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Abstract 

Recent numerical Monte Carlo simulations of the hadron spectrum are 

reviewed. After a general introduction, different ways of calculating the 

hadron masses in the "quenched approximation" (i.e. neglecting virtual quark 

loops) are described and the latest results are summarized. The pseudofermion 

method and the iterative hopping expansion method for the introduction of 

dynamical quarks is discussed, and the first results about the hadron spectrum 

including the effect of virtual quark loops are reviewed. A separate section 

is devoted to the discussion of the questions relat.ed to scaling with 

dynamical quarks, This reyiew is based on the lecture given at the 1984 Aspen 

Center for Physics as a part of a lecture series about hadron spectrum 

calculations. Some topics covered by the other lecturers are left out 

completely. For instance, the glueball mass calculations and the 

microcanonical way of introducing dynamical quarks are not included. For 

these questions see, respectively, the lectures of Bernd Berg and Janos 

Polonyi. These lecture notes were completed in December 1984, later develop

ments are not included. 

+ Lecture given at the Aspen Center for Physics, August 1984 
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I. Introduction 

The numerical calculation of the hadronic mass spectrum is one of the 

great challenges in lattice quantum chromodynamics. As a results of many 

years of experimentation with strongly interacting particles, the masses of 

many hadrons are known to good precision. The confrontation of this important 

and extensive body of empirical knowledge with the quantum chromodynamics 

(QCD) theory has two important aspects: first, it can provide the upto now 

~issing irrefutable evidence for QCD as the correct theory of strong 

interactions; second, in case of a sucessful reproduction of the known hadron 

masses we would have a marvellous demonstration of the capabilities of a new 

approach in theoretical particle physics, namely large scale computation. In 

fact, this would be the first time ever that masses of elementary particles 

would be theoretically calculated. The number of free parameters for the 

description of hundreds of hadron masses (and other static hadron properties) 

are remarkably small: besides the A-parameter for the colour gauge coupling 

there are only the quark masses for different flavours (six for the moment). 

It is quite sure, that the experience gained in lattice QCD will be extremely 

useful also beyond the theory of hadrons, namely in other relativistic quantum 

field theories. Large scale numerical computation could help in the future to 

extend our theoretical understanding to areas where detailed phenomenological 

study is not (or not yet) feasible. 

At present, we are obviously only at the beginning of this, almost 

revolutionary, development. The first efforts to develop the numerical 

methods needed for the hadron mass calculations started only about 3 years 

ago. The first investigations necessarily had an exploratory character. 

Still, the progress in the field seems to be rather fast, and as it is usual 
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in such cases, a great number of papers (good and bad) were produced. This 

makes a review somewhat difficult and certainly incomplete. Nevertheless, I 

tried to give a coherent introduction and a detailed list of references to at 

least some of the interesting topics in the field. 

;¥ ,.. ~----'•-- ''----'L---"-----"'-~~~-~ --"'- ~--"'-----""- -- "'---~----~_-_ _...----------"'---~~--~-~-------.r------"----~ -~~~-~~~-~~--~~---
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II. Calculation of hadron masses 

The quark fields in euclidean lattice QCD are described by anticommuting 

(Grassmann-) variables defined on lattice sites x = (x1,x2 ,x·3,x4); l< xJ.! "- Nl! 

(the lattice size is N1N2N3N4). It is convenient to use dimensionless fields, 

therefore the connection be~ween continuum-fields and lattice-fields is given 

by (a = lattice spacing): 

) a3 1jl (ax) + ljlx_; 
2K cant J ~~ ~ cont (ax) + '$ 0 

X 
(2.1) 

Here K is, in general, an appropriately chosen normalization factor. For 

Wilson lattice fermions K is the "hopping parameter", which is related in the 

free fermion case to the bare mass m by 

K ~ (8r + 2am)-l 

r is the "Wilson-parameter" satisfying 0 < r " 1. The quark part of QCD 

lattice action with Wilson-fermions (Wilson, 1974, 1977) is then 

Sf= .L $yQyx_ljlx' 
xy 

(2 .2) 

Q = 6 - K l (r + Y) U(x,u) 6 (2.3) 
yx. yx 1.! 1.1 y,x + 1.1 

The SU(3) lin~ variables are denoted here by U(x,IJ). They satisfy U(x,l.t)+ 

U(x + 1.1,-1.1) (1.1 is a unit vector in the direction IJ), The euclidean Dirac

matrices are defined according to Y. =- y + = - y , and I means_ a summation over 
.- ~ ~ -j.t 1.1 '. 

both positive and negative directio~s: 1.1 = ± 1, ± 2, ± 3, ± 4. 

The "quark-matrix" Q in Eq. (2 .3) is neither hermitian nor anti-
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hermitian, but is obeys 

Qyx 
+ 

Ys QxyYs (2 .4) 

with Ys = Y1 Y2 y3 Y4, as usual. In the free case (u(x,~.t) = 1) the quark

propagator Q-l can be easily obtained by Fourier-transformation. On a finite 

lattice with periodic boundary conditions the 1.1-th component of the momentum 

kll = apll = 2" vll/Nil has values in the Brillouin-zone (Bil - arbitrary 

interger): 

B+l(v(B+N. 
1.1 1.1 1.1 1.1 

Introducing the notation 

(k,x) 
vlxl 

= 2w (-- + 
N1 

v4x4 
+--), 

N4 

the free quark-propagator can be written with N ~ N1N2N3N4 as 

Gyx - Q-1 (U=1) 
yx 

N-1 j 
k 

-i(k,x-y) G 
e k 

The momentum-space free propagator Gkis 

- { ,. )-1 Gk~ 1 - 2K L (r cos k - iy sin k -) ~ 
~)0 IJ IJ IJ 

{1 - 2K L 
u>o 

(r cos kll+ iy!Jsin kll)} • 

• { {1 - 2K L- r cos k j 2 + 4K2 
1.1)0 jJ 

l 
u>O 

sin2k } -l. 

