
DEUTSCHES ELEKTRONEN-SVNCHROTRON DE SY 
DESY 85-075 
July 1985 

EFFICIENT NUMERICAL TECHNIQUES FOR PERTURBATIVE 

LATTICE GAUGE THEORY COMPUTATIONS 

by 

M. LUscher 
Ve.ut-~>ehe_;., E£dztJtone_n-StjnehJtotJr.on VESY, HambuJr.g 

P. Weisz 
11. In;.,titut ~Uk The_oJte_tiJ.>ehe_ PhtjJ.>i~ d"-k Unive_Jr.;.,itat HambUJtg 

ISSN 0418-9833 

NOTKESTRASSE 85 2 HAMBURG 52 



DESY behiilt sich aile Rechte fur den Fall der Schutzrechtserteilung und fur die wirtschaftliche 
Verwertung der in diesem Bericht enthaltenen lnformationen vor. 

DESY reserves all rights for commercial use of information included in this report, especially in 
case of filing application for or grant of patents. 

To be sure that your preprints are promptly included in the 
HIGH ENERGY PHYSICS INDEX, 

send them to the following address ( if possible by air mail ) : 

DESY 
Bibliothek 
Notkestrasse 85 
2 Hamburg 52 
Germany 



DESY 85-075 
July 1985 

Abstract 

ISSN 0418-9833 

Efficient numerical techniques for perturbative 

lattice gauge theory computations 

M. LUscher 

Oeutsches Elektronen-Synchrotron DESY, Hamburg 

* P. Weisz 

II. Institut fUr Theoretische Physik 

der Universit8t Hamburg 

We discuss a set of methods and numerical tools, which are useful for a 

computer based approach to perturbative calculations in lattice gauge 

theory. The topics considered include the automatic generation of gluon 

vertex programs, a derivation of the Faddeev-Popov determinant on lattices 

with boundary, the use of a partially finite lattice with twisted boundary 

conditions as an infrared cutoff without zero modes, and finally the numerical 

extrapolation of lattice Feynman diagrams to the continuum limit. As an 

illustration of the methods we describe their implementation in the com-

putation of the on-shell improved lattice action at weak coupling. 

Heisenberg foundation fellow 
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1. Introduction 

In a recent article [1], we have presented our results on the compute-

tion of the action for on-shell improved lattice gauge theories at weak 

coupling, a calculation which essentially amounts to evaluate a number of 

one-loop Feynman diagrams with definite external momenta. The propagators 

and vertex functions from which Feynman diagrams in gauge theories are 

built are much more complicated on the lattice than they are in the con-

tinuum, especially so for improved lattice gauge theories (see e.g. the 

Appendix of Ref. [2]). Analytical manipulations of lattice diagrams are 

therefore time consuming and liable to errors. For this reason, we decided 

to follow a strategy where, apart from listing the diagrams and extract-

ing the group theoretical factors, the whole calculation is done numeri-

cally on a computer, To guarantee the efficiency and reliability of the 

numerical computations, we have developed various adapted techniques, 

which we hope will prove useful for other perturbative calculations as 

well. It is thus our objective in_this paper to describe these methods 

each in their own right in separate sections, which can be read andre-

ferred to independently from one anqther (common notations are summarized 

in section 2) . 

A computer program, which calculates the value of a lattice Feynman diagram, 

calls subprograms which compute the value of the relevant vertex functions 

given the momenta flowing into the vertices. Because of the above mentioned 

complexity of the lattice vertex functions, it is in general not easy to 

manufacture such vertex programs and to make sure that they are faultless. 
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If one approaches this problem straightforwardly, errors are likely to 

occur at two stages: firstly, when one derives an analytical formula 

for the vertex functions starting from a given lattice action S, and 

secondly, when this formula is coded into a computer program. In section 

3, a method to produce vertex programs is described, which avoids the 

intermediary step of actually printing an analytical formula for the 

vertex functions on paper. The basic idea is simply to design an 

"algebraic" computer program, which requires as input the action $ and 

the number of legs of the desired vertex function, and whose output is 

the vertex program *). In the course of our work on improved lattice 

gauge theories, we have found that the particular realization of this 

idea described in section 3 is foolproof and yields fast vertex pro-

grams. Moreover, simplifying features, e.g. when some of the momenta 

entering the vertex are external and hence fixed, can easily be taken 

into account to obtain even better performance of the generated programs. 

Lattice gauge theory presents a framework in which the Faddeev-Popov 

determinant can be rigorously derived. We are ?f course aware of the 

existing treatments in the literature [4]. Nevertheless, we feel that a 

further discussion here would not be out of place, the aim being to 

derive a closed formula for the Faddeev-Popov determinant, which is valid 

for arbitrary linear gauge conditions and on lattices with or without 

boundary (section 4). Especially in the case with boundary, care must be 

*) Algebraic computer programs have been used previously to check some 

of the rather involved algebra, which must be mastered to calculate A-

parameter ratios (e.g. Ref. [3]). 
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paid to treat possible zero modes of the Faddeev-Popov operator correct-

ly. With ordinary gauge fixing conditions, the Faddeev-Popov determinant 

turns out to be rather simple and is easily expanded by hand. Diagrams 

involving ghost loops are therefore negligibly complicated as compared 

to the diagrams with gauge boson loops, in particular, the numerical 

evaluation of these diagrams usually does not require special programm-

ing techniques. 

Lattice Feynman diagrams are ultra-violet finite, of course, but infra-

red divergences may occur, especially if one aims at computing on-shell 

quantities. These divergences can be regulated by assuming a finite 

space-time volume, for example. However, with ordinary periodic boundary 

conditions, one then has to face an apparently difficult zero mode problem 

(the "torons" of Ref. [5]), which renders the normal Feynman diagram ex-

pension invalid. As is described in detail in section 5, a better way to 

introduce an infrared cutoff is to compactify only two of the four space-

time dimensions and to impose twisted periodic boundary conditions (6] in 

these directions. There are no torons in this case and the perturbation 

expansion is straightforward. Moreover, it turns out that the gluon pro-

pagator is completely massive, i.e. there are no singularities in the 

range of momenta admitted by the boundary conditions. In this twisted 

world, the integrands of Feynman diagrams are thus totally regular and 

the integrations over those momentum components, which are not quantized 

by the boundary conditions, can be done easily (an adapted exponentially 

convergent method of integration is described in subsection 5.3). In 

our calculation of the improved action, we used the formalism of section 
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5 merely as a tool, but we emphasize that the twisted world is interest-

ing in itself and may prove useful to study the transition from the per-

turbative to the non-perturbative regime in non-abelian gauge theories. 

In perturbative lattice gauge theory computations, one is often interested 

in the limiting behaviour of the diagrams as the lattice spacing "a" tends 

to zero. From Symanzik's work on the cutoff dependence of scalar field 

theories on the lattice [7], one expects that for any diagram 0 an asymp-

totic expansion of the form 

(1.1) 1) ~ 
<>-> 0 

"" t a.-W L L 
f\.20 m::o 

"' "' c"'""" a. ( t,.. a.) 

holds, where t is the number of loops in the diagram and (.J ?- 0 depends 

on the convergence properties of D and of its sub-diagrams. In our numerical 

approach, the first few coefficients cnm can be determined accurately by 

calculating the diagram for a sequence of lattice spacings and fitting the 

results with the asymptotic series (1.1). An adapted fit procedure together 

with a reliable estimation of the rounding and systematical errors is 

described in sub-section 6.2. It is based on a recursive blocking trans-

formation, which takes into account the general form of the higher terms 

in the expansion (1.1) to increase the precision of the calculated first 

few coefficients cnm· In this way, very accurate results can be obtained 

even if the diagram has only been evaluated for moderately small lattice 

spacings (very small lattice spacings usually require large amounts of 

computer time and are hence impractical). 
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The asymptotic expansion (1.1) is not only the basis of our numerical extra-

polation procedure, but it is also of fundamental importance for lattice 

theories as it describes how precisely the continuum limit is approached 

in perturbation theory. It appears, however, that a rigorous proof of (1.1) 

has only been given for one-loop diagrams on the standard lattice 22 4 

(7] (Symanzik has given further reasons for the general validity of (1.1) 

by referring to Pauli- Villars regularized field theories, where he has 

earlier been able to prove the analogous expansion for any number of loops 

[8]). As an example of how a rigorous_ derivation of eq. (1.1) for lattices 

with boundary may look like, we here treat in detail the case of one-loop 

momentum sums over 4-dimensional Brillouin zones as they typically arise 

from Feynman diagrams with vanishing external momenta (sub-se'ction 6.1). 

Diagrams with non-zero external momenta or momentum integrals instead of 

sums can be treated similarly [9}. 

It is only in the last section 7 that we give an illustration of the 

methods described in this paper by applying them to Symanzik's improve-

ment programme. Although there is· unavoidably some overlap with the material 

of Ref. [1), this section is meant as a technical supplement to that paper. 

We suggest that the reader, interested in this particular application, 

should read Ref. [1] first and consult Ref. [10] if an introduction to the 

programme is desired. 

2. Notations 

In this paper \-Je will be dealing with various aspects of perturbative cal-

culations in lattice gauge theory. We will work on a (4-dimensional) hyper-
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cubic lattice}\ with spacing 'a', i.e. 

(2 .1) X £ JA X = Y\0.. "'• z4_ 
For convenience we will often set a ~ 1. If desired the lattice spacing 

may always be reintroduced in these parts of the paper by dimensional 

analysis. P will denote the vector in direction ~ of unit length. Lattice 

" derivatiVeS af" I a,... 8T8 defined by differenCeS 

(2.2) ol'!(x) ( j ( x + o.f') - ! (x)) I a. 

(2.3) il~i(x) = (j'(x)- }tx-o..fll/<>. 

We limit ourselves to the case when the dynamical variables are SU(N) 

matrices Ll( 'X., r-) associated with links joining the points x and X T o.f\ . 

Often we will work with some directions compact; in this case the boundary 

conditions must be specified.tl will denote the space of gauge fields. 

The action S should be invariant under local gauge transformations 

(2.4) lJ. (X' /") ---'> 
-1 

1\(x) \..\ lx,t"l !\( X+<>f') f\(xl < SU(N), 

where the 1\ 's obey boundary conditions such that the transformation (2.4) 

is from U into itself. We denote by~ the gauge group, the maximal set 

of such 1\ 's. Expectation values are given as usual by 

(2. 5) < o> = 
- Slt.l1 -Slu.1 J 'J)[u) e. 0 j f l:llLA)e 

where 'l) [LA] is the Haar measure on U . 
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We restrict attention to perturbative expansions around the classical 

vacuum and only to situations when the functional integral can be per-

formed by substituting for the parallel transporter 

(2 .6) \.A(x,r-1 ~ "r "-~oA/"(x) 

fixing the gauge, and expanding all entries in powers of the bare coupling 

g
0

. In (2 6) the potential A/""~x) is an element of the Lie algebra ~u(N) 

of SU(N). The Ar~) have a Fourier decomposition appropriate to the 

boundary conditions. For the infinite volume case for example this takes 

the form 

(2.7) A,.txl = 
d:: .{.\o..·(~+.:to.P.)-b b 
+' e AI" tf<l I 

"· b 

where 

(2.8) $ 
t..,b 

= 
Nl.-1 

L: .. , 3 "'to. 

n ( s "-"-r) 
/"'~0 -'K;.._ 

and the Tb are matrices belonging to the fundamental representation of 

%~(N}. The phase in (2.7) involves the coordinate of the mid-point of 

the link joining x and X+O.~.It has the consequence that the A~ have 

the following periodicity properties 

(2 .9) 7\/"(\..+ '-"o:'J> 
'ii ~ 

Hl ~"Y A (~) r 

When performing lattice calculations it is useful to introduce the nota-

tion 
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(2.10) ~ ,. = 1,_ 
a, 

s {.n ~ 
2, 

for any momentum R.,.. . 

Finally the class of actions \~e consider will be sums over closed curves 

~ of terms of the form 

(2.11) L(-G) = ~ t.,- [ :11. u (f,)] 

where U(~) is the parallel transporter around~, starting at some arbi­

trary point on 't. . Note i._('(.) ~ 0 for any .f._ . Extensions to actions involv-

ing higher characters of SU(N) are trivial. The standard Wilson action S~1 
involves only curves J? surrounding single plaquettes, i.e. 

(2.12) Sw[ U.] = 2 
'}! 2:: L < P) 

:P 

3. Automatic generation of vertex program_s 

• 
3.1 Definition of the vertices 

In this section we shall discuss how, for a given action, one can automa-

tically generate programs which compute values of vertices appearing in 

the Feynman rules, for a given configurAtion of the external momenta. 

Our formulae, in this section, refer to the infinite volume case, however, 

We set the lattice spacing a=i throughout this secticn. 
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we stress that the reduced vertices we shall encounter (eq. (3.20)) are 

dependent only on the local nature of the action {the finite volume aspects 

having bearing on the allowed momenta). The action, of the general form 

discussed in Section 2, can be arbitrarily complicated and can include 

terms referring to many varieties of closed curves. It is of course suffi-

cient to initially consider one general curve and finally sum over different 

curves. 

Let G be an arbitrary closed path in Z.lf- of length t . Further, let 'GAl­

be the path obtained by translating the path e through 'I'\( 7Lu, and denote 

(3.1) s ce) L 1.. ce~) 
~ 

Ve • 
Vertex functions ~ are then defined in the perturbative expansion by 

s (e) "" = L 
(3.2) 

..... 
1 r 
14 ~0 $ ... $ 

R",a." Rr,<:r.r 
(21!)4. ( £ ~,) 

1.=" 

A;: {k) ... A~:tRr)·V: (t<<\,a1.~~·, ... ~R.,.,I).l'".f"',.) 

and requiring them tO be totally symmetric 

(3.3) 
e 

o-.V,.,. = ve .... for all 0"" E jlr 

where :P ..,.- is the group of permutation of ,.. elements, and the action of 

o- 110. P,.. on a function F ofT' arguments ai is defined in the natural way 

by 

(3.4) (o-. F)( a.. 1 , ... o."") = F < o...,.c11
, •.• ,a.o-tn) 

The '0 -function appearing_ is the periodic & -function. 
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G 
The vertex functions \/Y are uniquely determined through eqs. 

(3.1)-(3.4) and the geometry of the curve~ . Our first task will be 
~ 

to derive an explicit expression for \/~ , which is suitable for pro-

gramming. 

