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Abstract

We discuss a set of methods and numerical tools, which are useful for a
computer based approach to perturbative calculations in lattice gauge

theery. The topics considered include the automatic generaticn of gluon

vertex programs, a derivation of the Faddeev-Pepov determinant on lattices
with boundary, the use of a partially finite léttice with twisted boundary
conditions as an infrared cutoff without zero modes, and finmally the numerical
extrapolation of lattice Feynman disgrams to the continuum limit. As an
illustration of the methods we describe their implementation in the com-

putation of the on-shell improved lattice action at weak coupling.
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1. Introduction

In a recent article [1]), we have presented our results on the computa-
tion of the action for on-shell improved lattice gauge theories at weak
coupling, a calculation which essentially amounts to evaluate a number of
one-loop Feynman diagrams with definite external momenta. The propagators
and vertex functions from which Feynman diagrams in gauge theories are
built are much more complicated on the lattice than they are in the con-
tinuum, especially so for improved lattice gauge thsories (see e.g. the
Appendix of Ref. [2]). Analytical manipulaticns of lattice diagrams are
therefore time consuming and liable to errors. For this reason, we decided
to follow & strategy where, apart from listing the diagrams and extract-
ing the group theoretical factors, the whole calculation is done numeri-
cally on a computer. Te guarantee the efficiency and reliability of the
numerical computations, we have developed various adapted technigues,
which we hope will prave useful for other perturbative calculations as
well. Tt is thus our objective in this paper to describe these methods
each in their own right in separate sections, which can be read and re-
ferred to independently from one another {cammon notations are summarized

in section 2).

A computer program, which calculates the value of a lattice Feynman diagram,
calls subprograms which compute the value of the relevant vertex functions
given the momenta flowing into the vertices. Because of the above mentioned
complexity of the lattice vertex functions, it is in general not easy to

manufacture such vertex programs and to make sure that they are faultless.



If one approaches this problem straightforwardly, errors are likely to
occur at two stages: firstly, when one derives sn analyticsl formula

for the vertex functions starting from a given lattice action S, and
secandly, when this formula is coded into a computer program. In section
3, s method to produce vertex programs is described, which avoids the
intermediary step of actuslly printing an analytical formula for the
vertex functions on paper. The basic idea is simply to design an
"algebraic" computer program, which requires as input the action $ and
the number of legs of the desired vertex function, and whose output is
the vertex program *). In the course of our work on improved lattice
gauge theories, we have found that the particular realization of this
idea described in secticn 3 is foolproof and yields fast vertex pro-
grams. Moreover, simplifying festures, e.g. when some of the momentsa

entering the vertex are external and hence fixed, can easily be taken

into account to obtain even better performance of the generated programs.

Lattice gauge theory presents a framework in which the Faddeev-Popov
determinant can be rigorously derived. We are of course aware of the
existing treatments in the literature [4]. Nevertheless, we feel that a
further discussion here would not be out of place, the aim being to
derive a closed formula for the Faddeev-Popov determinant, which is valid
for arbitrary linear gauge conditions and on lattices with ar without
boundary (section 4). Especially in the case with boundary, care must be
") Algebraic computer programs have been used previcusly to check some

of the rather involved algebra, which must be mastered to calculate A -

parameter ratics (e.g. Ref. {31).

S S N

S S U, SN S——— S S — O —"

paid to treat possible zero modes of the Faddeev-Pcopov opesrator correct-
ly. With ordinary gasuge fixing conditions, the Faddeev-Popov determinant
turns out to be rather simple and is easily expanded by hand. Diagrams
involving ghost loops are therefore negligibly complicated as compared
to the diagrams with gauge boson loops, in particular, the numerical
evaluation of these diagrams usually does not reguire special programm-

ing techniques.

Lattice Feynman diagrams are ultra-viclet finite, of course, but infra-
red divergences may occur, especiaily if one aims at computing on-shell
quantities. These divergences can be regulated by assuming a finite
space-time volume, for example. However, with ordinary pericdic boundary
conditions, one then has to face an apparently difficult zero mode problem
{the "torons" of Ref. [5]), which renders the normal Feynman diagram ex-
gansion invalid, As is described in detail in section 5, a better way to
introduce an infrared cutoff is to compactify only two of the four space-
time dimensions and to impose twisted periodic baundary conditions {67 in
these directions. There are no torons in this case and the perturbation
expansion is straightforward. Moreover, it turns out that the gluon pro-
pagator is compietely massive, i.e. there are no singularities in the
range of momenta admitted by the boundary conditions. In this twisted
world, the integrands of Feynman diagrams are thus totally regular and
the integrations cver those momentum components, which are not quantized
by the boundary conditions, can be done easily (an adapted exponentially
convergent method of integration is described in subsecticn 5.3). In

cur calculation of the improved action, we used the formalism of sectien
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5 merely as a tool, but we emphasize that the twisted world is interest-
ing in itself and may prove useful to study the transition from the per-

turhative to the non-perturbative regime in non-abelian gauge theories.

In perturbative lattice gauge thecry computations, one is often interested
in the limiting behaviour of the diagrams as the lattice spacing "a" tends
to zero. From Symanzik's work on the cutoff dependence of scalar field

theories on the lattics [?], cne expects that for any diagram 0 an asymp-

totic expansion of the form

o X o " ™
(1.1) D~ o Z Z c.a (taa)
a0 nic m=o
holds, where { is the number of loops in the diagram and @ > O depends
on the convergence properties of D and of its sub-diagrams. In cur numsrical
approach, the first few coefficients Sy ©an be determined accurately by
calculating the diagram for a sequence of lattice spacings and fitting the
results with the asymptotic series {1.1}). An adapted fit procedure together
with a reliable estimation of the rounding and systematical errors is
described in sub-section 6.2..It is based on a recursive blocking trans-
formation, which takes into account the general form of the higher terms
in the expansicn (1.1) to increase the precision of the calculated first
few coefficients Come In this way, very accurate results can be abtained
even if the diagram has only been evaluated for moderately small lattice
spacings (veTy small lattice spacings usually require large amounts of

computer time and are hence impractical).

—— e e e -

The asymptotic expansion (1.1) is not only the basis of our numerical extra-
polation procedure, but it is also of fundamental importance for lattice
theories as it describes how precisely the continuum limit is approached
in perturbation thecry. It appears, however, that a rigorous proof of (1.1)
has only been given for cne-loap diagrams on the standard lattice 224

(7] (Symanzik has given further reasons for the general validity of (1.1)
by referring to Pauli- Villars regularized field theories, where he has
earlier been able to prove the analogous expansion for any number of loops
[8]). As an example of how a rigorous derivation of eq. (1.1) for lattices
with boundary may look like, we here treat in detail the case of one-loop
maomentum sums over 4-dimensional Brillouin zones as they typically arise
from Feynman diagrams with vanishing external momenta (sub-section §.1).
Diagrams with non-zero external momenta or momentum integrals instead of

sums can be treated similarly [9].

It is only in the last section 7 that we givé an illustration of the

methods described in this paper by applying them to Symanzik's improve-

ment programme. Although there is unavoidably some overlap with the material
of Ref, [1], this seﬁti&n is meant as a technical supplement to that paper,
We suggest that the reader, irterested in this particular application,
should read Ref. [1] first end consult Ref. [10] if an introduction to the

programme is desired.

2. Notatiens
In this paper we will be dealing with various aspscts of perturhative cal-

culations in lattice gauge theory. We will work on a (4-dimensional) hyper-

e o e -



cubic lattice N\ with spacing

(2.1) x e N X = no. nwe Z*

For convenience we will often set a = 1. If desired the lattice spacing
may always be reintroduced in these parts of the paper by dimensional
analysis. P will denote the vector in direction p of unit length. Lattice

3 s » >
derivatives ar\,ar& are defined by differences

{2.2) ENEACA! (Flxrap) - £ /a

(2.3) Wi = () - 2(x-afVa |

We limit ourselves to the case whern the dynamicsl variables are SU(N)
matrices W(X, ) associated with links joining the points x and X+ af .
Often we will work with some directions compact; in this case the boundary

canditions must be specified.[i will denote the space of gauge fields.

The action S should be invariant under local gauge transformations

(2.4 Wiy = AL WX, ) /\(x+a$«f1 ,  AGde sul)

H

where the N's obey boundary conditions such that the transformation (2.4)
is from Al into itself. We denots by{a,the gauge group, the maximal set

of such N 's. Expectation values are given as usual by

-SL -
{2.5) <@y = j&[u]e; m(?/fibwde Stud

where WLW] is the Hsar measure on L .

We restrict attention to perturbstive expansions around the classical
vacuum and only to situations when the functional integral can be per-

formed by substituting for the parallel transporter

(2.6} Wlxpm) = exp ag, ALx)

fixing the gauge, and expanding all entries in powers of the bare coupling
9, In (2.6) the potential Arjx) is an element of the Lie algebra swuiN)
of SU(N). The Aru) have a Fourier decomposition appropriate to the

boundary conditions. For the infinite volume case for example this takes

the form
Lh'(x+-‘§-_up\)~b b
(2.7) A = § e Aty T
R, %
where

. i
N4 3 fo
(2.8) $ = ¥ T (] o\b.r,,)
k. b b=4 M=o =/
and the Tb are matrices belonging to the fundamental representation of
S w(NY . The phase in (2.7) involves the coordinate of the mid-point of
the link joining x and x+aﬁ.It has the consequence that the Ar‘ have

the following periodicity properties
e N SﬁP ~
(2.9) Ar(k+-txd'j\ = (1) AP{R)

When performing lattice calculations it is useful to introduce the nota-

tion



N
(2.10) R = 2 gin &Re
for any momentum R

Finally the class of actions we consider will be sums over closed curves

€ of terms of the form

(2.11) LY = Retr [1 - UCEY)

where U(€, ) is the parallel transporter around€ , starting at some arbi-
trary point on% . Note £0€)20 for any€ . Extensions to actions involv-
ing higher characters of SU(N) are trivial. The standard Wilson action §

involves anly curves P surrounding single plaquettes, i.e.

- 2
(2.12) S.Lul = 3 ;@ L (P

3. Automatic generation of vertex programs

*
3.1 Definition of the vertices

In this section we shall discuss how, for e given action, one can automa-
tically generate programs which compute valuss of vertices appearing in
the Feynman rules, for a given configuration of the external momenta.

OQur formulas, in this section, refer to the infipite volume case, however,

*x
We set the lattice spacing a=1 throughout this secticn.
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we stress that the reduced vertices we shall encounter (eq. (3.20)) are
dependent only on the local nature of the action {(the finite velume aspects
having bearing on the allowed momenta). The action, of the general form
discussed in Section 2, can be arbitrarily complicated and can include

terms referring to many varieties of closed curves. It is of course suffi-
cient to initially consider one general curve and finally sum over different

curves,

Let © be an arbitrary closed path in Z* of length L . Further, let €

be the path cbtained by translating the path € through me Z" and denote

(3.1) S(eYy = Z £(e)

LA *
Vertex functions V,‘_ are then defined in the perturbative expansion by

o0 Ll
e) = 1 g7 , an* R,
5 (e) E 1 90 k$ i )" § (L k)

(3.2)

a a €
: KN:CKJ... :&M:(hJV, (Ra8y 105 o Ry par)

and requiring them tcé be totally symmetric

{(3.3) o'.\/e = Vf' far all <o e P

T r 7

where ?.‘.. is the group of permutation of v elements, and the acticn of
O‘eP.,. on a functicn F of 7 arguments a; is defined in the natural way

by

(3.4) (o-F¥ay,. a) = Fla

T by o"O'(l') )

The $-functicn appearing is the periodic $-function.
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4
The vertex functions \a, are uniquely determined through eqs.
(3.1)-(3.4) and the geometry of the curve € . Cur first task will be
€
to derive an explicit expression for \Kr , which is suitable for pro-

gramming.

3.2 Explicit representation for the vertices

The pathf/ is completely specified by
(3.5} n(i): sequential vertices along € (i=1,, .,f. 3.

From these we can extract the following arrays s{i}, u(i) hy

(3.6) n{i-1) -m(iy = st&)-ﬁx

which specify the directions of successive links along €. In {3.6) set

i-1»4 if i = 1, and s(3} takes values * 1.

