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I. Introduction In such cases, é great number of papers (good and bad) were produced. This
makes a review somewhat difficult and certaialy incomplete. Nevertheless, I
The numerical calculation of the hadronic mass spectrum is one of the tried to give a coherent introduction and a detailed list of references to at
great challenges in lattice quantum chromodynamics. As a results of many least some of the luteresting toplcs in the fileld.
years of experimentation with strongly interacting particles, the masses of
many ha&rons are known to good precision. The confrontation of this important
and extensive body of empirical knowledge with the quantum chromodynamics
{QCD) theory has two importanf aspectkst first, it can provide the upto now
missing irrefutable evidence for QCD as the correct theory of strong
interactions; second, in case of a sucessful reproduction of the known hadron
masgses we would have a marvellous demonstration of the capabilities of a new
approach in theoretical particle physics, namely large scale computation. 1In
fact, this would be the first time ever that masses of elementary particles
would be theoretically calculated. The number of free parameters for the
description of hundreds of hadron masses {and other static hadron properties)
are remarkably small: besides the A-parameter for the colour gauge coupling
there are only the quark masses for different flavours (six for the moment).
Tt is quite sure, that the experience gained in lattice QCD will be extremely
useful also beyond the theory of hadrons, namely in other velativistic quantum
Field theories. Large scale numerical computation could help in the future to
extend our theoretical understanding to areas where detailed phenomenological
study is not (or not yet) feasible.
At present, we are obviously only at the beginaing of this, almost
revolutionary, development. The first efforts to develop the numerical
amethods needed for the hadron mass calculations started only about 3 years
age. The first investigations necessarily had an expleoratory character.

5till, the progress in the field seems to be rather fast, and as it is usual
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II. Calculation of hadron masses

The quark fields in euclidean lattice QCP are described by anticommuting

{Grassmann—-} variazbles defined on lattice sites xz = (xl,xz,i3,x“); 1< x, & N,

i "

(the lattice size is NjNpN3N;J). It 1s coavenient to use dimensionless fields,
therefore the connection between coutinuum—fields and lattice-fields is given

by {a = lattice spacing):

J“E‘ (ax) + ¥ ; J—EE— (ax) » w (z.1)

2K cont 2K cont

Here K is, in general, an appropriately chosen normalization factor. For .
Wilson lattice fermlons K is the "hopping parameter”, which is related in the

free fermion case to the bare mass m by
K = (8r + 2am)”! (2.2)

r is the "Wilson—parameter” satisfying ¢ < r ¢ l. The quark part of QCD

lattice action with Wilson—fermlions (Wilsom, 1974, 1977) is then

nyf,syx‘,K'ﬁ (£ + v Ulx,m) S x + 1

(2.3)

The SU{3) link wvariables are denoted here by U(x,u}. They satisfy U(x, )t =
U(x + ;,~u) (;'is a unit vect&r in the direction M). The euclidean Dirac-—
patriges are defingdraccording to yun Tu+= - Y—u, and E Eeans'§ summa;iqn‘over
bgth positive and qggative direct{qgs: =k L, 22, 3, ¢ %f

The "quark-matrix” Q im Eq. (2.3) is nelther hermitian nor anti-

G
hermitian, but 1s obeys
) L

Qe = ¥5 Q75 (2.4)
with Y = ¥; Y5 Y3 Y4, as usual. In the free case {U(x,u) = 1) the quark-
propagator Q_i can be easily obtained by Fourier-transformation. On a finite
lattice with periodic boundary conditlons the u—th compoment of the momentum
ku = ap, = 2m uu/Nu has values in the Brillouin-zone (Bl1 =~ arbitrary
interger):

+1%v<B+N .
Brl V& Byt {2.5)

Introducing the notation

V. X v,ox
- 171 474
(k,%) = 20 (—=+ w00+ =), (2.6)
4
the free quark—propagator cam be writtem with N = NiNoNaN, as
sl iy ool —i(k,xey)
ny =Q (U l)yx N & e Gk . (2.
The momentum-space free propagator akis
~ 8 =1
€={1 -2k } (r cos k~ iy sin k)}
k u>0 H] u K
={l -28 } {r cos k_* 1y sin k )}
e u ] [
[ [t -2 ¥ © cos kujz + 4K% ) sinzku}-l. (2.8)

u>0 o



This form shows, how the fermion doubling problem Is sclved for Wilson-

fermions. In the continuum limit k,. = ap, + ¢ the denominator is proportional

to _ _ .
1=Brk 2 2, 2
{\-—:ﬁ(r—) + kuku+ a“(m + pupu). . 2.9

At the other corners of the Brillouin-zone, however, the mass in. the denominator

1 m, = (m + 2wral), 1f the number of momentum components with k;, — T £ ap
is w = 1,2,3,4., Therefore, the mass m, teads to infinity for a + 0, and the
unwanted extra fermions decouple from the physical fermion with mass m.

The global symmetry properties of the Wilson lattice fermion action can
be immediately seen in Egq. (2.3). TFor Mg flavo;rs the quark matrix is block
diagonal in flavour. In the individual blocks the hopping parameter has the
value of K¢ belonging te the bare quark mass g of the flavour in question
(f = u,d,s,c,b,t, +s-). For non-degenerate flavours the action has an exact
u(1) Nf symmetry corresponding to the conservation of the quark number in
each flavour. For Ny flavours with degenerate mass the global symmetry is
U(Ng) = U(L) @SU(NE). The axial part of the global chiral U(l)@SU(Nf)®
SU(Nf) symmetry 18, however, explicitly broken by the Wilson—term proportional
to r, even in the case of zero bare mass m¢ = 0. The expected situation in
QCD 1s, that the axial-vector symmetry is spontaneously broken by the vacuum
expectation value of %w, therefore in the Wilson fermion formulatien onre has
to aésume that for vanishing lattice spacing the explicit breaking goes over
into a spontanecus breaking.

The anticommuting Grassmann-variables are not well suited for numerical
calculations. Therefore, it 1s convenient to perform the fermion integration
by using the bilinearity of the action in fermion fields. In general, the

expectation valve of a quantity, F(U, '*';"5) is defined as

. -5 (u) =8.(U,%,%) -
Jor (dydy  moduix,u)) e F(U, ¢, 93

X X >0
¢ = —= 4 — (2.10)
—Sg{U) - 8.(U,9,¥)

Fo(dy di, 0 dulx,n)) e
X X
X u>0

For a purely giuonic quantity depending ouly on the gauge field U, this is
equivalent to
[ du exp(-S, . (U}] F(U)

E = [ dU exp [-S_ (U] !

du = U NI dU(x,u). (2,11}
x B»0
The effective action Seff in the gluonic gector is the sum of the pure gauge

action 5, and the negative logarithm of the Matthews—S5alam determinant

g

encountered at the integration over the fermionic degrees of freedom:
Segr(U) = 8,(0) + 8 2 (U),
q = -
Seff(u) Indet Q(U). (2.12)
The quantitles explicitly depending on the quark fields can also be evaluated

from the effective action in the gluonic sector. For the produet of purely

fermionic variables we have, for instance,
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e

YoV e > =
1 %1 2 %2 Fa ®a

[ au exp{-Seff(U)) det ¢

<1

<wr

-1
n) (Q (U)) (2.13)

Bleeelb 58] ves8

[ di exp [—Seff(U)J

Here the determinant in the nominator is built from the matrix elements
Q_I(U)rs of the quark-propagator im the background gauge field U. Note, that
the indices (r,s) are abbreviations for all sorts of indices of the quark
field, namely, coleur-, spin~ and flavour—indices.

The hadron masses can be calculated from the expectatfion valuwes of
correlation functions of composite operators carrying different quantum
numbers. Tha choice of the composite operators 1s t; a large extent
arbitrary. In fact, for given values of the coupling constants one has to
find the optimal operator, which has a strong enough coupling to the hadron in
question and, at the same time, its numerical evaluation Ig not teoo
difficult. In practice this means that In most cases the simplest local
multiquark composite operators are taken. Let us now restrict ourselves to
the ground state mesons and baryous (In the sense of SU(6)) containing u-, d-
and s-quarks. The spin dependence of the operators is dictated 1o this case
by the relativistic generalization of SU(6) symmerry {(for a review and
refereaces see [Pals, 1966]). The 7€ = ot pseudoscalar mesons are described
by bilinear composite operators like, for instance,

+
(v )_ =~ Ba
¢x B dxua T5,aB e

¢x = S YS,uBux N (2.14)

[+ o
d a a

o
Here uxa, % stand for the u—, d- and s—flavour components of the

and s
X
quark field W;a} respectively. The Indices &,B, ... denote Dirac spin—indices,

whereas a, b, ... are the SU(3) colour-indices. The corresponding 177 vector

meson fields are (k = 1,2,3):

+
(p)_ = Ba
¢xk B dxaa Yk,GBux ?