3.2 Explicit representation for the vertices 

The path~ is completely specified by 

(3.5) n(i): sequential vertices along~ (i = 1,' .,t ) . 

From these we can extract the following arrays s(i), !J(i) by 

(3.6) /"--, 
'Y\(1..--1) -'"!\.(-\.) = sci...).r{"-) 

which specify the directions of successive links along~. In (3.6) 5et 

i-1-7.(. if i = 1, and s(i) takes values ~ 1. 

With this notation, the parallel transporter from n(i-1) to n(i) is given 

by expg
0

Xi with 

{ A < ""' 
if s(i) = +1 ,...( .... ) 

(3. 7) x~ = 
- AI",,( nl~-1)) if s(i) = -1 

Thus, the action density associated withe becomes 

(3.8) ;(.(-e) ~ _1_ 
2. 

T.,.. ~ 2 e. ~~x, ... e_ ~.x, - e~· x, .. : e~' XL J 
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Expanding this expression in powers of g
0

, we have 

(3.9) .t._(-e.) = " L: 
-r::L 

,.. 
-:h ~' L.,Jf!.. l 

with 

/._ (-e.) ,.. ' 
1'"+1 " (-1) :!._ L. 

2. 1:!: lA-\1:: .•• 1::\.l,..f:; t 

.,-I 
ol1~ ... p(t.t 

(3.10) 

· T,. \_ X ... X + Hl'"X .... X .. l 
\A'\ V..y "'1'" -"'>\ 

where ri.~ counts the factors associated to a given link: 

,. 
(3.11) «;. , L: s '·"'· o.:4 

(i=1 ... t) 

The Fourier representation of Xi is given by (see (2.7)) 

(3.12) x. 
< 

= $ L: 
... b /' 

~b Tb . 
A,... ( k) SL-ll ~,...,,....ttl e.x~ t 'R· o.c.t..J 

where a(i)/2 is the coordinate of the mid-point of the link joining n(i) 

and n (i-1), 

(3.13) O.t"-({l ;:. 'Y\.,... Ci.) + -n,.. l-l- "\) 

Inserting (3.12) in (3.10), we obtain (3.2) with 

v; < ~<,."',.r,; ... ;~<.,..o..,...r,. l = 
(3.14) 

1 
M 

----e 
I:: o-. c.,. <a.,, ... o.,.l a-. Y.,.. C ~ •. J'<,; ... ; l<.,.,f"',. l 

O"E. .9.,... 
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A 1; ) 

Y~ ( 1.1, !"1; , , . ; krol''r ~ "Y "' I =- L Hl '!', 
2 Hu..,~ ... ~u..rH P< 1 1 ••. e><:.t.l 

"' . ( · S('\) "' ... S(t) t._ t. 
~ lt1·0..lU.~) a .& kr·O..(U.,-) ) 

~f'\~,,.....(U.~~ e ••· f"r,,...{IAf") e. 2 

where the Clebsch-Gordon coefficients C~ are defined by 

(3.16) c..,. ( a.1J ••• ,o..,.) = T,- ( T"~ .. T"r) + H{T,- ( ~·~ .. T"') 

They have simple properties under the subgroup ~r of permutations gene­

rated by cyclic permutations and the inversion~ (JP(i) = r + 1 - i), 

namely 

(3.17) CJ. CT ~ x't' tO')· c,.. 0' ~ %r 

where 'X..,.. is characterized by 

X.,. (O'·"<l ~ ')('t'(O')·'X.,. h:) 0'",'1:. E },.-

(3.18) X.,. lO') ~ 1 for cr cyclic 

X.,. l Jl ~ Hl"' for inversion f 
Making use of property (3.17), we end up with 

v: ( R~,a1 ,1"1; ... : P.-r,a.1-,~,.) :. 

(3.19) 

~ L: 
M O""lt.fT/1..-

0'. C,.la,, .... ~ l Q'.Y:< ~1 ./"1 ·, ... ; l<r-f<-.) 

. ye . where the reduced vert1ces ~ are g1ven by 
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~ 

Yr ( R1JJ''.,·, •.. ~Rr.J"y) ; 

(3.20) 
1 L. 
T 1-s u..,L.,u ... ~t 

(-1{'' 1"! 
"'1 t. .. .,(,t \ 

S(1.) o<~ $(t) o(t 

[ ?< r(O') 0'. { ~ i R~.o.(u~) 
o-E. }..,... r~,,.(v.~' e.. •.. 

S ~ 'r<_,..O.(Ur) 

tt.-,f'llU.r) e. J 

(the permutations 0' act on the arguments u1 , ... ,ur according to 

eq. (3.4)). 

The reduced vertices have simple symmetry properties under permutations 

in }r : 

(3.21) 0'· ye 
~ 

= 'X,.. (o-l y: for O'e, 'a-r 

Their reality properties are 

(3.22) 
• y~ a,,~·; .. )<r' l'r) = Y: (-l<,,r-,; ... ;-l<r,l"r) 

Finally, for the cur·ve -t obtained from 't by inversion through the·origin 

(n'(i) = -n(i)}, we have 

(3.23) Y: (ll.,,p,; ... ;l<r·l"r) ~ (-1{ y.: (-!<,, /'1,', ... ;-l<y./"-rl 

In the following we will discuss only the automatic generation of the 

. ye 
reduced vertlces -r . Of course the Clebsch-Gordon coefficients c.,. 
can also be programmed, but, at least for small r, these coefficients 
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are simply evaluated by hand. 

• When momentum is conserved ~ h.-i.=O, the a(uj) in (3.20) can be re-

placed by translated coordinates a'(u.), This can be done separately for 
J 

each configuration of the u. 'sand hence we can use the translation in­
J 

variance to get the exponents appearing in (3.20) into a standard form. 

Such a procedure is obviously useful to identify terms which have equal 

exponents and hence reduce the number of final independent {atu;ll 

configurations appearing in (3.20). A particular realisation would be, 

for example 

(3.24) a.'~"<u.i) ::. a.,..lo.1)- s,..._t{u.\) 

where 

5~ ({~! \ = ( m,.. - "'r (Mo.!.<.)) /2. 

(3.25) 

""'~ = 1'YIA.X (a...._(u.i)) + m.\n (a.,.._{u.;)) 
j I 1 

The "centralised coordinates" a' then obey the constraints 

(3.26) ~c..x (a~ tu1)) + -m
6
I..n ( 0.~ (u5)) E. { 0, 1} 

3.3 Generation of vertex programs 

For the case when t is simply the curve around one plaquette and for 

reasonably small r {~ 5), the terms in Eq. (3.20) can be quite easily 

As can be chosen without loss in Feynman diagram calculation~. 
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collected by hand. However, for larger and more intricate curves the task 

becomes rather tedious, and the probability of making errors in the deriva-

tion of the analytical formulae is high. Another source of error is the 

subsequent transcription of the analytical expressions, which are algebra-

ically complicated, into computer programs. 

It is thus effort-saving and overall more reliable to generate vertex 

programs using algebraic computer techniques. One could employ for example 

standard routines such as REDUCE or SCHOONSCHIP. On the other hand, the 

expression (3.20) is ideally suited for programming in a language which 

is efficient in list processing, for example PL/I [11) with its facility 

of based storage. 

We now proceed to describe the structure of a program whose sole function 

is, for a given curve (or set of curves), to write corresponding vertex 

programs. As explained in the introduction, the output of a vertex program 

is an array YR(~ 1 , ... ,~r) equal to the numerical values of an r-point vertex 
e 

function '(~ for a given input of external momenta. Such vertex programs 

can then be used as subprograms for the evaluation of Feynman diagrams, 

without reference to the programs which generated them. 

The key to our method is to recognize that according to eq. (3.20), the .. 
reduced vertex function Y-r is a sum of terms of the form 

i. } 
2 

e 
-t· ( 'R-\.y('\)+ lt2..V(2) -!- ... + ~,_-Y("r'l) 



- 17 -

where f is an integer factor and v~(i) (i = 1, ... ,r; ~ = 0, ... ,3) are 

integer vectors. For every combination of Lorentz indices ~ 1 •.. ··~r' 

. . . 
the terms T contr~but~ng to Yr(k1 ,~ 1 ; ... ; kr,~r) can be found from eq. 

(3.20) and may be collected in a table 1CY(~~-. ··~r). Thus, each entry T 

in the list 1:~(~ 1 •...• ~r) is just an integer f plus an integer array 

v~(i), and 1: is simply given by 

(3.27) • Y.,. c k,,~, ·, .. :,1<.,..~. 1 = .i. L: 
Z. T(. '"( (f"'~····f-4r) 

T 

~ ( lt"·V(·n+ . .,-t \<tr·V{T"\) 
f <. 

Of course, since only the sum of all terms is required, the table 

1r"YC~J 1 , ... ,~Jr) may be reduced by adding up all·those entries with equal 

shift vectors v (i). If f:. k. ::. 0 
IJ .\:>>\ o\. 

, it is advantageous to perform 

this reduction only after the vectors v (i) have been transformed to a 
~ 

normal form by a translation as explained at the end of subsection 3.2. 

Without further notice, we shall from now on assume that shift vectors 

v~J(i) are normalized. 

The main program for vertex generation calls two subprograms I and II, 

which perform distinct tasks. Subprogram I sets up the tables 

1LrC~J 1 , ... ,~Jr) as follows. First, for the particular curve~ under con­

sideration, the integer arrays a~J(i), s(i) and ~J(i) (as defined by eqs. 

(3.6), (3.13)) are determined. Then, for a given r, sums over 

1~ u 1 ~ u 2 ~ ... ,$Ur~ l and over permutations O'E..1r-y are made as in eq. 

(3.20). For each configuration of uj 's and 0" , the rhs of eq. (3.20) 

defines a term T, i.e. a factor f and vectors v~J{i). This term is then 
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added to the list T.,..c~ 1 •... '~r), where the Lorentz indices ~ 1 •...• ~r 

are given by 1-!j = ~(uO'(j)). 

When adding a term, the table -r.,..(IJ1 , ... ,~Jr) is first scanned to establish 

whether a term with the same vectors v~J(i) already exists. If not, the new 

term is simply added to the list. If, on the other hand, a term with the 

same vectors v~J(i) is found, the factors f of the new and the old term 

are added. In the case that the resulting factor is zero, the storage is 

freed. In this way one is economical with respect to the storage. The number 

of terms 'Y\.'f,t in the sum (3.20) for given "Y', t is 

(3.28) 'Y\. T", t • _2-_ 
(-r-·\)l 

t(t+1) .. , (t+r-1) 

e.g. for r..:: b, t=b we have 'Y16,b 5544. However, in practice the 

collection of lists have much fewer terms because of cancellations. 

In certain applications, a general form for the vertices may not be required. 

The special properties of the momenta and Lorentz indices in such cases 

should then be incorporated at this stage to simplify the lists accordingly. 

We finally remark that the subprogram I may be designed so that contributions 

from various curves with weight factors corresponding to the lattice action 

under investigation, can be added to the same tables in succession. 

After subprogram I has run, the lists of terms described above exist in 

the core memory of the computer. It is the function of subprogram II to 
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convert these lists into ordinary vertex programs, which yield the vertices 

YTe for given external momenta. 

For each configuration ~1 •...• ~r of Lorentz indices, subprogram II first 

locates the table 1C~(~ 1 •.. ··~r) in core memory. After that it runs through 

the list and for each term in the list prints an assignment statement on 

a print file. The assignment statements are of the form 

(3.29) YR t/',, ... ,1'.,.) YR li',, ... J''r) * IE RM 

where TERM is the mathematical expression corresponding to the term in the 

list, in the desired computer language ( cp. eq. (3. 27)) . 

In the final step the assignment statements in the print file are copied 

into an ordinary program file where they are completed with cards to make 

up an ordinary subprogram which can be compiled in the usual way. It is 

our experience that the vertex subprograms generated in this way are fault-

less and speed efficient. 

Lastly we note that in most cases of interest a further simplification 

arises from the fact that the tables contain terms which come from a set 

Separate assignment statements are made for each term to avoid lengthy 

expressions, which could cause problems during compilation. 
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of loops {'C~, ... t,'ri.J which are mapped onto each other under inversion 

through the origin. Then the reduced vertex 

(3.30) Y.,. = 
1\ 

I;-, ye< 
" 

satisfies (see (3.22} and (3.23)) 

(3 .31) * T Y.,. «,./'1 ; ... ;1>..,.,1'.,.) = Hl Y,. (k<·~' ·, ... ;~.,..f".,.) 

(3.32) Y..,. ( '«,.f"; ... )'-.,..f".,.) = l-1 l'" Y.,. (-'R,./',; ... ;-~<_,. ·f"-r) 

It follows that each term with vector v(i) f 0 has a partner in the same 

list with ~v(i). These terms correspond then to exponentials which can be 

combined into a sine if r is odd or to a cosine if r is even. In the special 

case v{i) ~ 0, the term corresponds to a constant. Hence, the assignment 

statements (3.29) are written for pairs of terms rather than for single 

terms. 

4. Linear gauge fixing conditions and the Faddeev-Popov determinant 

Conventional perturbation theory involves a saddle point expansion around 

the classical vacuum configurations Ulx,rl 1\(x)/\( x+P.,) 
-1 

1\ ~ ~ . The degeneracy of this saddle point requires that the gauge 

degrees of freedom are separated out before one expands the integrand in 

the functional integral in a power series of the coupling constant g
0

. 

The separation of gauge variables from the other ("physical") degrees 
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of freedom amounts to choosing a special coordinate system in a neighbor-

hood of the classical vacuum manifold in such a way that a first set of 

coordinates parametrizes the gauge orbits and the remaining coordinates 

label the fields along the orbits. Only the latter are shifted by a gauge 

transformation, and gauge invariant quantities, in particular the action 

S, are independent of them. The integration over these variables is there-

fore trivial and may be factored out so that after that one will be left 

with the integrals over the "physical" coordinates and a non-degenerate 

saddle point. 

Different coordinate systems of the above type· correspond to different 

"gauge fixing conditions". We here consider a class of smooth parametri-

zations, which are geometrically motivated and which lead to particularly 

transparent formulae. Throughout this section, the lattice spacing is set 

equal to 1 for convenience, and we shall also assume that the lattice J\ 

is finite. If desired, the infinite volume limit may easily be taken at 

the end of all calculations, 

For our derivation of the Faddeev-Popov determinant, a more detailed descrip­

tion of gauge fields and gauge transformations on the lattice J\ is needed. 