With this notation, the parallel transporter from n(i-1) to n{i) is given
by expgoxi with

A (ne) if s(i) = +1

P

{3.7) X. =

A

- Aﬂh(‘r\(ifﬂ)

]
I
fary

if s(i) =
Thus, the action density associated with € becomes

X X - -3, %
(3.8) £(€) = _11_ T {2 - e¥tt ¥ %)&m,e%o 3
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Expanding this expression in powers of g,. we have

-
@o ke = 2 hge 2 (e
with
Le) = v 3 S
T Z TG UWg. Ui oi,'....o(LI
(3.10}

T DX X+ COTX XY

hal

where d& counts the factors associated to a given link:

-
(3.11) L o= 24 N (i=1...L)
= o

03

The Fourier representaticn of Xi is given by (see (2.7))

- ib b : .
(3.12) Ko o= pr % AL (R)T 3 exp & ko
where a{i}/2 is the coordinate of the mid-point of the 1link joining n(i)
and n(i-1),
(3.13) O.P(.'U = 'n»(i,\ t onii-)

Inserting (3.12) in (3.10), we cbtain (3.2) with

€
M, ( Ry@gfin) ok op g )
(3.14)

o\~
L o C, lay,.a.) O'"Yn,- ( Ry Mase oo "q-r'.,f"‘r)

a
ri
o'e.P,r_
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, ) 4 V44 i
Yfr (kq-f"'w'-'rhr:f"r} =5 ("\) Tl I
€U, €, 6 up €L AT PYPL
(3.15) o i : i
. ’ oy % Ry0ug 2 Rypaug
st s ™ {5, I N )

where the Clebsch-Gordon coefficients C,r are defined by

(318 Colag.na,) = (T T+ 0" T (T T™)

They have simple properties under the subgroup %.1,. of permutaticns gene-
rated by cyclic permutations an¢ the inversion _P (f(i) =r+1-1),

namely

(3.17) o.C, X, (e} C, , o e,

where X, is characterized by

X lowy = X ()%, ) , ored,
(3.18) X,r () = 1 for ¢ cyclic
‘x,Y(fJ] = ("DT for inversian /p

Making use of property (3.17), we end up with

g
V-r (R s Ryu0y 1)
{3.19)

A7 o C,(a4,.,.,af¥w-Yf(h,m;...:h,.,h,)
Tl o—e-rr/%f

e .
where the reduced vertices Y‘r are given by

g

e e i i g mmin, i &g 24y 0y o A A A 8 o g o, ot | o et i

14 -

€
YT' ( IRpJ“'ﬁ')""rkr.,Mr )

(3.20) 1 T o
%
1ol s(y L s
18 Ugk gt l Al Al
4o gl
4 k,.ou) L R...olu
. ( . z v T
Z ’X * oo '(_ Sf"“f"w‘\\ [ crr Op, Mgy [ J
veh,
{(the permutations ¢ act on the arguments Ugs ool according to
eq. (3.4)).

The reduced vertices have simple symmetry properties under permutations

in /é.r :
e
(3.21) o X, = X, (Y, for e,

Their reality properties are

*

(3.22) Yf Ckypysookepeg) = Yf (R pgsee iRy, My )

g
Finally, for the curve € obtained from € by inversion through the-origin

(?1'(1) = -n{i)}, we have
€
(3.23)  Ye (Ropasockepy) = DT YT (ko iRy i)

In the following we will discuss only the automatic generation of the
’ €
reduced vertices Y,._ . Of course the Clebsch-Gordon coefficients C,.',,

can also be programmed, but, at least for small r, these coefficients
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are simply evaluated by hand.

When momentum is conserved *, ;; h&= 0, the a(uj) in (3.20) can be re-
placed by translsted coordinates a'(uj). This can be done separately for
each configuratieon of the uj's and hence we can use the translation in-
variance to get the exponents appearing in (3.20) into a standard form.
Such a procedure is obviously useful to identify terms which have equal
exponents and hence reduce the number of final independent {.atus)}
configurations appearing in {3.20). A particular realisaticn would be,

for example
{3.24) @ lug) = Glug - s, (ud) \

where

I}

5 ({uld (m, - M. (mod2)) /2,

(3.25)

i

™ ?njn.x (a“."‘(“3)) + mdin (a,.(uﬂ)

The "centralised coordinates™ a' then obey the constraints

(3.26} ’W\;\x Cantup) + -méu\ (a", ) € {0,143

3.3 Generation of vertex programs

For the case when € is simply the curve around one plaquette and for

reasonably smail r (g 5), the terms in Eq. (3.20) can be guite easily

*
As can be chosen without loss in Feyrman diagram caleulations.
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collected by hand. However, for larger and more intricate curves the task
becomes rather tedious, and the probability of meking errors in the deriva-
tion of the analytical formulae is high. Ancther source of error is the
subsequent transcription of the analytical expressions, which are algebra-

ically compliceated, into computer programs.

It is thus effort-saving and overall mere reliable to generate vertex
programs using algebraic computer techniques. One could employ for example
standard routines such as REDUCE or SCHOONSCHIP. On the other hand, the
expression (3.20) is ideally suited for programming in a language which

is efficient in list processing, for example PL/I (11] with its facility

of based storage.

We now proceed to describe the structure of a program whose sole function
is, for a given curve (or set of curves), to write corresponding vertex
programs. As explained in the introduction, the output of a vertex program
is an array YR(pi,...,ur) eqgual to the numerical values of an r-point vertex
function \(: for a given input of external moments. Such vertex programs

can then be used as subprograms for the evaluation of Feynman diagrams,

without reference to the programs which generated them.

The key to our method is to recognize that according to eq. (3.20}, the
<

reduced vertex functioh Y;_ is a sum of terms of the form

£ (vl + Ry Vi) bt Ry vET))

4 e
: 3
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where £ is an integer factor and vp(i] (i=1,...,r; 0 =0,...,3) are
integer vectors. For every combination of Lorentz indices My ee b

. . e
the terms T contributing to Yr(kl,pl;...; kr,pr) can be found from eq.

(3.20) and may be collected in a table 't;(pir..,pr). Thus, each entry T
in the list 'T;ipi,...,pr) is just an integer £ plus an integer array
.
Vp(i)’ and Y; is simply given by
% (Revént .t kevir)

2
@27 Y, Gephonkep) = 3 & e
TeT, (g ped

0f course, since only the sum of all terms is required, the table

T;(pi,...,pr) may be reduced by adding up all -those entries with equal
b

shift vectors vu(i). If z: k; = 0 , it is advantageous toc perform
A4

this reduction only after the vectors vp(i) have been transformed to a
normal form by a translation as explained st the end of subsection 3.2.
Without further notice, we shail from now on assume that shift vectors

vp(i) are normalized.

The main program for vertex generation calls two subprograms I and II,
which perform distinct tasks.‘Subprugram I sets up the tables
"Kr(pl,...,pr) as follows, First, for the particular curve ¢ under con-
sideration, the integer arrays ap(i), s(i) and p(i) (as defined by egs.
(3.8), {3.13)) are determined. Then, for a given r, sums over

1% uls uzs < £ULE ¢ and over permutations cra.%rr are made as in eq.
{3.20). For each configuration of uj's and ¢ , the rhs of eq. (3.20)

defines a term T, i.e. a factor £ and vecfnrs vu(i). This term is then

_ 18 -

added to the list 11?‘”1-""”r)' where the lLorentz indices Mys-eoobp

are given by pj = p(ua{j)).

When adding a term, the table 'fv(pl,...,pr) is first scanned to establish
whether a term with the same vectors v”(i) already exists. If not, the new
term is simply added to the list. If, on the other hand, & term with the
same vectors vp(i) is found, the facters f of the new and the old term

are added. In the case that the resulting factor is zero, the storage is
freed. In this way one is economical with respect to the storage. The number

of terms ’7!'1,,r . in the sum (3.20) for given v, { is

(3.8) Noge = 2 L+ .., (R4 r-4)
(-4l

>

e.g. for r=6,{=6 we have M,, = 5544. However, in practice the

collection of lists have much fewer terms because of cancellations.

In certain applicaticns, a general form for the vertices may not be regquired.

The special properties of the momenta and Lorentz indices in such cases

. should then be incorporated at this stage to simplify the lists accordingly.

We finally remark that the subprogram I may be designed so that contributicns
from various curves with weight factors corresponding to the lattice action

under investigation, can be added to the same tables in succession.

After subprogram I has run, the lists of terms described above exist in

the core memory of the computer. It is the function of subprogram II to
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convert these lists into ordinary vertex programs, which yield the vertices

€
W; for given external momenta.

For each configuration Bys ook of Lorentz indices, subprogram II first
locates the table FEr(pl,...,pr} in ccre memory. After that it runs through
the list and for each term in the list prints an assignment statement cn

a print file. The assignment statements are of the form *
(3.29) YR(MM--wP‘r) = YR ('M‘h---:r\‘r) * TERM

where TERM is the mathematical expression corresponding to the term in the

list, in the desired computer language {cp. eq. (3.27)).

In the final step the assignment statements in the print file are copied
into an ordinary program file where they are completed with cards to make
up an ordinary subprogram which can be compiled in the usual way. It is

our experience that the vertex subprograms generated in this way are fault-

less and speed efficient.

Lastly we note that in most cases of interest a further simplification

arises from the fact that the tables caontain terms which come from a set

£l
Separate assignment statements are made for esch term to avoid lengthy

expressions, which could cause problems during compilation.
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of loops {fﬁp,,anl which are mapped onto each other under inversion

through the origin. Then the reduced vertex

mn e
(3.30) Y. = 20 Yt
HEY)

i T

satisfies (see (3.22) and (3.23))

]

(3.31) Yo Gy g Ry s Y T Y, (ke )

H

(-4Tr\;{—hhﬂﬂ;ng-h7.pr)

(3.32) Yo (R gy iRy

It follows that each term with vector v(i) # 0 has a partner in the same
list with -v(i). These terms correspond then to expanentials which can be
combined into a sine if r is odd or to a cosine if v is even. In the special
case v{i) = 0, the term correspcnds to a constant. Hence, the assignment
statements (3.29) are written for pairs of terms rather than for single

terms.

4. Linear gauge fixing conditions and the Faddeev-Popov determinant

Conventional perturbation theory involves a saddle point expansion around
the classical vacuum configurations Llix,yj = f\(x)/\( x~+fk)-1

Ne 4%- . The degeneracy of this saddle point requires that the gauge
degrees of freedom are separated out before one expands the integrand in
the functional integral in a power series of the ccupling constant 95+

The separaticn of gauge variables from the other {"physical") degrees
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of freedom amounts to choosing a special coordinate system in a neighbor-
haood ' of the classical vacuum manifold in such a way that a first set of
coerdinates parametrizes the gauge orbits and the remaining coordinates
label the fields along the orbits. Unly the latter are shifted by a gauge
transformation, and gauge invariant quantities, in particular the action
§, are independent of them. The integration over these variables is there-
fore trivial and may be factored out so that after that one will be left
with the integrals over the "physical" coordinates and a non-degenerate

saddle peint.

Different coordinate systems of the abave type correspond to different
"gauge fixing conditicns". We here consider a class of smooth parametri-
zations, which are geometrically motivated and which lead to particularly
transparent formulae. Throughout this section, the lattice spacing is set
equal to 1 for convenience, and we shall also assume that the lattice A
is finite. If desired, the infinite volume limit may easily be taken at

the end of all calculations,

For our derivation of the Fadd‘eev—Popov determinant, & more detailed descrip-
tion of gauge fields and gauge transformations on the lattice 17\ is needed.
All commonly used boundary conditions meay be accommodated in the follow-

ing framework:

—_—
*

In .perturbation theory one effectively integrates only over an infinitesi-
mally small neighborhood of the saddle point manifold A parametrization
of the gauge field manifold far away from this region is therefore not

required here.

-

{a) A is a finite subset of the standard lattice Z_#.

(b} Gauge fields U(x,p) live on a fixed set ¥ of bonds (x,x«-ﬁ)e DX A
B does not necessarily contain all the bonds on M , but we shall require
that every xef\ may be connected to any othsr point Lé,eﬂ\. by a sequence
of bonds inB. The gauge variables U(x,p} are indspendent and unre-

stricted elements af SU(N).