" 

(2 .5) 

(2 .6) 

(2.7) 

(2 .8) 
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This form shows, how the fermion doubling problem is solved for Wilson-

fermions. In the continuum limit kll = apll + 0 the denominator is proportional 

to 

e-8rKJ2+ k k + 8 2(m2+ ). 
2K U \.l pl.lpll 

(2 .9) 

At the other corners of the Brillouin-zone, however, the mass in the denominator 

is IDw = (m + 2wra- 1), if the number of momentum components with ku - w = apl.l 

is w = 1,2,3,4. Therefore, the mass IDw tends to infinity for a+ 0, and the 

u.nwanted extra fermions decouple from the physical fermion with mass m. 

The global symmetry properties of the Wilson lattice fermion action can 

be immediately seen in Eq. (2 .3). For Nf flavours the quark matrix is block 

diagonal in flavour. In the individual blocks the hopping parameter has the 

value of Kf belonging to the bare quark mass mf of the flavour in question 

(£ "'u,d,s,c,b,t, •.•• ). For non-degenerate flavours the action has an exact 
@Nf 

U(l) symmetry corresponding to the conservation of the quark number in 

each flavour. For Nf flavours with degenerate mass the global symmetry is 

U(Nf) = U(l)(!}SU(Nf)• The axial part of the global chiral U(l)@SU(Nf)@ 

SU(Nf) symmetry is, however, explicitly broken by the Wilson-term proportional 

tor, even in the case of zero bare mass mf = 0. The expected situation in 

QCD is, that the axial-vector symmetry is spontaneously broken by the vacuum 

expectation value of ~~. therefore in the Wilson fermion formulation one has 

to assume that for vanishing lattice spacing the explicit breaking goes over 

into a spontaneous breaking. 

The anticommuting Grassmann-variables are not well suited for numerical 

calculations. Therefore, it is convenient to perform the fermion integration 

by using the bilinearity of the action in fermion fields. In general, the 

expectation value of a quantity, F(U, ~.~) is defined as 
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1 " (dw d~ 
-s (u) -sf(u,~.~) 

IT dU(x,u)) e g F(u.~.~) 
X X ,>o 

<F> -
X (2.10) 

-s (U) - s,(u,w.~l 
I n (dw d~ ll dU(x,u)) e g 

X 
X X ,>o 

For a purely gluonic quantity depending only on the gauge field U, this is 

equivalent to 

<F> 
I dU exp(-seff(U)) F(U) 

) dU exp l Seff(U)) 

dU = li n dU(x,!-l). 
X !-i>O 

(2 .11) 

The effective action Seff in the gluonic sector is the sum of the pure gauge 

action Sg and the negative logarithm of the Matthews-Salam determinant 

encountered at the integration over the fermionic degrees of freedom: 

8eff(U) Sg(U) + Seif(U), 

s:ff(u) - lndet Q(U). (2 .12) 

The quantities explicitly depending on the quark fields can also be evaluated 

from the effective action in the gluonic sector. For the product of purely 

fermionic variables we have, for instance, 



q, ~ • • 
rlslr2s2 

f dU exp(-seff(U)) 
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• ¥ > 
r ' n n 

det (rl ... rn,sl ••• sn) (Q-l(U)) 

f dU exp (-seff(U)) 

Here the determinant in the nominator is built from the matrix elements 

(2 .13) 

Q-1(U)rs of the quark-propagator in the background gauge field U. Note, that 

the indices (r,s) are abbreviations for all sor,ts of indices of the quark 

field, namely, colour-, spin- and flavour-indices. 

The hadron masses can be calculated from the expectation values of 

correlation functions of composite operators carrying different quantum 

numbers. The choice of the composite operators is to a large extent 

arbitrary. In fact, for given values of the coupling constants one has to 

find the optimal operator, which has a strong enough coupling to the hadron in 

question and, at the same time, its numerical evaluation is not too 

difficult. In practice this means that in most cases the simplest local 

multiquark composite operators are taken. Let us now restrict ourselves to 

the ground state mesons and baryons (in the sense of SU(6)) containing u-, d-

and s-quarks. The spin dependence of the operators is dictated in this case 

by the relativistic generalization of SU(6) symmetry (for a review and 

references see [Pais, 1966]). The JPC = o-+ pseudoscalar mesons are described 

by bilinear composite operators like, for instance, 
+ 

(1l )= d y u aa 
opx :-caa S,a.B :< 

(K+) 
;x 

a a 
s:-caa Y5,a.B0 x 

{2.14) 
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Here uaa, d aa and s aa stand for the u-, d- and s-flavour 
X X X 

components of the 

quark field ~aa, respectively. 
X 

The indices a, a, ... denote Dirac spin-indices, 

whereas a, b, ••• are the SU(3) colour-indices. The corresponding ~-- vector 

meson fields are (k = 1,2,3): 

!(p+) 
xk 

(K*+) 
lxk 

- aa 
dxaa Yk,aBux ' 

"' s y u8a 
xaa k,a.B x 

(2.15) 

For the baryons the trilinear composite operators can be chosen in different 

ways (see. e.g. [Joffe, 1981]), 1 
In the spin - 2 octet one can use, for 

instance 

op(p)= e (Cy ) uaa(0 8bdyc_ d.Bbu Yc) 
xa abc 5 j3y X X X X X ' 

!(H) 
xa 

a a 
6 abc(Cy5)8Y0 x 

(u8bsYc_ s.Bb0 Yc), 
X X X X 

<fl(A),.. 6 (Cy) luaa(dBbsyc_ sBbdyc) + 
xa abc 5 j3y X X X X X 

+ daa(sBbuyc_ 0 .Bbsyc) _ 2 saa(u8bdYc_ d.Bb0 yc)J, 
XXX XX XXX XX 

op<=O)= e (Cy ) s aa(s8buyc_ 
XCI. abc 5 .By X X X 0

8bsyc), 
X X 

(2 .16) 
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3 For the spin - 2 decuplet one can consider: 