All commonly used boundary conditions may be accommodated in the follow-

ing framework: 

' In perturbation theory one effectively integrates only over an infinitesi-

mally small neighborhood of the saddle point manifold. A parametrization 

of the gauge field manifold far away from this region is therefore not 

required here. 

>-'- -.--f 
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(a) A is a finite subset of the standard lattice 71_ 4 . 

(b) Gauge fields U(X,IJ) live on a fixed set~ of bonds (x,x,.p.) 6. Ax fA. 

8does not necessarily contain all the bonds on~, but we shall require 

that every X efA_ may be connected to any other point '!-"'ft.. by a sequence 

of bonds in B. The gauge variables U(X,IJ) are independent and unre-

stricted elements of SU(N). 

(c) The action S is a continuous function of the gauge field variables 

U(X,IJ) and the apriori measure in the functional integral is given by 

(4.1) ;p[ LU 0 TT 
x,r-

dlltx,rl 

the product being taken over all bonds in ~ (dU denotes the invariant 

measure on SU(N)). 

(d) The elements of the gauge group~ are functions V(x) on Jl\.. with values 

in SU(N). In general, not all such functi.ons are in~, but only those 

for which the gauge transformation 

U(X,IJ)-'~> V(x) U(X,IJ) V(x+- p)- 1 

is a symmetry of the action S. * . 

For example, a lattice with L sites on a side and periodic boundary condi-

tions can be realized by choosing 

.11\. ={xe.?L
4 ! O.$"xv'L Jorc:JQv;xlJ-=Ljo.,..a.t'mostone.v) 

•) ' 
If the group ~of all gauge transformations leaving the action fixed 

divides into several disconn~cte~ parts, the gauge group~ is usually taken 

to be the identity component of~ (Gauss' law requires infinitesimal gauge 
' invariance only). The discrete group ~~~is then interpreted as a physical 

symmetry of the system. 
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B; { (x,x+fl < .&\..xAI 0 > Xv < L }oc QU v ~ /"'~ 0, ... ,3.\ 

~; { V:.&\._-> Sl-llNliVCxl~Vl';)) tJ Xv~IJ-vlenooL) yoc•ttv) 

Other· boundary conditions {free, Dirichlet, twisted periodic, etc.) are 

also easily fit into the above framework so that in the following we shall 

assume that (a) - (d) hold. Note that (c) and (d) imply that~ is a closed 

lie subgroup of the group of all functions V(x), XE ~ , with values in 

SU(N). 

4.1 Infinitesimal fields 

The basic idea of the parametrizations introduced in the next subsection 

is to first identify the gauge and non-gauge coordinate axes in an in-

finitesimal neighborhood of U(x,~) = 1, and then to use gauge transforma-

tions respectively the exponential mapping to extend the infinitesimal 

coordinate system to a finite neighborhood of the classical vacuum configu-

rations. To prepare the ground for this construction, we here study the spa~e 

1t1 of infinitesimal gauge fields around U(x,~) = 1 and appropriate gauge 

fixing conditions. 

}{1 is equal to the linear space of all vector fields a~(x), which are 

defined on the bonds (x,x+j:.) ~ B and which take values in the Lie 

algebra ~u..(N) of SU(N). A convenient inner product on ~'\ may be defined 

through 

(4.2) <<>,b) : L T-.- { a.,.lxl b,.Cxl} 
X,f" 

where the summation is over all links in 8 and the trace is in the funda-

mental representation space of .=;u.(N). 

- 24 -

Infinitesimal gauge transformations W(x) form a vector space ~0 of scalar 

fields on the lattice, which also take values in $\A(N). In general, 

~0 does not contain all possible such fields (i.e. there are usually some 

restrictions on W(x) at the boundary of 11.\.} .1-{0 may be identified with 

the Lie algebra of ~ and a scalar product may be defined by a formula 

analogous to (4.2). To every we 1{
0 

, there corresponds an infini-

tesimal pure gauge field ar according to 

(4.3) a.l'lx) ; ai"w(x) !=- ill (x,X+jA)< S 

The set of all these modes a,... is a linear subspace 'l-t
1
L of 1t1 

We now turn to discuss possible gauge fixing conditions for infinitesimal 

fields. Suppose ~ 'J.€,
1 

_,. 1{
0 

is a linear operator and let J..t~ denote 

the kernel of j7, i.e. 

(4.4) }tl' 
1 

: { "" • "){, 1 :n .. 1 ; o 3 

We then say that F is an admissable gauge fixing operator, if the follm~-

ing criteria are satisfied: 

(1) Every "I". 1{ :F 1 
has a unique decomposition 

(4.5) 

where 

a. I" "' 
:F 103' a,.. e. cn.1 

:F 

"'" 
and 

+ 
L 

a.,. 

a.~ E }tL 
1 

(2) Let ~0 be the group of constant (i.e. space-time independent) gauge trans-

' l' formations. Then 1-!1 is invariant under the adjoint action of iJ.o 

~0 is a closed subgroup of SU(N), which depends on the boundary conditions 

chosen. In the case of the twisted world _of seCtion 5, for example , ~0 is 
equal to the centre of SU (N) . 

. -.7--
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In other words, if "'r• 'U' 1 
-1 ' and VE ~0 , then Vo.,... \j E: i-{,

1
• 

Property (1) insures that the gauge fixing condition~ leads to a clean 

separation of the gauge modes from the other "physical" degrees of freedom. 

The significance of property (2) will become fully clear later. At this 

point, we only mention that the vacuum manifold is isomorphic to "{j. / ~0 , 

To lift the degeneracy of the saddle point, it is therefore not necessary 

that the gauge fixing condition also breaks the invariance under ~0 . 

A particularly natural choice for the gauge fixing operator ~ is the follow­

ing. Let d: 1{0 .....,. 'l-f.1 be defined by 

(4.6) ( d.w )I" (x) ~ "~"' '""<xl for all (x,x•P. )e l3. 

The adjoint operator dt of d relative to the scalar products defined in 

'l-t0 and 1{1 then maps lt1 into :}{0 , In the interior of the lattice, d t 

is simply given by 

(4. 7) ( dt o..ll><l ~ :L 
r 

.. ar "-,-. (xl 

but near the boundary, the explicit form of dt must be worked out taking 

into account the shape of fA.. and the restrictions on l...l(><-)E.1{0 near 

the boundary. It is then easy to verify that the choice 

(4.8) T = d.+ 

has all the required properties, In this case, 
L 

thogonal complement of 1{1 . 

1-t" 
1 

is simply the or-

- 26 -

4.2 Parametrization of a neighborhood of the classical vacua 

We are now in a position to set up a coordinate system around the classical 

vacua, which separates the gauge degrees of freedom from the physical ones 

as required for the saddle point expansion. To this end, choose some arbi­

trary admissable gauge fixing operator 1F as discussed above. Then, one 

can show that every gauge field U{x,~), which is sufficiently close to a 

pure gauge configuration, can be represented by 

(4.9) 

where 

Lllx,,.) " 
-1 

fllx) e.xp q~<xl fllx,.P..l 

9 • -u" I"' 1 
is small {say l\9 II< f.) and fl<~. This represen-

tation is, however, not unique, because the rhs of eq. (4.9) is invariant 

under the substitution 

9r <xl -'> 

(4.10) 

/\ (x) ~ 

-1 
V ql"(xl V , 

-1 
1\{x)V , 

where V is an arbitrary element of tto , the group of constant gauge trans­

formations. Note that since~ is an admissable gauge fixing operator, 

-1 Ao:l' 
Vq~V is again an element of ~1 

The degeneracy (4.10) can be lifted by imposing a constraint on A For 

example, one may realize the coset space SU(N)/ ~0 by some convenient sub­

set of SU(N) and then require that for some fixed ~E./A.. the matrix 1\ (y) 

is in SU(N)/ ~0 . Such a constraint defines a subset 1- of <a-, which is 
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a smooth manifold except perhaps for a singular set of points, which is 

of zero relative measure and which may therefore be neglected in what 

follows. One may now prove, using property {1) of the gauge fixing operator 

r and the implicit function theorem, that the representation (4.9) is 
T -

unique for 9 < 'J.t, , ll9 /1 < 0 , and II• ~ 

To obtain an explicit parametrization of the gauge field manifold around 

. h . ~ . MT the class1cal vacua, choose some art onormal bas1s V 1n r\.1 and 

some coordinates -cA for ~, Then, the gauge field U(X,fl) parametrized 

by ~o(. and 'tA is given by eq. (4.9), where 

(4.11) = L: 
"' 

~"' v~ lx) 91" (x) " L: ~ .. < 
"' 

• 
£' 

and A is the element of S. with coordinates 't'A Note that because the 

lattice A is finite, the total number of parameters ~ft.. and 'tA is 

also finite. 

4.3 The Faddeev-Popov determinant 

We now proceed to work out the apriori measure (4.1) in the coordinates 

of the preceding subsection. Define a metric G in gauge field space by 

(4.12) (i._p = 
_, d 

u-u. 
a~ .. 

u-'__L u l 
;)'! ' 

~ 
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(4.13) ~ o(A = " = < u-'l u. li' l u. ) 
At:J.. 0\oe, ' d'tA 

(4.14) (i AB = ( u.-1 .1_ u ' u.·1 ~ u.) 
""'• ""'• 

where the scalar product is given by eq. (4.2), The associated volume element 

(4.15) TT d i"' TT d-.:, ( J.~t. ~ ) 
112 

"- A 

may be shown to have the same invariance properties as the apriori measure 

(4.1) and is hence proportional to~[U]. We are thus left to calculate the 

determinant of G. 

From the definition (4.9), (4.11) of our coordinate system, the derivatives 

of U with respect to !~and 1CA can be worked out easily and one obtains 

(4.16) c; "'I' = ( "J~v"',J~vP ) 

(4.17) Ci «A ~ - ( J9 v"', d9 w A ) 

(4.18) ~AB = ( d_~ WA' d WB J 
9 

The notation here is as follows. The fields w" e. 1(. 0 are defined by 

(4.19) A 
w (x) = 

-1 
1\(x) _L 1\lx) 

a-.:, 
Jq is a linear invertible operator acting in ~1 , Explicitly, it is given 

by 



~ 29 ~ 

(4.20) (19 a.\.- (x) = "' I: 
'Y\":0 

n " 
(-o) l AJ. 91'(x) J . a.l"' (x) 

('Y\.+1) \ 

where AdX·Y =[X,Y] for all X,Y E. $U..(N) . The series in eq. (4.20) may 

also be written in the closed form 

(4.21) [ 1 - -Ad.q,.<xl ] j AJ.q,...(x) e 

which should, however, be used with care, since AdX has always zero eigen-

values and is not invertible. Finally, the operator dq occurring in eqs. 

(4.17), (4.18) maps 'J.t 0 
into Jt1 according to 

(4.22) ( &.
9 

w )I' (xl = 
-AJ.q,_(xl 

a,...w(x) + [ 1 - e. ] . w(x) 

In particular, dq = d if q vanishes. 

~Je now use the following Lemma from linear algebra: 

Lemma 4.1: Let ,/, i = 1, 2, 3, ... , be a basis in a Hilbert space }t and 

suppose A is a lin~ar operator in Jt. Define matrices 

aij (wi,A~), bij (wi, wj). 

Then, we have 

det a (det A) (det b) 

In our case,~ is identified with Jt1 and the basis wi with the vectors 

v.J... and ]~1 
d.qwA. For q = 0, this set of v~ctors is certainly a linear 

basis of J.f
1 

, because LJA plus the constant modes (i.e. the generators of ~0 ) 
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form a basis of -:\.t 0 and the 

complementing the V<J.. 1 s 

dwA 1S 

For small 

are hence a basis of }t~ , thus 

-1 A 
q, the vectors Jq dq~ are just a 

little deformed so that we still have a basis. Choosing A JtJ ,, the Lemma 
q q 

yields 

(4.23) d.~t c, = t ~ 
l <l..t. 19 Jq). l o.~t G,) 

~ 

(4.24) G,"'~ = 'i>"'~ 
~ A 

ot -1 A (4.25) G,oi.A = G,Ao< = - ( v ' Jq d9 w ) 

(4.26) ~AS = ( -1 A -1 e 
J 9 d9 w ,Jqd9w) 

The next step is an application of 

Lemma 4.2: For a matrix M with block structure 

M = 
( ~T ~) 

we have 

de.t M = ( de.t A) ( d.et [ c- 'B' A-11D) 

Identifying M with G and using the completeness of the basis y"- in 

1-e: , one obtains 
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(4.27) d.t.t ~ , d.e.t. H 

(4.28) 
HAS = 

-1 

( J~ clq w' -1 s 
p J9 dq w ) 

where P denotes the (orthogonal) projector on the orthogonal complement 

of J.t~ . With the help of the adjoint operator 3='" t of 'f, which maps 

J..tD into J..t1 , we have 

(4.29) p -~ ,-t ( F Ftl F 

Note that the zero modes (if any) of 'f' yt are orthogonal to the subspace 

t { 1-t") of 1-to ' and the inverse of r :t t in eq. ( 4. 29) has therefore a 

well-defined meaning. 

Inserting (4.29) in {4.28), we have 

(4.30) HA~ = ( A t - 1 B 
L':,FPW '(f":f') L':,FP'-' ), 

t::,_FP 
-1 

(4.31) = r "~ d.9 

The Faddeev-Popov operator llFP is a linear and in general non-hermitian 

operator acting in 1{. 0 An important property of this operator is now 

summarized by 

Lemma 4.3: For small q, the zero modes of 6FP are exactly the constant 

fields W€. 1-t0 , and the range of 6.FP is exactly the sub­

space :t'(Jt,) of 1t0 . 

Postponing the proof to Appendix A, we note that the Lemma implies in 
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particular that the fields 'VA=6FPWA form a linear basis in r'<:lt .. .). 

Applying Lemma 4.1 once more, we thus have 

(4.32) <kt H 

" (4.33) HAB 

A 1 -1 ( o.~t H )·( d.e.t. T yt ) 

A 
w 6:p L':,FP "'B) 

where det' implies the determinant with zero modes omitted. 