(c) The action S is a continuous function of the gauge field variables

U(x,u) and the apriori measure in the functional integral is given by

(4.1) houl = T

dU (x,
XM XN

1
the product being taken over all bonds in B (dU denotes the invariant

measure on SU(N)).

(d) The elements of the gauge group %, are functions V{x} on I\ with values
in SU(N}. In general, not all such functions are in %,, but only those

for which the gauge transformation
-y -1
U(x,u) == V{x) U(x,u) Vix+ P}

is a symmetry of the action 5.%*

For example, a lattice with L sites on & side and pericdic boundary condi-

tions can he realized by choosing

N ={XGZ[’1 08 x,¢ L foroﬁﬂv;x,=L§ormtmo.;tohev}

) If the -group %_of all gavge transformations leaving the action fixed
divides into several disconngctef parts, the gsuge group %. is uswually taken
to be the identity component of % (Gal;l\SS' law requires infinitesimal gauge
invariance only). The discrete group %/{’3, is then interpreted as a physical
symmetry of the system.
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B ={ (X,Xi-F\)EAXA\ D&%, <L for all v, p= 0,...,3}

6= L VIA = SUNY V) = Vg i %= 4o (mod L) for all v

Other boundary conditions {free, Oirichlet, twisted periodic, etc.) are
also easily fit into the above framework so that in the following we shall
assume that (a) - (d) hold. Note that {c) and (d) imply that e& is a closed
Lie subgroup of the group of all functions V(x)}, Xe€ A , with values in

SU{NY.

4,1 Infinitesimal fields

The basic idea of the parametrizations introduced in the next subsection

is to first identify the gauge and non-gauge coordinate axes in an in-
finitesimal neighborhood of U(x,p) = 1, and then to use gauge transforma-
tions respectively the exponential mapping toc extend the infinitesimal
coordinate system to a finite neighborhood cof the classical vacuum configu-
rations. To prepsre the ground for this construction, we here study the space
ﬁ{q of infinitesimal gauge fields around U{x,u) = 1 and appropriate gauge

fixing conditions.

R,l is egual to the linear space of all vector fields au(x}, which are
defired on the bends (X,XﬂQ) el and which take values in the tLie
algebra su(N) of SU(N). A convenient inner product on 'K,,\ may be defined

through

(4.2) (a,b) = -2 Tv {a.0o bu(x) 3
X

wHere the summation is over all links in B and the trace is in the funda-

mental representation space of ,SU.(N) .
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Infinitesimal gsuge transformations w{x) form a vector space 'HO of scalar
fields cn the lattice, which also take values in SW{N}. In general,

ﬁ’(o does not contain all possible such fields (i.e. there are usually some
restrictions on «(x) at the boundary ofﬂ\).ﬂ,o may be identified with
the Lie algebra of (jr and a scalar product may be defined by a formula
analogous to {4.2). To every we /‘H‘o , there corresponds an infini-

tesimal pure gauge field a,, according to

i

(4.3) 0u(x} = 3 wx)  for all  (x,x+p)e B .

L
The set of all these modes Dpn is a linear subspace /H,,' of '1{.,1 .

© We now turn to discuss possible gauge fixing conditions for infinitesimal

¥
fields. Suppose F 3—?,1—7 ’}f,o is a linear operator and let 3'{,4 denote

the kernel of ?—, i.e.

@.4) RY = (a e, | F@=0],

We then say that F  is an admissable gauge fixing operator, if the follow-

ing criteria are satisfied:

(1} Every Q€ 1{3: has a unique decomposition
(4.5) o, = a

¥ ¥F L
where ﬂr‘ € 3{1 and C\.:I\ [ 'R,‘

(2) Let %»o be the group of constant (i.e. space-time independent)gauge trans-
* ¥ .. .
formetions. Then %€ is invariant under the adjoint action af %,, .

* %o is a closed subgroup of SU{N), which depends on the boundary conditions

chosen. In the case of the twisted world of section &, for example, %o is
equal to the centre of SU(N).
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In other words, if ap € 'H,‘f and Ve %‘o , then VCL'“V-"(: HT
Property (1) insures that the gaugs fixing conditicn F leads to a clean
separation of the gauge modes from the other "physical' degrees of freedam.
The significance of property (2) will become fully clear later. At this
point, we only mention that the vacuum manifold is isomorphic to %/%'o-
To 1ift the degeneracy of the saddle point, it is therefore not necessary

that the gauge fixing condition also breaks the invariance under %o .

A particularly natural choice for the gauge fixing operator T is the follow-

ing. Let d: =>4, be defined by
(4.6) (dw), () = 3w for all {x,x+f)e B,

The adjoint operator d¥ of d relative to the scalar products defined in
'H,o and '}{1 then maps 'R,, into }Eo . In the interior of the lattice, dT

is simply given by

L

4.7 (dta)y = —"% a;fa,*cx»

but near the boundary, the explicit form of d+ must be worked out taking
into account the shape of A\ and the restrictions on Lo(xse'l{o ngar

the boundary. It is then easy to verify that the choice
(4.8) F= 4

F
has all the required properties. In this case, ﬂ’l is simply the or-

L
thogonal complement of 'H,I .
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4.2 Parametrization of a neighborhood of the classical vacua

We are now in a position to set up a coordinate system'around the classical
vacua, which separates the gauge degrees of freedom from the physical ones
as required for the saddle point expansion. To this end, choose some arbi-
trary admissable gauge fixing operator F as discussed ahove. Then, one
can show that every gauge field U{x,u), which is sufficiently close to a

pure gauge configuration, can be represented by

(a.9) Ul = A exp qub0 Alxafa)

where G 'H,f is small (say lqU<€) and /\e%_ This represen-
tation is, however, not unique, because the rhs of eq. (4.9) is invariant

under the substitution

quxy  — Vg V-1,

(4.19)
AN = AWV

where V is an arbitrary element of \%0 , the group of constant gauge trans-
formations. Note that since 3: is an admissable gauge fixing operator,

- F
qu\.’ 115 again an element of ’}[’;1

The degenseracy (4.10) can be lifted by impesing a censtraint on AN . For
example, one may realize the coset space SU(N}/ 'féo by some convenient sub-
set of SU{N} and then require that for some fixed té,eA the matrix /\(y)

is in SU(N)/ '?3,0. Such a constraint defines a subset ‘%, of %, , which is
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a smcoth manifold except perhaps for a singular set of points, which is -4 =)

(4.13) Gua = Gu = (W2 w2 u),
of zero relative measure and which may therefore be neglected in what 1 ICa
follows. One may now prove, using property {1) of the gauge fixing operator -4 -1

(4.14) GAB = (W 9 w,w 2 W),

F and the implicit function thsorem, that the representation (4.9) is 2)TA BTB

unique for qe '}{f s Hci”<£ , and Ae g,

where the scalar product is given by eq. (4.2). The associated volume element

To obtain an explicit parametrization of the gauge field manifold araound T cig

«
(4.15) (det G )72

(T 4,

the classical vacua, choose some orthonormal basis v® in ‘I{f and
some coordinates T, for é;, Then, the gauge field U(x,u) parametrized . . ) L
may be shown to have the same invariance properties as the apriori measure
i g"‘ end tA 1s given by eq. (4.9), where (4.1) and is hence proporticnal toi)[U]. We are thus left to calculate the
o 2 2 determinant of G.
(4.11) G () = dZ 5, Ve G, g £, <€,
From the definition (4.9), (4.11) of our coordinate system, the derivatives

and /\ is the element of %_ with cocrdinates T, . Note that because the . .
A of U with respect to S* and T, can be worked out easily and one obtains

lattice ]\_ is finite, the total number of parameters 5& and ‘T.’.A is

alsa finite, S
. (4.18) Gup = ( Jqv™, g vE )
4.3 The Faddesv-Papov determinant = - o A
a p (4.17) Gaa =~ Jgv7, dqw™ )
. . . = | A £
We now proceed to work out the apriori measure (4.1) in the coordinates (4.18) GAB - ch W, qu W

of the preceding subsection. Define a metric G in gauge field space by
The notation here is as follows. The fields wAe’J-f,o are defined by

A -4
- 3 (4.19) W& = Alx) 2 ALY
@1 G o= u‘s% u, u ‘% ), EIR
&% B

‘Jq is a linear invertible operator acting in M,‘ . Explicitly, it is given

by
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(4.20) (J,a), E [ Ad gl ant
. = 3y .
e =0 {m)l A s X

where AdX-Y = [ X,¥] for alil X,¥Y e s (NY . The series in eq. {4.20) may

also be written in the closed form

- Y
(4.21) 4 - e Ad 4

]/ A&qr\(x) ,

which should, however, be used with care, since AdX has always zero elgen-
values and is not invertible. Finally, the operator dq occurring in egs.

(4.17), (4.18) maps H_ inte %4 according to

Q

-Ad q,.0x)
e 9

(4.22) (c{qw)r‘(m = dw+ [1- 1w

In particular, dq = d if g vanishes.

We now use the following Lemma from linear algebra:

Lemma 4.1: Let wl, i=1,2,3,..., be a basis in a Hilbert space 'H, and
suppose A is a linear operator in%. Define matrices

B P
2, = Ay, by = (W, W)

Then, we have

det a = {(det A) + (det b)

In our case,% is identified with %4 and the basis w- with the vectors

!
v°( and jq d.qu. For g = 0, this set of vectors is certainly a linear

basis of }Eq' bacause wh plus the constant modes (i.e. the generators of (30 )
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dwh s

. For small g, the vectors Jq_ldquA are just a

form a basis of ’}Qo and the are hence a basis of ’}{:’ , thus

complementing the v*’s

little deformed so that we still have a basis. Cheosing A = J;dq,, the Lemma

yields

(4.23) det G = Ldet 3T 300 - Cdet &)
(4.24) @up = Sun

(4.25) Gun = G = - 0% Ty dqut)
@ Gag = (T dewt ) 0 dgw?)

The nmext step is an application of

Lemma 4.2: For a matrix M with block structure

“ (AB

T
B C
we have

det M = (detA)(dee [C-BTA'R1)

Identifying M with g and using the completeness of the basis \/d in

Hf , ane obtains
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(4.27) det G = det H
B -1 A -4 B
(4.28) Hag = (Jgdquw (P Iy dquw®)

where P denotes the (orthogonal) projector on the orthogonal complement
¥ . .
of 3{,4 . With the help of the adjcint operator ?'1' cf?, which maps

}{D intec J——e,,\, we have

(4.29) P = Frreh'y

Note that the zero modes (if any) of ':F?"]' are orthegonal to the subspace
?(Rﬂ of 1{0 , and the inverse of ¥ 3‘-“} in eq. (4.29) has therefore a

well-defined meaning.

Inserting (4.28) in (4.28), we have

(4.30) Hae = (A wh (?‘?*)_10.”(»3),

{4.31) [}.FP = }‘jqd_

The Faddeev-Popov operator AFP is a linear and in general non-hermitian
operator acting in 3{0 . An important property of this operator is now

summarized by

Lemma 4.3: For small q, the zero modes of &FP are exactly the constant
fields we ¥, , and the range of AFP is exactly the sub-
space 3-"(1%4) of ‘H.o .

Postponing the proof toc Appendix A,we note that the Lemma implies in
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A
particular that the fields Vo= AFP l.oA form & linear basis in J j’fq).
Applying Lemma 4.1 once more, we thus have
-~ 12 % -4
{4.32) det H = (det HY(det FFTY |

Fal
A
(4.33) H, = (& ab o w®)

where det' implies the determinant with zero modes omitted.

s
We finaslly introduce the space }Eo of all those modes WéE Kg , which are
orthogonal to the constant fields. Let P, be the corresponding orthogonal
~
projector. By Lemma 4.3, HAB may be then be written in the form

{4.34) QA% = {,MA, Aip &Fp r‘\B) 1 !‘AA - E’"w-"‘\.

’
Since pA s are a basis of H’o , Lemma 4.1 applies and one obtains

(4.35) detfi = (det'At, A ) (dex$2)
(4.36) Qpg = (), pw?®)

Summarizing the results obtained so far, we have thus established the

factorization

(4.37) det G = (det'¥F }'+)~1 det (1 dek —\]: ]q det'A :-pAFP '

Note that the first factor is independent of the coordinstes Eo( y Ty
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the second one depends only on "EA , and the last two factors depend only

on E,‘ . In the functional integral (2.5) with gauge invariant observables

@, the first factor and the integral over the ’CA'S therefore drops cut

and we are left with

S

i 4 -
(4.38) <Oy = }j;}_ﬁ)[ql{detj;‘jq det AJ{:FAFPBMO e S
4

M|~

where in (3 and § the field U(x,p) should be replaced by exp qp(x) { PLql

denotes the usual translation invariant measure in the vector space ’.H,‘ ).