*p
K 'y _ =~ Ba
b 5 ras T, i - (2.15)

For the baryons the trilinear composite operators can be chesen 1n different

ways (see. e.g. [Joffe, 1981]). 1In the spin - é— octet one can use, for

instance

(p)_
$ea = Eabc(CY5)

aa, Bb.yc_  Bb Yec
By Ux (ux a ;"= d u ),

(Z+) _ oa , Bb_Yc_ _Bb Ye
rpxu. sabc(CYS)BYux (ux Sy~ %x Uk %

(N aa, ,Bb Ye_ _Bb Ye
¢xu Eabc(CYS)BYlux a3 8 ¢

)+
x X xOX

¥ dua(SBbuYC_ uBbBYc)

_ 2 saa(uﬁbdvc_ FLLM YC)J’
X X X x X X x X X X

(=% aa, Bb yc_ Bb_Ye
$a eabc(CY5)Bst (Sx LI M ). (2.16)
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For the spin - % decuplet one can consider:

++
(a ) _ aa 8b Ye
1’xkot €ahc(CYk)BYux Uy Ux 2
(E**) Bb_y Bb Y Bb
- aa ¢, oa c, ua Te
Pk Eabq(CYk)ﬁY(ux U B T U S U T s, N ey )
(zx0y _ aa Bb Yc, _ua Bb Yc, aa Bb Yo
¢xku 8abc(CYk)B‘r(sx %x “x * % Ux Sy + Yy %z Sx )s
@ aa_Bb_ve )
Peka Eabc(cYk)BY 5x %x %x ¢ (2.17)

€,pc denctes, as usual, the totally antisymmetric SU{3) unit tensor, and C is
the Dirac~matrix for charge conjugation. In the numerical calculations it is

customary to use the followlng representation of euclidean Dirac-matrices:

0 4 0 0 0 1
0O 0 -1 0
! Lo T2 =
-1 0 0 ~1 0
—i 0 ¢ 0 1 0 0
0 i 0 1 0 0 0
o - 01 0 0
Yy 0 0 1 Y, =
—i 0 O 0 0-1 0
0 i O c 0 0-1
o 0 1 0 00 0 -1
Ye=0 0 0 1 = Y, Y, Yat c=1]0 0 1 0 = Y,Y,Y (2.18)
5 L o 0 0 1'2'374 0 -1 0 0 i'3'5
0 1 0 0 1 0 0

_11_

The expectation value of the product of two hadron operators can be expressed,
using Eq. (2.13), by the products of the quark propagators in some background
gauge field configuration U. For the quark flavours u, d, and s one has to
take in the preopagator the hopping parameter values Ku, Kd and KS,
respectively. (The swmall mass difference between u- and d-quarks is, however, .

usually neglected: K = Kd). Writing out indices explicitly, let us introduce

(U,K =

) |
Uxua,yﬁb_ Q Ku)xua,yﬂb’

- -
Daa,ygn™ @ K = K a veb?

Sxaa,beE Q_l(U’K:Ks)xaa,yﬂb' (2.19}
Then, for instance for <¢x(n+)¢y(n_)> and <¢(§:)¢y§p_)>, one has to calculate,
respectively,
Trg. {TSnyYsDYX},
er_ {7, nyTlDyx}’ (2.20)

where Tr, . stands for a trace over spin and colour iundices. Formulae like Eq.

<

(2.20} apply to all flavour non-diagonal mesons. For mesons like n,n',w,é, ...

some combination of flavour—diagonal operators like e.g.

(uu)_ =~ Ba
b = Yaalags (2.21)
is needed (T is some Dirac-matrix). For the expectation value <¢iuu)¢§uu)>
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the general expression (2.13) involves the combination

Tr, (T uxyruyx} - Trsc{r LU Trsc{ruyy}. (2.22)

In order to obtain baryon masses the necessary combinations of quark

o
propagators are: for the proton (and similarly for =0 and J7):

€abcCdet (CV5)py (C¥5) ey

[Uxua,yﬁd stb,yee vac,y¢f+ Uxua,yedeBb,yﬁerYc,y¢f]’

(2.23a)

for the A-baryouns:

(cy.)

Eanefdet s BY(CYS)E¢[Uxaa,y5dDXBb,YEESKYC,Y¢f+

Dxaa,yﬁduxﬁb,yeestc,y¢f+ 4qua,y6dux8b,yeerYc,y¢f—

- Uxaa,yedeBb,yﬁestc,yéf_ Dxaa,ystbi,yGesxvc,y¢f"

-2U

xaa,yedeBb,y¢esxTc,y6E_ 2Dxaa,ysd Uxﬁb,y¢e Sch,yGf-

-2 Sxaa,yedeBb,y¢eUch,y6f_ staa,yeduxsb,y¢erYc,yﬁf}’

(2.23b)

~]13-

for the A'T-baryon (and similarly for 47):

€ane et il gy {16

luxua,yéduxsb,yeeuch,y¢f+ zuxua,yEdeBb,yGeUch,y¢f]’ (2.23¢)

ke _k°
and for the ) '—baryon (and similarly for = ):

Eahcsdef(cvk)ﬂ‘r (CTk)e¢°

I-]‘Ixola,yﬁd Ubi,yee Sch,y¢f+ ZUxua,ySd Ubi,yGe SXYc,y¢fJ'
(2.23d)

The numerical calculation of the hadron masses is based on the Killman—Lehmann

representation of two point functions. In the euclidean region for a spinless

fleld ¢(x)} {for simplicity) we have

| T{(x)9(y) o> = f“z

m
o

dnp(m?) AE(x-y;mz>, (2.24)

with a positive spectral weight function p(mz) and the euclidean propagator
ik x
dhe e W

2 -
A (x;n”) = |
BT oot o2+ Kk,

. (2.25)

Projecting out the zero three—momentum intermediate states by an integration over

three—space, one obtains for this "time—-slice”:
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o —IIIIX -y l
['% w|T{stenlo> = [T an ey e ¢ TH . (2.26)
0

Stable single particle states contribute by a d—function term in p, whereas
multiparticle intermediate states give a continuum contribution. For large

euclidean time separations the lowest mass m, dominates, and we have

B = - 1lim ¥

1 3
= In [ dx” <o|T{¢{x)oCy)}|o>. (2,27)
@ |x4— qu r e 1¥47 ¥y

Another possibility Is to do a Fourier~transformation

-ip,x
fax B B o) T{e008(e) o> =

A e

2
- (™ 2 p{m”)
=l At Sy
m_ mE p,”

{2.28})

This shows the particle-poles in the (real) energy variable E = ~ipy .

Both Eq. (2.26) and Eq. (2.28) can, im principle, be used to extract the
lowest masses from the expéctation values of products of mettiquark operators
like in Eq. (2.l4~ 2.17)}. One has to keep, however, in mind that the formulae
are exact only in the continuum limit. On a finite lattice there are 0(a)
corrections due to the finite lattice spacing a, and also finite size effects
due to the finite physical extension of the lattice. (For some exact results
about the spectrum of finite lattice pure gauge theory in the strong coupling
reglon see, for instance, {Schor, 1983, 1984; 0'Caroll, 1984a, 1984b}. An
important modification te the formula (2.26) is due to the periodic boundary
conditions, which are introduced in most calculations in order to minimize

finite size effects. Due to the periodieity, a signal can propagate between

e T e A A A e, m M e e A
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two points in different ways. Neglecting propagations with more windings, the
simple exponential behaviour (2.26) is replaced in the case of mesous by

—¢, an _(Nh_ xa) am
e + e .

(2.29)
Here the time difference x, 1s given in lattice units and N, is the lattice
size in the euclidean time directien. For baryons the corresponding formula
is more complicated because TCP-invariance implies the propagation of the
opposite parity {charge conjugate) state in opposite time direction, therefore

Eq. (2.29) is replaced by

—x, am ~(N,~ x,)am_
(1 + 74) {c+e 4 *y c_e 4 e P+

- (¥,- %, }an ~X,am_
FUry fee C M T  aee L (2.30)

+
Here ¢ and c¢_ give the coupling strengths of the twe opposite parity states
with masses my and m_, respectively. Besides the effects of finite time
extension, the spectrum 1s, of course, also influenced by the finite spatifal
extension L of the lattice. A dimensionless measure of the finite size is

€ = Lm, (with w, = my, (L) the lowest mass in the given channel). For large L
the mass on the finite lattice tends to the physical wmass M, = Iiz mo(L) and
the deviation behaves like (Lischer, 1984): -

M-m ey —CZE

605 - = 3 e . (Z2.31)

The constants ¢ depend on the quantum numbers. A more detalled formula
1,2

(Luscher, 1984) relates 8, to some elastlc scattering amplitude and hence oy
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tukns out to be proportional to some coupling constant squared. The other III. Monte Carlo Calculations in the Quenched Approximation

congtant cy 1s of otder 1, therefore finite size effects should go away fast, A. Generalities

once gome critical alze ig reached. The numerical evaluation of the fermion part of the effectlve action
ngf in Eq. (2.12) is rather time consuming, because the "quark determinaat”
detQ is essentially non-local. The non—locality is due to the fact that ngf
describes the effect of closed virtual quark loops, and light virtual quarks
can propagate to large distances. (For the elaberation on the quark
determinant see £he next Section.) In the "quenched" or “valence™ approxi-
mation (Hamber et al., 1981; Marinari et al., 198la; Weingarten, 1982) virtual
quark loops are omitted by neglecting the dependenée of ngf(U) on the gauge
configuration U. 1In this case in Eqs. (2.11) and (2.13) ngfAcancels out and
the effective gauge field action 8,¢s(U) can be replaced by the pure gauge
action Sg(U). The quenched approximation is expected to give a reasonable
(say, Qithin, L0%) description of the hadron spectrum at least in the flavour
non-singlet channels. This expectation 1s based on the phenomenological
Okubo-Zweig-lizuka rule (Okubo, 1963; Zwelg, 1964; Iizuka, 1966) and on some
theoretical results obtained in I/NC (Nc = number of colours) expansion

{(t"Hooft, 1974).