' ~~e finally introduce the space lt0 of all those modes WE. 'l-t 0 , which are 

orthogonal to the constant fields. Let P~ be the corresponding orthogonal 
A 

projector. By Lemma 4.3, HAB may be then be written in the form 

(4.34) HAS = A t 5 
( /" , 6FP 6FP 1-' ) j'AA - n' A - r 0 w 

Since ~A's are a basis of it~ , Lemma 4.1 applies and one obtains 

(4.35) " ci~t H , J.t-t' 6 ~P t::,_ FP } ( c\.e.t Q ) 

(4.36) .QM = (wA,P'ws) 
0 

Summarizing the results obtained so far, we have thus established the 

factorization 

(4.37) ' + -1 J+ ' t d.~t ~ = ( d.~t J'" T ) ol~t .Q d.et q J~ d.et 6 FP6FP 

Note that the first factor is independent of the coordinates to<., "t'A 
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the second one depends only on ~A , and the last two factors depend only 

on ~ o1,. • In the functional integral (2. 5) with gauge invariant observables 

CJ, the first factor and the integral over the 1CA's therefore drops out 

and we are left with 

(4.38) - 1 5 J t , t 1;, - 5 
<O)- -oz ~[q1 tc\etJ1 J~ olet i'>FPC;FPJ 0 e_ • 

" <It'" 1 

where in tJ and S the field U(X,IJ) should be replaced by exp qiJ(x) ( d)[q] 

denotes the usual translation invariant measure in the vector space ~~ ) . 

For perturbation theory, we finally substitute 

(4.39) ql"'(x) = 'j-o Ar (x), 

and introduce (anti~commuting) Faddeev-Popov ghost fields c and c: 

(4.40) < CJ) = .1_ j :PlA l J :Dlc] S :DL C:) tJ e -s.H 
C ,oT ;It' :f\") 

on.-1 0 """ 

(4.41) s.u = S - 1 ~ d~t J;J\ l,}oA - ( C:, t.,.c) 

As indicated in eq. (4.40), the ghost field cis not integrated over the 

whole space 1e0 , but only over the space 1t~ orthogonal to the zero modes 

of .6FP' Correspondingly, Cis integrated over the range f"('H1) of ~FP' 

which has the same dimension as ~~ 

Eqs. (4.40) and (4.41) constitute our final result for the gauge fixed 
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functional integral on finite lattices~ . From here on, perturbation 

theory simply proceeds by expanding 0 and Seff in powers of g0 and per­

forming the resulting Gaussian integrals by Wick's theorem. For the 

measure term in Seff and the Faddeev-Popov operator, the expansion in 

g
0 

is easily worked out. For example, up to fourth order, we have 

i_ 1m c\i.t 1;oA JV = 

(4.42) 
1 4 

2: Tr( ?o (AJA1.(xl)' -~(AJ.A,.(xl)4 + OC~~l} x,,... L't 1.SSO 

(4.43) !::,F? = !::,0 + ~061 + '3-: C;2 +'a-: t:.., + 0(~~) 

(4.44) 6a = Fd 

(4.45) 6, = ':F [ t Ac\A c\ + AHj 

(4.46) 6,_ = _i_ J' \Aa Ald. 
12. 

(4.47) [:,4 = - 1- ':F (Aa A )4 d no 

(in eq. (4.42), the sum is over all bonds in 8 and the trace is in the 

adjoint representation space of S lA (N) ) . 
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5. Perturbation theory on a lattice with twisted periodic boundary conditions 

In this section we collect some results concerning SU(N) lattice gauge 

theories on a 4-dimensional lattice with 2 compact dimensions and twisted 

periodic boundary conditions for the gauge field (a "t>'listed tube" in other 
• words) . Compared to other lattices, the twisted tube has several technical 

advantages, in particular, the perturbation expansion is straightforward 

and the compact dimensions imply an infrared cutoff in the Feynman diagrams. 

Moreover, due to the special geometry, the summations over loop momenta 

are either finite (in the compact directions) or they are integrals over 

periodic analytic functions, a situation, which is favourable for numerical 

treatment. A further remarkable feature is that scattering processes of 

particles moving along the x3-axis can be studied without ever running 

into infrared divergences (we have exploited this fact for our calculation 

of the on-shell improved action for lattice gauge theories, see section 7). 

In subsection 5.1, we describe in some detail how to set up perturbation 

theory on the twisted tube, Since the discrete symmetries of the system 

are not immediately obvious from the Feynman rules, the transformation 

laws for the gauge potential A~(x) are derived in subsection 5.2. Finally, 

an efficient numerical integration program for periodic analytic functions, 

as they typically arise in Feynman diagrams, is described in subsection 5.3. 

When more than two dimensions are comwJctif.ied, the analysis can be carried 

th~ough analogously. 
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5.1 Basic formalism 

We consider a lattice of finite extent L in the x1 and x2-direction and 

infinite extent in the other two directions. The space lt!l of gauge fields 

on this lattice is identified with the set of fields U(x,~) £ SU(N), 

x/a_. z4 ~ 0, ... ,3, which are twisted periodic, viz. 

(5 .1) Ulx +Lv,fAl~ 
- 1 

D.vU(x, 1,<Jn., ( V=1,2) 

Here, the twist matrices f2v are constant, gauge field independent ele-

ments of SU(N), which satisfy the algebra 

(5. 2) .D,Qz = <. .0.2.D.1 ;, = 
2.1T-L 

e --;;;---

The corresponding gauge group ~.n consists of all fields 1\(x) E. SLl(N) 

with 

(5.3) f\lx+Lvl 
-1 = .Qv (\(x) n,.. (v~1,2l. 

The twist algebra (5.2) insures the "integrability" of (5.1) (and (5.3)) 

in the sense that if xis shifted by several periods Lin the x1 ,x2-plane, 

the resulting matrix U at the final point does not depend on the order in 

which the shifts are applied. In other words, if U(x,~) is given arbitrarily 

for 0 ~ Xv < L , V 1,2, eq. (5.1) consistently defines a unique 

extension of U(x,~) to all points x. 

Examples of twist matrices .O..v have been given in the literature (e.g. 
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Re£.[121), but since an explicit representation is never needed, we here 

only note that 

(1) eq. (5.2) fixes the flv 'sup to unitary transformations, 

(2) they are irreducible, i.e. any matrix, which commutes with J:.l
1 

and 

fl 2 , is a multiple of the unit matrix, and 

N N-1 
(3) ..o_v = (-~) :11. for)}= 1,2. 

In particular, property (1) implies that all choices of twist matrices 

result in the same physical amplitudes. 

For twisted periodic gauge fields, the action density is periodic in x1 

and x2 and the total action S is defined by summing the density over an 

arbitrary periodicity cell (in the present formulation, there are no extra 

twist factors in the action, cp. Appendix 8) . Now suppose that S q 0 and 

S = 0 if and only if i_('e.,) =- 0 for every plaquette loop 'e Then, 

using properties (1) and (2) above, one readily shows that the only zero 

action fields are pure gauge c_onfigurations, 

(5 .4) Ulx,f") = 
-1 

1\lxl/\(x+a.f.) , !\ <"~n ' 

i.e. the toron manifold is trivial. It follows that for such actions, the 

perturbative expansion of the functional integral can be done straight-

forwardly by substituting 

(5.5) \A lx,f" l 
e. '}o"- AI' (:x) 
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fixing the gauge and expanding all entries in powers of g0
. The gauge 

potential A~(x) in (5.5) satisfies 

(5.6) Ar-l xl t = -A~"(x) Tr· Al"lx) = 0, 

(5 .7) Al"lx + Lv) = 
_, 

Dv Ar-lxl .D.,_, 

and an example of a gauge fixing condition, suitable for the calculation 

of on-shell quantities, is the familiar Coulomb gauge condition 

(5.8) 

3 

2:: 
-I.. =1 

" 2J.A.lx)= 
~ ~ 

0 

The corresponding Faddeev-Popov ghost action is derived in section 4 and 

we shall therefore not repeat any details here. We only remark that in 

the present case the ghost fields c and c are also twisted periodic fields 

and the Faddeev-Popov operator £1FP has no zero modes. 

Feynman rules are most conveniently formulated in momentum space. To this 

end, we would like to expand A (x) into plane waves, which respect the 
. . ~ 

periodicity (5.7), Now, it is not difficult to show that a basis of twisted 

periodic plane waves is given by 

(5.9) 
f":' -L\>.x 

"- e -rr/a. <It,..,; n/a., 

where r k. is a (complex) Nx N matrix, which solves the eigenvalue equations 



(5.10) 
~1 

D.v r, D.v 
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i. \," L n 
e 1 R (v=-1,2). 

Actually, a non-zero solution of (5.10) exists if and only if the trans-

verse momentum components k1 ,k2 satisfy 

(5.11) 1:<)1 = 'l"r\-11.~,~ 'l'\v £ Z ""' 
2"Tt 

LN 
i.e. as expected, these momentum components are quantized, although the 

quantum m is smaller than the usual quantum 2n;L. With (5.11), the solution 

of eq. (5.10) is unique up to a phase, which we may choose such that 

(5.12) r: = P. n~"2 n "'' 
1 '-

t- {'l'l'l-t'hl. )( 1'11+-n.l.-1) 
], 

These matrices have previously appeared in the context of large N reduced 

models (see Ref. [13] and references therein). Besides eq. (5.10}, the most 

relevant properties of the f1 k's are 

(5 .13) r"' ~ 5U(N) 

(5.14) rR' = r .. ;.~ ~<' ~ k.L h»o<l N) l. ~ 

(5.15) r._ ~ :n. ~~ k,_ = 0 (mo~ N) 

(5.16) Tr r._ = o t..~.ntf..ss k,_ = 0 (mod. N) 

(5 .17) rt 
k = 

~t (~>-,!>.) r 
c ~-

(5.18) r., r,. = r,..+ • ;! 
1 ( <P.',P.) -(I>.', I>)) 
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In these equations, the notation kl = k~ (mod N) means n1 = n1 (mod N) 

and n2 = n2 (mod N). Furthermore, the bilinear forms (k' ,k) and (k' ,k) 

are defined by 

(5.19) ( R', R.) = -n~ """ + "l"'~'h1 + (-n~ + 11iH111 +'l'll.) 

(5.20) < R.' R) = -n~ -n2. - -n~ n" 

Note that in view of eq. (5 .14), there are exactly N
2 

distinct r k' s. Also, 

one easily deduces from eqs. (5.15)-(5.18) that 

(5.21) .1_ T d "•; r.) 
N 

~ 

{ 
1 if k.i_ = k .1. (mod N) 

0 otherwise 

which implies that the r k's form an orthonormal basis in the space of 

all complex NxN matrices. 

After these lengthy preparations, we can now write down the Fourier repre-

sentation, replacing eq. (2. 7) , of the gauge potential: 

(5.22) A,. (x) = 
1f/~ 

(L2N)~1~ J J~,~ 
)t .1.. ~ 1'1"/a. 2. 'Tl 2 1C 

i.l<x h T ~,.o. ~A 
e. '• e r(kl 

The transverse momentum components are here summed over the discrete values 

(5.11) in the Brillouin zone. An interesting aspect of eq. (5.22) is that 

the color degrees of freedom of A {x) are transformed into momentum degrees 
~ 

of freedom {note that as compared to a tube with ordinary periodic boundary 

conditions, the total number of possible values of transverse momentum is 
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enlarged by a factor of N
2). Using the properties of the r k's listed above, 

eq. {5.6) translates to the following conditions on the Fourier amplitude 

'A~Ckl: 

(5.23) 
- . 
A,.. co.\ t <"-,"-1 'A c-~o.1 

- ~ fA 

(5.24) A~" co.\ = 0 ~f "-.c = 0 Crood- N) 

Correspondingly, the {free) gluon propagator is written as 

( A,..(R) Avlf))~,oo = 
<( -~c .. \ 
o R,-p) e T v+Pv a.. 

(5.25) 
( 1 --J:Ct<,».\) v 1) (!<) 

· -yz ,..,._ /'V 

where bCk' ,k) and ;Gk are defined by 

(5.26) 

(5.27) 

1 2. l I I ) 

~(0.,1>.) = L NS_, S, (2..7t) SC~.-0.,\SCI<,-'R, 
""~ -nl.nl. 

X = • { : if k .L = 0 (mod N) 

otherwise 

(the E. -functions in eq. {5.26) should be interpreted as periodically ex-

tended, if k' and k are not in the same Brillouin zone). The propagator 

function 0 (k) is real and must be worked out from the given action and 
~v 

the gauge fixing condition. For the Coulomb gauge (5.8) and for small lattice 
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spacings we have the familiar expressions 

'D
00 

( k) 
1 

(5.28) = li" 1l,j = 1). 0 0 
10 

(5.29) 1)ti(k\ = 1 
( ~tj R k ) 

k' -w 

All the considerations in section 3 on the gluon vertices go through un­

altered, in particular, the reduced vertex functions Y~ (~1 .r- 1 ·, ... ~ Rr,r"-r) 

are the same as those appearing in the infinite volume case (eq. {3.20)). 

The only minor change is in the Clebsch-Gordan coefficients Ct (eq. (3.16)), 

which here become 

(5.30) c.,. o., .... ,~o.~l= ~ \. Tr (r" ... r.) + c-1{\.,.(r, ... r. )) 
N 1,...,.. "~"""1 

From eqs. (5.15)-(5.18), an explicit formula for Cr can be worked out and 

one finds in particular that 

(5.31) cy c ~<,, .. , ~o., 1 = o "'"Ius 0: i<.J .L = 0 (moo\. N). 

Actually, this result is a consequence of the invariance of the action 

under the group of transformations, isomorphic to 7L N X Z N , generated 

by 

(5.32) lA <x.rl -'> 
-1 

{l v Ulx,/") .Qv for all X,!J. 
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Together with translation invariance, it implies total momentum conserve-

tion (modulo 2tt/a) at each vertex. Note that the transformation (5.32) 

is not a gauge transformation, because /\(x) = Qv does not satisfy 

the periodicity condition (5.3). 

With all the ingredients ready, the perturbation expansion of then-point 

correlation functions of A~(k) in terms of Feynman diagrams is derived 

as usual and we shall therefore not go into further details here. An im-

portent property of the resulting Feynman integrands is that they are com­

pletely regular, because the singularity at k = 0 of the propagator func­

tion D~ v< k) is outside the range of possible momenta ( cf. eqs. (5. 24) -

(5.2g)). The physical significance of this observation becomes clear if 

we look for the poles of the propagator in the complex energy plane. For 

small lattice spacings, they are at 

(5.33) Ito " ± '- .J '- '-
lt..L + k, + 0(<>.'-) 

and since ki ~ 2 
m ' it follows that the spectrum of the transfer matrix 

has a (mass) gap. We see therefore that the twisted compact dimensions 

make the theory massive in perturbation theory and thus provide for an in­

frared cutoff. 