For perturbation theory, we finally substitute
{4.39) qutd = 9o er\ ),

and introduce (anti-commuting) Faddeev-Popov ghost fields ¢ and c:

way  <o> = L] DAY ptd fpial o & et
wy w O F,

(4.41) Seﬁ = 5 —,% tn dex TI;A _.l%h - {8, AL

As indicated in eq. {4.40), the ghost field ¢ is not integrated over the
!

whole space 1{0 , but only over the space 'Ko orthaogonal to the zero modes

of AFF" Correspondingly, ¢ is integratec over the range }—’[3{4\ of AFP’

. . ’
which has the same dimension as Ho .

Egqs. {4.40) and (4.41) constitute our final result for the gauge fixed

e et e e e T e
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functional integral con finite lattices A . From here on, perturbation
theary simply proceeds by expanding O and Seff in powers of 9, and per-
forming the resulting Gaussian integrals by Wick's theorem. For the
measure term in Seff and the Faddeev-Popov operator, the expansien in

9, is easily worked out. For example, up to fourth order, we have

1 t
T L‘f\ d\ﬂ.’c _J%GA j%o"\

(4.42)
o 2 + 4
I Tl g7 (A AT - B (AdR00) + Oty

(4.43) AFP = A, + 3,8, + gf;A,_ +%§A4 +o(%§)

(4.44) A, = Fd

@as) O, = F{3AAL +AdA]
asy D, = L F(AAYA
B,

(4.47) = 4_. }’ (Ari A)q’o\

F20

(in eq. (4.42), the sum is over all bonds in B  and the trace is in the

adjoint representation space of FUW(N) ).
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5. Perturbation theory on a lattice with twisted periodic boundery conditians

In this section we collect some results concerning SU(N) lattice gauge
thegries on a 4-dimensional lattice with 2 compact dimensions and twisted
pericdic boundary conditions for the gauge fisld (a "twisted tube" in other
words}*. Compared tu other lattices, the twisted tube has several technical
advantages, in particulsr, the perturbation expansion is straightforward
and the compact dimensicns imply an infrared cutoff in the Feynman diagrams.
Moreover, due to the special geometry, the summations over loop momenta

ere either finite (in the compact directions) or they are integrals over
periodic analytic functions, a situation, which is favourable far numerical
treatment. A further remarkable feature is that scattering processes of
particles moving along the x3-axis can be studied without ever running
into inirared divergences (we have exploited this fact for our calculation

of the on-shell improved action four latiice gavuge theories, see section 7).

In subsection 5.1, we describe in some detail how to set up perturbation
theory on the twisted tube. Since the discrete symmetries of the system
are not immediately abvious from the Feynman rules, the transformation
laws for the gauge potential Ap(x) are derived in subsection 5.2, Finally,
an efficient numerical integration program for pericdic analytic functions,

as they typically arise in Feynmen diagrams, is described in subsection 5.3.

*
When more than two dimensions are compactified, the snalysis can be carried

through analogously.
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5.1 Basic formalism

We consider a lattice of finite extent L in the xq and x2-direction and
infinite extent in the cther two directions. The space Lﬂfl aof gauge fields
on this lattice is identified with the set of fields U(x,p) € SU(N),

xX/0. € ZZ“

R y=0,...,3, which are twisted periodic, viz.

5.1 Uix + LY, m)= QVU(X,M)Q;1, (v=1,2)

Here, the twist matrices Sl*v are constant, gauge field independent ele-

ments of SU(N), which satisfy the algebra

Gy 0,0, =:20,0 2= e ™

The corresponding gauge group f%&l consists of all fields f\{x) € SUIN)

with
(5.3) NMx+ L) = QN0 Q7 |, (v=12)

The twist algebra (5.2) insures the "integrability™ of (5.1) (end (5.3))

in the sense that if x is shifted by several periods L in the xi,xz—plane,
the resulting matrix U at the final point does not depsnd on the order in
which the shifts are applied. In other words, if U{x,u) is given arbitrarily
for 0% Xy, <€ L ,v=12 eq. (5.1) consistently defines a unique

extension of U(x,y) to all points x.

Examples of twist matrices Iz—v have been given in the litersture {e.g.
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Ref.[12]), but since an explicit representation is never needed, we here

only note that
(1) eq. (5.2) fixes the Qv 's up to unitary transformations,

{2) they are irreducible, i.e. any matrix, which commutes with ‘O‘i and

Qz, is a multiple cf the unit matrix, and

N -4
@ L1, = RN} far ¥ = 1,2.

In particular, property (1) implies that all choices of twist matrices

result in the same physical amplitudes.

For twisted periodic gauge fields, the action density is periodic in x,
and %o and the total action S is defined by summing the density over an
arbitrary periodicity cell (in the present formulation, there are no extra
twist factors in the action, cp. Appendix B). Now suppose that 530 and
S = 0 if and only if f€Y=0 for every plaquette 1oop €& . Then,
using properties (1} and {2) sbove, one readily shows that the only zero

action fields are pure gauge configurations,

(5.4) U(x,rﬂ = ]\(x)/\(x-ko.f.\ﬂ-}l , Ae %Q_ R

i.e. the toron manifold is trivial. It follows that for such actions, the
perturbative expansion of the functional integral can be done straight-
farwardly by substituting

o AL GO
(5.5) Uixpmy = e ¥H

ey meeeem e e e
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fixing the gauge and expanding all entries in powers of 9, The gauge

potential AJ“(X) in (5.5} satisfies

{5.8) zﬂ\,ﬁtx)Jr = —AW0D T /\P(x) = 0,
-4
(5.7) Antx+ LY = QA0 ,

and an example of a gauge fixing condition, suitable for the calculation

of on-shell guantities, is the familiar Coulomb gauge candition

(5.8) a:A;L(x) = 0

o M

1

The corresponding Faddeev-Popov ghost action is derived in section 4 and
we shall therefore not repeat any details here. We only remark that in
the present case the ghost fields c and c are also twisted periodic fields

and the Faddeev-Popov operator AFP has no zerc modes.

Feynman rules are most conveniently formulated in momentum space. To this
end, we would like tq expand Ap(x)— into plane waves, which respect the
periodicity (5.7). Mow, it is not difficult to show that a basis of twisted
pericdic plane waves is given by ‘

(5.9) e -m/a < R g i,

where PK is a (complex) Nx N matrix, which solves the eigenvalue equations
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ik, L

£5.10) Q, N Q;ﬁ = e T . (v=142).

Actually, a non-zerc solution of (5.10) exists if and only if the trans-
verse momentum components kl,kz satisfy

(5.11) Ry =mm, |, m, eZ m=%—%,

i.e. as expected, these momentum camponents are quantized, although the
gquantum m is smaller than the usual quantum 2T/L. With (5.11), the sclution
of eq. (5.10) is unique uvp to a phase, which we may choose such that

A
-1 m (hyem, Mg em,-4)
(5.12) M= Qe

These matrices have previously appeared in the context of large N reduced
models (see Ref. [13] and references therein). Besides ed. (5.1}, the most

relevant properties of the s are

k
(5.13) f € Suwn
(5.14) My = T i Rk, = R, (med N
(5.15) n =1 4 Ry = 0 (mod N)
(5.18) Tr = © unless R, = 0 (mod N
(5.17) O = E"_‘ZL Rk M

<R RY - (R’
(5.18) e oo z%( R, k> ~ (R, R))
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In these equations, the notation ki = kl (mod N} means ni = n1 {mod N)
and ”é =n, {mod N). Furthermere, the bilinear forms (k' k) and {k', k>

are defined by

(5.19) (R, R)

1t

’ / 4 ra
Ny, + Ny, + (fn1+h1]("r\1 +1,)

(5.200  <R,RY = min, -nim,

Note that in view of eq. (5.14}, there are exactly N2 distinct r1k's. Also,

one easily deduces from egs. {5.15)-(5.18) that

t - . .
(5.21) ﬂN_Tr(F‘h, I‘h) = {11f ki = k, (mod N)
0 otherwise

which implies that the r'k‘s form an orthonormal basis in the space of

all complex NxN matrices.

After these lengthy preparations, we can now write down the Fourier repre-

sentaticn, replacing eq. (2.7), of the gauge potential:

o,

. _ 2, 70 dk, dk, 1ikx %kraﬂ
(5.22) ALY = (LN) E_L“’"/aﬁ e e e Aplk)

The transverse momentum components are here summed over the discrete values
(5.11) in the Brillouin zane. An interesting aspect of eq. ({5.22) is that

the cclor degrees of freedom of Ap(x) are trapsformed into mementum degrees
of freedam (note that as compared to a tube with ordinary periodic boundary

conditions, the taotal number of possible values of transverse momentum is
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enlarged by a factor of N2). Using the properties of the r1k’s listed above,

eq. {5.8) translstes tc the following conditions on the Fourier amplitude

Tfp(k):
o~ (R, RY ~
(5.23) A”(M = - ;_4[ AH(_h)
.2y ALY = 0 {4 Ri= 0(med N)

Correspondingly, the (free) gluon propagator is written as

. - -4 (v, +p)
CRURI R DYy = BCrope M

(5.25)

.(_1 2--41(\4,}:.\)

3 X DR

where §(k',k) and 'X’k are defined by

] 1 /
(5.26) §(k R = Llenms (27) 8 (ky-R)S (R-R,)

I
NNy

0 if k, = 0 (mod N)
(5.27) Ky = L

1 ctherwise

(the & -functions in eq. {5.26) should be interpreted as periodically ex-
tended, if k' and k are not in the same Brillouin zone). The propagator
function Dpv(k) is real and must be worked out from the given sction and

the gauge fixing cendition. for the Coulomb gauge (5.8) and for small lattice
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spacings we have the familiar expressions

(5.28) Do LR

(5.29) Dy, (kY = A (s, - Bé;k‘i)

All the considerations in section 3 on the gluon vertices go through un-
altered, in particular, the reduced vertex functions YQa (k YR 3

¥ < b A T 1:]“‘4,..,, rr]"‘v
are the same as those appearing in the infinite volume case (eq. (3.20)).
The only minor change is in the Clebsch-Gordan coefficients Cr (eq. {3.16)),

which here become

(5.30) Cy Crypoy V= T L Tr (T P Y N T (T, 0]

From egs. (5.15)-(5.18), an explicit fermuls for Cr can he worked ouwt and

one finds in particular that

(5.31) Colky, . rY=0 wndess (Zke) = O Lmod N,

Actually, this result is a consequence of the invariance of the action
under the group of transformations, isomorphic to Z.Nx ZN , generated

by

-4
(5.32) U\(x’r\\ o Qv b\(xfr\) Qv for all x,yu.
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Together with translaticn invariance, it implies total momentum conserva-
tion (medulo 2Wfa) at each vertex. Mote that the transformation {5.32)

is not a gauge transformetion, because A{x) = ) does not satisfy

»

the pericdicity condition (5.3).

With all the ingredients ready, the perturbation expansien of the n-point
correlation functions of 3L{k) in terms of Feynmar diagrams is derived

as usual and we shall therefore not go inta further details here. An im-
portant property of the resulting Feyrman integrands is that they are com-
pletely regular, because the singularity at k = 0 of the propagator func-
tian D“”(k) is outside the range of possible momenta {cf. egs. (5.24) -
(5.29)). The physicel significance of this observation becomes clear if
we look for the poles of the propagator in the complex energy plane. For
small lattice spacings, they sre at

(5.33) ko = £ id kY +kE  + O

and since ki 2 m2, it follows that the spectrum of the transfer matrix
has a (mass) gap.‘WE see therefere that the twisted compact dimensions
make the theory massive in perturbation theory and thus provide for an in-

frared cutaff.

Starting from eq. (5.33), the particle spectrum of the theory can be workad
out and scattering processes can be studied in perturbation theary (Ref.[l ]

and section 7). We emphasize that these excitations are truly physical
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in the sense that they can be created from the ground state by applying

gauge invariant cperators, which are local in *, and Xq. In particular,

their properties could also be studied by the strong coupling expansion

and the Mcnte-Carlo simulstion method. For the latter it is more canvenient
to use a formulation of twisted periodic boundary conditions, where the fl; 5
do not appear explicitly and the twist is taken inte account by a change

of the action {cp. Appendix B).