Since the gauge fleld configurations in the quenched approximation are

distributed according to the pure gauge action, the scaling of the hadron
masses m have to follow the renormalization group equation (RGE) without

quarks:

fradz+ 8 @ 3w =o@. SERD

Here B(g) is the Callan-Symanzik B—function of the pure gluon theory on the

lattice and the right hand side is due to the scale-breaking lattice
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artifacts. (For a + 0 it goes to zero by some power of a). The solution of

Eq. (3.1) is

n = a_lexp {-fg —25—}. {3.2)

By B(x)

If the integration constant g, 1s replaced by an overall factor Cps ©Ue can

write (in analogy with Eq. (5.4):

2

-81/230

1

Zﬁog

+

O L

-1 2
m=ca (Bg") -
m o 2 o B(x)

1 1 -
* 3T 2 )} = Cmnlatt. (3.3

B0 X Bo

Here Alatt is the A-parameter of pure lattlice gauge theory and By and B are
the first two (universal) expansion coefficients of B{g) given by Eq. (5.2)
and (5.3) with N. =3 and Ng = 0. The integral pilece in the exponent 1s not
universal, it depends'for instance, on the particular form of lattice action
chosen for Sg(U)- But, compared to the universal g_2 term, it becomes small
in the contiouum limit g + 0.

In order to obtain the two point functions of the hadroailc multiquark
operatora in the quenched approximatior one has to calculate the expectation
value of the expressions like in Eq. (2.20~ 2.23). In the case of flavour
non-singlet mesons the required combination of quark propagators can be
represented by Fig. | (see Eq. (2.20)). For the flavour singlet mesons, like
in Eq. (2.22), one needs combinations as given im Fig. 2, whereas for the

baryons in Eqs. (2.23a - 2.23d) one has to calculate combinations like in Fig.

3. In case of Fig. I and 3 it is enough to consider quark propagators

~]19-

originating from a single point, say x. This is because the grientation of
the propagator lines can be reversed by using Eq. (2.4). This meauns that fer
the flavour nen-singlet mesons one has to calculate the expectation value of

expressions like

-1+
Xy

TrSC{Q;; T Y50 ysr} (3.4)
Here I is some Dirac-matrix describing the spin. In this connection let us
note the special role of the flavour non-singlet pseudoscalar mesons with

r st Y52= L+ In this case there are no cancellations in the spio-trace in
Eq. {3.4) and the decrease of the hadron propagator for large distances is
the slowest, which corresponds to the smallest mass. This observation is the
starting peint of the derivation of several rigorous mass inequalities (see,
for instance, weingarten, 1983b; Hussinov, 1983; Witten, 1983).

The case of the flavour singlet mesons in Fig. 2 is much more difficult
than the propagator configurations in Fig. 1 and 3. First of all, quark
propagators starting from two different polints are needed. This means that
one has to evaluate the quark propagators from every starting polnt of at
least several time-slices. The second,‘potentially even more dangerous,
difficulty is that the second term in Eq. {(2.22) contains a non-connected
plece which has to be subtracted. This requires very high statlstics, and
even then the measurement of the correlation at large distances is rather
questionable. {For a suggestion how to overcome the difficulties see (Hamber
et al,., 1983a).) The only attempt, up to now, to caleulate flavour singlet
meson masses and mixing with glueballs was done recently in the queached
approximation on a gmall (ha + 8) lattice in SU(2) gauge theory (Fukugita et

al., 1984b).
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B. Iterative methods for the calculation of quark propagators. The maln task

in the quenched hadron mass calculations is the inversion of the quark matrix
Q, in order to obtain the required matrix elements of the quark propagator Q—i-
Several standard numerical matrix inversion methods (Varga, 1965; Householder,

1964; Stoer et al., 1980; Lanczos, 1950) were tested and successfully

applied. The wmost popular are the variants of the Gauss—Selidel method and the

conjugate-gradient wethod.

Let us write the quark matriz Q in fq. (2.3) like

Q = 1-KM,

M = )} (c+7vy ) Ulx,p) é vy O (3.5)
X &y u Ky XFU K,y
The simplest iteratiom for p = Qti (i = some initial vector) is the "Jacohi-
iteration™:
Posl = i+ KMp (n =0,1,244.),
= i, p=1np_ . (3.6)

Iterating point by point, that is,taking on the right hand side the already
calculated elements of pyy) instead of the old p,, gives the "Gauss—Seidal

iteration™. This corresponds to the decomposition M = M, + M , where M; has

non-zerc elements only below the main diagonal (and there M = Mg; M, = 0. The
iterative equation now becomes:
Phel™ i +K (M£Pn+1+ Mupn)' (3.7)

¢t e i 2y e, ket i e e e s
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In order to improve convergence one can also Introduce a relaxation parameter

A and put

Poe1 = (E-3) bt ML+ K (Mpp Mupn)]. (3.8)
For small quark masses, still better convergence can be achieved by a "second
order” method. Returning to the siuple expression in Fq. (3.6) even if point

by point iteraction is done, the "firat-order” iteration in Eq. (3.8) can be

written like

Patl = Po + 4 (1 = Qpy)-

(3.9)
Performing after this step a second step with
Pot1= PP, (1-p) Pt A (L - Q?F+1)’ (3.10)
one obtains the "second order” iteration:
Pres™ pn¥ A il-ApQ)(i -Qp ). (3.11)

By the appropriate choice of the two parameters A,p a good convergence can be
achieved even for smaller values of the quark mass.

The other popular and effective method for the inversion of the quark
matrix ;s the "conjugate gradient” method. It begins with a guess P, for
p = Q_li. Then one has to calculate

t, = Q" -, (3.12)
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1f the length |r0| = f(r°+, rO) is zero, than p, Is the solution. Otherwise

forn =20, L, 2, ...

e I* o
- LI ,
n+l n !th|2 n
(3.13)
R e |? )
Pat1™ Py Z "
@ a|
If |ry4y| = 0, then pyy| is the solutiom, because
= +-1 _ +-1
@ @+ 0 r = Wt T T e
_ el _
=Wt r- i (3.14)
For jr 41| * 0 one calculates
2
(B
atl
I L —|r |2 LI (3.15)
0

and returns to Eq. (3.13) for the next n. It can be shqwn, that the solution
is always obtained in a finite number of steps.

On large lattices, a problem for the iterative methods is often due to
computer memory limitations, because the iterated vectors have many components
(and the gauge configuration itself takes a lot of storage space). The usual
way of circumventing these difficulties is to partition the inversion of the

quark matriz Q, which is possible because of the locality. A simple way to do
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this 1s to organize the iteration according to times-slices.

In this way it

is enough to keep only a few (usually upto 3} time-slices in the mémory

(Bowler et al., 1984a).
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C. Hopping expansion method. Another way to obtain information about

hadronic two-point {or many point) amplitudes avolds the direct numerical
inversion of the gquark matrix by concentrating on the expansion.coefficients
in powers of the hopplng parameter K. Knowing the hopping parameter expansion
coefficlents to sufficlently high orders, and assuming the analyticity of the
amplitudes at X = 0, one can investigate different features of the amplitudes
at the physical values of K. The starting point (Wilson, 1977; Stamatescu,
1982; Hasenfratz et al., 1981, 1982a, 1982b; Lang et al., 1982) is a formal

Taylor—expansion like

(-wot= 3 ki

(3.18)
j=o
or, for the fermion part of the effective action in Fq. (2.12):
w Kj
s3ep= - Indec (L - RO = - Tr 1 (=K = } ——Tr ady. (3.17)

3=l

From the expansion coefficients in Eq. (3.16)? {3.17) one can construct the
expansion coefficients of the hadronic amplitude In question, and then either
by éirect apblication of the hopping parameter serles (if the series--
converges), or By some analytical continuation method, one can caleculate the
amplitudélat the desired value of K. Apﬁlying the explicit form bf the
"hopping matri#" ¥ in Eq. (3.5), it is-possible io represent the hépping
parameter series a8 a sum over curves on tﬁe lattice. fof iﬁstance, one can

write Tr{M™) as

g e s T
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Tr ()

It

¥ 3 ~ & A eae B -

ves +
K e L

Te UGk L8 ) ven Ulxy,uy) Ulx, 0}

Tr ¢ +1%)..-h'+Y%)(r+YH)L.

(3.18)

Due to the d-functions, the sum runs here over all closed loops. A similar
representation of (M“)yx is possible in terms of loops running'from the point
X to y. Although this representation is physically rather suggestive and
appealing, it has the practical disadvantage that the number of curves at high
orders is very large. For instance, at l2th order there are more than 4 -+ 106
closed curves golng through a given link, andrét 160 order already more than

5+ 107 (the number increases exponentially) (Berg et al., 1982). It is quite

_ clear that the evaluation of the traces in Eq. (3.18) requires a prohibitively

large number of multiflications already in these orders. This was the reason
why the first numerical calculations of the hadron spectrum (Hasenfratz et
al., 1982a, 1982b)} were restricted to low orders. A sufficlently high order
hopping expansion is possible with the numerical iterative method (Hasenfratz
et al., 1983, 1984a). If one wants to obtain, for instance, the matrix
element <g|M™|1>, then one uses

<g[M1> = § <g[M[p><a| 1>, (3.19)
h

i e e —
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This shows how <g|M%}i> is built up from the lower order matrix elements

<h|M“"l|i>-‘ Due to the nearest neighbour structure of the hopping matrix M

(s;é éé..(é;;);;itdé-chééé;QEEQe sgéps of the ifefation'fbr <E|MRi> can be
visualized‘by Mg. 4. From scme starting point, in a given order, alwayg a
fiﬁite numbef of polnts is reached. Dufing the iterafion it is possible to
chobse tﬁe boundary conditions for the qﬁérks independently from the given
boundary coﬁditioné (usually periodic) of the gauge configuration. In the
casé of the "periodic box™ iteration the quarks also.obey periodic boundary
conditions. In the "copiéd gauge Eield” iteration the quarks propagate
without boundaries over the periodic gauge field background. A mixture of
both ways is also possible: "periodic box" in the space directions and “copled
gauge field" in the time direction. The advantage of the copled gauge field
iteration over the periodic box iteratiom is, that the quark propagators are
defined for continuous momenta {(not just for the discrete values in Eg.
(2.5)). Therefore, 1t 1s possible to analytically continue the hadron
propagators to real energies by doing a Laplace-transform with real E = - ips,s
instead of the Fourier-transformation In Eq. {2.28). This allows to look
directly for the particle singularities (for fixed E in the hopping parameter
variable) by a Pade-approximant technique. In such a way direct information
1s obtained on the nature of the singularity: the localization of cuts or
multiple poles (e.g. due to radial excitations (Hasenfratz et al., 1984a)
becomes possible. This 1is potentially a very useful possibility also in an
unquenched spectrum calculation with light dynamical quarks, where the
resonances (p,4,...) are "hidden" behind multiparticle cuis. The price of a
high—order calculation with copled gauge fleld lteration is the growing number
of points reached in higﬁer orders {(and hence the growing length of the arrays

in the computer program). For illustration, the number of poiuts with given
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distance 2 = 0, 1,..., 16 on a four-dimensional hypercubical lattice is given
in Table IIT.l.