Starting from eq. (5.33), the particle spectrum of the theory can be worked 

out and scattering processes can be studied in perturbation theory (Re£.[1] 

and section 7) , We emphasize that these excitations are truly physical 
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in the sense that they can be created from the ground state by applying 

gauge invariant operators, which are local in x
0 

and x3 . In particular, 

their properties could also be studied by the strong coupling expansion 

and the Monte-Carlo simulation method. For the latter it is more convenient 

to use a formulation of twisted periodic boundary conditions, where the fl; s 

do not appear explicitly and the twist is taken into account by a change 

of the action (cp. Appendix B). 

5.2 Symmetry properties of the n-point functions 

Due to the asymmetric shape of the twisted tube, the cubical symmetry of 

the infinite lattice 7l 4 is broken dmm to a smaller group of symmetries, 

which is generated by the follm"ing transformations: 

(1) Reflection of x
0 

(2) Interchange of x
0 

and x3 

(3) Reflection of x1 

(4) Interchange of x1 and x2 

For the symmetries (1) and (2), the associated transformation law for the 

link variables U(x,~) is the ordinary one, which amounts to 

(5.34) AI"Cio.)- z: 
" 

(.\.) "" (-\ .. ) 
'Rrv A,('R. lo.) (i 1,2)' 

where R~J denotes the orthogonal matrix belonging to the transformation 

(i). Then-point correlation functions of A (k) are invariant under (5.34), 
' 
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provided this transformation is a symmetry of the action and the gauge 

fixing condition (as is usually the case). 

For the transformations (3) and (4), the situation is more complicated, 

because they tend to conflict with the twisted periodicity (5.1) of the 

gauge fields, which must also be respected by a valid symmetry operation. 

However, as will be shown in detail below, the transformations (3) and 

(4) give rise to symmetries of the gauge theory too, provided they are 

combined with a charge conjugation. The corresponding transformation laws 

then read 

(5.35) A.,. c ~<l ____,. -'\'\1"1\l. 
e 

(3\ 

L. R,.v 
v 

A" ( R"\l 

(5.36) A ~" ( P.' _____,. ~ R~~ Av(R(
41

k) 

(in eq. (5.35), the integers nv are defined by nv = kvfm). 

We now proceed to derive the transformation law (5.35) (the derivation 

of (5.36) is similar and will be omitted). To this end, first note that 

the pair of matrices 

" (5.37) .121 = (..0.-')" 
' 

A " SJ.. • 
:1. " .0. 2. 

also satisfies the twist algebra (5.2) and is hence unitarily equivalent 

to the .rlv 's, i.e. there exists w-€ SU(N) such that 
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(5.38) D.v 
A _, 

'W n_" w ( v 0 1,2). 

Next, given a field U.(X,fA) ~ Un , we define the transformed field 

A 
U(x,vl by 

U(x,v) 

(5.39) 

Ucx,iJ) 

• -1 
I'! U(x' ,!J) W 

W U(x'-aP,!J)TW-i 

if IJ f 1, 

if tJ 1, 

where UT denotes the transpose of U and x' is defined by 

(5.40) x' R(3 )x (x 
o' -xl, x2, x3). 

The transformation (5.39) is the product of three operations, namely a 

reflection of x1 , a charge conjugation and a constant color rotation. These 

are usually symmetries of the action and it is also not difficult to check 

A 
that U(x,~) is again twisted periodic so that altogether we have found a 

symmetry of the functional integral. The transformation law (5.35) is now 

A 

obtained by working out the Fourier transform of the gauge potential A~(x) 

A 

associated with U(x,~), using 

(5.41) 
,. -' wr_., w = " 

' ' -n~ -n2.. [\ ' 

which follows from eqs. (5.37), (5.38) and the definition of r k (eq. (5.12)). 

5.3 Numerical evaluation of integrals of periodic analytic functions 

As mentioned previously, due to the presence of the mass gap, the integrals 
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over loop momenta k0 ,k3 encountered in Feynman diagrams are integrals of 
periodic analytic functions. We shall consider below how such integrals 
can be numerically well approximated by appropriate sums. In particular, 
we will discuss the special refinements that have to be made in order to 
obtain sufficiently accurate results with modest computational effort, 

in situations when the mass gap is small. 

For simplicity, we here only discuss how to integrate a periodic analytic 
function f(k) of a single variable ~t lR . Multiple integrals can be 
treated similarly, in particular, in our calculation of the improved action, 
we have merely iterated the procedure described below. Our aim is thus to 
calculate the integral 

11 

(5.42) d J 
-"1{ 

dl< 
:z:rr J ( kl ~lki211l f If<) , 

assuming that a subprogram exists, which computes f(k) for given k. The 

basic idea is to approximate J- by the finite sums 

(5.43) 
T 

I (T) • J.... L' f ( 211 v) 
T V='\ T T 1' 2' 3, ... 

For ordinary integrands, this method is not very efficient, but in our case, 
I(T) converges exponentially fast as T ~ oo . More precisely, we have 

(5.44) 1( T) J + 0( -t1) e.. ' 

where t is the absolute value of the imaginary part of the singularity 
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of f(k) closest to the real axis. Eq. (5.44) is an easy consequence of 

contour integration and the representation 

"" (5.45) ICTl=d- + 2 L' 
1"\= 1 

1r 

J .... 
'l-1r 

-lt 
cosl-n0.Tl1(lt) 

which follOI'iS from the Poisson summation formula. 

In various 1-loop diagrams (especially if the mass gap is small) one en-

counters situations in which € is nearly zero. In such cases the rate 

of conv~rgence can be drastically increased by making an appropriate change 
of variable, which maintains periodicity and moves the dominant pole away 
from the real axis. For example, if f{k) has a peak around k = 0 due to 

a pole at k 1.£ ,t small, one could try 

(5.46) k = I{ oJ.. S~'h.. k 

with 

(5.47) 0 ~ o((<) < 1 

and o( chosen close to 1 such as to move the singularity optimally away 

from the real axis in the k' plane. Then, we have 

(5.48) J = 

with 

(5 .49) J (}<') 

"" s 
-n 

dl<' 
2:1< 

A f ( !<_') 

( 1 - "" cos I{ ) f ( "' ( l<l) 
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and the corresponding approximations 

(5.50) 
~ 

l( T\ = + ~ v-=., 

~ 

t (~ v) 

converge significantly more rapidly to :} than I{T), viz. 

(5.51) 1 (T) = 1 
A 

.r 0 ( e-f. T) A 

t ~om. 

For the diagrams, which we have calculated, the rate of convergence achieved 

in this way typically was such that T = 32 was sufficient to obtain a rela-

tive accuracy of 14 digits. We finally note that since the convergence is 
~ 

knmm to be exponential, it is possible to control the error I} - 1 ( T) \ 

~ A 

by also calculating smaller sums, e.g. I{T/2) and I(T/4), and fitting the 

results l~ith a constant plus exponential. 

6. Asymptotic behaviour of Feynman diagrams for small lattice spacings 

and associated extrapolation procedures 

6.1 Asymptotic behaviour of finite momentum sums 

1-Je here give a rigorous proof of the basic expansion (1.1) for a class 

of one-loop diagrams on finite lattices with periodic boundary conditions. 

Our objective is not so much to obtain the most general result, but to 

illustrate a strategy of proof, which appears to be more widely applicable. 

In particular, the proof can be easily adapted to the case of the partially 

compactified twisted lattice of section 5. 
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On a 4-dimensional Lxlxlxl hypercubic lattice with periodic boundary con­

ditions, the possible values of momentum are *) 

(6.1) 
"' 0 

1.'rl v 
L 

v ~ 7L" -1t Ia. < f<"",; 1t/<~. 

In the absence of masses and for vanishing external momenta, one-loop dia-

grams on this lattice assume the general form 

(6.2) D lj) -4 s 
= L I: o. fla.k) 

k;<O 

where b denotes the engineering dimension of the Feynman integrand ~(q) 

and the summation is over the range (6.1). A simple example for the inte-

grand is 

(6.3) 
1'. 

a. Jlk\ = I~\- & 

A 

with k given by eq. (2.10). In general we expect that f {q) has a singu-

larity at q ~ 0, but is otherwise regular. More precisely, we shall assume 

that 

(a) ~ (q) is periodic with period 21l in all momentum components, i.e. 

if q' = q (mod 21!), then i(q') = $(q). 
~ ~ 

(b) f (q) 
. co 
lS C for q(mod 21t.) f 0. 

(c) The structure of the singularity of fCq) at q 0 is such that the 

'l 
L has physical units with L/a being an integer. 
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function 
A 0 f ( >t,'t\) = >t f ( ot.'t\l ' 

3 "" initially defined for 0 <X~ 1t and 't\ E. 5 , extends to a C 
function for all K.. e. [ 0, 1t] (and all unit vectors n). Moreover, 
the Taylor coefficients off at lt= 0 are polynomials of n. 

Functions f(q) having these properties are later referred to as elements 
of the class ~ S According to property (c), every f E. Ps may be ex-
panded around q 0 in a series of the form 

(6.4) f ( >t"r1.) "' >t->0 
-· "" «- I: 

m=O 
"' 'l<- t'"" ( "r1. ) 

where the Pm's are polynomials of the unit vector n. 

The main result of this section is now summarized by the following 

Theorem: For any ! E. P S we have 

(6.5) ]q)~ 
a->O 

S-'+ li-'t- m a. [A+Bt,.(o./L)]+l La.,.(oJL), 
.,....,.0 

where the coefficients A,B and am are independent of L. Further­
more, B = 0 if ~ f: 4,5,6, ... 

For actual Feynman diagrams, S is alwaye> inte~er in which case the expansion 
(6,5) does indeed assume the general form (1.1). Note also that for super­
ficially divergent diagrams {i.e. if ~< 4), 8 vanishes and A is simply 

given by 

(6.6) A = " J 
-1( 
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~- fCql (111) 

Thus, a possible application of the theorem is to calculate integrals of 
the type (6.6) by evaluating the finite sums D(f) for a range of lattice 
spacings and extrapolating to the limit a ~0 using the method of sub-
section 6.2. 

~le nm~ turn to the proof of the theorem. First, 1~e simplify our notation 
by observing that apart from an explicit factor aS , the dependence of 
D(f) on the lattice spacing is only through the combination ajl. The limit 
a-7 0 at fixed L is therefore equivalent to l ~oo at fixed a. Taking 
the latter point of vie1.,r, we may choose units such that a = 1. L is then 
an integer and (6.1), (6.2) and (6.5) become 

(6 .7) k-2.1lv v • 7l4 
- 1 L 1 L - T 

' 2: ())1"-~2 

(6.8) DC f) = L4 r 
•• 0 

~ Cl<) 

~-4 00 -'W\_ (6.9) DcSJ ~ A -:B e, L + L L' a.~ L L-->~ 

~'" 

The proof of eq. (6.9) given below proceeds in three steps. First, by a 
partition of unity, the momentum cutoff implied by the Brillouin zone is 
replaced by a smooth cutoff function h{k). In the second step, the integrand 
f{k) is expanded according to eq. (6.4) and the cutoff function h is re-
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placed by a Gaussian cutoff in each term. After that one is left with a 

set of momentum sums, whose integrands are analytically given and which 

are sufficiently simple to be tractable by ordinary techni.ques such as 

the Feynman parameter representation and the Poisson summation formula. 

Suppose h(k) is a C
00 

function of It E. IR.4 

(6.10) h(k) (
1 if 
0 if 

lkl~'tr/~ 
lkq 1</2 

such that 0\!i h ~ 1 and 

We then split the sum D(f) into two parts according to 

(6.11) D(f) = 01 (f) + o2(f) 

-4 
h(l<) ~(I<) (6.12) 01(f) = L L 

~;to 

(6.13) 02(f) = L4 L. ( '\ - h(l<)) ~(I<) 
l<oo 

The following Lemma, which is proved in Appendix C, may now be applied to 

the second part D
2

(f). 

lemma 6.1: Let ~ €- ~ o<: and tJ.. < 4-2j for some integer j with j) 3. Then, 

for L ~ oo we have 

")( 

(6.14) ]) (~) s 
-")( 

J..'\> 
(211)4 

'a (I<) + 0( L -z;) 

Because the function g "" (1-h)f vanishes identically in a •t~hole neighbor­

hood of k "' 0, it is an element of icl for every of.. . It follows that 

o2 (f) "' O(g) only contributes to the coefficient A in the large L expansion 
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and all the non-trivial terms in (6.9) must therefore come from the first 

part 0
1 

(f). 

For the further analysis of o1(f) we now make use of the expansion (6.4). 

Define polynomials ~(n) through 

(6.15) Q. ~ ('t\) = ..!_ d-m 
m1. a~""' 

2 

><. • l 
l. e ><- ~ t><.'YI.) ><-•o 

~ 
(the use of the factor e will become clear soon). Furthermore, set 

(6.16) r.., < \<) = 
-R-2. 'l\'1.~~ 

elk\ Q.,_lk/11<\) (l<;t 0) • 

M 

(6.17) 'J-M(i<) = h ( \<.) { J 0<.) - L: 
tM-:0 

~,.,li<.)J • ( \l<r\ ~ 1"<) . 

Note that gM vanishes identically for IR\ ~ 1'i/'L so that we may periodically 

extend gM to all R ~ IR 4 , excluding of course the singular points k (mod21t) o::O. 

From the definition (6:17)' (and Taylor's theorem) we infer that 

'3-M~ 2 S-K-~ Provided M is large enough, Lemma 1 therefore applies 

to gM and we conclude that for l ~ 00 

(6.18) 1\<P = 
M 
L. 

S-M-! 