5.2 Symmetry properties of the n-point functions

Due to the asymmetric shape of the twisted tube, the cubical symmetry of
the infinite lattice 24 is broken down to a smeller group of symmetries,
which is generated by the following transformations:

(1} Reflection of X

(2) Interchange of % and Xq

{3) Reflection of %y

(4) Interchange of Xy and %q

For the symmetries (1) and (2), the associated transformation law for the

link variables U{x,p) is the ordinary one, which amounts to

~ A ~ A .
(5.34) Aplk) —> T R, AR k) (i =12,
M ” pu Dy »
where R(i) denotes the orthoganal matrix belonging to the transformation

pav
(1). The n-point correlstion functions of ﬁL(k) are invariant under (5.34),
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provided this transformation is a symmetry of the action and the gauge

fixing condition (as is usually the case).

for the transformations (3) and (4), the situation is more complicated,
because they tend to conflict with the twistad periodicity (5.1} of the
gauge fields, which must also be respected by a valid symmetry aperation.
However, as will be shown in detail below, the transformations (3) and
(4) give rise to symmetries of the gauge theory too, provided they are

combined with a charge cenjugation. The corresponding transformation laws

then read
o~ -n.n 3y o~ &3]
(5.35) Autky — -z v %. Ry Ay ARTRD
2 (v 05
(5.36) Anly — - Zv R Ay (R TR)

(in eq. (5.3%9), the integers n,, are defined by n, = ky/m) .

We now proceed to derive the transformation law (5.35) (the derivation
of (5.36) is similar and will be omitted). To this end, first note that
the pair of matrices

A 4% N »
(5.37) Q, =,y , 2, =20, ,

A

also satisfies the twist algebra (5.2) and is hence unitarily equivalent

to the §).,'s, i.e. there exists We SU(M) such that
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-4
(5.38) £, wﬁuw ) (v=1,2).

Next, given a field LL(X,Pf}e 1151 , we define the transformed field

2y
U(x,p) by

Uiy = wueet,mw?t ifutl,
(5.39)

~ MUV M |
Ulx,p) = W U(x'-af,p) W if p=1,

where UT denotes the transpose of U and x' is defined by
. 3
5.40)  x = AP =k mxyL x, xg).

The transformation (5.39) is the product of three coperations, namely a
reflection cf %ys @ charge conjugation and a constant coler rotation. These
are usually symmetries of the action and it is also not difficult to check
that G(x,p) is again twisted periodic so that altogether we have found a
symmetry of the functional integral. The transformation law (5.35) is now
obtained by working out the Fourier transform of the gauge potential ﬁ“(x)

~
associated with U(x,u}, using

-4 -n

i
™
Eoe
-

3
(5.4 WI_ W
which follows from eqs. {5.37), (5.38) and the definition of f“k (eq. (9.12)).

5.3 Numerical evaluation of integrals of periodic analytic functions

As mentioned previously, due to the presence of the mass gap, the integrals
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over loop momsenta ko,k3 encountered in Feynman disgrams are integrals of
periodic analytic functions. We shall consider below how such integrals

can be numerically well approximated by appropriate sums. In particular,
we will discuss the special refinements that have to be made in arder to
obtain sufficiently accurate results with modest computational effort,

in situations when the mass gap is small.

For simplicity, we here only discuss how to integrate a periodic analytic
function £(k) of a single veriable ke R | Multiple integrals can be
treated similarly, in particular, in our calculation of the improved action,

we have merely itersted the procedure described below. Our aim is thus to

calculate the integral

®
(5.42) 4 - dE £

-7

c 3R 2T = $(R)
assumirg that a subprogram exists, which computes f(k) for given k. The
basic idea is to approximate 3.by the finite sums

.
(5.43) I(m = T §(_7%v)

1

— T=1,2.3,...
T V=4 !

For ordinary integrands, this method is not very efficient, but in our case,
I(T) converges exponentially fast as T —> o0 . More precisely, we have

Ty

*

(5.44) I(T) = 3 + 0 "

where & is the absolute value of the imaginary part of the singularity
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of f(k) closest to the real axis. Eq. (5.44) is an easy consequence of

contour integration and the representation

o0 yis
(5.45) IM=134+22 J ‘i—.\:‘t- cos (mkTY4(RY
-7

n=14 2

which follews from the Poisson summation formula.

In various 1-loop diagrams (especially if the mass gap is small) one en-
counters situations in which € is nearly zero. In such cases the rate

of convergence can be drastically incressed by making an appropriate change
of variable, which maintains periodicity and moves the dominant pole away
from the real axis, For example, if £{k) has a peak around k = 0 due to

a pole at k = 1€ € small, one could try .

(5.45) h = R - A sin kR
with
(5.47) 0 ¢ Atgy ¢ 1

and o{ chosen close to 1 such as to move the singularity optimally away

from the resl axis in the k°’ plane. Then, we have

i ,
sas 4 = [ 4R Py
-7
with
Go TR = (4 - wcoskK) § (RGKD)
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and the corresponding approximations
T
A ~
(5.50) 1m =+ 2 1&E»
y‘.‘
converge significantly more rapidly to :} than I{T), viz.

(5.54) Ty = 1 - 0(et ™) % = OMW

" Fer the diagrams, which we have calculated, the rate of convergence achieved
in this way typically was such that T = 32 was sufficient to obtain a rela-
tive accuracy of 14 digits. We finally note that since the convergence is.
known to be exponential, it is possible to con£rul the error l}.-i (™ \
hy also calculating smaller sums, €.g. ?{T/2] and ?(T/4), and fitting the

results with a constant plus exponential.

6. Asymptotic behaviour of Feynman diagrams for smsll lattice spacings

and associated extrapolation procedures

6.1 Asymptotic behaviour of finite momentum sums

We here give a rigorous proof of the basic expansion (1.1) for a class

of one-loop diagrams on finite lattices with periodic boundary cenditiaons.
Qur ohjective is not so much to obtain the most general result, but to
illustrate a strategy of prcof, which appears to he more widely applicable.
In particular, the proof can be easily adapted fu the case of the partially

compactified twisted lattice of section B.
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On a 4-dimensional LxixLxL hypercubic lattice with periodic boundary con-

. . - *
ditions, the possible values of momentum are )

(6.1) ko= 2y e Z° ~T/a < Ry & T/

1

Tn the absence of masses and for vanishing external momenta, one-loop dia-

grams on this lattice assume the general form
-4 5
{6.2) Di§) =L ;z: o f{ak) ,
#0

where © denctes the engineering dimension of the Feynman integrand §-(q)
and the summation is over the range (6.1). A simple example for the inte-

grand is
) ~
(6.3) a fe) = k]

~ ..
with k given by eq. (2.10). In general we expect that f—{q) has a singu-
larity at g = 0, but is otherwise regular. More precisely, we shall assume

that

{a) ; (g) is periodic with period 27 in all mamentum components, i.e.

if qul =q, {mod 27}, then £ (q") = §(a).
. e
(hy £(q) is C~ far q{mod 27C) # 0.

{c) The structure of the singularity of f%q) at q = 0 is such that the

*}

L has physical units with L/a being an integer.
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functiaon given hy

o 5

Flnm) =%’ (nmn, X,

3 oa
initially defined for O<H €T gnd me § , extends to a C (6.6) A = j %ﬁ}* 3?(5{)
) 2L

function for all #® e [O,Tt.] {and all unit vectors n). Moreover,
the Taylor coefficients of§ at ¥ - 0 are polynomials of n. Thus, a possible application of the theorem is to calculate integrsls of

the type (6.6} by evalusting the finite sums 0(f) for a range of lattice

Functiens f(q} having these properties are later referred to as elements spacings and extrapolating to the limit a-»0 using the method of sub-

of the class @5 - According to property (¢}, every f = §S may be ex- section 6.2,

panded around g = 0 in a series of the form

5 We now turn to the proof of the theorem. First, we simplify our notation
- m

[+7]
(6.4) § (R“) ;,;0 ¥ *\'§=0 - ,P’m('“) ' by cbserving that apart from an explicit factor as , the dependence of

B(f} on the lattice spacing is only through the combination a/L. The limit

t b 1 i i . . .
where the m § are polynomials of the unit vector n, g—0 at fixed L is therefore equivalent to L —ce at fixed a. Taking

the latter point of view, we may choose units such that a = 1. L is then

The mein result of this section is now summarized by the following an integer and (6.1}, (6.2) and (5.5) became

Theorem: For any fé $ we have’ [
= 3 6.7 R o= My v -4 4
(6.7} e . e Z zL<vae 4L
54 5-4 3 ™
(6.5) DY~ 2" TA+B tntai)l+ 0y o (oL -4
e o tm ey (6.8) D) = T g
R0
where the coefficients A,B and &, ere independent of L. Further- P-4 = -
(6.9) DEy o~ A-Blal v LT a, L
more, B = 0 if § ¢ 4,5,6,.., . L o0 o
For actual Feynman diagrams, % is always integer in which case the expansion The proof of eg. (6.9) given below proceeds in three steps. First, by a
(6.5) does indeed assume the general form (1.1). Note alsc that for super- partitien of unity, the momentum cutoff implied by the Brillovin zone is
ficially divergent diagrams {i.e. if §< 4}, B venishes and A is simply replaced by a smooth cutoff functian h{k). TIn the second step, the iIntegrend

f{k) is expanded according to eq. (6.4} and the cutoff function h is re-
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placed by a Gaussian cutoff in each term. After that one is left with a
set of momentum sums, whose integrands are analytically given and which
ave sufficiently simple to be tractable by grdinary technigues such as

the Feynman paramester representation and the Poisson summation formula.
: oo . L3
Suppose h(x) is a C  function of ke R® such that ¢ h€1 and

1 4if Ikl € ®/4
(6.10)  hik) = {0 if dkly /2

We then split the sum D{f) into two parts according to

(6.11) D(f} = Dl(f) + Dz(f)
-4
6.12) o) = L L h(R)£(R
R#O
-4
©.13) 0H) = L Z (A -h(R){R

REO

The following temma, which is proved in Appendix C, may now be applied to

the second part Dz(f).

Lemma 6.1: Let %e @x and & < 4-2j for some integer j with j2 3. Then,

for L—&e we have

™
- e -23
(6.14) D (g) ) o g(Ry + OLL™

Because the function g = (1-h}f vanishes identically in a whele neighbor-

hood of k =.0, it is an element of éd for every ol . It follews that

£

DE(L) = D(g) only contributes to the coefficient A in the large L expansicn

_ B4 -

and all the ncn-trivial terms in (6.9) must therefore come from the first

part Dl(f)'

For the further analysis of Dl(f) we now make use of the expansion (6.4).

Define polynomials Qm(n) through

{6.15) Q pn b))

{the use of the factor e,x'

6.16
(618§ (R)
{(6.17)

%_MUO

Mote that g, vanishes

m H® Y
= A 2 e
ml 2" ¢ e 3m,:o

Y
will become clear soon). Furthermore, set

2

-~k -
e [ kA

H

13
Q. ¢ R/ IR (r#0),

H

™M
{2 - T 4.1, (RJem .
mz0

identicaily for |RV3» /2 so that we may periodically

extend 9y to all ke ‘P\"’ , excluding of course the singular points k(mod2m)=0.