(8++) 
fxka 

** •(' ) 
xka 

•('*') 
xka 

aa 8b '(c 
€abc(Cyk)8y0 x ux ux ' 

€ (Cy) (uaa0 8bsyc+ uaas8buyc+ saau8buYc) 
abc k 8'( X X X X X X X X X > 

6 (Cy ) (saas8buyc+ saau8bsyc+ uaa8 8bsyc) 
abc k 8'( X X X X X X X X X ' 

(n-) aa 8b yc 
opxka"' Eabc(Cyk)8Y 5 x 5 x 5 x • (2 .17) 

€abc denotes, as usual, the totally antisymmetric SU(J) unit tensor, and C is 

the Dirac-matrix for charge conjugation. In the numerical calculations it is 

customary to use the following representation of euclidean Dirac-matrices: 

·{l 
0 0 i 

0 i 0 

-i 0 0 

0 0 0 

,,}1 
0 i 0 

0 0 -i 

0 0 0 

i 0 0 

0 l 0 

y "t 0 0 'I 5 l 0 0 0 

l 0 0 

y4 

"'y1y2y3y4 

0 

0 
y = 

2 0 

l 

0 0 0 

0 1 0 0 

0 0 -1 0 

0 0 0 -1 

0 

0 

-1 

0 

0 0 0 -1 
c 0 0 1 0 

0 -1 0 0 

0 0 0 

0 

-1 0 

0 0 

0 0 

yly3y5 (2.18) 
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The expectation value of the product of two hadron operators can be expressed, 

using Eq. (2.13), by the products of the quark propagators in some background 

gauge field configuration U. For the quark flavours u, d, and s one has to 

take in the propagator the hopping parameter values ~. Kd and Ks• 

respectively. (The small mass difference between u- and d-quarks is, however, 

usually neglected: ~ = Kd). Writing out indices explicitly, let us introduce 

U "Q-l(UK=K) 
xua,y8b- ' u xaa,y8b' 

-1 
Dxaa,y8b= Q (U,K = Kd)xaa,y8b' 

-1 
5 xaa,y8b~ Q (U,K=Ks)xaa,yBb 

+ - + 
Then)for instance for ($ (n )$ (n )) and 

X y 
q(P )$ (p 

xk y! 

respectively, 

Trsc {y5Uxyy5DyxJ' 

Trsc{yk 0xyytDyxJ' 

(2 .19) 

) >, one has to calculate, 

(2 .20) 

where Trsc stands for a trace over spin and colour indices. Formulae like Eq. 

(2.20) apply to all flavour non-diagonal mesons. For mesons like n,n',w,t, ••• 

some combination of flavour-diagonal operators like e.g. 

,cUu)= ;; r uaa 
x xaa a(l x 

is needed (r is some Dirac-matrix). 

(2 .21) 

(Uu) (~u) 
For the expectation value <tx .Py > 

--~---"~------··--··--------··-----·-----~-------,__,- ~-~-._._...__-__,._____...._.M_-.--J" __ ,~-"--"~------------~---------''----•"'~--r--·------~----
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the general expression (2.13) involves the combination 

Tr {r u ru J- Tr {r u J Tr {ru ]. 
SC xy yx SC XX SC yy 

In order to obtain baryon masses the necessary combinations of quark 

propagators are: for the proton (and similarly for : 0 and f+): 

eabc 8def(C~s)a~ (C~S)e~· 

(uxaa,y6d UxSb,yee 0x~c.y~f+ Uxaa,yed0xSb,yOe0xrc,y~f]' 

for the A-baryons: 

£ £ (C~ ) (C~ ) (U D S + 
abc de£ 5 e~ 5 £~ xaa,yOd xSb,yee x~c,y~f 

+ D U S + 4S U . 0 -
xaa,yOd xSb,yee x~c,y~f xaa,yOd xSb,yee xyc,y~f 

-U D S -D U S -
xaa,yed xSb,yOe xyc,y~f xaa,yed xSb,yOe x~c,y~f 

-20xaa,yed0xSb,y~e 8xyc,y6£- 20xaa,yed UxSb,y~e 8xyc,y6£-

-2 S D U 2S U 0 ] 
xaa,yed xSb,y~e x~c,yO£ _xaa,yed xSb,y~e xyc,yO£ ' 

(2 .22) 

(2 .23a) 

(2 .23b) 
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for the 6++_baryon (and similarly for n-): 

8abc 8def (Cyk )e/Cyk)e~ • 

[ U U U + 2U U U ] 
xaa,yOd xSb,yee xyc,y~f xaa,yed xSb,y6e xYc,y~f ' (2.23c) 

•*+ *0 
and for the L -baryon (and similarly for : ): 

8abc 8def(Cyk)S~ (Cyk)e~· 

[U U S + 2U U S ]. 
xaa,yOd xSb,yee xyc,yoflf xaa,yed xSb,ylie ~c,y~f 

(2.23d) 

The numerical calculation of the hadron masses is based on the Kallman-Lehmann 

representation of two point functions. In the euclidean region for a spinless 

field ~(x) (for simplicity) we have 

<o[T{.(x).(y)}[o> f• 
2 2 2 

2 dm p(m ) l!.E(x-y;m ), (2 .24) 
m 

0 

with a positive spectral weight function p(m2) and the euclidean propagator 

2 
l!.E(x;m ) 

d\ 
(2•) 4 

e ik!JxJJ 

m
2+ k k v v 

(2.25) 

Projecting out the zero three-momentum intermediate states by an integration over 

three-space, one obtains for this "time-slice": 
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3 • 2 -m[x4- Y4[ 
jd x <o[T{.(x).(y))[o> "Jm dm p(m ) e (2.26) 

0 

Stable single particle states contribute by a 0-function term in P, whereas 

multiparticle intermediate states give a continuum contribution. For large 

euclidean time separations the lowest mass m
0 

dominates, and we have 

m " 
0 

- lim + 

[x4- y4[ + • [x4- y4[ 
ln J dx3 <o[T{t(x)O(y)j [o>. 