1)( \;~.,} + coonsto.<'t + OlL ) 
IV'Il:O 
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At this stage, the cutoff function h may be removed again. To this end, 

first note that hf vanishes for IN.\ >/rf/2. so that we are free to ex­m 

tend the summations over k to all k 1 0 of the form k = ~ V , V €. 7l.lt-
This is indicated symbolically by writing 

00 

(6.19) D c h t.,) = D"' lhf.,J = _1 L hlklJ (R) 
L4 

l<l'#O """ 

"' Next, we observe that (1-h)fm is a C function, v1hich together \'lith its 

derivatives is rapidly falling off at infinity. As in the proof of Lemma 

1, it may be shmm that these properties imply 

(6.20) DOo((1-h)f ) constant + O(l-p) m 

for any power p. It follows that 

(6.21) D(hf ) o(f ) + constant + O(L -p) m m 

Summarizing the results obtained so far, we have for any fixed large M and 
L --> oo 

(6.22) D ( :f l = 
M 

L: 
'TVI=O 

"" D ( & ) + coost"'"t 
~ 

&-M~3 
+ O(L ) 

We now proceed to prove that an expansion of the form (6.9) holds for each 

of the sums 0
00 

(f ) individually. This will be achieved by a somewhat m 
lengthy series of simple analytic manipulations. 
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Vie first remark that because of reflection symmetry, the polynomials Qm 

may be replaced by 

(6.23) 
A 1 
Qm(n) "2 (Qm(n) + Qm(-n) J 

without changing the value of 0
00 

(f ) . Next, let q denote an integer such m m 
that 

2qm>m - S 

A and such that 2q is also larger than the degree of Q (in particular, m m 
qm} 1). Define 

(6.24) f-l,.,lf<) = 29 " I I<\ ~ Q.lR./11<1) 
~ 

(6.25) d. 
"" 

= ~"" + t c s - ""') 

By construction, Hm is a homogeneous polynomial of k of degree 2qm. Further-

more, we have 

(6.26) D"'c !,,J 
00 .Lr 

L4 R¢o 

-loC -R2. 
II<\ ~H.,.,Ci<le. 

To obtain a more tractable expression, set 

(6. 27) X = 

(6.28) F,....(<.) = 

2. 
(2TI/L) 

-4 
l2nl .L 

VE.~4 

H lvl -zv2 
"" e. 

(;o->0). 
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Then, eq. (6.26) may be rewritten in the form 

(6.29) D oo c f,,,,) = 
-1 (6-4- .... 1 ~ 

" '" rco(~l 
()0 ol ·1 

J d.t t "' F;., l t+x) 
0 

(note that for x )0 the integral is absolutely convergent, because o('V\'\)0 

"' and because Fm is a C function, which is exponentially decaying at 
00 

infinity). A good feature of this representation of 0 (fm) is that L 

enters only through the variable x, in particular, the function Fm is 

independent of L. 

00 
We now split 0 (fm) into two parts according to 

(6.30) 

(6.31) 

(6.32) 

00 -1 (&-4-M) 
D q ) = x __ 1_ { l (lll+llxll 

""' r<c~-~) 1 2 

l
1 

(x) 

l (x) 
2.. 

=. 

" 

1 

j 
0 

"" j 
1 

o( - 1 
0.\. -\; ""' F (t~ ><l 

"'"' 

"' -" el-l t ""' F.,.... (t~x) 

Because Fm(z) and its derivatives are exponentially decaying at infinity, 

00 
the integral 1

2 
is a C function of x for x > -1. In particular, it may 

be expanded in an asymptotic power series at x = 0. It follows that the 
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"" contribution of 12 to D (fm) has a large l expansion of the form (6.9) 

withA=B=O. 

To expand 11 , we need the following Lemma, which is proved in Appendix D. 
A 

Lemma 6.2: There exists a constant Cm such that the function Fm defined by 

(6.33) F <ll = F l~l - C <.-q~-2. 
"' "" ""' 

(no) 

extends to a C
00 

function for 0~!<00 

Inserting (6.33) into the definition {6.31), we have 

(6.34) 
1 <>( -1 -q -1. A 

l
1

lx) = C., J cl-1: \;.""' (t.~x) ~ + l
1

(x) 
0 

A 00 
where 11 (x) is C for x ~ 0 and can therefore be expanded in an asymptotic 

power series as x ~ 0. Finally, to expand the explicit integral in eq. (6. 34) , 

00 
we substitute t = x/s and obtain the following contribution to 0 (fm): 

(6.35) 
c.,. "' 1 

X 

-1 lS-1.-,.,) -q--1. 
cls s '" ( 1 + s) 

r(c~-~) 

For small s, the integrand can be expanded in a convergent power series 

and this quickly translates into a small x expansion of the form (6.9). 

In particular, a logarithm is obtained if and only if ~- 2 - m is a positive 

00 
even integer. Summing up, we have thus shown that 0 (fm) has a large L 

expansion of the proposed form. 

The proof of the theorem is now completed by remarking that via eq, (6.27), 
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= the expandability of D (fm) implies the validity of (6.9) up to terms 
of order t -M-J_ Since M may be chosen arbitrarily large, the expansion 

in fact holds to all orders. 

6.2 Extrapolation of lattice Feynman graphs 

In the preceding subsection we have shown, for a class of one-loop Feynman 

diagrams, that as the lattice spacing tends to zero, one has an asymptotic 
expansion of the form 

(6.36) Jl(a.l~ 
a.-'> 0 

-1_.) 0() 

a. l: 
'Y\= 0 

a..'n [ c'ho + c..'YI'\~ 0..] 

We here discuss the question of how to extract the first few coefficients 

cni' when O(a) is known for a sequence of lattice spacings ai, 

Imin~ I~ !max· In order to keep the presentation of our method as trans­
parent as possible, we shall make a few simplifying assumptions. First, 

the lattice spacings a1 are taken to be inversely proportional to I, i.e. 

(6.37) ai 1/~I. 

Secondly, we assume that only even powers of 'a' occur in the expansion 
(6.36) and that the leading coefficients c

01 
and c21 of the logarithmic 

terms are already known analytically. Actually, for the sum of diagrams 
which one needs to calculate for improvement, both conditions are met, 

in particular, c01 is proportional to the first coefficient of the Callan­

Symanzik r -function and C02 vanishes because of tree improvement. 
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We now proceed to describe how to determine the leading coefficient c00 
accurately and how to control the rounding and systematical errors along 
the way. The extension of the method to subleading coefficients is trivial 

and will not be discussed any further. Using (6.37), we can define the 

dimensionless auxiliary function 

(6.38) 5
0 ( Il " { a."' [ \)(a.)+ (c" + a.

2
C-21 /t"I] Ja.oo.l 

in terms of which the expansion (6.36) reads 

00 
(6 .39) fo (1) ~ A 0 + A, I I 2 + I' ( A 'h + B 'h t.,_ I) I I 2"' 

1"\='2. I~oo 

(6.40) AD = coo - (01 ~"I' 

A first approximation to the desired coefficient A
0 

would thus simply be 

(6.41) Ao "" j' 0 ( l_,~x) 

However, since a range of values of I is available, we can do better by 

defining an "improved" auxiliary function f 1 (I) through 

(6.42) 1, ( 1) ~ 

(1 +&J 
4S0 l 

f,(l+~,l-

where ~0 is an integer parameter, typically b0 

(1- • )2 
0 

4-$
0
1 :f-o \1- b0 ) 

1 or 2. Then, £1 has 
an expansion of the form (6.39) _with A0 as before and A1 missing. 
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f 1 is therefore more rapidly converging as I --tOO and one expects that 

f 1 (Imax- S0
) is a better approximation to A0 

than the estimate (6.41) 

(note that f 1 (I) is only defined for 1 . + 30 ~ I ~ 1 - 'b
0 

), 
"I'M,.'l"\ ""'(),)( 

The "blocking" transformation leading from the initial function £
0 

to the 

improved function £1 can be iterated and one obtains in this way a sequence 

of functions f. such that 
L 

(6.43) L.ln ~ A + 0 l l-2.<. - 2 l 
0 

-1.. = 0,'\,2, ... 

Actually, because of the logarithmic terms in eq. {6.39), the transformation 

fi _,. fi+i is a bit more complicated for i ~ 1 than for i o:: 0, namely 

(6.44) -f.c_..
1
(1) ~ w1 Lll+S.,:)-rw2 J~(l) +w3 fll-&.J 

(6.45) w i =- v ~ I ( v1 + v~ .,. v3 ) ( -l ~ 1, 2,3) 

(6.46) v, ~ 

1-'- +l 
ll+S,) {.,.(1-S_./1) 

(6 .47) 
2-\.1"2 

v2 ~ l lt.,.(1+'0.;/1)-t,..(1-&,ill] 

(6.48) v3 
2-(+l 

= - ( 1 - o.J k ( '\ + s .. ) 1! 

At each step, ~i can be chosen freely and the range of values of I, where 

the new function is defined, shrinks. After a few iterations, further block-

ing is therefore often useless, because the available range of I is too 

small to observe the convergence of the improved function fi+i· 
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To derive a reliable stopping criterion for the iteration described above, 

we need an estimate for the "systematical error" 

(6.49) s._ll) I L ll) - A0 I I I A01 

To this end, we fit fi with the function 

(6.50) f.cnl " 
1.\.+2 "'+ ((3 + 1!'t-,.1)/l 

by minimizing the quadratic form 

(6.51) r 
I 

41..+ $ ..... 2 

l [f~lll-tlllJ 

with respect to the parameters o(, f' and 0 . Of course, the fit function 

A 
fi is motivated by the large I expansion of fi(I) and the weight in (6.51) 

is chosen such as to minimize the effects of possible higher terms. Having 

determined o( , f> and "'3, the systematical error is estimated by 

(6. 52) 

(6.53) 

S,: (l) ~ s.<. (Il I It. tll\ 

l I f> + o 1M 1 I I l 
2
'-+2 

s-ll) ~ 

~ ""'~x( lpl,\o\~1)/12-'n 

1.4' ~If ~ 0 

.(~ 1(/~ ' 0 

This formula avoids underestimating the error in case {' + 0 t~ 1 

happens to go through zero in or near the range of available values of I. 
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Before the systematical error determined in this way can be taken seriously, 
a test of the quality of the fit of fi should be made. This is in general 
a rather subjective affair. Our criterion was to accept the fit if 

(6.54) I h (l) - L (l) I /is, ( lll < <. l :.~J 1 2 

where {say) t.= 0.1. If (6.54) was not satisfied, the systematic error 
1vas taken to be unestimable and f i vJOuld then not be used to determine A0 . 

So far we have assumed that the functions fi are known 11ith infinite numerical 
precision. Of course, since fi is calculated on a. digital computer, this 
is not actually the case, i.e. the computer approximates fi(I) by some number 
fi(I) with a finite number of digits. If one uses 64 bit precision, the 
error 

(6.55) ~'o (l) = ( :fo ( l) fo {l)) I ~o(l) 

of the initial data can be rather small, e.g. &0 ~ 10-14 . Ho\~ever, through 
the blocking transformation the errors ~i(I) of the improved auxiliary 
functions fi tend to increase significantly, a fact, which turns out to 
be one of the limiting factors to our method. To understand how these numerical 
errors evolve, we a·ssume that the errors C

0 (I) are random numbers with 
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foll01~s that the errors ei (I) are also distributed according to a 
Gaussian and the matrix <f.;.. U) t.t_ (1~)) can be calculated re-
cursively. In particular, we may define 

(6.57) "T".c(ll"' 1/2 < <.< (l) <.c (l) > 
' 

which is a realistic estimate for the numerical precision of fi (I). It 
is our experience that with each blocking step, the significance loss thus 
determined is about 1 to 2 decimal places, slightly depending on the choice 
of the parameters S .(.. . 

As a result of the error discussion, the best possible estimate for A
0 

may now be obtained by setting 

(6.58) A o "' h~ (l"l 

where i* and I* are chosen such as to minimize the total error. In 
addition, the (relative) precision of the estimate (6.58) can be pre-
dieted to be better than 

(6.59) " s,,,(I) " + T -<." ( l ) 
a Gaussian distribution of variance 

We have tested our extrapolation procedure in various cases where A0 
1~as kn01~n beforehand, for example by evaluating the diagrams directly 

(6.56) <E 0 (I\t0 (I'l> 2 
8:t.I' 'yO (1) 

where r 0 (I) is known. Because the blocking transformation is linear, it 

in the continuum using dimensional regularization. In all cases, the 
error estimates were shmm to be realistic (or even conservative), 
thus confirming our expectation that the method 1-10rks reliably indeed. 
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7. Calculation of Symanzik's improved action[i] 

The purpose of the present section is mainly to illustrate how the techniques 

introduced in this paper fit together in a concrete case. Besides that we 

want to provide further details on the calculation outlined in Ref. (11. 

In order to avoid unnecessary repetitions, we shall here assume that the 

reader is familiar with Ref. [1), in particular, the notations of that 

paper on the improved action, the improvement coefficients ci(g;), etc. 

are taken over. 

7.1 Gauge fixing and the pole structure of the. propagator 

As explained in Ref. [1], the calculation of the coefficients ci(g~) in 

perturbation theory proceeds by evaluating two on-shell quantities in the 

twisted world of section 5 and requiring the absence of O(a2) scaling via-

lation terms. These on-shell quantities can be defined using gauge invariant 

{composite) interpolating fields (see subsection 7.2) and the choice of 

gauge one makes to perform the calculation is therefore of only practical 

importance. A convenient choice is e.g. the modified Coulomb gauge condi-

tion 

(7 .1) 

(7 .2) 

3 

L 
~::1 

= 0 
~ 

;5~A._lx) 

tf; = {A 2 (0) (0) "" * ) :a. (O)'C"' M 1, *" 
t I +a. lc1 - cl. }( Oo Oo+O.\. Cl~ -r o.c.l. L. o,... 21r.) a ... 

. I" 

In momentum space, eq. (7.1) becomes 
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(7 .3) 

3 

)::: 
-\.:<1 

A ~ 

s,~ l\<l ~<,_ A,c\1<1 , 0 

where the tensor s~V(k) is defined through 

(7 .4) S ( L) _ 1 _ 1.( (O)_ (Ol)(t1 t.:z. 1 - 2. (Ol'C:,2. 

/"II R - 0.. C.'\ (.2. K./"' + Kv 0. C.2. I< 

This tensor also appears in the action, namely [14} 

"'• 
(7 .5) Si = 

';}o::O (L
2

Nl
1
L J ~~' ~; 1: Z:;l')t>.l\~1'1\v\1<)-~)\1'(1>.)\2 , 
R.1. -1'C/o.. flo, 

and the gauge condition (7.3) therefore implies the decoupling of the 

"static" potential A
0 

from the transverse components Ai at g
0 

= 0. For the 

propagator function 0 (k) defined in section 5, we thus have 

~-

(7. 6) '[)o<(k) , 'D;_,\\..) , 0 (.(o 1,2,3) 

3 "• -1 
Doo (\..) = ( L S0 .t ( ~) I<~ ) 

-t.::J\ 
(7. 7) 

The other components are more complicated and explicit formulae are there-

fore deferred to Appendix E. Here we only note that 

(7.8) D.cj (~>.l = D0 , ( \>.) -p~i \~l I Q (~l 

A 

where P .. and Q are polynomials in k of degree 8 and 10 respectively. 
~ 0 

In what follows, we assume that the coefficients c~o) are such that 
L 
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s (k) is positive for all k and ~ 1 v . This insures the stability of "v 
the action (7.5) and is true for the values of cia) and c~o), which are 

later found to be necessary for improvement. With this proviso, it is 

easy to show that the gauge fixing condition (7.1) is admissable in the 

sense of section 4 and the derivation of the Faddeev~Popov determinant 

given there therefore carries over to the present case. In particular, 

the Faddeev~Popov operator is given by 

(7 .9) (',FP 

3 
~ - L 

i='l 

• J, l 
1- exr-Ad.q,(xl 

Ad q,<xl 
0~ + Ad. q,(x)] , 

where qi (x) = g0aAi (x). As already mentioned in section 5, the correspond~ 

ing ghost fields are twisted periodic and from eq. (7.9) the Faddeev~Popov 

propagator is easily found to be equal to o00 (k). 