‘From the definition {6:17) (and Taylor's theorem) we infer that

4m € §S-M—4

Provided M is large enough, Lemma 1 therefare applies

to gy and we conclude that for L —>» o0

(6.18) :D4(§3

§-M-3
'D(\'\gm‘\ + comstankt + O(L )

i
% Mz
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At this stage, the cutoff function h may be removed again. To this end,
first note that hfm vanishes for k! ¥ /2 so thet we are free to ex-
tend the summations over k to all k # 0 of the form k - % Yo,V e Z'*,
This is indicated symbolically by writing

00

= o = A (R
(6.13) D(h§ ) D hg ) 3 Eéo hikl £ (R)

]
Next, we observe that (l-h)fm is 8 C function, which together with its
derivatives is rapidly falling off at infinity. As in the proof of Lemma

1, it may be shown that these properties imply

(6.20) n°°((1-h)fm) - constant + O(L™P)

for any power p. It foilows that

(6.21) D(hf ) - u‘?fm) + constant + 0(L"P)

Summarizing the results obtained so far, we have for any fixed large M and
L —
-M-3

M " g
(6.22) D(g) = 2 D () + constant + O(L )

m=0

We now proceed to prove that an expansion of the form (6.9) holds for each
o0
of the sums D (fm) individually. This will be achieved by a somewhat

lengthy series of simple analytic manipulations.
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We first remark that because of reflection symmetry, the polynomials Qm

may be replaced by
(6.23)  G.(n) = £ {9 () + 0 (-n))

without changing the value of Da)(fm). Next, let a, dencte an integer such

that
2g>m - )

"~
and such that 2 is alsc larger than the degree of §_ (in particular,
%m 9 m

qm>, 1). Define

(6.24) H (k) = {w|*™ QiR /1R1)

- 1 -
(6.25) ok = Qe t 5 (% -m)

By construction, Hm is a homogenesous polynomial of k of degree qu. Further-

more, we have

o0 x® 2ol -k
_ 4 ™
6.28) DLy = AT g Ho (R €
To obtain & more tractable expression, set
2
(6.27) x = (27/L)

0T H (e P

(6.28) F;“(zy
veZ4 m '

(z>00
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Then, eq. (6.28) may be rewritten in the form

A (§~G-rm i . -
i(S G-y A j At to{‘wﬁaﬂ[t-t-x)

o2
(6.29) D)= x D b

(note that for x>0 the integral is absolutely convergent, because Ky 70
and because Fm is a Cw function, which is expanentially decaying at
infinity). A good feature of this representation of Doa(fm) is that L
enters only through the veriable x, in particular, the function Fm is

independent of L.

co
We now split O (fm} into twe parts according to

x“%(&'ﬁ-\‘h)‘ 4

(6.30) qum) (Lt I?_(xﬂ

i)
1
d -
(6.31) 1 xy = j de £ ™ ‘e {t+x)
4 Laa
Q

oo

I S

@) 1,00 = [ et G0
4

Because Fm(z) and its derivatives are exponentislly decaying at infinity,
[+ : .
the integral 12 is a C function of x for x » -1, In particular, it may

be expanded in an asymptotic power series at x = 0. It follows that the
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00
contribution of 12 to D (fm) has a large t expansion of the form (§.9)

with A = B = 0.

To expand 11, we need the fellowing Lemma, which is proved in Appendix D.
M
Lemma 6.2: There exists a constant Cm such that the functien Fm defined by

~

(6.33) F..lgy = F (&) =C_ 2 dm2 , {z>0) ,
extends ta a G function for 0<€2 < 00,
Inserting (6.33) inte the definition (6.31}, we have
bk - 42 A
(6.34) Lo = C,MS dt £ ™ eaxy "™+ Lo s
o :

~ o0

where Ii(x) is C for x»0 and can therefore be expanded in an asymptotic
power series as x-30. Finally, to expand the explicit integral in eq. (6.34),
we substitute t = x/s and obtain the following contribution to Dm(fm):

-1 (§-2-w)

c i G2
s S ds s {(1+5)

(6.35) ——
HERE

for small s, the inteérand can be expanded in a convergent power series
and this quickly translates into a small x expansion of the form (6.9).
In particular, a logarithm is obtained if and only if -2 - m is a positive
even integer. Summing up, we have thus shown that Dm(fm) has a large L

expansion of the proposed form.

The proof of the theorem is now completed by remarking that via eg. {6.27),
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the expandsbility of Dco{fm) implies the validity of (6.9) up to terms
of order é _Mfg. Since M may be chasen arbitrarily large, the expansion

in fact holds tc all orders.

6.2 Extrapolation of lattice Feynman graphs

In the preceding subsection we have shown, for a class of one-loop Feynman
diagrams, that as the lattice spacing tends ta zero, one has an asymptotic
expansion of the form
- X " :

(6.35) Dlay ~ 0" 1 4 Le, v, nal

a0 M=o m
We here discuss the question of how to extract the first few coefficients
Chi- when D(a) is known for a sequence of lattice spacings ars

I. ¢Ig1

win S In order to keep the presentation cf our methecd as trans-

max”
parent as possible, we shall make a few simplifying sssumptions. First,

the lattice spacings ay are taken to be inversely proportional to I, i.e.
{6.37) ar = 1/uT.

Secondly, we assume that only even powers of 'a' gccur in the expansion
(6.36) and that the leading coefficients Cqyq and 9y of the logarithmic
terms are already known analytically. Actually, for the sum of diagrams
which one needs to calculate for improvement, both conditions are met,

in particular, 1 is proportional to the first coefficient of the Callan-

Symanzik F -function and Ch2 vanishes because of tree improvement.
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We now praoceed to describe how to determine the leading coefficient o0
accurately and how to control the rounding and systematical errors along
the way. The extension of the method ta subleading coefficients is trivial
and will not be discussed any further. Using (§.37), we can define the

dimensionless auxiliary functian

(6.38) 0D = { a1 dw + (Coa +ofcu)ﬂnl:|}a:a1

in terms of which the expansion {6.36) reads

®39 L1 ~ A, +A1/I’“+MZ=‘1{A,h+ B, tn I/I™

T-rc0

(6.40) AD T T~ oy Bap

A first approximation to the desired coefficient AG would thus simply be

(6.41) Ay ~ £o (L)

However, since a range of values of T is available, we can do better by

defining an "improved"” auxiliary function fI(I) through

(1+5) (1-512

451 F (145 - 450; F,(I-58,)

(6.42) 364 (I} =

where SO is an integer parameter, typically So =1 or 2. Then, f1 has

an expansion of the form (6.39) with Aﬂ as before and Al missing.
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f1 is therefore more rapidly converging as I —»o¢ and one expects that
fi(I - 50) is a better approximaticn to AD than the estimate (6.41)

max
(note that £,(T) is only defined for I +s, T 1 . =%)

mim MoK
The "blocking” transformation leading from the initial function f0 to the

improved function f1 can be iterated and one obtains in this way a sequence

of functions fi such that

pa

-Q_'—
(6.43) (1) = Ay + 0(1 Ny A= 0,4,2,...

Actually, because of the logarithmic terms in eg. {5.38), the transformation

fi">fi+1 is a bit more complicated for i » 1 than for i = 0, namely

(6.44) $o,0 = w, §(T+8 +wp £, (D +w, $(1-8))

(6.45) W= Y J U+ Yy Y, ) ) (4=423)
Ga6) v, = (14807 7 tm (4571

Gan v, = I L m(1%5,71) - tn4-5/D)]
(6.48) v, =-{(1 —84)2“1 I (A4 8,11)

At each step, Si can be chosen freely and the range of values of I, where
the new function is defined, shrinks. After a few iterations, further block-
ing is therefore often useless, because the available range of T is teo

small to abserve the convergence of the iﬁproved function fi+1'
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To derive a relisble stopping criterion for the iteration described above,

we need an estimste for the "systematical error”

(6.49) s, (1) = 1§11 Agt/ 1A

To this end, we fit fi with the function

(5.50) ?4,(1) = A 4 (P + ¥Lal)/ 1,_“2

by minimizing the quadratic form

4t
(6.51) 1

8 A 2
T [. fhtl)_' §4_(.1)}

with respect to the parameters a(,fS and § . Of course, the fit function

A

fi is motivated by the large I expansion of fi(I) and the weight in (.51}
is chosen such as to minimize the effects of possible higher terms. Having

determined & ,fs and ¥, the systematical error is estimated by

(6.52) s; (1) £ 5.1/ 14D

‘P'+ B’[mI\/IZiH' 1$ B/p %0
(6.53) S =

max {1} 1511/ T7% 0 wp <o

This formula aveids underestimating the error in case f5 + 541

happens to go through zero in or near the range of available values of T.
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Befors the systematical error determined in this way can be taken seriously,
a test of the quality of the fit of fi should be made. This is in general
& rather subjective affair. OQur criterion was to accept the fit if

(6.54) b - LAl < 12 st

A X

where (say) £= 0.1, If (6.54) was not satisfied, the systematic error

was taken to be unestimable and fi would then not be used to determine AU.

So far we have assumed that the functions fi are known with infinite numerical
precision. 0f course, since fi is calculated on a digital cemputer, this

is not actually the case, i.e. the computer approximates fi(I) by some number
Ei(l) with a finite number of digits. If one uses 64 bit precisicon, the

error

(6.55) LD = (4,00~ (1) /T,

of the initial dats can be rather small, e.g. £, € 10724, However, through

the blocking transformation the errors ai(I) of the improved guxiliary
functions fi tend to increase significantly, a fact, which turns out to

be one of the limiting factors to our method. To understend how these numerical
€Irors evolve, we assume that the errors CO(I) are random numbers with

a Gaussian distribution of variance

’ — 2
(6.58) &Iy e, (1IN = 6 ., 7 (D)

where rO(IJ is known, Because the blocking transformation is linear, it
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follows thst the errors Si(I) are also distributed aceording to a
Gaussisn and the metrix < £3(1) &,{1°) > can be calculated re—

cursively. In particular, we may define
1/
(6.57) AL = ey g (Y > ,

which is a reslistic estimate for the numerical precision of fi(I). It
is our experience that with each blocking step, the significance loss thus
determined is about 1 to 2 decimal places, slightly depending on the choice

of the parameters SL'

As a result of the error discussion, the best possible estimate for AO

may now be cbtained by setting

(6.58) Ae = $..(17%

where i* and I* are chosen such as to minimize the total error. In
addition, the (relative} precision of the estimate (6.58) can be pre-

dicted to be better than
* *
(6.59) S (I + 1w (15

We have tested our extrapolation procedure in various cases where AO
was known beforehand, for example by evaluating the diagrams directly
in the continuum using dimensional regularization. In all cases, the
error estimates were shown to be reglistic (or even conservative),

thus confirming our expectation that the method warks reliably indeed.
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7. Calculation of Symanzik's improved action[1]

The purpose of the present section is mainly to illustrate how the techniques
introduced in this paper fit together in a concrete case. Besides that we
want to provide further details on the calculation outlined in Ref. [1].

In order to avoid unnecessary repetitions, we shall here assume that the
reader is familiar with Ref. [1), in particular, the notations of that

paper on the improved action, the improvement coefficients ci(gg), etc.

are taken over.

7.1 Bauge fixing and the pole structure of the. propagator

As explained in Ref. [1], the calculation of the coefficients ci(gg) in
perturbation theory proceeds by evaluating two on-shell gquantities in the
twisted world of section 5 and requiring the absence of O(ag) scaling vio-
lation terms. These on-shell quantities can be defined using gauge invariant
(composite) interpolating fields (see subsection 7.2) and the choice of
gauge one makes to perform the ealculation is thersefore of only practical

importance. A convenient choice is e.g. the modified Coulomb gauge condi-

tian
T ¥aA 0
(7.1 LA AxY =
Az4 oA
(7.2) 5: = {1 +a* - cf’)(a’:3°+’bfa;)+afc:°’23: a,,}af
. I

In momentum space, eq. (7.1) becomes

B o T
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3 A
(7.3) L sk, Ak} = 0

A=A

where the tensor spv(k) is defined through

(7.4) s,w(h) = 4 -t ( o:”—c,‘_‘”)(";x; +’\:<t} -a"cf“ﬁz .

This tensor also appears in the action, namely [14]

LY

230 di, dRs 4 A oo 2
7.5 = ok Boalat LI
(7.5) Sy LN ;{ L 1Eusw(m\h,.A.,(h\—h,,f\N(k)\,

and the gauge condition (7.3) therefore implies the decoupling of the
"static" potential Aﬂ from the transverse components Ai at g, = Q. For the

propagator function Dpv(k) defined in section 5, we thus have

(7.8} ENECN Do kY = O , (£=1,2,3)

’

(7.7) D, (r) (

1l

A -1
Sox (RIRS )

‘Mo

o]

=1

Ll

The other components are more complicated and explicit formylae are there-

fore deferred ta Appendix E. Here we only note that
(7.8) Dy = Dy (W) Py (RY/ AR,

where Pij and Q are polynomials in Qo of degree 8 and 10 respectively.