Another possibility is to do a Fourier-transformation 

-ip4x4 3 
{dx4 e J d x <o[T{.(x)4>(o)}lo> 

J"2 
mo 

dm
2 p(m2) 

-2---2. 
m + P4 

This shows the particle-poles in the (real) energy variable E = -ip4 • 

(2.27) 

(2.28) 

Both Eq. (2.26) and Eq. (2.28) can, in principle, be used to extract the 

lowest masses from the expectation values of products of multiquark operators 

like in Eq. (2.14- 2.17). One has to keep, however, in mind that the formulae 

are exact only in the continuum limit. On a finite lattice there are O(a) 

corrections due to the finite lattice spacing a, and also finite size effects 

due to the finite physical extension of the lattice. (For some exact results 

about the spectrum of finite lattice pure gauge theory in the strong coupling 

region see, for instance, (Schor, 1983, 1984; O'Caroll, 1984a, 1984b). An 

important modification to the formula (2.26) is due to the periodic boundary 

conditions, which are introduced in most calculations in order to minimize 

finite size effects. Due to the periodicity, a signal can propagate between 
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two points in different ways. Neglecting propagations with more windings, the 

simple exponential behaviour (2.26) is replaced in the case of mesons by 

-x4am -(N
4

- x
4

) am 
e + e (2.29) 

Here the time difference x4 is given in lattice units and N4 is the lattice 

size in the euclidean time direction. For baryons the corresponding formula 

is more complicated because TCP-invariance implies the propagation of the 

opposite parity (charge conjugate) state in opposite time direction, therefore 

Eq. (2 .29) is replaced by 

-x4am+ 
(1 + r 4 ) {c+e + 

-(N4-
c_e 

x4 )am_ 
) + 

- (N4- x4)am+ -x4am_ 
+(l-y4 ){c+e +c_e }. (2 .30) 

Here c+ and c_ give the coupl-ing strengths of the two opposite parity states 

with masses~ and m_, respectively. Besides the effects of finite time 

extension, the spectrum is, of course, also influenced by the finite spatial 

extension L of the lattice. A dimensionless measure of the finite size is 

; = Lm
0 

(with m0 = m0 (L) the lowest mass in the given channel). For large L 

the mass on the finite lattice tends to the physical mass M
0 

= 

the deviation behaves like (LUscher, 1984): 

6 = 
0 

M- m 
0 0 

m 
0 

cl 
-,~ 

-c ' e 2 

lim m (L) and 
L+< o 

(2.31) 

The constants c1, 2 depend on the quantum numbers. A more detailed formula 

(Luscher, 1984) relates 6
0 

to some elastic scattering amplitude and hence c1 
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turns out to be proportional to some coupling constant squared. The other 

constant c2 is of order 1, therefore finite size effects should go away fast, 

once some critical size is reached. 

-17-

III. Monte Carlo Calculations in the Quenched Approximation 

A. Generalities 

The numerical evaluation of the fermion part of the effective action 

S~ff in Eq. (2 .12) is rather time consuming, because the "quark determinant" 

detQ is essentially non-local. The non-locality is due to the fact that S~ff 

describes the effect of closed virtual quark loops, and light virtual quarks 

can propagate to large distances. (For the elaboration on the quark 

determinant see the next Section.) In the "quenched" or "valence" approxi-

mation (Hamber et al., 1981; Marinari- et al. 1981a; Weingarten, 1982) virtual 

quark loops are omitted by neglect_ing the dependence of s:ff(U) on the gauge 

configuration U. In this case in Eqs. (2.11) and (2.13) s:ff cancels out and 

the effective gauge field action Seff(U) can be replaced by the pure gauge 

action Sg(U). The quenched approximation is expected to give a reasonable 

(say, within·, 10%) description of the hadron spectrum at least in the flavour 

non-singlet channels. This expectation is b":s_ed on the phenomenological 

Okubo-Zweig-Iizuka rule (Okubo, 1963; Zweig, 1964; Iizuka, 1966) and on some 

theoretical results obtained in 1/Nc (Nc = number of colours) expansion 

(t'Hooft, 1974). 

Since the gauge field configurations in the quenched approximation are 

distributed according to the pure gauge action, the scaling of the hadron 

masses m have to follow the renormalization group equation (RGE) without 

quarks: 

{ a - a l -a aa + '6 (g) ag m "' o(a). (3 .1) 

Here ~(g) is the Callan-Symanzik S-function of the pure gluon theory on the 

lattice and the right hand Side is due to the scale-breaking lattice 
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artifacts• (For a+ 0 it goes to zero by some power of a). The solution of 

Eq. (3.1) ·is 

-1 
m a exp {-Jg _dx } • 

go ~(x) 
(3 .2) 

If the integration constant g0 is replaced by an overall factor em• one can 

write (in analogy with Eq. (5.4): 

m "' c a 
m 

-1 (~ 2) -~1/2~ 2 
og o exp 

1 -+ ~~3-

~ X 
0 

6 
~1 )j = 

6 2x 
0 

cmAlatt. 

1 
{- -~~2~ 

2S
0

g 

_ fg dx 
0 

{~+ 
~(x) 

(3 .3) 

Here Alatt is the A-parameter of pure lattice gauge theory and a0 and a1 are 

the first two (universal) expansion coefficients of S(g) given by Eq. (5.2) 

and (5.3) with Nc = 3 and Nf ~ 0. The integral piece in the exponent is not 

universal, it depends 1 for instance, on the particular form of lattice action 

chosen for Sg(U). But, compared to the universal g-2 term, it becomes small 

in the continuum limit g + 0. 