The required order In the hopping expansion depends on the gauge coupling
B = ZNcgdz aud on the quark mass (it is higher for larger 8 and for smaller
quark mass). At B = 5.7 in SU(3) (Nc = 3), for instance, good results can be
achieved in 327 order. In the test case of free Wilson fermions (with r = 1)
the positien of branch point singularities in the multiquark amplitudes are
reproduced in 32™ order within 1-2% in case of mesons and 4~5% in case of
baryens {Kunszt, 1983). For non-zero coupling (g # 0, B < ®)} the situation is
most probably even better. The order of the quark propagator calculation is
chosen in such a way, that for the required hadrouic amplitude some given order
can be achieved. For instance, a 3z0d order calculation of the mesonle
amplitude in Fig. 1 requires, that the quark propagator iteration runs upto
the maximum distance £ = 16 from the given ilnitial point (see Flg. 4). It can
be easily seen, that with this set of quark propagators the baryonic amplitude
in Fig. 3 can be calculated upto 33T Grder. It is alse clear, that mesonic
amplitudes contain only even powers of K, whereas the baryonic ones both even

and odd powers.
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D, Results for Wilson—fermions Quenched hadron mass calculations with

Wilson—quarks were performed by several authors; besides the already mentioned
Referencea (Hamber et al., 1981; Weingarten, 1982; Hasenfratz et al. 1982a,
1982b, Hasenfratz et al., [984a xunszt, 1983) see also (Fucito et al., 1982a;
Martinelli et al., 1982b, Neingarten,71983a; Hamber et al., 1983b; Martinelli
et al., 1983a; Bernard et al., 1983a; Gupta et al.,, 1983a; Bowler et al.,
1983; Bernard et al., 1983b; Lipps et al., 1983; Gupta et al., 1983b; Fukugita
et al., 1983, 1984a; Fucito et al., 1983; Patel et al., 1983; Bowler et al.,
1984b; Langguth et al., 1984; Billoire et al., 1985; Kénig et al., 1984; Itoh
et al., 1984). Qualitatively rather good results for the spectrum were
reported already in the first ploneering papers, although the physical lattice
since was very small: typically less than 1 fm. (The sitwation became even
worse when more precise string—tension measurements {(Gutbrod et al., 1983;
Parisi et al., 1983; Hasenfratz et al., 1984c; Barkai et al., 1984; Otto et
al., 1984b) suggested an even smaller lattice spacing than it was thought
bvefore). The importance of some minimum lattice sice was rea}ized, however,
goon (Hasenfratz et al., 1983; Martinelll et al., 1983a; Bernard et al.,
1983a; Gupta et al,, 1983a; Bowler et al., L983; Politzer, L984) some
exploratory studies on larger lattices showd (Lipps et al., 1983; Hasenfratz
et al., 1984a; Billoire et al., 1985; Konig et al., 1984) that the most
drastic finite size effects go away if the spacial size of the lattice reaches
1.7 - 2.0 fm and the temporal size is roughly twice as much. The larger
temporal size 1is ngeded for the separation of the lowest state from radial
excitations. The elongated lattice for the_calculation of quark propagators
can, however, be prepared by copying a symmetric lattice periodically twice 1in
time direction.. In the hopping éxpansion method this is done anyway, 1f the

copied gauge field iteration is applied. In this case one has, however, to do

e s W ea Y i Toa T
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a high enough order calculation to exploit efficiently the distant time-
slices. In practice this means that for an effective time-elongation N
roughly an order ZN_ is required in the copled gauge field hopping expansion.

Assuming a string tension 7€ = 420 MeV, the receat SU(3) string-tension
calculations give for the lattice spacing.

~

a(p = 5.7) = 0.2l fm,

a(p

5.8) ~ 0.16 fm, (3.20)

a(8 = 6.0) = 0.12 fme

Therefore, the minimum required lattice size is roughly 8 . 16 (at B = 5.7),
123 + 24 (at 8 = 5.8) and 163 32 {at B = 6.0). WNote, that the lattice scale
between B = 5.7 and B = 6.0 changes more rapidly than "asymptotic scaling”
with the two-loop perturbative B-function B Eé) +> -ﬂogs‘ Blgs in Egs. (3.2-
3.3) would require. Of

course, hadron masses on the lattice should scale also

. according to Fq. (3.20), in order to be consistent with a continuum (scaling)

behaviour. The presest situation is not in coqtradiction with such a

behaviour between B = 5.7 and B = 6.0 (see Table IIL.2). The errors are,
however, still somewhat large, and the B = 6.0 results presumably suffer from
somewhat more finite size effects. The results of (Kénig et al. 1984) may be
better from this point of view, but it is not, clear what is the influence of
the (approximate) blaocking procedure introduégd by (Miitter et .al., 1984a,
1984b) .

Note that the critical, hopping paraveter value K.,., where.the pion mass

vanishes, is substantially larger at 8 = 5.7 (g"2 = 0.,95) and B = 6.0

ctn e ey
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(g'z = 1.0) than the omne—loop perturbative value (Kawamoto, 198la; Stehr et al.,

1982):

N 2—1
I=loop _ c 2
Kcr = 0.125 + 0.0101786 ZNC g

. (3.21)

This also shows, that in this region important non—perturbative, {or higher
order} effects are present.

Besides finlte size effects, the other limiting feature of the existing
calculations is the statisticas. Most calculations use less than 20
propagators per X-value. In (Langguth et al., 1984) 80 meson propagators and
40 baryon propagators were collected, whereas (Komnig et al., 1984) has 72
propagators per K-value. The experience with higher statistics shows, that
for light quark wasses the calculation of a few hundred propagators is
probably not an exageration.

Cowparing the numbers in Table IIT.2 to experimental masses, it turns out
that there Iz a rough agreement between the overall scale given by thé masses
and the scale (3.20) obtained from the string-tension. The mass ratios,
however, deviate from the right ones: to ratio mp/mp comes out around 1.8 and
the & —p mass—splitting has a teadency to be too small. {(Note in this
respect, that in (Billoire et al., 1985} non-relativistic baryon—operators
were used, Instead of the standard relativistic ones Eqa. 2.16-2.17. The
standacrd operators would have given also there higher baryon masses). The
disagreement of mass ratios can come from the explicit breaking of chiral

symmetry introduced by Wilson lattice fermions, but perhaps even more

probably, can also be characteristic to the quenched approximation.
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E., Kogut—-Susskind fermions and variant actions. There exist also several

quenched hadrom spectrum calculations (Marinarl et al., 198la; Hamber et al.,
1983b;Bowler et al., 1984b; Billoire et al., 1985; Hamber et al., 1982;
Marinari et al., 1984; Gilchrist et al., 1984a, 1984b; Billoire et al.,
1984a, 1984%H, 1984¢) with Kogutr-Susskind lattice fermions {Banks et al., 1977;
Susskind, 1977; Kawamoto et al., 1981b; Gliozzi, 1982; Kluberg—Stern et al.,
1983}, In this formelation the problem of chiral symmetry and the associated
proliferation of fermion degrees of freedom is treated differently. For zero
bare quark mass there is an exact U(l)vectordaiul)axial symmetry of the
lattice acticn, and the spontaneous breaking of the U(l)axial part implies the
existence of a massless Goldstone-boson also ia the strong coupling region
(Blaircon et al., 198F; Kluberg-Stera et al. 198l; Jolicoeur et al., 1984).
Flavour symmetry (like isospin etc.) is, however, explicitly broken, therefore
an Important question for the numerical calculation 1s to study the masses of
non-Goldstone pseudoscalar mesons. This was done for SU{2) gauge theory in
(Billoire et al., 1984a, 1984c) and the result showed near B = 2.3 - 2.4
strong evidence for various light flaveured pseudoscalar wesons, ia accordance
with a Nambu-Goldstone realization of full chiral symmetry in the continuum.
The extraction of hadron masses froﬁ the hadronic two-point functions is
a non-trivial task for Kogut—Susskind Ffermious, especially in the baryon
sectot. This is due to the mixing in flavour and spin-parity caused by the
explicit symmetry breaking terms. In the case of SU(3) colour upto now only
the simplest (lecal) hadronlc operators were considered, therefore the
interpretation of the numerical results in terms of the masses may have some
systematic uncertainty. For a collection of some recent results see Table
Comparing the values at 8 = 5.7 (where finite size effects are

III.3.

presumably smaller) to Table III.2 we see reasonable agreement for the nucleon
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mass. 1In the case of the p-mass, however, where the errors are small, there
is a definit disagreement: the apparent lattice spacing seems to be about a
factor 1.6 smaller for Wilson-fermions. GCotrrespondingly, there is no problem
with the mplmp ratio for Kogut-Susskind quarka. This is actually not a
surprise, since this ratlo 1s essentially correct already in strong coupling
{Xluberg-Stern et al., 1981l; Jolicoeur et al., 1984}. In summary: the
quenched hadron mass calculations with Kogut—Susskind fermions are promising,
but the difficult problem of mixing (in flavour and in spin-parity)} deserves
further study, in particular in the case of non-degenerate flavour masses
(Golterman et al., 1984a, 1984b; Gdckeler, 1984).