In what follows, we assume that the coefficients cio) are such that
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(k) is positive for all k and p # v . This insures the stability of

the action (7.5) and is true for the values of c{o) and céo), which are

51w

later found to be necessary for improvement. With this provisa, it is
easy to show that the geuge fixing condition (7.1) is admissable in the
sense of section 4 and the derivetion of the Faddeev-Popov determinant
given there therefore carries over to the present case. In particular,

the Feddeev-Popcy operator is given by

3, Ad g0
79 A= -2 7 | i % +Adqual,
1=4 1~ exp - Adqia
where qi(x) = gDaAi(x). As already mentioned in section 5, the correspond-

ing ghost fields sre twisted pericdic and from eq. (7.9) the Faddeev-Popav

propagator is easily found to be equal to Doo(k).

The stability of the action {7.5) also implies that the polynomial Q(@)

is positive for real & # 0. The only singularities of the propagator

Dpv(k) in the Brillouin zone are therefore at k = 0 (frem the vanishing

of Q) and at ? = 0 (from Dnn(k)). These latter singularities also occur

in the ghost field propagator and are special to our choice of gauge. Since
? = 0 is excluded by the quantization of transverse momentum, the Feynman
integrands actually encountered are completely regular as discussed in

section 5.

For the physicel interpretation of the theory, the poles of Dpu(k) with
-
complex k0 and real k are relevant. Because Duu(k) is even under ka—a - ko’

such peles come in pairs with cpposite signs of ko' There are exactly
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A
5 pairs stemming from the zeros of d{k) plus one additional pair from
DOG(k). For small lattice spacings, two pairs converge to the relativistic

lacus
(7.10) Ry = t iRl s

and the other poles move to infinity, i.e. the associated energies are

of the crder of the cutoff:
(7.11) Imky, = 0 (1/a)

This behaviour is illustrated by Fig. i, where the energy momentum relaticns
corresponding to the & pairs of polss of Duv(kJ are plotted for k1 = k2,

k3 = 0. Elsewhere in the 3-dimensional Brillouin zone the situation looks
similar, in particular, the unphysical branches (those which are not approxi-
mately of the form (7.10)} arealways far up in energy. Note that the physical
branches closely follow the relativistic dispersion (7.10) up to rather

large momenta ( |K € n/2a) . This is partly due to tree level
improvement as can be seen by comparing with the Wilson action, where the
energy momentum relation starts to deviate from the relativistic formula
already at 1121 2 T /4o . We finally abserve that the twg physical
branches correspond to different (transverssl) polarizations of the gluon.

At tree level they are not exactly degenerate because of 0(84) scaling
violation terms and at higher orders the degeneracy is completely lifted

by the asymmetry of the lattice.

If we now take into account that the transverse momentum components k1
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and k2 are quantized, we see that the energies k0 associated with the
poles of D“v(k) cannot be arbitrarily close to zero. The family of poles
with smallest energy is given by

3 X _ 1 _am
h“*"h = m » ’n‘\—m ]

R, = i»LJ'm"-&-hg' + 0lad® s

i.e. these are the poles with the smallest amount of momentum in the trans-

(7.12)

verse directions. As explained above, for each of these poles there are

two possible polarizations. They can be distinguished by their parity under
reflections of k1 {or k2). To see this, take for example kl =0, k2 = m.
Then, El(k) is even under a reflection (5.35) of k1 and the other components
ﬁz(k} and ﬁs(k) are odd. Correspondingly, one of the poles occurs in the
ﬁ;(k) propagator and the other in the propagator of Ké(k) and KS(k) (note
that because of the gauge condition (7.3}, these latter field compunents.
are linearly dependent so that there is only one degree of freedom associated
to them). Thess symmetry considerations are also valid at higher orders

of perturbation theory and the lewest lying peles of the full gluon pro-
pagator can therefore be unambiguously identified by specifying the momentum
?, the sign of Im k0 and the parity of the interpclating field under an
appropriate raflectien. Similarly, the next to lowest lying poles (those
with \kli = |k2l = m) can also be completely characterized by conserved

gquantum numbers.

. - T T Tk o kb S .
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7.2 Physical significance of the low lying poles of the gluon propagator

The physical interpretation of euclidean lattice gauge theories rests on

the construction of a Hilbert space of physical states and‘the transfer
matrix as described in detail for improved lattice gauge theories in Ref.
[15]. The aim of the following discussion is to show that the poles (7.12)
{and similarly the other poles of the propagator) are related to eigenvalues

e " of the transfer matrix through the familiar formula

{7.13) w = a llm kgl

This implies that although the gluon propagatar is gauge variant, its low
lying pcles are asscciated with gauge invariant eigenstates af the transfer
matrix and may therefore be interpreted as physical cne-particle states.

In fact, with little more work, the Hilbert space of physical states at

a, = 0 can be identified with a Fock space of gn-infinite tower of free

particles as described in Ref. L1l

Ta estabiish (7.13) it is sufficient to construct, for each of the poles
{7.12), a gauge invariant field f?k(xo), which is composed frem the link
variables U(x,j) at a fixed time L3 and which satisfies

~%g 1 Tm R,

(7.14) <Oh(xo)*oh(0)>\% < e

o.= 0 x,»00

As an example, consider the case with kl =0, k2 = m and positive parity

as explained sbove. Define a gauge invariant composite field ?(xo,xz,xa)
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through
= 1 Il
{7.15) Clxgxy, %) = E™ TT{Q"OLX,,(L Ulx, 1},

which is just a Wilson loop winding around the twisted tube (in eq. {(7.15),
tie matrix 514 is needed to make the loop invariant under the gauge trans-

formations (5.3)). Because of twisted periodicity, we have

(7.18) <P(xo,xl+-l_,x3) = 2 Plxe,x,,%,)

so that the Fourier transform

-1 (k k
717 Oplx,) = & T ¢+t Rx) P (xo,%,.%;)
Xg %

_ _ t
is well-defined. Noting S)”l = FL , it is easy to show that

m,
’ dpy e.tp"x“'#: (p, R
27 1

n
ey

(7 .18} O]i KO
[~}

and the exponential decay (7.14) of the correlation function of C?k(xo)

thus follows from the residue theorem.

When the gauge coupling 9% is turned on, the full gluon propagator not only
has poles but alsc a cut in the complex kD plane, which comes from 2-particle
intermediate states and which therefore starts at about kO = %5 2n. The
stable physical particles in the theory are thus the A mescns, which corres-

pond ta the lowest lying poles (7.12), and the B mesons, which belong to
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the poles with lkll = |k2[ = m. In addition, there may be scme poles just
below the 2-particle threshold. As for 9; = 0, the gauge invariant field
defined above may be taken as an interpolating field for a positive parity
A meson, and similar composite fields exist for the other A mesons and the
B mesons. Because these fields are lecal in x, and Xy, 8N LSZ scattering
theory can be formulated for them and a sensible definition of the scatter-
ing matrix for scattering processes involving A and B mesons can be cb-
tained in this way *. One may then show that the scattering amplitudes

s0 defined are in fact equal to the full propagator amputated n-point
functions of the gauge potential Ai evaluvated at the poles of the propa-
gator and multiplied by polarization vectors and wave function renormali-
zation constants as usuzl. In particular, the "phenomenniogical® coupling
constant ‘A defined in Ref. [17 ang the masses m, and Mg of the A and

B mesons have a well-defined physical interpretation and are therefore

quantities suitable for the calculation of the improvement coefficients

¢, (g5).

7.3 Calculation of ci(gg) to one-loop order

The coefficients ci(QS) are now determined order by order in perturbation
theory by requiring the absence of 0(32) corrections to the mass me of a
positive parity A meson end to the coupling constant A. The leading terms

in the expansions

* The conceptually more satisfactory Haag-Ruelle scattering thecry is

presently unavailsble for lattice theories.
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() 3 [S)) 13
(7.19) ™y my b gom, * O(%o)

(03 3 o.M 5
(7.20) Py goX tGg A * 0(gg)
are obtained by locating the appropriate pole in the ﬁi(k) propagator
(cp. Appendix E) respectively by evaluating the 3-point vertex function
at the momentum configuration where N is defined. Skipping the trivial

details, we note the result

(7.21) 'm:" = mi{ 4 - tam) e - c.‘f’a-fi) + 0a™],
6
g N = -t - Lam 90+ ) +2es] 10},
which implies
7.23 ) - - 4 {0} _
( ) C,‘ = ;I"i ’ CZ = 0

for the improved actien. From now an, the tree level coefficients Cio)
are fixed to these values and the propagator and the vertices in Feynman
diagrams refer to this tree level improved action, the vertices proportional

(1)

to the one-loop coefficients ¢ (and the higher loop coefficients} being

given a separate label {cp. Figs. 2,3).

At one-locp order, the calculation of my amounts to the evaivation of the
self-energy diagrams drawn in Fig. 2, whefe the momentum flowing into the

diagrams is given by
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(L))

(7.24) R = («LfmA,o,m,ol.

) ave tree diagrams and can be easily computed

The terms proportional to e

by hand. If we define mél) to be the contribution of all other diagrams,

we have
1y ) 2 m &Y
(7.25) wp/m = g /m = lam) (eg = o) * 0Cat) |

Now it is important to note that apart from an overall factor of m2, the
self-energy diagrams to be calculated depend on N and L/a only. The small

“a" expansion of mgl) therefore assumes the general form

W '
{7.26) ™y /m ~ Gy ¥ (o.m)za,‘ (o [ a, + b, nlamdle.,

a—=>0

where the coefficients &, and bi are dimensionless numbers depending on

N. A logarithm of 0(1) is absent in eq. (7.26)}, because my is expected

to have a limit at a = 0. There is also no logarithmic term of 0(32), because

the action we use is improved at tree level [7]. Inserting (7.26) into

T eq. t7.25), we thus see that improvement at one-loop order requires the

cocfficients cil) to be chosen such that

(S} (45
(7.27) C - L, = O

A 4

Using the techniques described in this paper, the coefficisnt a, can be

calculated along the following lines. First, for every self-energy diagram
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a computer program is written, which computes the value of the diagram
given N and L/z. These programs perform the finite sums over the trans-
verse components Pys Po of the loop momentum p exactly and the integrations
over the other two components Py: Pg are done using the integration method
of subsection 5.3, The Feynman integrand for given P is computed by calling
subroutines for the vertices as described in section 3 and s subroutine

for the gluon propagater, which may be easily manufactured given the ang-
lytical expressions of Appendix E. The CFU time needed to compute a dia-

gram is approximately proportional to (L/a)2 and it is therefore important

to make the programs efficient, in particular, factors of 2 can be gained

by making use of the symmetry properties of the Feynman integrand (cp.
subsection 5.2). When all the programs are ready, ﬁﬁi)/m can be calculated
for fixed N and a range of L/a, for example, we have taken 10 1 /a & 36
(M=2) and 6¢L/a430 (N= 3) with L/a even. The resylts are then fitted
with the series (7.26) using the method of subsection 6.2. With an estimated
initial numerical precision of 10_14 for individual diagrams, we have thus
been able to extract the following numbers:

a, = -0,01682658(1) | G, = - 00110060, (N=1},

Q
(7.28)
0o = =-0.03%3159% (1) , A, = - 0.020399M4),  (N=3).

Incidentally, we note thet we have also calculated the energy gap in a

twisted world with 3 compact dimensions and obtained the more accurate result

)y “y

(7.29) €y =€ = -~ 0.011008%9(1) , (N=2),
“ )

(7.30) Ci-Cp =~ 002080086 (2) , (N=13),
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which agrees with (7.27), (7.28) and also with the earlier calculation

of Ref. [2],

The calculaticn of the coupling constant A to one-loop order proceeds

as for the mass m o and, apart from the larger number of diagrams, no
additional technical difficulties are encountered. The diagrams contributing
to )fl) are the vertex graphs listed in Fig. 3 plus the self-energy dia-
grams of Fig. 2, which give rise to a carrection of order gg te the wave
function renormalization canstants ZA and 28 oceurring in the definition

of X, Again, the diagrams proportional to the coefficients ciiJ are easy

to evaluate and we have

4y )]
(7.31) A“/'m = Tﬁ/m + 36 (Qm)z(cr]-(,;") + 3(um\1c;ﬂ+ ola™)

where (with new coefficients 8, bi)

—
(7.32) A /m of-\-J-)O Gy + by Inlam) + (o.wﬁ?“o.,1 + (c\m\"[a,_-'rbzfm(am\]i.
- AAN
(7.33) b, = ont

This value for ho is implied by the remormalization group and the tree level
result (7.22). We have verified (7.33) from our data for EUl) to 6 signi-
ficant decimal places and we have also checked that indeed there is no
logarithm at order a2 (as expected from tree improvement). Teking this into

account, the fit of the data gave
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(7.34) 0= - 0.8483231(3) | a, = 0.41988(3) , (N=2),
(7.35) 0g= ~1.28%#352(1) |, o,z 0.33412(5) , (N=3).