In order to obtain the two point functions of the hadronic multiquark 

operators in the quenched approximation one has to calculate the expectation 

value of the expressions like in Eq. (2.20- 2.23). In the case of flavour 

non-singlet mesons the required combination of quark propagators can be 

represented by Fig. 1 (see Eq. (2.20)). For the flavour singlet mesons, like 

in Eq. (2.22), one ·needs combinations as given in Fig. 2, whereas for the 

ba~yons in Eqs. (2.23a- 2.23d) one has to calculate combinations like in Fig. 

3. In case of Fig. 1 and 3 it is enough to consider quark propagators 
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originating from a single point, say x. This is because the orientation of 

the propagator lines can be reversed by using &J., (2 .4). This means that for 

the flavour non-singlet mesons one has to calculate the expectation value of 

expressions like 

{ -1 -1+ } Tr Q r r
5

Q y
5
r 

sc xy xy 
(3 .4) 

Here r is some Dirac-matrix describing the spin. In this connection let us 

note the special role of the flavour non-singlet pseudoscalar mesons with 

2 r Ys"' r 5 = 1. In this case there are no cancellations in the spin-trace in 

Eq. (3.4) and the decrease of the hadron propagator for large distances is 

the slowest, which corresponds to the smallest mass. This observation is the 

starting point of the derivation of several rigorous mass inequalities (see, 

for instance, Weingarten, 1983b; Nussinov, 1983; Witten, 1983). 

The case of the flavour singlet mesons in Fig. 2 is much more difficult 

than the propagator configurations in Fig. 1 and 3. First of all, quark 

propagators starting from two different points are needed. This means that 

one has to evaluate the quark propagators from every starting point of at 

least several time-slices. The second, potentially even more dangerous, 

difficulty is that the second term in Eq. (2.22) contains a non-connected 

piece which has to be subtracted. This requires very high statistics, and 

even then the measurement of the correlation at large distances is rather 

questionable. (For a suggestion how to overcome the difficulties see (Hamber 

et al., 1983a),) The only attempt, up to now, to calculate flavour singlet 

meson masses and mixing with glueballs was done recently in the quenched 

approximation on a small (43 • 8) lattice in 80(2) gauge theory (Fukugita et 

al., 1984b), 

------· ------ __ , _________ -------
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B. Iterative methods for the calculation of quark propagators. The main task 

in the quenched hadron mass calculations is the inversion of the quark matrix 

Q, in order to obtain the required matrix elements of the quark propagator Q- 1 • 

Several standard numerical matrix inversion methods (Varga, 1965; Householder, 

1964; Stoer et al., 1980; Lanczos, 1950) were tested and successfully 

applied. The most popular are the variants of the Gauss-Seidel method and the 

conjugate-gradient method. 

Let us write the quark matrix Q in Eq. (2.3) like 

M 
x2xl 

Q = 1-KM, 

£ (r + y ) U(x,~) 0 
x,Jl 1l x2 , x+IJ 

The simplest iteration for p = q-li (i 

iteration": 

Pn+l 

P0 
= 1, 

i + KMp 
n 

p lim p
0 

• 

n-

(n 

' x,x
1 

(3 .s) 

some initial vector) is the "Jacobi-

0,1, 2 ••• ) • 

(3 .6) 

Iterating point by point, that is1 taking on the right hand side the already 

calculated elements of Pn+l instead of the old Pn• gives the "Gauss-Seidel 

iteration". This corresponds to the decomposition M = MR. + ~~ where MR. has 

non-zero elements only below the main diagonal (and there M = Mt; ~ = 0. The 

iterative equation now becomes: 

pn+l"' i + K (MR.pn+l+ Mupn) • (3 .7) 
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In order to improve convergence one can also introduce a relaxation parameter 

A and put 

Pn+l (1-A) p +Ali+ K (MoP +1+ M P )]. 
n .... n u n 

(3 .8) 

For small quark masses, still better convergence can be achieved by a "second 

order" method. Returning to the simple expression in F.q. (3.6) even if point 

by point iteraction is done, the "first-order" iteration in Eq. (3 .8) can be 

writ ten like 

Pn+l Po+ A (i- Qpn)• (3 .9) 

Performing after this step a second step with 

pn+l= ppn+ ( 1-p) Pn+l+ ).p ( 1 - Qpn+l)' (3 .10) 

one obtains the "second order" iteration: 

Pn+2= pn+). (1-ApQ)(i- Qpn). (3 .11) 

By the appropriate choice of the two parameters A,p a good convergence can be 

achieved even for smaller values of the quark mass. 

The other popular and effective method for the inversion of the quark 

matrix is the "conjugate gradient" method. It begins with a guess p
0 

for 

p = q-1i. Then one has to calculate 

ro q+ (i - Qpo)' (3.12) 
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If the length lr0 1 = /(r
0

+, r
0

) is zero, than p
0 

is the solution. Otherwise 

for n "' 0, 1, 2, , , • 

r = r -n+l n 

pn+l= p + n 

lr 1' _n_ + 
IQh I' Q Q h ' n n 

lr 12 
n 
- h 

IQ h 1' n 
n 

If lrn+ll 0, then Pn+l is the solution, because 

Qpn+l 
+-1 

Qp + Q r 
n n 

Qp + Q+-lr = i. 
0 0 

For lrn+ll * 0 one calculates 

h = 
n+l 

2 
lrn+ll 

r +---h 
n+l lr 

1
2 n' 

n 

+-1 
Qpn-l + Q rn-1= 

(3.13) 

(3.14) 

(3.15) 

and returns to Eq. (3,13) for the next n. It can be shown, that the solution 

is always obtained in a finite number of steps. 

