful to rewrite 

the constitutive relations (5) and (6) in the form 

(E'- B')'i' ~ t(VD'- Hi). 

In this notation, (7) implies that 

f(o+) ~Eo. 

Each model in the class is specified by this function of f. 

Let us rewrite (2) in cylindrical coordinates: 

BzEp- apEz + 8tBs = 0. 

It follows from (5), (6) and (24) that 

E, _ E, _ Bo _ f(vD'- H2 ) 

Dp - Dz - H8 - JD2- H2 

(24) 

(25) 

(26) 

(27) 

By (18) and (21), the substitution of (27) into (26) gives the partial differential equation 

for W in domain (I): 

[ 
a,wt(vD'- H') ] [ a.wt(vD'- H') ] 

a, ](a.w)'- (a,w)' + (a,w)']'i' +a. J(a.w)'- (a,w)' + (a,w)'Jli' 

[ 
a,wt(vD'-H') ] 

-a, ](a.w)'- (a,w)' + (a,w)'Jli' ~ o. 

The boundary conditions are (23) and 

w(o,z,t) ~ { Q, 
0, 

]zl < vt 

]z] > vt. 

(28) 

(29) 

Note that (28) is invariant under Lorentz transformations in the (z,t) plane. Carrying out 

the differentiations gives: 

g(~) {(a,w)']a .. w- a .. w] + ](a.w)'- (a,w)']a,,w- 2(a,w)]a.w a,.w- a,w a,,w]} 
~ 

+ ](a,w)' + (a.w)'- (a,w)'Jia"w- p-•a,w + a .. w- a .. w] ~ o, (30) 
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with 

and 

1 
~ ~ 2,,)(a,w) 2 + (a.w)' _ (a,w) 'I 'i' 

!(~) - ~· g(~) ~ !'(~) 

----- ---

We limit ourselves to the class of functions /(rJ) studied in reference [3], i.e., 

!(~) ~ 1+ ~ + o(~), 

with suitable choice of units. We also take Q = 1. 

(31) 

(32) 

(33) 

From now on, we concentrate on the case of large separation of the charges, i.e., 

vt ~ 1. For the purpose of obtaining the zeroth-order solution, we follow the method of 

sect. 4 of ref. [3] and use /(17) = 1 + 11 and hence 

g(~) ~ 1. (34) 

Since we expect the transverse size of domain (I) to be small compared with its longitudinal 

size, 8zW and 8t'll can be neglected compared with 8/Il. Therefore, it follows from (30) 

and (31) that 

q=-i!t! 
21rp' 

and W satisfies 

- 2np{(a,w)']a •• w- a .. w] + ](a.w)'- (a,w)']appw 

- 2(a,w)]a.wa,.w- a,w a,,w]} + (a,wna,,w- p-•a,w] ~ o. 

Let the free boundary S be given by p = Pb(Z, t) and let 

p 
r~--

p,(z, t)' 

In terms of the variables r, z and t, (36) is 

- 2n{l(a.w)'- (a,w)'Ja,w + (a,w)' [~(a.p,a.w- a,p,a,w) 

-"~:W (8zzPb- OttP&) + 8:zziJ!- 8ttW] - 28TW(8zW8TzW- 8t'll8rt'lt)} 

1 ( 1, a (a·'~') + 4 aTw a- - =O. 
pb T T 
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(35) 

(36) 

(37) 

(38) 



With the boundary conditions (23) and (29), W is found to be 

-., ~ (1- r 2 ) 2 , (39) 

and the partial differential equation (38) reduces to 

pf(azzPb- attPb) + 4/1!" = 0. (40) 

The appropriate solution of (40) is 

- 2 [ r.;;--;; 1/2 
Pb- 7rt/4vl/2 yt2- z2-~t] . ( 41) 

Note that this free boundary passes through the lines z = ±vt, as should be the case for 
the zeroth-order solution. In the limit of fixed vt = R and with v --+ 0, { 41) reduces to 

y'2 VR'- z', Pb = 7rt/4Rl/2 (42) 

which is the zeroth-order solution in the static case [3]. More generally, with R = vt being 
half the distance between the two charges, ( 41) can be rewritten as 

2 R2- z2 
Pb = 1rtf4 [ ../R2 v2z2 + ,i1=V2 R ]

1/2 

(43) 

which is an increasing function of v for all/zl < R. In particular, for v --+ 1, Pb is simply 

2 
Pb ~ -

1 
(R' - z') 1/4 1rl 4 • (44) 

The shape of the confinement domain is iilustrated in Fig. 1. 

In the static case the electric energy is the quantity of main interest, since it gives 
the potential between the charges. In the present case, let U be the total electromagnetic 
energy at a given time. It is 

{ ~ } u ~ J d'x fo d~ t(~) + ii. B . (45) 
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In the zeroth-order approximation this is simply 

u ~ JR' dz f" dp {-a,-.,-~ (a,-.,)'_~ (a,-.,)'+ _1_(8 ,-.,J'}, 
-R' lo 2 aPw 2 ap'I! 41l"p 

(46) 

where R' is dose, but not equal, toR (see sect. 4.3 of [3]). 

In order to determineR', we note that, in deriving the zeroth-order solution, the ratio 

(a.-.,)'- (a,-.,) 2 

(a,-.,)' 

has been neglected when compared with 1. From (39), this ratio is found to be 

1 [ -2 v l 
,fi vvt'- z 2 + v't 2 - z'- ,,l=V2t . 

Therefore, the zeroth-order solution fails when 

~ [v't'-z'- ~t] (47) 

is of order 1. Let this quantity (47) be denoted by C. Then, when R = vt is large, the 
approximate solution of (47) is 

z~R-~C. (48) 

In other words, the limit of integration R 1 is given by the right-hand side of (48). 

The integration of (46) gives for large R,,l=V2: 

[ 
1 ln(R,,l=V2)] 

U ~ 2R 1 + 3,fi R.,fl=V' ' (49) 

which reduces to the static potential for v = 0 [3]. For v small compared to 1, (49) gives a 
velocity-dependent correction to the static potential for large distances. For v near 1, the 
present zeroth-order solution is insufficient for a satisfactory description. We believe that 
a partial summation such as the one carried out in sect. 6 of [3] is needed.t 

t In eq. {6.7) of [3] there is a sign mistake: +2(auwfw) should be -2(auwfw). Conse­
quently, eq. (6.17) should be replaced by h(€) ~ -(9- 2b2)€/2(1 + A€), and wJ(e) of eq. 
(6.21) ;, now given by w1(€) ~-[A € /4y1 + A€J!n(1 + A€). 
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~- ------ -~-·· 

With little additional complication, we have generalized in this note the zeroth-order 

solution from the static case to uniformly moving charges. Although not given here, this 

generalization has also been carried through for the first-order solution. 

One of us (TTW) wishes to thank Professor Hans Joos, Professor Roberto Peccei, 

Professor Paul SOding, and Professor Volker Soergel for their kind hospitality at DESY. 
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