Now for A to be improved, we must have

[5]

(7.36) 360 -y 8e) = —an,

so that together with egs. (7.29), (7.30) we have two relations for the
(1)

coefficients c;™", which can be solved and lead to the result guoted in

Ref. L 1].

We finally remark that individual diagrams contributing to mjgl) or ',)\(1)

in general have a small "a" gxpansicn, which is not exactly of the form
(7.26) or (7.32). Rather, there are usually alsc divergent terms and odd
powers of the lattice spacing. In the sum of all giagrams, cne may however
show, using the gauge Ward identities, that these additional terms cancel
out, That they do not show up in the numerical data for mgi) and 1(1)

is thus another global check on our calculation.

T T e s M m T ST AT T
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Appendix A: Proof of Lemma 4.3

We first show that the constant w's are zero modes of AFP' Indeed, from

2qs. (4.20%-(4.22), we have

(A.1) Do = Tﬂ;qd + T Aq

so that for constant modes W

(A.2) Dppw = ':T-'(Actql-m\ = -’F(T.w,q])_

Now we note thet L is in the Lie algebra of '%_0 and q”e ’H_a: . Hence

by property (2) of F, we have
¥
(A.3) [-_u,c\r\] € %4 ,

ang therefore A ppW = 0.

Mext, we prove that for small g, there are no other zero modes. Because
FAY FP depends continuously on q, it is sufficient to show the absence of

additional zero modes for q = 0. In this case, the equation
(A.4) A ow = Fdw =0

FP
implies

(A.5) duw € ’H,f N

A
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Thus, by property (1) of 3:, we have dw = 0, and since the lattice A\

is linkwise connected, it follows that W is constant.

We now proceed to show that the range of ZXFP is equal to 37(}{3. For

g = 0, this is certainly the case, becauss

L
(A.8) Do (Y = FIR) = Finr,.
For q # 0, it follows from the definitian of qu,that
(A.7) B (R & Fip,)

On the other hand, the codimension of [XFP (3{0) is equal te the number

of zero modes of [XFP’ and since this is independent of q, we have

{A.8) dim A (R = dim Fa,)

Together with (A.7), this relation implies £3F9{3{0\= 3:(§{1) ., 8s was

to be shown.

o~
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Appendix B: Farm of the action suitable for Monte-Carlo calculations with

twisted periedic boundary conditicns.

Ir numerical simuletions of lattice gauge theories, twisted periecdic boundary
conditions are usually implemented by & modification of the action, which
amounts to multiply some plaguettes and (if present) other action pieces

at the boundary by central elements of the gauge group (see e.g. Refs.

[5, 12, 13]). In this formulation, the gauge fields U(x,p) satisfy ardinary

periodic boundary conditions rsther than eq. (5.1).

We here show that through a simple change of variables in the Functicnal
integral (2.5), the realization of twisted pericdic boundary conditions
described in chap. 5 is mapped onto the modified action representation so

that the two formulastions are thus completely equivalent.

For the twisted tube of chap. 5, the independent link variables to be inte-

grated over in the functional integral may be taken to be
(B.1) Ulx,py 1 x, <L tv=14,2) ,

with *y» *5 and u unrestricted. Using (5.1), the action S[UT can be written
as a function of these variables only. Note that some of the loops contribut-
ing to SW] cross the boundary and hence involve £, after the links not

contained in the set {B.1) are replaced by their pericdic images in (B.1).

We now choose new integration variables U{x,u) according to
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_ U(X,r«)ﬂr "5‘ Me (4,2} and Rp = L
(B.2) Wi, p) =
WUlx,m) otherwise.

This transformation has unit Jacobian and when the action SLU] is expressed
in terms of U, the Q_v‘s cancel. Actually, for loops crossing the boundary
in the x,- and x2—directiun (a plaguette lcop passing through x and

X +c3 +a? with Xy = Xy = L , for example), the _Q_v's cancel only after

a rearrangement using the twist algebra (5.2). These loops thus pick up
centTal phase factors and one ends up with the modified action commonly
used for Monte Carlo simulations with twisted p_eriodic voundary condi-

tians [13].

We finally remark that in the formulation of chap. 5, Wilson loops winding
around the world require the inclusion of a matrix O-v whenever the boundary
at x = L is crossed (otherwise the Wilson loop would not be invariant
under the gauge transformations (5.3}). These _O.v's are also removed by

the transformation (B.2).

g2 -
Agpendix C: Proof of Lemma 6.1

At k = 0, the singularity of g(k} is integrable (in fact, g(0) = 0) and

the integrals

©.1) c me 2V

are therefore well-defined. Furthermore, we have

L : - - 2L
(_‘&k) %(m o< Vel
R~>0
where Ak denotes the (4-dimensional) Laplace operator with respect to k.

As long as Q.é-j, the partial integrations in the following lines are there-

fore allowed:

Akl
('mlLi)o'c,m LR

n

S Atk

G §1 a0t e

x
- d‘t R - L arm L

For - j and m # 0, this leads to the bound

o Lol o€ €l

where ¢ is some canstant independent of m and L. It follows that the sum
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Appendix U: Proof of temma 6.2

Sta)y = T c
L4 meZh M
is absolutely convergent and one easily shows that it is equal to D(g). Starting from the well-known "duality" relstion

Indeed, we have

' ~2v* paww - ~A (e 2
I (0.1) 7 € = ) Gnaity L w- 270v) ’
- e
S(g) = tm T e TR veE veZ
£%0 m
(E)U,wequ'), we have

x
. i ~ErdAR L1 £AR L. -4
= & d’k wi{{4- L T i I s

a\:?) :L G g{r) N {{(1-e Y -(1-e V)

-2 -2 (w-—z-nv)1
©.2) K (2)= (4m2) ;EZ" H, 4V e #* l

wW=0
= 4
A
Define
and since g(0) = O, the last expression is equal to B{(g). Summing up, -4 2
G = (4n) H_(aY Ye &
we have shown that (0.3) m n m TtV 18 ,w=0

Dy = ¢ + 7

m ?
M#E0

2
A - -4 -
O Fo@) = (ana) DM (¥ Ye b VT

Y # o} w=g
which together with (C.2} implies the Lemma.

Then, using the homogeneity of the polynomial Hm, one may show that for

z70
09  F () = ¢ g Im7% \/?\%(;_)

~
Furthermore, it is cbvious from eq. {0.4) that Fm(z) together with all its
derivatives vanishes as z -» 0, in particular, Eﬁ(z) extends to s Ca’ func-

tion for O0¢z < oo .
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MmmuE:Hmnﬂemm%mmfutMQMmpmmmwr

Concise expressions for the functions Q and Pij appearing. in the gluon

propagator {7.8) sre given by

(E.1) Q = (R T [ Q:TY d; ]
» P
_ ~ ~ -4 A A
(E.2) Pﬂ-_lj = Sirm Satn (ReSor)(Ry S0 B pn e * RWR,LS00)

-4
where the vector dr\ is defined by

"‘l Al
(£.3) d = Evi S Ry

For the calculations with the improved action

it is useful to have explicit expressions for Q, %j as polynomials in QE.

Towards this end we define auxiliary quantities

£.4 - 4 R?

(&4 Up = 2 Fpm
3 s,

(E.5) X = Z uo Y= 2 ou , Z=ouu,uy.
§=1 o1 8
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Then Q is a polynomial of degree 5 in g

- z s 4 3 2
(E.B) Q = (1 ¢ u, *+ Bu, +Cu, +Du, s Eu,+ D,
with coefficients given by

(E.7) B = 3 +%

2

(E.8) C= 3+axX +3X" + Y

1
2
(£.9) D = 1+5x+iz_><z+§\’ r2XY + FZ

(E.10) E = 2X+3% r LY + £ XY +%X§+3%

3 ¥y - 2
+.i.XY '42_\( + 4XZ

-
I

(F.11) (X + Y X +X*+Y + XY +32) |

Q factorises for special cenfigurations e.g, when one of the ui‘s is zero

or all three u,’s are equal.
Corresponding explicit formulae for the Pij are:

- 1 4
(E-12) P = 2 CA £ Buul +Cug + D u+vED

with

(E.13) AM = -y, + X
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(E.14) B, = ~uy C34+23) +(3X +XE 4+ Y)
(E.15) G, = 3M$X“u1(3+~5)(+%-)(2 +3Y)
FO3X + 33X 427 « 334 1%y
2 2
(€.18) Dy = 3ud(x+vy- {1+ aXF x2Sy 4 oxY 4 72)
+ (X+3X2+Y+§X5 +EXY +§_XZY+2XZ~3"_~Y2)
(E.17) E.= ~u, DX+ 0142x XL+ Z(34%) ]

+ (X4 YL (14X (x4 Y)Y + 227

The other diagonal elements are given by permutation of the momenta. The
same comment applies to the off-diagonal elements which are given by the

following formulae

(F.18) Fas = ~42 &, Ry ( T Bu + Caz u: + Dy +Eyy)

with 8 given in (E.7) and

(E.19) Cu = ow X +(3 +3X +_‘1Z>(2 + %Y)

(£.20) Da = wrX o« w (X=X20Y) +(4 + 3X +.§_x2+§_Y +XY+72)
2

E2D B s Uy (XY - X (XY + [ SSAPIGIDTEREERD

+Z (3+x) ],

Finally we consider the fres propagaters of the A and B mesons. These

(a}

take a particularly simple form, since, for general c;

(E.22)

(E.23)
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H

Dy (R [, dytky |

2
L2 ee D.. (k) = d_ (k)
4 ig=a 20 !'Fﬂ:h:. ! Ih‘l-’kl

where ey = i, 8y = -1.

The function d1 has only twe poles in the complex v, plane which can

hence be detérmined analytically, The physical pole corresponds to an

energy E(k) given by

(E.24}

whers

(E.25)

(E.26)

cosh E() = 4 = 2 (4 - favac®g g )

(o)
e

(o) {0y 292 [ ~
b, = 1- (ei-¢y ) a?k, -2¢, a*k*

:fq - gi_( 4. C;c)azgz_)_ (C:QJ*C:_D))Q-L(:_E %:"'hjlﬂl) )

E(k) has a small-a expansion

(E.27)

B = = [ 1- (2 ot A )2t (R s T R}/ ]
3
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To abtain the energies of the A and B mesons of momentum p in the 3-direc-

tion we simply have to set k equal to EA or EB respectively where

(E.28) EA = (0, mp) , kg = Umoam,p)

In particular for the A meson with p = 0, Eg. (7.21) follows directly from

(E.27).
The residue Z of d1 st a physical pole

+ regular

i

(E.29) d, (R} Z(RY / (k) + E*(R))

is given by

1

{(E.30) Z{Rr)

CECRY- Lsh Bl 4¢P [1v4cs, /8 1

1.

10.

11.
12,

13.

“14,

15.
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Figure captions

Fig. 1:
fig. 2:
Fig. 3:

Gluon energy momeatum dispersion along the line k1 = k2, k3 =qQ
for the tree level improved action (c{o) = -1/12, Cz(o) = 0), The
top level is doubly degenerate and all other levels to the left
of the bifurcation points are not degenerate. All of them are
purely imaginary, i.e. Re k0 = 0. The branches to the right of

the bifurcation points represent complex energies (Re k0 £ 0).

Feynman diagrams contributing to the gluon self-energy at order

gs. Wavy lines denote gluon propagators and the broken lines re-
present the propagation of Faddeev-Popov ghosts, Diagram (e) stems
from the measure term (4.42) and the diegrams (f) represent the

contributions proportional to cil} (i =1,2).

Feynman diagrams contributing to the 3-puint vertex function at
order gg. The notation is the same as in Fig. 2, in particular,

the diagrams (1) represent the contributions proportional to
(.
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