On large lattices, a problem for the iterative methods is often due to 

computer memory limitations, because the iterated vectors have many components 

(and the gauge configuration itself takes a lot of storage space). The usual 

way of circumventing these difficulties is to partition the inversion of the 

quark matrix Q, which is possible because of the locality. A simple way to do 
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this is to organize the iteration according to times-slices. In this way it 

is enough to keep only a few (usually upto 3) time-slices in the memory 

(Bowler et al., 1984a) • 

---------·----------------------------------~--·---~·-----n..-..----c.____.-~--~~-------------~~~--~--~----~--~---,.,_..__. ___ _ 
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c. Hopping expansion method. Another way to obtain information about 

hadronic two-point (or many point) amplitudes avoids the direct numerical 

inversion of the quark matrix by concentrating on the expanSion coefficients 

in powers of the hopping parameter K. Knowing the hopping parameter expansion 

coefficients to sufficiently high orders, and assuming the analyticity of the 

amplitudes at K ~ 0, one can investigate different features of the amplitudes 

at the physical values of K. The starting point (Wilson, 1977; Stamatescu, 

1982; Hasenfratz et al., 1981, 1982a, 1982b; Lang et al., 1982) is a formal 

Taylor-expansion like 

(1 - KM)-1 L KjMj 

j=o 

or, for the fermion part of the effective action in Eq. (2 .12): 

sq = - lndet (1 - KM) = - Tr lU (1 - KM) A 
eff ! 

j=1 

KJ 
-j-Tr (MJ) • 

(3 .16) 

(3 .17) 

From the expansion coefficients in Eq. (3.16), (3.17) one can construct the 

expansion coefficients of the hadronic amplitude in question, and then either 

by direct application of the hopping parameter series (if the series 

converges), or by some analytical continuation method, one can calculate the 

amplitude at the desired value of K. Applying the explicit form of the 

"hopping matrix" Min Eq. (3.5), it is possible to represent the hopping 

parameter series as a sum over curves on the lattice. For instance, one can 

write Tr(M0 ) as 

-.-------"--~ ---- . -- .___,----_---~~ 
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Tr (Mn) ! ' ' ' 
xlJJ1' ••• ,xnJJn xl,xn+ J.ln xn' xn-1+ J.ln-1 x2,x1+ J.ll 

Trc{U(xn,lln) ••• U(x 2,J.l 2) U(x 1, v1)} 

Tr { (r + Y ) 
s "n 

(r + y ) (r + Y ) }. 
j.l2 j.l1 

(3 .18) 

Due to the 0-functions, the sum runs here over all closed loops. A similar 

representation of (M0 )yx is possible in terms of loops running from the point 

x toy. Although this representation is physically rather suggestive and 

appealing, it has the practical disadvantage that the number of curves at high 

orders is very large. For instance, at 12th order there are more than 4 • 106 

closed curves going through a given link, and ~t 16th order already more than 

6 • 109 (the number increases exponentially) (Berget al., 1982). It is quite 

clear that the evaluation of the traces in Eq. (3.18) requires a prohibitively 

large number of multiplications already in these orders. This was the reason 

why the first numerical calculations of the hadron spectrum {Hasenfratz et 

al., 1982a, 1982b) were restricted to low orders. A sufficiently high order 

hopping expansion is possible with the numerical iterative method (Hasenfratz 

et al., 1983, 1984a). If one wants to obtain, for instance, the matrix 

element <giM0 Ii>, then one uses 

<giMnli> • L <giMih><hiMn-111>· 
h 

(3.19) 
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This shows how <giM0 Ii> is built up from the lower order matrix elements 

<hiMn-lli>. Due to the nearest neighbour structure of the hoppin~ matrix M 
"""' ~~~-~~---

(see Eq. (3.5)), the consecutive steps of the iteration fOr <£IM0 Ii> can be 

visualized by Fig. 4. From some starting point, in a given order, always a 

finite number of points is reached. During the iteration it is possible to 

choose the boundary conditions for the quarks independently from the given 

boundary conditions (usually periodic) of the gauge configuration. In the 

case of the "periodic box" iteration the quarks also obey periodic boundary 

conditions. In the "copied gauge field" iteration the quarks propagate 

without boundaries over the periodic gauge field background. A mixture of 

both ways is also possible: "periodic box" in the space directions and "copied 

gauge field" in the time direction. The advantage of the copied gauge field 

iteration over the periodic box iteration is, that the quark propagators are 

defined for continuous momenta (not just for the discrete values in Eq. 

(2.5)), Therefore, it is possible to analytically continue the hadron 

propagators to real energies by doing a Laplace-transform with real E = - ip4, 

instead of the Fourier-transformation in Eq. (2.28). This allows to look 

directly for the particle singularities (for fixed E in the hopping parameter 

variable) by a Fade-approximant technique. In such a way direct information 

is obtained on the nature of the singularity: the localization of cuts or 

multiple poles (e.g. due to radial excitations (Hasenfratz et al., 1984a) 

becomes possible. This is potentially a very useful possibility also in an 

unquenched spectrum calculation with light dynamical quarks, where the 

resonances (p,ll, ••• ) are "hidden" behind multiparticle cuts. The price of a 

high-order calculation with copied gauge field iteration is the growing number 

of points reached in higher orders (and hence the growing length of the arrays 

in the computer program), For illustration, the number of points with given 
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distance~= 0, 1, ••• , 16 on a four-dimensional hypercubical lattice is given 

in Table III .1. 