A The stability of the action (7.5) also implies that the polynomial Q(k) 

' is positive for real k f 0. The only singularities of the propagator 

0 (k) in the Brillouin zone are therefore at k = 0 (from the vanishing "v 
of Q) and at f = 0 (from 0 (k)). These latter singularities also occur 00 

in the ghost field propagator and are special to our choice of gauge. Since 
~ 
k = 0 is excluded by the quantization of transverse momentum, the Feynman 

integrands actually encountered are completely regular as discussed in 

section 5. 

For the physical interpretation of the theory, the poles of 0 (k) with 

"" ~ complex k0 and real k are relevant. Because O~v(k) is even under k0~ ~ k0 , 

such poles come in pairs with opposite signs of k
0

. There are exactly 
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A 5 pairs stemming from the zeros of Q(k) plus one additional pair from 

D
00

(k). For small lattice spacings, two pairs converge to the relativistic 

locus 

(7.10) k "±;.1~1 0 

and the other poles move to infinity, i.e. the associated energies are 

of the order of the cutoff: 

(7.11) lm f. "' 0 
0 { 1/u) 

This behaviour is illustrated by Fig. 1, where the energy momentum relations 

corresponding to the 6 pairs of poles of D~v(k) are plotted for k1 = k2 , 

k3 = 0. Elsewhere in the 3-dimensional Brillouin zone the situation looks 

similar, in particular, the unphysical branches (those which are not approxi~ 

mately of the form (7.10)) arealways far up in energy. Note that the physical 

branches closely follow the relativistic dispersion (7.10) up to rather 

large momenta ( I ~ I ~ 11/ 2.o.) This is partly due to tree level 

improvement as can be seen by comparing with the \~ilson action, where the 

energy momentum relation starts to deviate from the relativistic formula 

already at 
-> 

I k I "' n /4o.. 1-Je finally observe that the two physical 

branches correspond to different (transversal) polarizations of the gluon. 

At tree level they are not exactly degenerate because of O(a4) scaling 

violation terms and at higher orders the degeneracy is completely lifted 

by the asymmetry of the lattice. 

If we now take into account that the transverse momentum components k1 
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and k2 are quantized, we see that the energies k0 
associated with the 

poles of 0 (k) cannot be arbitrarily close to zero. The family of poles 
~v 

with smallest energy is given by 

(7 .12) 

, , 
k, + k, 

, 
; "M 

'R = :t .\.. j m2 + jq. '2. 
0 3 

rn =- 2.1t 
LN 

+ 0 ( o.."l 

i.e. these are the poles with the smallest amount of momentum in the trans-

verse directions. As explained above, for each of these poles there are 

two possible polarizations. They can be distinguished by their parity under 

reflections of k1 (or k2). To see this, take for example k1 
= 0, k2 = m. 

Then, A1(k) is even under a reflection (5.35) of k1 
and the other components 

A2 (k) and A3(k) are odd. Correspondingly, one of the poles occurs in the 

N 
~ ~ 

A1(k) propagator and the other in the propagator of A2
(k) and A3

(k) (note 

that because of the gauge condition (7.3}, these latter field components 

are linearly dependent so that there is only one degree of freedom associated 

to them). These symmetry considerations are also valid at higher orders 

of perturbation theory and the lowest lying poles of the full gluon pro-

pagator can therefore be unambiguously identified by specifying the momentum 

~. the sign of Im k and the parity of the interpolating field under an 
0 

appropriate reflection. Similarly, the next to lowest lying poles (those 

with lk11 =I k2\ = m) can also be completely characterized by conserved 

quantum numbers. 
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7.2 Physical significance of the low lying poles of the gluon propagator 

The physical interpretation of euclidean lattice gauge theories rests on 

the construction of a Hilbert space of physical states and the transfer 

matrix as described in detail for improved lattice gauge theories in Ref. 

[15). The aim of the following discussion is to show that the poles (7.12) 

(and similarly the other poles of the propagator) are related to eigenvalues 

e-w of the transfer matrix through the familiar formula 

(7 .13) w = o.. I l-m 1>., I 

This implies that although the gluon propagator is gauge variant, its low 

lying poles are associated with gauge invariant eigenstates of the transfer 

matrix and may therefore be interpreted as physical one-particle states. 

In fact, with little more work, the Hilbert space of physical states at 

g = 0 can be identified with a Fock space of an infinite tower of free 
0 . 

particles as described in Ref. (11. 

To establish (7.13} it is sufficient to construct, for each of the poles 

(7.12), a gauge invariant field C/k(x
0
), which is composed from the link 

variables U(x,j) at a fixed time x
0 

and which satisfies 

(7.14) < ()~ <x.)~ o._ (0) >I -o """ 
K. ~~- xo...,oo 

-x 0 lhn R, I 
e 

As an example, consider the case with k1 = 0, k2 = m and positive parity 

as explained above. Define a gauge invariant composite field fCx
0

,x2,x3) 



through 

(7 .15) 'f' l x •• x,,x,) 
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_ i_ T.,- ( .0.1 d]x,<L - fro Ll\x,1lj, 

which is just a Wilson loop winding around the twisted tube (in eq. (7.15), 

the matrix n 1 is needed to make the loop invariant under the gauge trans­

formations (5.3)). Because of twisted periodicity, we have 

(7 .16) 'P <x.,x,t-L,x,) : l'. 'P<><.,x,,x,l 

so that the Fourier transform 

(7.17) CJ, (x 0 ) : a.' L. -t (i<,x,_ + 1<3x,l cp Cx.,x,,x3) e 

is well-defined. Noting ..0. 1 

(7.18) C'\. (x.l /'},=O 

X:z.,X3 

: r t 

" 
, it is easy to show that 

lf/o_ 

: s 
-1Tia. 

dp. 
27( 

1...po.Xo ,...,. -i> 
e A,<p0 ,R ), 

and the exponential decay (7.14) of the correlation function of CJk(x
0

) 

thus follows from the residue theorem. 

When the gauge coupling g0 is turned on, the full gluon propagator-not only 

has poles but also a cut in the complex k0 plane, which comes from 2-particle 

intermediate states and which therefore starts at about k = ~i 2m. The 
0 

stable physical particles in the theory are thus the A mesons, which corres-

pond to the lowest lying poles (7.12), and the 8 mesons, which belong to 
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the poles with I k
1

] = [k
2

J = m. In addition, there may be some poles just 

below the 2-particle threshold. As for g
0 

= 0, the gauge invariant field 

defined above may be taken as an interpolating field for a positive parity 

A meson, and similar composite fields exist for the other A mesons and the 

8 mesons. Because these fields are local in x
0 

and x3 , an LSZ scattering 

theory can be formulated for them and a sensible definition of the scatter-

ing matrix for scattering processes involving A and 8 mesons can be ob-

tained in this way * One may then show that the scattering amplitudes 

so defined are in fact equal to the full propagator amputated n-point 

functions of the gauge potential Ai evaluated at the poles of the propa­

gator and multiplied by polarization vectors and wave function renormali-

zation constants as usual. In particular, the "phenomenological" coupling 

constant A defined in Ref. [1] and the masses rnA and m8 of the A and 

8 mesons have a well-defined physical interpretation and are therefore 

quantities suitable for the calculation of the improvement coefficients 
2 

ci(go). 

7.3 Calculation of ci (g~) to one-loop order 

The coefficients c. (g 2) are now determined order by order in perturbation l 0 

theory by requiring the absence of O(a2) corrections to the mass rnA of a 

positive parity A meson and to the coupling constant ?l. The leading terms 

in the expansions 

* The conceptually more satisfactory Haag-Ruelle scattering theory is 

presently unavailable for lattice theories. 
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(7 .19) mA 
{0) l. {1) 0 ( " 

m A + 'l-o ""A + %o) 

(7. 20) ). ~ a "Atol 3 "'"' 
~o +'3-0 " 

+ Ol<t:l 

"' 
are obtained by locating the appropriate pole in the A1(k) propagator 

(cp. Appendix-E) respectively by evaluating the 3-point vertex function 

at the momentum configuration where ?\ is defined. Skipping the trivial 

details, we note the result 

(7.21) 
(O) -

m -
" 

I 2 (ol (0) 1 ) 4 l 
m 1 1- (a."") ( ~, -c.,.,._ +O(o. lJ 

.... '\2 } 

(7 .22) )...(ol - - o I ' - 1 ( )'"[9 ( (ol <ol 1.) 2 (ol] 0( ~)} 
- ol"t\ L -, 2:. a.m c1 - cl. +12 t- cl. + a. 1 

which implies 

(7 .23) 
(O) 

c, = _j_ 
12 

"' c, = 0 

for the improved action. From now on, the tree level coefficients cia) 

are fixed to these values and the propagator and the vertices in Feynman 

diagrams refer to this tree level improved action, the vertices proportional 

to the one-loop coefficients c~ 1 ) (and the higher loop coefficients} being 
L 

given a separate label (cp. Figs. 2,3). 

At one-loop order, the calculation of rnA amounts to the evaluation of the 

self-energy diagrams drawn in Fig. 2, where the momentum flowing into the 

diagrams is given by 
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(7. 24) I< ~ ·'"o ol '\..'YY\A l ' m , . 

The terms proportional to ell) are tree diagrams and can be easily computed 

by hand. If we define m~l) to be the contribution of all other diagrams, 

we have 

(7.25) 
(1) 

""A I m = 
_(1)/ 
mA m ( )

2 l (1) - '" ) 0 ( • ) a. m c..1 c..'l + a. 

Now it is important to note that apart from an overall factor of m2, the 

self-energy diagrams to be calculated depend on N and L/a only. The small 

"a" expansion of m~1 ) therefore assumes the general form 

(7 .26) 
t1l I m m "-' 
A o.~o 

2 4 1 
0.0 + (a.m) a.,+ ta.m) [ u 2 + b,_ tn (o.-rn) + ... , 

where the coefficients ai and bi are dimensionless numbers depending on 

N. A logarithm of 0(1) is absent in eq. (7.26), because rnA is expected 

to have a limit at a= 0. There is also no logarithmic term of O(a2), because 

the action we use is improved at t~ee level [7]. Inserting (7.26) into 

eq. (7.25), we thus s~e that improvement at one-loop order requires the 

coefficients c~ 1 ) to be chosen such that 
J. 

(7.27) 
H) ('\~ 

c... - c, = a. "'I 

Using the techniques described in this paper, the coefficient a1 can be 

calculated along the following lines. First, for every self-energy diagram 
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a computer program is written, which computes the value of the diagram 
given N and L/a. These programs perform the finite sums over the trans-
verse components p

1 , p2 of the loop momentum p exactly and the integrations 
over the other two components p

0
, p3 are done using the integration method 

of subsection 5.3. The Feynman integrand for given p is computed by calling 
subroutines for the vertices as described in section 3 and a subroutine 
for the gluon propagator, which may be easily manufactured given the ana-
lytical expressions of Appendix E. The CPU time needed to compute a dia­
gram is approximately proportional to (L/a) 2 and it is therefore important 
to make the programs efficient, in particular, factors of 2 can be gained 
by making use of the symmetry properties of the 'Feynman integrand {cp. 
subsection 5.2). When all the programs are ready, mil) /m can be calculated 
for fixed N and a range of L/ a, for example, we have taken 10 (. L/ a !1, 36 
{No:: 2) and 6'L/a~30 {N= 3) with L/a even. The results are then fitted 
with the series {7.26) using the method of subsection 6.2. With an estimated 
initial numerical precision of 10-14 for individual diagrams, we have thus 
been able to extract the following numbers: 

<t, = -D.OibS26S3(\) 0.<\ ~ O.O\i00b(2l, (N=l). 
(7.28) 

a., = -0.0H31S~&(1) a.,= - 0. OlOi-99(q), (N=3). 
Incidentally, we note that we have also calculated the energy gap in a 
twisted world with 3 compact dimensions and obtained the more accurate result 

(7 .29) 
{") ('\) 

c, -c2 =- 0.0110og'l-9l1) ( N =2), 

(7.30) 
('\) (1) 

C1 - c2 =- o.ozo&00&6 (2) , ( N = "3 ), 
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which agrees with (7.27), (7.28) and also with the earlier calculation 
of Ref. [2]. 

The calculation of the coupling constant ~ to one-loop order proceeds 
as for the mass rnA and, apart from the larger number of diagrams, no 
additional technical difficulties are encountered. The diagrams contributing 
to ~{l) are the vertex graphs listed in Fig. 3 plus the self-energy dia­
grams of Fig. 2, which give rise to a correction of order g~ to the wave 
function renormalization constants ZA and z8 occurring in the definition 
of ~. Again, the diagrams proportional to the coefficients cf1) are easy 
to evaluate and we have 

(7.31) '"; -<''; A'ln=:Am 2. \1) {1}) 0 "2. {'1) "t + 3(, lo.m) (c, -(2 t o(~"1) c. ~oca.) 

where (with new coefficients ai' bi) 

(7.32) 

(7.33) 

-01 
~ A /m rv a. 0 + b0 ~(am)+ (an,)2 a, ~ (~,.,) I<>L+b

2
1,.,(a.-,)]t .. a.-'>0 

bo = ~o'\ N 
611 2 

This value for b
0 

is implied by the renormalization group and the tree level 
result (7.22). We have verified (7.33) from our data for ~(l) to 6 signi-
ficant decimal places and we have also checked that indeed there is no 
logarithm at order a2 {as expected from tree improvement). Taking this into 
account, the fit of the data gave 
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(7 .34) 0.
0

; -0.~~'<132.31lO.l a1 
= o.~19n(:;J , (N,2), 

(7 .35) 0-
0

: -1.2.S'I-i-os2 ('\) o.1 = O.'H'I-U (5) , (N=3). 