Besides changing the fermion part of the action the gauge part can also
be changed, for instance, in order to improve the scaling properties in the
intermediate coupling range. Some attempts in this direction were already
undertaken (Bowler et al., 1984b; Itoh et al., 1984; Marinari et al. 1984), but
within present precision there are no substantial deviations from the simple

Wilson gauge actiomn.

. y o S e e\ | oo s ey e et oot

-13-

F. Other static hadron properties. Once the hadron mass calculation 1s under

control, one can start to calculate a large number of differeant static
hadronlc matriz-elements, which are of Interest Iin strong and electroweak
interactions (Pucito et al., 1982b; Bernard et al., 1982; Martinelli et al.,
1982a; Ali et al., 1983; Cabibbo et al., 1984; Brower et al., 1984; Gottlieb
et al., 1984; Velikson et al., 1985). Many of these matrix elements Iinvolve
the electromagnetic or weak currents which are conserved in the continuum.
Such conserved vector currents can be definea on the lattice, too (Karsten et
al., 1981). For Wilson—fermions the appropriate choice is (for Ny = 3

degenerate quarks):

A

8 _ -3~ 8 -
Ve -Ka {¢x+; (r+y) UG, ) 5 ¥,
~ > As
S ACER PRGN T (3.22)
X+

The Gell-Mann matrices Ay (s =0, 1, +..y 8) act here in flavour. It can be
shown, that as a consequence of the equatioﬁs of motions GSf/6¢x= GSf/6$x= o,

the current in Eq. (3.22) satisfies the "conservation equation”
oS vty =0, ‘ (3.23)

The advantage of the consetrved current in Eq. (3.22) over the "naive” local
currents like const * Equwx is, that as a cﬁnsequence of Eq. (3.23), the
strength of Vi,u is not renormalized. Therefore, the matrix elemenfs of the
vector current in Eq. (3.22) can be directly compared to measurable

quantities. In the case of other (for instance, axialvector) currents the
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only way to determline the multiplicative renormalization 1s, at present, one-
loop perturﬁation theory (Meyer et al., 1983; Martinelli et al., 1983b, 1983c;
Martinelli, 1984; Groot et al., 1984), which is unrealiable Iin the
intermediate coupling constant range. (Examples for the failure of low order
perturbation theory are given by Kcr’ see Eq. (3.21}, and by the
"oversheoting™ of asymptotic scaling according to Egq. (3.20).)

The calculation of two—point current amplitudes from Eq. {3.22) requires
the quark-propagator combinations deplcted in Flg. 5. This i3 somewhat more
difficult than the combination in Fig. 1 for the local currents, because the
quark propagator has to be evaluated from two neighbouring initial points.
(For a first attempt see {Ali et al., 1983).)

229 matrix elements (like nucleon magnetic

Another way to calculate q
mowents (Bernard et al., 1982; Martinelll et zl., 1982a) is to introduce an
appropriate external classical field in the fermion part of the acticon, and
compare the results with and without such fields.

An important piece of information can be obtained by calculating matrix
elements of the non-leptonic decay Hamiltonian (for K-mesons, D-mesons, PF-
mesons, etc.). The required quark propagator diagrams (Cabibbe et al., 1984;
Brower et al., 1984) are shown in Fig. 6. The last diagram in the figure is,
unfortunately, as difficult as the second part of Fig. 2, but the evaluation

of the first two quark propagator conflgurations gives already some useful

information.
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G. Outlook. In conclusion, the status of quenched lattice calculations can

be considered as satisfactory. The quality of the present results corresponds
reasonably to the invested effort. It is quite clear, however, that further
improvement 1s both necessary and possible. Since the quenched calculation
is, techmnicalily speaking, a part of the final task with dynamlcal quarks, high
standard guenched calculations are absclutely necessary. An example of a nice
"two-star” quenched calculation of the hadron spectrum would be: to take 123 .
24 latvice at 8 = 5.7, 187 + 36 larvice at B = 5.8, or 247 + 48 at B = 6.0
with several thousand quark-propagators per quark-mass. The corresponding
hopping expansicn calculations would be: 481 order om 12% gauge~field at 8 =
5.7 etc. In this case the optimal iteration for the quark propagators 1s
presumably on a periodic spacial box, with copled gauge fieid in the time
direction. In such calculations Einite size effects would be probably very
smzll (in the range of a percent) and the statistics would be enough to have

agood accuracy for light quark masses (perhaps 0.03 - Q.05 in lattice units).
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IV. Dynamical Quarks

one obtains

A. General Formulae.

As it was discussed at the begluning of the previous Section, the quark . 4 ngf= - Indet (1 - KD) = - Trla (L - KD} =

part ngf of the effective gauge field action ia Eq. (2.12) describes the
effect of closed virtual quark loops on the gauge field dynamics. The

bl
resulting interaction is Inherently non-local even i1f the original fermion =¥ EEH Tr (Dj) (4.3)

371

action (before the integration over the anticommuting fermion varfables)} was

tocal. This non—locality is the reason why it is so difficule to include These formulae are valid actually for a single quark flavour with hopping

dynamical quarks in the numerical caleculatioons. parameter K. In the many-flavour case the Wilson-fermton action is block

In the updating procedure always the change of the action 1s needed for a diagonal in flavour, therefore 4 ngf is a sum over flavours with different

given change of a link variable U(x,u). From &q. (2.12) and (3.5) it follows hopping parameters K » ¥, (@ =u, d, 5, cas)s

In the expectation values like Eq. (2.l1) and (2.13) the quark

determinant det(l-KM) can, in prineciple, also be considered as a part of the

asd =53 (0 - 83 (W) = - indet Lo XM AU (4.1)

eff eff T- & () gauge fileld dependent quantity to be evaluated with the pure gauge statistical

distribution dUexp(—Sg(U)). Denoting such pure gauge field averages by <..e2,,

the expectation value <F> in Eq. (2.11), for instance, can also be written

Introducing the notations 1like
-5
; 134
Fe 5
_ M{U') - M(U) _ R -1 _ o
T A S <Er = g . ' (4 4)
<e eff>
[+]

According to this formula one has to perform the Monte Carlo updating with the

AMx2x1= xzu (r + Yu) & Ulx,p) Gx el sx,xl' simple gauge field action 5,(U), and then caleulate ngf on the given gauge
' ¢ configurations. We shall seé below, that such a procedure is impractical for
) small gquark masses, but for the theoretical{uﬁderstanding it could still be
A (x,u) = U (x,u) - U (x,1), (4.2) -

useful. In particular, 1f the quark part of the effective action ngf can be

considered small, one has the expansion (Joos et al., 1983):
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- ~ T -
B =< [<seffr>

2]
[} <"’eff>o<F>o‘f *

1l ca 2 _ gl 2 - q q
t 2 <seff F>u <Seff >O<F>0 z <Seff>o <SeffF>o +
r2ed SPem 1 .. . (4.5)
eff’a [*]

Here, on the right hand side, only the fluctuations of Ssz matter, namely

with

§ FzF -~ <F>°,

5 Sgre Sers” AT (4.6)
one has

2
) 6F>0 t ves (4.7)

= - q 1 q
<F>V P~ <8 500 8 B+ 2 (6 Sofe

This shows, how the non-locality of Ssz reflects physics: although ngf
extends over the whole lgttice, in expectation values only its correlated
%luctuations matter, therefore the non-locality of S:EE is practically
restricted to regions in which correlations are actually produced by virtual
quark propagation. In Eq. (4.7) {F>, corresponds to the quenched

approximation and the further terms on the right hand side represent the

corrections to it. The difficulty in the application of g, (4.4} or Eq.
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(4.7) to the calculation of unquenched averages lies in the fact that in a
gauge configuration ensemble produced by the pure gauge action the
fluctuations of Sfo are very large for light quarks. As an example, for
SU{2) gauge group on 104 lattice with Ng = | flavours, this is shown in Fig.
7. Therefore, Eqs. {4.4) and (4.7) can be applied in practice only for heavy.
quarks. 1In the above example the meson masses could be determined only for
dynamical quark masses amg = (21(q)—1 - (ZKCI}_1 # 0.2 {roughly 200 MeV in
physical units) (Montvay, 19831).