The required order in the hopping expansion depends on the gauge coupling 

8 = 2Ncg-2 and on the quark mass (it is higher for larger 8 and for smaller 

quark mass). At 8 = 5,7 in SU(3) (Nc = 3), for instance, good results can be 

achieved in 32°d order. In the test case of free Wilson fermions (with r = l) 

the position of branch point singularities in the multiquark amplitudes are 

reproduced in 32°d order within 1-2% in case of mesons and 4-5% in case of 

baryons (Kunszt, 1983). For non-zero coupling (g ~ O, B (~)the situation is 

most probably even better. The order of the quark propagator calculation is 

chosen in such a way
1 

that for the required hadronic amplitude some given order 

can be achieved. For instance, a 32nd order calculation of the mesonic 

amplitude in Fig. 1 requires, that the quark propagator iteration runs upto 

the maximum distance 1 = 16 from the given initial point (see Fig. 4), It can 

be easily seen, that with this set of quark propagators the baryonic amplitude 

in Fig. 3 can be calculated upto 33rd order. It is also clear, that mesonic 

amplitudes contain only even powers of K, whereas the baryonic ones both even 

and odd powers. 
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D. Results for Wilson-fermions Quenched hadron mass calculations with 

Wilson-quarks were performed by several authors; besides the already mentioned 

References (Hamber et al., 1981; Weingarten, 1982; Hasenfratz et al. 1982a, 

1982b, Hasenfratz et al., 1984a Kunszt, 1983) see also (Fucito et al., 1982a; 

Martinelli et al., 1982b, Weingarten, 1983a; Hamber et al., l983b; Martinelli 

et al., 1983a; Bernard et al., 1983a; Gupta et al., 1983a; Bowler et al., 

1983; Bernard et al., 1983b; Lipps et al., 1983; Gupta et al., 1983b; Fukugita 

et al., 1983, 1984a; Fucito et al., 1983; Patel et al., 1983; Bowler et al., 

1984b; Langguth et al., 1984; Billoire et al., 1985; KOnig et al., 1984; Itoh 

et al., 1984). Qualitatively rather good results for the spectrum were 

reported already in the first pioneering papers, although the physical lattice 

since was very small: typically less than 1 fm. (The situation became even 

worse when more precise string-tension measurements (Gutbrod et al., 1983; 

Parisi et al., 1983; Hasenfratz et al., 1984c; Barkai et al., 1984; Otto et 

al., 1984b) suggested an even smaller lattice spacing than it was thought 

before). The importance of some minimum lattice sice was realized, however, 

soon (Hasenfratz et al., 1983; Martinelli et al., 1983a; Bernard et al., 

1983a; Gupta et al., 1983a; Bowler et al., 1.983; Politzer, 1984) some 

exploratory studies on larger lattices showd (Lipps et al., 1983; Hasenfratz 

et al., 1984a; Billoire et al., 1985; KOnig et al., 1984) that the most 

drastic finite size effects go away if the spacial size of the lattice reaches 

1.7- 2.0 fm and the temporal size is roughly twice as much. The larger 

temporal size is needed for the separation of the lowest state from radial 

excitations. The elongated lattice for the. calculation of quark propagators 

can, however, be prepared by copying a symmetric lattice periodically twice in 

time di,rection. In the hopping expansion method this is done anyway, if the 

copied gauge field iteration is applied. In this case one has, however, to do 
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a high enough order calculation to exploit efficiently the distant time-

slices. In practice this means that for an effective time-elongation Nt 

roughly an order 2Nt is required in the copied gauge field hopping expansion. 

Assuming a string tension~~ 420 MeV, the recent SU(3) string-tension 

calculations give for the lattice spacing. 

a(~ 5.7) 0.21 fm, 

a(~ 5.8)"' 0.16 fm, (3 .20) 

a(~ 6 .0) 0.12 fm. 

Therefore, the minimum required lattice size is roughly 83 • 16 (at S = 5.7), 

123 • 24 (at S = 5.8) and 163 • 32 (at B = 6.0). Note, that the lattice scale 

between B "' 5.7 and B = 6.0 changes more rapidly than "asymptotic scaling" 
- . . 3 5 

with the two-loop perturbative a-function e (g)+ -eog- elg in Eqs. (3.2-

3.3) would require. Of course, hadron masses on the lattice should scale also 

according to Eq. (3.20), in order to be consistent with a continuum (scaling) 

behaviour. The present situation is not in contradiction with such a 

behaviour between a = 5.7 and B = 6.0 (see Table III .2). The errors. are, 

however, still somewhat large, and the a= 6.0 results presumably suffer from 

somewhat more finite size effects. The results of (KOnig et al. 1984) may be 

better from this point of view, but it is notr clear what ls the in~luence of 

the (approximate) blocking procedure introduced by (MUtter et .al., 1984a, 

l984b). 

Note· that the critical, hopping parameter value Kcr• where -the pion mass 

vanishes, is substantially larger ate= 5.7 (g-2 = 0.95) and a= 6.0 
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(g-2: 1.0) than the one-loop perturbative value (Kawamoto, 1981a; Stehr et al., 

1982): 

Kl--loop 
cr 

N 2-1 
c 2 0.125 + 0.0101786 ~ g (3 .21) 

c 

This also shows, that in this region important non-perturbative. (or higher 

order) effects are present. 

Besides finite size effects, the other limiting feature of the existing 

calculations is the statistics. Most calculations use less than 20 

propagators perK-value. In (Langguth et al., 1984) 80 meson propagators and 

40 baryon propagators were collected, whereas (KOnig et al., 1984) has 72 

propagators perK-value. The experience with higher statistics shows, that 

for light quark masses the calculation of a few hundred propagators is 

probably not an exageration. 