Now for Jl to be improved, we must have 

(7.36) 3 ' ( (11 (11 ) 0 (11 
'0 c1 - c. 2 + oC2. = - o., 

so that together with eqs. (7.29), (7.30) we have two relations for the 

coefficients c~i) 1 
which can be solved and lead to the result quoted in 

l 

Ref. [ 1). 

We finally remark that individual diagrams contributing to mk1) or ~(i) 

in general have a small "a" expansion, which is not exactly of the form 

(7.26) or (7.32). Rather, there are usually also divergent terms and odd 

powers of the lattice spacing. In the sum of all diagrams, one may however 

show, using the gauge Ward identities, that these additional terms cancel 

out, That they do not show up in the numerical data for mil) and 1\(i) 

is thus another global check on our calculation. 
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Appendix A: Proof of Lemma 4.3 

We first show that the constant ~~s are zero modes of ~FP' Indeed, from 

eqs. (4.20)-(4.22), we have 

(A.i) f::,FP 
: T J -1 d. 

~ +TAd.'\ 

so that for constant modes w 

(A.2) L:,.FP W : J'(Ad.g·w~ = - :n r. w, 'IJl 

Now we note that W is in the Lie algebra of ~0 and q,... E "l{ "f' . Hence 

by property (2) of 3r 1 we have 

(A.3l [ "'·'lr] " 'lt: 
and therefore tJ. FPW = 0 . 

Next, we prove that for small q,. there are no other zero modes. Because 

£l FP depends continuously on q, it is sufficient to show the absence of 

additional zero modes for q = 0. In this case, the equation 

(A.4) 

implies 

(A.5) 

l::,FP w = T dw = 0 

dw E 
~0 f' L 
"'-1 r. '}{ 1 
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Thus, by property (1) of J=, we have dtJ = 0, and since the lattice A\ 
is linkwise connected, it follows that tv is constant. 

We now proceed to show that the range of 6 FP is equal to F<J.e). For 
q = 0, this is certainly the case, because 

(A.6) /;,FP ( 'J.{o) F t 'U~l = F< 'U,) 

For q t 0, it follows from the definition of fJ. FP that 

(A. 7) t:,FP(:\{0) C :f'( 'J.t,) 

On the other hand, the codimension of L1rp ( 1{0) is equal to the number 

of zero modes of f1FP' and since this is independent of q, we have 

(A.8) cJ.<.m /;,FP(1{o) = d-\n> :r(d{1) 

Together ,.lith (A.7), this relation implies ~FP{1{0)-::: :f(1{1), as was 
to be shown. 

.... 
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Appendix B: Form of the action suitable for Monte-Carlo calculations with 

twisted periodic boundary conditions. 

In numerical simulations of lattice gauge theories, twisted periodic boundary 
conditions are usually implemented by a modification of the action, which 

amounts to multiply some plaquettes and (if present) other action pieces 

at the boundary by central elements of the gauge group (see e.g. Refs. 
[5, 12, 13]). In this formulation, the gauge fields U(x,~) satisfy ordinary 
periodic boundary conditions rather than eq. (5.1). 

We here show that through a simple change of variables in the functional 

integral (2.5), the realization of twisted periodic boundary conditions 
described in chap. 5 is mapped onto the modified action representation so 

that the two formulations are thus completely equivalent. 

For the twisted tube of chap. 5, the independent link variables to be inte-
g~·ated over in the functional integral may be taken to be 

(8.1) Ulx,rl 1 ~ XV ~ L { v ~ 1,2) ' 

with x0 , x3 and~ unrestricted. Using (5.1), the action S[U] can be written 
as a function of these variables only. Note that some of the loops contribut-
ing to SlU] cross the boundary and hence involve flv after the links not 

contained in the set (8.1) are replaced by their periodic images in (8.1). 

We now choose new integration variables U(x.~) according to 
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(8.2) U. (x,l"') { 
IJ(x,l"') othtf"w1.."=>e. 

Ulx,rHl,._ <f f"< t '\, 2) M<i XI'= L 

This transformation has unit Jacobian and when the action S[U] is expressed 

in terms of U, the fly's cancel. Actually, for loops crossing the boundary 

in the xi- and x2-direction (a plaquette loop passing through x and 

~ A 
Sl 

x +~i +d2 with xi= x2 = L , for example), the v's cancel only after 

a rearrangement using the twist algebra (5.2). These loops thus pick up 

central phase factors and one ends up with the modified action commonly 

used for Monte Carlo simulations with twisted ~eriodic boundary condi­

tions [13]. 

We finally remark that in the formulation of chap. 5, Wilson loops winding 

around the world require the inclusion of a matrix O.v whenever the boundary 

at x = L is crossed (otherwise the Wilson loop would not be invariant 

under the gauge transformations (5.3}). These fly's are also removed by 

the transformation (8.2). 
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Appendix C: Proof of Lemma 6.1 

At k 0, the singularity of g(k) is integrable (in fact, g(O) 0) and 

the integrals 

(C 1) em = 

1t 

J <~'1. 
-1t (2.11)4 

~(k\e ~1<-mL 

are therefore well-defined. Furthermore, we have 

t 
(- 6.._) ')-(\>.) ""' 0.->0 

I l<l_,._ll 

mE: 7L4 

where tlk denotes the (4-dimensional) Laplace operator with respect to k. 

As long as t~j. the partial integrations in the following lines are there-

fore allowed: 

1t 

(m1 L1 )tc = j d'l< l -L R.'l'l'IL 
.,.. (lJt)' <a-ll>.) l-ilo.) e 

-n 

.. 
= J d'\ l (-6.._)\(~>.l] e 

.i..Rrm L 

. (1.1l) 
-n 

For t = j and m I 0, this leads to the bound 

(C.2) I em I ~ C ( -m1 l 1 )-j 

where C is some constant independent of m and L. It follows that the sum 
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s (~) 1:: 
mt:?Llt c'~'~'"~ 

is absolutely convergent and one easily shows that it is equal to D(g). 

Indeed, we have 

$(~) = t: .. E 
-< E \.,.~"\ e I" c 

(\,0 "' "" 
1t " ~ ... J a'P. ~(11_lTit (1- ._-<+·"'rc)' (1 <+il<"Lf) < "" -11: (1Jt)' /" - -e. 

= 1 

L• 
~ 'a(l>.) 
"-

and since g(O) = 0, the last expression is equal to D{g). Summing up, 

we have shown that 

](~) = C.o + r c'll'\ 
1>110 

which together with (C.2) implies the Lemma. 
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Appendix 0: Proof of lemma 6.2 

Starting from the well-known "duality" relation 

(0.1) 

(0.2) 

Define 

(0.3) 

(0.4) 

L: 
-2,)):1.+.\.W•V -2 _j_ 

e = (11t)
4 ('t1lrl L. ~e. ,.. 

(w-27tv)
2 

vE. z4 vd1. 

(~>O,w•fR"l, we have 

F, < i!.l 

c = .,., 

" F"" l<ol = 

-2 
(4n;,) I: 

vE.z4 

_1_ 

H h. \7. ) e 4 ' "' w 

2 

(w-2:nv) / w=o 

-2. -1. w2. 
( 4n) H.., (-A.. 'Yw l e 4 I w=o 

-2 hrnJ I' 
vf.O 

H 
-1- ( 2 h. \I ) 4Z w-2r<v) 

m we lvv=o 

Then, using the homogeneity of the polynomial Hm' one may show that for 
2)0 

(0.5) F., Ci!) = c, ._-9.., -2 " t- F Ccl .,., 
A Furthermore, it is obvious from eq. {0.4) that Fm(z) together with all its 

derivatives vanishes as z ~ 0, in particular, Fm (z) extends to a C Oc> func~ 
tion for 0 ~ z < oo . 
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Appendix E: Explicit expressions for the gluon propagator 

Concise expressions for the functions Q and Pij appearing_ in the gluon 

propagator (7.8) are given by 

(E.l) Q = c "j;_'f2 :L 
/" 

[ (;_ 2.11 d.-1 ] 
I' 1'11" J' 

P.= 
'1 

"' A -'\ "' A 

"A.t<m E1tn (I>.Rsok)(lo.LSot)(S.,.nd.m +RmRnSeo) (E.2) 

where the vector 

(E.3) 
-1 

d. I' 

-1 
dt' is defined by 

= L: 
v 

A2 
5r-v R" 

For the calculations with the improved action 

c<o\ ::: - .1.. 
1 12 

(.(0\ : 0 
2 

it is useful to have explicit expressions for Q, ~·as polynomials in k2 . 
•J 0 

Towards this end we define auxiliary quantities 

(E.4) 

(E. 5) 

ul" 
.i j;_2 
12. /" 

3 

X = :L u. 
jd 1 

3 2 
y = .L u. 

j ~1 ; 
z u1 u..l. u.3 · 
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Then Q is a polynomial of degree 5 in u0
, 

(E.6) 
2(5 4 3 2 

Q < ( j 2.) · u0 + B co. 0 + C '-'o + D '-'o + £ '-'o + I' ) , 

with coefficients given by 

(E.7) B = 

(E.S) c = 

(E.9) D = 

(E.lO) E = 

(E.ll) F = 

3 +X 

3 + 4 x + ""- x2 + i y 
2. 2. 

2 
1+5X+Z-X +~Y+2XY+'I-t 

2. 2-

2X+3X
2

+2Y+fXY +lX 3 +3t­

+d. x2y -.:L'(2 + LtXt. 
2 2 

CX+Y)(X+X 2 +Y +"XY +3:l) 

Q factorises for special configurations e.g. when one of the ui's is zero 

or all three ui's are equal. 

Corresponding explicit formulae for the P .. are: 
lJ 

(E.12) 

with 

(E.13) 

- ( 2\A 4 " 2 ) 
~1 - 12) · 11 u.0 + B.11 u0 +C

11
u 0 +D

11
u.0 +E 1 

A = 
11 

-u.,_ +X 
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(E.14) B, ~ 2 - u1 l 3 + 2 X l +(3 X +X + Y) 

(E.l5) c,, ~ 3 " 2 X - u ( 3 + 5 X ,. .1... X 2 + .1. Y ) 1 1 2 2-

•(3X +3X2 +2Y+lX3 + .:!_XYl 
2 2 

(E.16) D = 
11 3"2

(X+Yl- L.I 1 (1+4X+~X 2 +~Y +SXY+'t"l.) 1 2 2. 

+ (X+3X2 +Y+~X 3 +5.XY+2-X2Y+2Xr.-.:Ly') 2 2 2 2. 
(E.17) E ~ 

11 -u, [ (X+Yl(1 ... 2X+ i_X 2 +l Yl+Z(3+Xl] 

+ (X+Y)[ (1+X)(X+Yl + 2>e] 

The other diagonal elements are given by permutation of the momenta. The 
same comment applies to the off-diagonal elements which are given by the 
following formulae 

(E.18) ~"(" 8 3 2 E) p23 = - 12 f<, ~' "' + '-'o + c,3 '-', + D, "o + 23 

with 8 given in (E.7) and 

(E.19) 

(E.20) 

(E.21) 

c = 23 

D ~ 23 

En= 

<A, X +(3 +3X +fX
2 

t- fY) 

u;X + " 1 (X-X 2 +Y)+(1+3X+2...X 2 +.1.Y+XY+n') <. <. 

t.l~(X+Yl- u,X(X+Y)t- l (X+Y)(1+X+yX 2-{Yl 
t- ~ (3+X)]. 

Finally we consider the free propagators of the A and 8 mesons. These 
take a particularly simple form, since, for general c~o) 

l 

(E.22) 

(E.23) 
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D,, ( l<l Jo,,o 
2 

i. r e e. D,;.. ( R) 
2 -i.,j=1 '\. :l j 

d,<~«l I.,,, 

I R_1:Rl. = d,<'<J 1,,,.~ 

where e1 = 1, e2 -1. 

The function d
1 has only two poles in the complex u0 plane which can 

hence be determined analytically. The physical pole corresponds to an 
energy E(k) given by 

(E.24) 

where 

(E.25) 

(E.26) 

co;h f(") ~ 1 - b, 
4c. (O) 

1 

1- j1+4c"'' /b2 
1 J1 1 

b - ~ - ( (o) (OJ) 2. 2 "1 (0) 2. C 2. 1 - I c1 - cl.. a. w;1 - 2 c.2.. a. ~ 

f, = i:> ( A- ,,, 'C•) ( ,,, ''') ~(" C,4 ,_2 ,_2) K. ! Cz. Ci. K - C. 1 - (l. 0.. ~ r<:,. + f<
1 

R • - 1 ;.> -

E(k) has a small-a expansion 

(E.27) E(}3) = R [ 1- (c~''- c~''. .;'-;:) ~o: ( !3' + f ~<;'115:1.)+ ... ] 
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To obtain the energies of the A and B mesons of momentum p in the 3-direc-

tion we simply have to set k equal to ~A or ~ respectively where 

(E.28) ~A ~ ( 0, m, p ) ~, = l-m,--m,p) 

In particular for the A meson with p = 0, Eq. (7.21) follows directly from 

(E.27). 

The residue Z of d1 at a physical pole 

(E.29) d,<R.) ~ I.(!<>) I ( R~ + E'li>l) + regular 

is given by 

(E.30) ~ ( ~) = - E (13) · [_ sh E<i>l 'tc\0') 1 +4c~0':f 1 /b~ J -1 
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Figure captions 

Fig. 1: Gluon energy momentum dispersion along the line k1 = k2 , k
3 = 0 

for the tree level improved action (cia) = -1/12, c
2 (o) = O}, The 

top level is doubly degenerate and all other levels to the left 

of the bifurcation points are not degenerate. All of them are 

purely imaginary, i.e. Re k
0 

= 0. The branches to the right of 

the bifurcation points represent complex energies {Re k
0 

f 0). 

Fig. 2: Feynman diagrams contributing to the gluon self-energy at order 

g~. Wavy lines denote gluon propagators and the broken lines re­

present the propagation of Faddeev-Popov ghosts. Diagram (e) stems 

from the measure term (4.42) and the diagrams (f) represent the 

contributions proportional to c~ 1 ) (i = 1,2). , 

Fig. 3: Feynman diagrams contributing to the 3-point vertex function at 

order g3 . The notation is the same as in Fig. 2, in particular, 0 

the diagrams {1) represent the contributions proportional to 
(1) 
~ . 
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