Another way to represent the difficulty of numerical calculations with
dynamical Fermions is to recall the expectation, that the bulk part of the
quark determinant is needed just to produce the required renormalization of
bare parameters. This means, that a relatively small change in physfcs (i.e.
in mass ratios etc.} is accompanied by a rather Inconvenient shift in the
scale. The shift in bare parameters can be seen already in the lowest order

approximations to ngf‘ According to Eg. (3.17) we have

8

i . .
wKJ,—Tr @ = 58 U, (4.8)

=
q .
Sie= L
eff” L § 5 ets

Let us now consider only the Wilson-parameter value r = !. In this case Eq .
(3.18) implies that the first non—vanishing term is ngéq) {and only even
values of the iadex j contribute)., Tt car be easily shown that the filrst two

non—~vanishing terms look like
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s8I _ 16 k™, jRe Tr U =
eff £ a

4

= - 4K N, } I ] Re Tr U ,
£ x Wo vk (wv)
g1 (8, K N, ) i i 8 Re Tr U T
-~ ~ ~ »
eff 3 X BP0 VieseVo — M, Vohaeat ¥ (”“1"'“5) (uvl.-vs)
1 5 1 5
q . (), .a (6) .
Sefr™ Seps * Sags Tt (4.9)

Here Ny degenerate flavours are taken and [] is a positively oriented

(%) by (pv}. In the pth

plaquette, also denoted in the second form of ngf

order term the factor T 1s the Dirac-irace given by

(uul...vs)

- 32 for (M) eevg) -]
T vy - 16 for (b e ovg) = @
17"V
- 16 for Gy eaevg) =

(4.10)
As 1t 1s shown by Eq. {4.9), the 4T Grder term corresponds to a shift

48 = 16N, Ng K* (4.11)

2

in the coefficient B = ZNCg_ of the l-plaquette gauge action. Sinece AB is

(4)
1

positive, the lattice spacing is decreased by Sg (and also by the whole

e ey
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ngf)- The lowest order terms fn Eq. (4.3) show, how, by the application qf
the formsla (3.18) the quark part of the effective action can be decomposed
into 2 sum over closed Wilson—loops, multiplied by gsome Dirac-trace and
combinatorics factors. Since the mean values of more complicated Wilson—loops
are correlated to the single-plaquette expectation value, it is not very
surprising that the mean value of Siff can be approximated quite well by {(Joos

et al., 1983)

a x 1 gled o
Seee” W Seer X W (4.12)

(0)
eff

quark effective action (see Eq. (2.8) for the derivation):

Here W;; is the single plaquette expectatlon value and § .-{K) is the free

(o} -
Seff ® =

=-2NN JIln{|l -2« ] coskj2+4K2 1 sinzk}. (4.13)
ka I

10 o Lo

The approximation formula (4.12) works well only for the average, the

fluctuations of S:ff are, unfortunately, not properly reproduced.
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Pseudofermion method. For the gauge fleld updating with dynamical Fermions,

according to Eq. (4.1-4.3), matrix elements of the quark propagator Q_l H
(k-KM)-l have_to be calculated. In the "pseudofermion method” of Fucito,
Marinari, Parisi and Rebbi (Fucite et él., 1981) this is done by introduciang a
complex scalar "pseudofermion™ field ¢y, having the same numbe; of components
as the anticommuting quark field ¢x’ The quark propagator matrix elements are
obtained by running a separate Monte Carlo calculaticn for the pseudofermion
field over a fixed gauge field configuration. The action of the
pseudofermlions is given by the matrix

2:zqfq =1~ kn - rat+ Kty (4o 14)

This is positive defianit, as .required for a Monte Carlo calculation and, due to

Ey. {2.4), its determinant is related to the quark determinant by
det § =4 det & . (4.15)

The matrix elements of the quark propagator can be obtained as

L agag 0i@e) e (-4, 9
B e exp (018 0))

(4.16)

Since the quark matrix in Eq. (2.3) has only nearest neighbour matrix
elements, the pseudofermion action & exteads upto next-unearest neighbours. In
the pseudofermion Monte Carlo it is coavenient to introduce the auxiliary

fleld {(Hamber et al., 1983a)
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')(, SCRIT (4.17)

with ¥, Bq- (4.16) can be written like

ol J de¥de exp (X x ) #p X; 18)
7 avtas exp (= %)

In principle, the pseudofermion Monte Carlo has to be rua after every change
of a single link. This would cost, however, an enctmous amount of time,
therefore the matrix elements QI; are kept usually for a full sweep over the
gauge variables and then evaluated again. This implies some violation of the
detailed balance condition for the Markov-process of Monte Carle

integration. Ancther approximation usually iantroduced in the pseudofermien
method is, that ia the expansion (4.3) only the lowest order term with j = 1
is taken. Since D is proportional to the change AU of the link variable, this
is a good approximation for small changes & U + 0._

The pseudofermion method was tested first in the 2-dimensional Schwinger
model (Marinari et al., L98lb; Otto et al., 1983; Burkitt, 1983). First
studies in QCD were carried out on small (24 and 44) lattices (Otto, l984a;
Bhanot et al., 1983; Azcoitl et al., 1983)., Some results for the plaquette
expectation value and <§Y> were obtained on 8% lattice in (Hamber et al.
1983¢) with Kogut-Susskind fermions. We have seen in the previous Sectioa
that, at least in the quenched approximation, good results for the hadron
spectrum can be achieved on g4 lattice copled at least twice in the time
direction for the quark propagator calculation. Such & lattice size is not
yet achieved in pseudofermion calculations of the hadron spectrum, but some
studies on 4% (Azcoiti et al., 1984), or four—times copled 44 (Hamber, 1985)

lattices were already performed with Ng = 3 light Wilson-quarks.
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C. Iterative hopping expansion method. The matrix elements of the quark

ptopagator required for the gauge field updating with dynamical fermions can
also be directly evaluated in hopping parameter expansion. The change in the
quark part of the effective action is given in Eq. (4.3} by the matrix D which

has the detailed structure

Dm (L -mnTh L ) 8 UG,
Ky x+y

-1 +
Biy= (i - KM)x’x(r - Tu) & Ulx,p) ,

Dy, = (1 - T I L (8 YD AU,
x+ U, x+u

Dy, (=KL (r -y 8 UG (4.19)
P, X

In what follows only the case r = 1 will be considered. In this case the non—

zero contributions Iin the hopping expansion look like

D)= ) Kyt L+ Ty AB(x,u),
L= 3,5,.. x,®kt)
. P, +
D,,= I KM(UY, (1 =y ) AU(x,u),
120 24,6, X "
L 4
Dy= L KM . . () AUGx,),
2=4,6.. xHL, XU
Dyp= L Fu® .- ) e’ (4.20)
2= 3,5,.. xFU,x

e L R e o i e s e T i e T e e mm ey e e
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The “periodic box iteration" of the hopping parameter series (Hasenfratz et
al., 1983, 1984a) was adopted for the unquenched updating in (Montvay, 1984).
To speed up the code for the evaluation of the required matrix elements M(U)L
in Eq. (4.20), a useful observation is that it is enough to compute only for
half of the initlal spin index values. In the Dirac-matrix representation
glven by Eq. (2.18) this is trivial on links In direction u = 4, since (I %
Y4) igs non-zero only for half of the index values. For the other directions
one can use, for instance, (k = 1,2,3):

1-y 1+ Th 1 - Y,

4
(1 + Yk) 7 = {1+ Yk) 2—1k—?:~— v (4.21)

IS

This shows, how the two lower components of e.g. M{U)
X, 5tk

(1 +7Y,) can be
expressed by the upper two.

The average relative weight of the differeat orders of the hopping
parameter series in £q. (4.20) is shown in Table IV.l for some representative

cases. It can be seen that the hopping expansion converges, in the average,

reasonably well within 168 order. The 16th order caleulation would, however,

* take still too mich time. Actually caleulated were Ia (Montvay, 1984;

Langguth et al., 1984) (on every link) 8th or 128N Gyders. This takes still a
lot of time: one sweep on the 8% lactice (Langguth et al., 1984) took ~ 40
ninutes in 8 order and ~ 240 minutes in 121 srder on the CYBER 205 at
Karlsruhe University. It is very ilaportant, that it 1s possible to correct,
at least in the average, for the omitted higher orders. This 1s due to the
fact that the higher order coefficients are ;trongly correlated to the lower
ones. Such a behaviour is already suggested by the approximate validity of
the formula {4.12)., Using the correlation allows toc estimate the result of
the £,.. = 16 order series from some lower order (e.g. L

ax = 8 or Lo = 12)
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calculation. For imstance, in the 64 calculation of {Montvay, 1984) the fnax
= 16 result could be obtained in the average by multiplying the lmax =8
number by a factor A = 1.l4. The same factor needed Erom Phax = 12 €0 &, =
16 was A = 1.03. This brings a substantial gain in computer time but, of
course, increasas the error for the quark determinant. HMonltoring the
difference from time to time on a few hundred of 1iuks, it turned out that the
estimate based on the extrapolation from imax = 8 deviates In the average from
the exact lmax = 16 value by ~ 16%. The corresponding average deviation far
Lpax ® 12 extrapolated to fgy = 16 was 5%. The error in the determinant
ratic cawsed by this extrapolation is far from being normally distributed. In
most cases the deviation is mich less than the average, but sometfmes (in a
few percent of cases) also errors In the order of 100% occur. It seems
plausible that the effect of the few cases, where the error due to the
extrapolation from the lower order to foax = 16 1s large, averages out and
does not influence the updating process on the long run. It is also possible
to improve the extrapolation to the higher orders by a more elaborate use of
the covariance matrix between iadividual lower and higher order expansion
coefficlents.

First results on the hadron spectrum using the hopplag expansion method
in the updating with kight dynamical quarks were obtained in {Langguth et al.,

1984} on 8% lateice. Ng = 3 degenerate quark flavours were considered in two

points of the (B, uq)-plane (HqE (ZKq)-i)i

3.0675.. (K

5.4, u 0.163),

L}

polnt A: B

point B 8 = 5.3, n, = 2.9762.. X 0.168). (4.22)
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For comparison, an g4 quenched calculation was performed, too, at B = 5.7.
Some planar Wilson-loop expectation values are given in Table IV.2 for these
three cases. Also planar atd off-axis alongated Wilson-loop expectation
values were measured in order to determine the static energy E of an external

SU{3)-colour charge pair by

aB(R) = - lin % In W(R,T). (5.23)
T4

Here W(R,T) stands for a Wilson-loop with length T in the time~direction and
euclidean distance R between the endpoints in fixed time-slices. On the a4
lattice T is, of course, restricted to T < 4 by the periodic boundary
conditions and R has possible values R = 1, ¥2, ¥3, 2 v5, /6, V8, 3 and Y10
(larger values of R were not considered because of statistics limltatioms).
The obtained static energles are shown in Fig. 8a—8c. The expected screeaning
due to the virtual quark pairs (Joos et al., 1983) cannot be seen. The static
energies with dynamical quarks are, in fact, remarkably similar to the quark-
anti-quark potential in Fig. 8c. VYery probably, the distance between the
external colout charges 1s not large enough (R = fia'corresponds roughly to ~
0.5 fm, as we shall see below).

The m, p~, p~ and A— masses were determined on the g4 configurations by
32 Grder (for the baryons 33rd order) “copied gauge fleld" fteration in
hopping parameter. (See previous section.} The results are shown in Fig. 9a
- 9c as a function of the quark mass y = 2zx)7! 1n the quark propagator. The
quenched caleulation (Fig. 9c) was already discussed in the previeus Section
(see Table I1I1.2}, Ia the physical points, where the quark mass in the
determinant is equal to the quark mass in the propagator (ﬁq =1y), the

unquenched result is

B N A PRNY . U P U S S0r. S, DI, S W S S SO - S SN S SN O S R S W S S S S
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Polnt A: amy = 0.79 + 0.01 am, = 0.95 + 0.01
am, = 1.62 £ 0.02 amy = 1.74 & 0.02
+0.1 _
Point B: am, = 0.3_0.2 am, = 0.62 = 0.05 (4.24)
amp = 0785 + 0.15 am, = 1.09 + 0.15 = amp + (0.24 + 0.09)

It can be seen, that point B is quite near to the critical line ucr(ﬂ), where
the pion mass (and quark mass)} vanishes (see Fig. 10}. This is the reason of
the deterloration of convergence for A ngf’ as shown by the last line of
Table IV.L + This implies am unknown systematle error in peint B. Taking
(uq- ucr) Z 0.06 in point A and (uq = Bep) = 0.0l in point B as an estimate of
quark mass in lattice units, and using Eqs. (5.15—5.17) one obtaines for the

renormalization group invariant quark mass Mq and lattice spacing a:

Point A: Mg = 170 MeV a = 0.87 gev'!
Point B: My = 30 MeV a = 0.76 Gevl (4.25)

(These numbers are different in (Langguth et al., 1984), because there Eq.
{5.16) with ¢ = 1 was taken. The estimate for ¢ in Eq. (5.17) is probably

closer to the reality.) Assuming the validity of asymptotic scaling (with

zeto quark mass) in point B, the obtained value of the A-parameter is: Alat(Nf -

2 1.,/ MeV, This corresponds (Kawai et al., 198l; Weisz, 198t)

3}
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Amom o

to -1 F 180 MeV. Of course, the question of asymptotic scaling (or
scaling in general) cannot be decided on the basis of only two polnts in the
(8, uq)—plane. Some evidence for both points A and B belng within the scaling
region comes, however, from the fact that rotation symmetry 1s well satisfied
for the static energies shown by Figs. 8a—8h.

A direct comparison of the results in Eq. (4.24) with the quenched masses
in Table IIL.2 is difficult because of the different quark mass dependence and
because of the ;hift fn scale. 1In spite of this, one can see already in point
A with quark mass Mq 2 170 MeV, that the p/p mass ratio is decreased if one
compares at similar values of (u-u,.)} in Fig. 9a and Fig. 9. The p/p ratio
in polnt B with Hq 2 30 MeV is m.P/m'o % 1,35, therefore considerably lower than
in the quenched case. The error Is, however, still somewhat large to draw a

definite concliusion.
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V. Scaling with Dynamical Fermioms

The detailed study of the scaling properties in pure gauge theory has
shown.(for_SU(Z) see (Qgtbrod et al., 1984; Mackenzie, 1984; Patel et al.,
1984); for SU(3) (Hasenfratz et al., 1984b; Bowler et al., 1985; Gupta et al.,
1984), that asymptotic scaling (corresponding to the two—loop perturbative -
function) is not yet reached in the intermediate coupling range, where most of
the Monte Carlo calculations of physical quantities are performed. There 1is,
however, an important region ﬁheré dimensionless ratios of physical quantities
are, to a good approximation, independent from the bare coupling. In this
"scaling region" physics is dictated by the continuum theory and the change of
the lattice scale is givem by some general non=-perturbative B-function. In
order to perform an optimal numerical-calculation, the precise knowledge of
the scaling reglion and of the B~function is very important.

In the case of a lattice gauge theory with dynamical fermions a similar
situation has to be expected. The additional complication in this case is,
however, that the scaling properties depend on two parameters: besides onr the
gauge coupling also on the dynamical quark mass. Before discussing the quark
mass dependenée of the lattice reaormalization scheme, let us first briefly
summarize some facts about the renormalization group equation (RGE) with
quarks.

In a mass-independent renormalization scheme (for a reivew see {(Peterman,
1979) the RGE for a physical quantity P{u, g, m) depending on the
renormalization point wmass parameter 3, the renormalized coupling g aand

renormalized quark mass m, is

{n %E-+ B{g) %g -y(glm %E} P =0. (5.1)
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Here and in whaf follows it will be assumed, for simplicity, that the
different quark flavours are degenerate in mass. The expansion of the RG-

functions is

B(g)

3 5 7
- Bog - Blg = Bg - e (5.2)

i

2 4
yig) yog + ylg + e

In QCD with SU(NC) colour and Np flavours we have

f o1 1IN, ) 2N }
o am? | 3 3
2

. 3N 13N,
B,= { - N ( - ‘_J}’
I amyd 3 £73 TN

. 308 2-1)
y = e 7, (5.3)
[+] (4“)2 NC

These are the unlversal expanslon coefficlents. All other coefficients depend
on the renormalization scheme {lattice action etc.).

The two stamdard solutions of the RGE {the so-called standard
"rencrmalization group invariants”) are the A-parameter and the

renormalization group invariant (BGI) gquark mass M:

1
2 2
-B, /28 2B g B
2
A U0 e e (] ax (g + 2 - L),
o 8 x B “x
o )

0 Y, /2B b

M=m (ZBog y ¢0° exp {z dx [%%;% + Eﬁ;]} . (5.4)
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(The normalization of M cerresponds here to {(Gasser et al., 1982). Every
physical quantity is a function of A and M only, therefore the "curves of
constant physics” in the (u, g, m)-space are parameterized by M, A = comst.
Using the freedom of finite renormalizations, it is possible to Ifntroduce new

renormalized parameters by

g' =g I (g7, u' = o,

m' =m Zy (g,2); (5.5)
where A = M/A is a dimensionless measure of the RGL quark mass, and the
functions Zj (j = 1, 2) are assumed to have the small-g expansion

2
zj(g,x) =1+ aj(l) g7+ ... (5.6)

1
Introducing the dimensionless varlable £ = %— for the renormalized quark mass,

one obtains from Eq. (5.1) the new RGE

3 ' 3 4 -
fh g+ B (8" 8) 5 ¥ Byg"u0) i} P - 0. (5.7
The RG-functions are related to the old ones by
] azl .
' =
Bg(g ,2) {B(g) lzl+ g _“ﬁ’g_l;'g =g (g',A)’
3 ln ZZ:
B,(8" %) - -2 L+ ) - B —— b, ay
Az = s, (5.8)
A M

o —— e T e A e T T T T T i T T T T N T T T

e e et e o e im0 e imma e e e | ===

It can also be shown, that the new and old RGI's are related by

al(?\)
B

o

AT = A exp{ }, M' = M.

(5.9

Using the lattice as a perturbative renormalization scheme, the simplest
convention is to keep the mass~independent scheme corresponding to Eq. (5.1).
This was, in fact; done in previous works ou the RGI quark mass {Gonzalez-
Arroyo et al., 1982; Hamber et al., 1983d; Golterman et al., 1984a, 1984b;
Gockeler, 1984). In the nonperturbative region, however, where the numerical
calculations are doune, it is more convenient to define the renormalization

scheme by the hadron masses. In the case of Wilson—fermions one has to find

first the critical line p,.(8) in the (B,uq)—plane (with B = 2N.g 2 for the
gauge coupling, as usual, and by = (2Kq)—1, where Kq is the hopping parameter
of the dynamical quarks). In perturbation theory this is equivalent to cancel
the linear divergences in the quark self-emergy. In general, ucr(ﬂ) is the
line where the lowest 07 mass and the (bare, renornalized and RGT) quark mass

vanish., Having the value of the eritical hopping parameter K, = (Zucr)"l

_one can define the bare gquark mass parameter L (in lattiece units) by

=1 _ 1 - _
anys ZKq ZKcr Y™ Yert (510

In the case of Kogut—Susskind fermioms the eritical (zero) quark mass {s not
renormalized, therefore this step is not necessary.

The next step, for any fermion formulation, is to find the lines, where
the hadron mass ratios are conatant. These are the "lines of constant
physics” where the RGI quark mass is coustaant. Of course, scaling for finite

lattlice spacing is always somewhat broken by lattice artifaets, therefore
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"constancy” means always a statement within given errors and within a given
class of hadron masses. To fix the renormalization scheme completely, it is
reasonable to assume that the value of hadron masses (or equivalently, of a
singled out hadrop mass) 1s conatant along the "lines of constant physics™.
Furthermore, by using the [reedom of defining the value of, say,kthe proton
mass for quark mass values different From the physical case, one can arrange
that the value of the A-parameter be independent from the RGI quark mass.
(See Eg. (5.9}!) By this, the value of the lattice spacing a is Ffixed
everywhere in the "scaling region”, where the "lines of constant physics” can
be defined at all. Since there seems to be no reason, why this convention
should define a quark mass independent scheme, the RGE on the lattice has a
quark mass dependent form corresponding to Eg. (5.7)}:

2 2 2
(-2 55 * B (8u) 35 +8, (&) -ga} P =0(a). (5.11)

Here the right hand side represents the scale-breaking lattice artifacts,

which in the continuum limit a + 0 tend to zero at least as fast as (some

power of) the lattice spacing.

The "lines of constant physics" p_ = uq(g) are determined by the

q

differential equation

duq(g) i} Bu(g,uq)
dg Bg(g,uq)

' (5.12)

The different values of the RGI quark mass belong to the solutions with
different initial conditions. Defining the single wvariable B-function for a

given RGI quark mass by:
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= s 5.13
Bq(g) Bg(g uq(g)), ( 3
the single variable RGE for this quark mass is
2l + 8 (@) 2P =o0ga). (5.14)
da q 3z :

The quark mass dependence of the B-function Bq(g) is assumed to appear only In
the higher-order non-universal expansion coefficients B,, Tisuee (see

Eg. (5.2)). Hence for g + 0 (B + ») the quark mass dependence disappears and
the renormalization scheme becomes indistinguishable from the mass independent
scheme of lattice perturbation theory. This (perturbative) mass-independent
regime is, however, presumably very difficult to reach by numerical hadron
mass calculations.

Since the perturbative regime is presently out of range, in the
intermediate coupling range some pragmatic definition of the quatrk mass can be
very useful. A possibility (Langguth et al., 1984) is to iatroduce the RGI
quark mass (Mq) by the lowest vector meson mass m)_:

m_= 2 Mq+ E(Mq) (5.15)
For heavy quarks {(like ¢, b, or t) E(Mq) can be taken, to a good approximation,
from the Schrddinger-equation, assuming some quark-antiquark potential. For
light quarks (u, d, and 8} we can take, as an empirical value E(Mq) 2 0.75 GeV
which agrees well with the p - and ¢ - meson mass. In order to fix the
Near the

lattice scale, besides Eq. (5.153}, still another relation 1Is needed.

critical line Hops where the RGI quark mass is small, one can assume
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an; c(B) (nq— Vo) = e(B) am (5.16)

with some function ¢(B). Having nothing better, one can take for c{8)} the

perturbative expression {(Gonzalez-Arroyo et al., 1982; Hamber et al., 1983d;
Golterman et al., 1984a, 1984b; Gockeler, 1984) at some arbitrarily fixed

coupling B (g):

~70/260

~

e(B) = (2B°§2) 2.5 (5.17)
The numerical value here corresponds to Ng = 3 and B = 5.4 ta SU(3).

An important question is, how the scaling region can look like in the
available part of the (B, uq)—plane. For_].tq + = the quark mass tends to
infinity and the theory reduces to a pure gauge theory. In this case the
gluonic quantities (like string temsion, glueball masses, gluonic energy
density in thermodynamics etc.) show approximate scaling for B 2 5.7. In the
region of light quark masses the results of a recent calculation (Langguth et
al., 1984) indicate, that a tentative shape of the scaling region for light
dynamical quarks could look like shown in Fig. 10. Note the difference of the
scaling regions of pure gluonic quantipies compared to quantities containing

heavy quarks explicitly (like heavy quark bound state masses, quark energy

density in thermodynamics etc.).
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Table TIT.3

The main results of some teceat quenched hadton mase calculationms with Wilson—fermiona.

Some results of quenched hadron mass calculations with Kogut—Susskind

fermions .

8 = 6.0
(Billoire et al.,
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(Gilchrist et al.,

(Bowler et al., 1984b)
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1.05 % 0.30

1.21 £ 0.14
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7.6

a
(mga)?/ (mga)

Table III.2

{it 1s neatly equal to xc for u— and d-quarks). The quark mass mga ta defined in &g. (5.10).

g = 5.7

B =60

K.p is the critical hopping patameter where the ¥-—mass vanishes

Kunsgt et al., 1984)

(Hagenfratz et al., 19B4a;

{Bowler et al., 1984b)

(Langguth et al., L9884}

(Lipps et al., 1983)

(BilloLre et al., 1985)

(Konlg et al., 1964).

144 83 + 16 (copled) 82 « 16 (copled) 103 « 20 10% - 20 163 + 28 (blocked)
Ker 0.1690 + 0.0005 ©.1695 + 0.0007 0.1696 & 0.0016 0.1567 % 0.0001 ~ G.157 -
a8 0.58% b-12 9.53 & 0.03 0.57 £ 0.01 0.37 % 0,02 ~ .35 0.37 + 0,03
ne — 11 £02 1.1 # 0.10 0.97 # 0.14 0.57 & 0.07 ~ 0.45 0.69 £ 0.0
(ay = ny)a 0.1} % 0.06 €.02 x 0.01 0.25 % C.08 G.10 * 0.10 ~ .07 0.10 % 0.04
2.85 £ 0.15 2.5 £0.3 ~ 2 ~ 2.4 —

HPLNZEJ ~ 3.2
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M TABLE IV.2
The average relative magnitude {lu percent) of different orders of hopping
expansion in A ngf' The numbers in the table ate pbtained from the ratio of Wilson~loop expectation values wij = % TrCij in the poiants A and B (see Eg.

the absolute value of a glven order divided by the sum of the absolute values (4.22) for parameters). The numbers in paranthesis are the estimated errors

upto 16%0 order. The first row was obtained on 6% lattice (Montvay, l984) the
last two rows on 86 lattice (Langguth et al., 1984). 1n both cases 10 hits in last numerals. 1In the last line the Wilson—loop expectation values on the
per link were dene in the Metropolis updating and Ng = 3 degenerate quark configurations used for the quenched calculation at 8 = 5.7 are given.

flavours were considered.

order 4 6 8 10 12 14 16
B = 5.7 44 .0 ) 27.9 15.1 7.4 3.3 1.5 .8 Wit le H'13 Wog W23 W33
K = 0.15
#=5.4
At 35.2 27.9 7.7 9.6 5.8 2.6 b.2
K = 0.163 A 0.5298 (9) 0.2996 {12) 0.1719 (11) 0.1099 (10) 0.0428 (8)| 0.0128 (7)
B=25.3
B: 24.2 23.3 17.0 o 13.7 10.1 7.7 4.0 B 0.5428 (10) [0.3205 (12) 0,1912 (13) 0.1295 (8) 0.0546 (9) 00173 (9)
K =0.168
Nf =0
0.5468 (10) [0.3258 (I1) 0.1922 (11) 0.1298 (8) 0.0557 (7) 0.0186 {7}
B=25.7
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Figure Caption

Fig. 1:

Fig. 13

Fig. 3:

Fig. 4:

Fig. 53:

Fig. 6:

Fig. 7:

Fig. Ba:

The quark propagator configuration needed for Elavour non-—

singlet mesons.
The same as Flg. 1 for flavour singlet mesons.
The same as Fig. 1 for baryons.

Illustration of the iteration for the calculation of the hopplng
expansion coefficlient <f|M“|i>. In every step the open points

ate calculated from the full ones.

The quark propagator configuration for a matrix element of

flavour non-singlet point-split current In Eq. (3.22).

Quark propagator configurations needed for non—-leptonic decay
matrix elemeats. The points connected by a dotted line are at
the same site.

The dependence of the fe?mion part of effective action ngf

(the average subtracted: § S:fEE ngf— <ngf>0) on the hopping
parameter K, for 20 different gauge configurations (Joos et al.,
1983). The colour group is SU(2) at B = 2.3 and Ny = 1 flavour

is taken.

The static energy of an external quark-antiquark pair as a

function of the lattice distance for B = 5.4, K = 0.163 with He

q

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

B e

8b:

9b:

10:

B T e U T L e S
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= 3 degenerate flavours (point A in (Langguth et al., 1984}.

The same as Fig. 8a for B = 5.3, Kq = 0.168 (point B in

(Langguth et al., 1984).

The same as Fig. 8a in the pure gluon theory at B = 5.7. The
gauge configurations are those in the quenched calculation of

(Langguth et al., 1984},

Hadron masses as a function of quark mass parameter in the
quark propagator y = (21()-1 for B8 = 5.4, Kq = 0,163 with Ng = 3

degenerate flavours (point A in (Langguth et al., 1984).

The same as Fig. 9a for B = 5.3, Kq = 0,168 (point B in

(Langguth et al., 1984}).

Hadron masses as a function of quark mass parameter y = (ZK)"l
in the quenched approximation for B = 5.7 (Langguth et al.,

1984) .

Tentative shape of the scaling region In the (B,uq)—plane with
Ne = 3 degenerate Wilson-flavours. Scaling could be valid for
purely gluonic quantities to the right of the 1line (8G), for all
quantities to the right of the 1ine {8Q), The critical line
with zero quark mass ié;ucr(B), its perturbative l-loop
approximation is the dashed line. The cruves g belong to

constant RGL quark masses ("constant physics™}. The position of

the two points A, B measured in (Langguth et al., 1984) is also shown.
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