Comparing the numbers in Table III.2 to experimental masses, it turns out 

that there is a rough agreem~nt between the overall scale given by the masses 

and the scale (3.20) obtained from the string-tension. The mass ratios, 

however, deviate from the right ones: to ratio mp/mp comes out around 1.8 and 

the 6 -p mass-splitting has a tendency to be too small. (Note in this 

respect, that in (Billoire et al., 1985) non-relativistic baryon-operators 

were used, instead of the standard relativistic ones Eqs. 2.16-2.17. The 

standard operators would have given also there higher baryon masses). The 

disagreement of mass ratios can come from the explicit breaking of chiral 

symmetry introduced by Wilson lattice fermions, but perhaps even more 

probably, can also be characteristic to the quenched approximation. 
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E. Kogut-Susskind fermions and variant actions. There exist also several 

quenched hadron spectrum calculations (Marinari et al., 198la; Hamber et al., 

1983b;Bowler et al., 1984b; Billoire et al., 1985; Hamber et al., 1982; 

Marinari et al., 1984; Gilchrist et al., 1984a, 1984b; Billoire et al., 

1984a, 1984b, 1984c) with Kogut-Susskind lattice fermions (Banks et al., 1977; 

Susskind, 1977; Kawamoto et al., 198lb; Gliozzi, 1982; Kluberg-Stern et al., 

1983). In this formulation the problem of chiral symmetry and the associated 

proliferation of fermion degrees of freedom is treated differently. For zero 

bare quark mass there is an exact U(l)vector<f)U(l)axial symmetry of the 

lattice action, and the spontaneous breaking of the U(1)axial part implies the 

existence of a massless Goldstone-bason also in the strong coupling region 

(Blairon et al., 1981; Kluberg-Stern et al. 1981; Jolicoeur et al., 1984). 

Flavour symmetry (like isospin etc.) is, however, explicitly broken, therefore 

an important question for the numerical calculation is to study the masses of 

non-Goldstone pseudoscalar mesons. This was done for SU(2) gauge theory in 

(Billoire et al., 1984a, 1984c) and the result showed near B: 2.3- 2.4 

strong evidence for various light flavoured pseudoscalar mesons, in accordance 

with a Nambu-Goldstone realization of full chiral symmetry in the continuum. 

The extraction of hadron masses from the hadronic two-point functions is 

a non-trivial task for Kogut-Susskind fermions, especially in the baryon 

sector. This is due to the mixing in flavour and spin-parity caused by the 

explicit symmetry breaking terms. In the case of SU(J) colour upto now only 

the simplest (local) hadronic operators were considered, therefore the 

interpretation of the numerical results in terms of the masses may have some 

systematic uncertainty. For a collection of some recent results see Table 

111.3. Comparing the values at a: 5.7 (where finite size ~ffects are 

presumably smaller) to Table I1I.2 we see reasonable agreement for the nucleon 

-- --~---·----~~---------~-"'-~--~---'------~- ---------~,--~-----------~--~----------------~---~-~--~--~--------'-----~~------~--___._r->~ ___ ___,---, ___ -r'o---~-__r~ ·-"----~ -----..__ 
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mass. In the case of the p-mass, however, where the errors are small, there 

is a definit disagreement: the apparent lattice spacing seems to be about a 

factor 1.6 smaller for Wilson-fermions. Correspondingly, there is no problem 

with the mp/mp ratio for Kogut-Susskind quarks. This is actually not a 

surprise, since this ratio is essentially correct already in strong coupling 

(Kluberg-Stern et al., 1981; Jolicoeur et al., 1984). In summary: the 

quenched hadron mass calculations with Kogut-Susskind fermions are promising, 

but the difficult problem of mixing (in flavour and in spin-parity) deserves 

further study, in particular in the case of non-degenerate flavour masses 

(Colterman et al., 1984a, 1984b; GOckeler, 1984). 

Besides changing the fermion part of the action the gauge part can also 

be changed, for instance, in order to improve the scaling properties in the 

intermediate coupling range. Some attempts in this direction were already 

undertaken (Bowler et al., 1984b; Itoh et al., 1984; Ma.rinari et al. 1984), but 

within present precision there are no substantial deviations from the simple 

Wilson gauge action. 
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F. Other static hadron properties. Once the hadron mass calculation is under 

control, one can start to calculate a large number of different static 

hadronic matrix-elements, which are of interest in strong and electroweak 

interactions (Fucito et al., 1982b; Bernard et al., 1982; Martinelli et al., 

1982a; Ali et al., 1983; Cabibbo et al., 1984; Brower et al., 1984; Gottlieb 

et al., 1984; Velikson et al., 1985). Many of these matrix elements involve 

the electromagnetic or weak currents which are conserved in the continuum. 

Such conserved vector currents can be defined on the lattice, too (Karsten et 

al., 1981). For Wilson-fermions the appropriate choice is (for Nf = 3 

degenerate quarks): 

v• 
x," 

-3 -K a {t (r + y ) U(x,~) - . A 
s 

2 . -X 

- ~x(r - y~) U(x + ~. - ~) 
A 

8 
2. ,) 

x+• 
(3 .22) 

The Gell-Mann matrices As (s = O, 1, ••• , 8) act here in flavour. It can be 

shown, that as a consequ.ence of the equations of motions 6Sf/6t = 6Sf/6~ = 0, 
. X X 

the current in Eq. (3 .22) satisfies the "conservation equation" 

I 
•>O 

(Vs - Vs ~ x,, 
x-~.~ 

• o. (3 .23) 

The advantage of the conserved current in &J.. (3 .22) over the "naive" local 

currents like canst • ~xY~tx is, that as a consequence of Eq. (3.23), the 

strength of Vs is not renormalized. Therefore, the matrix elements of the x,. 

vector cUrrent in Eq. (3.22) can be directly compared to measurable 

quantities. In the case of other (for instance, axialvector) currents the 
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only way to determine the multiplicative renormalization is, at present, one

loop perturbation theory (Meyer et al., 1983; Martinelli et al., l983b, l983c; 

Martinelli, 1984; Groot et al., 1984), which is unrealiable in the 

intermediate coupling constant range. (Examples for the failure of low order 

perturbation theory are given by Kcr• see Eq. (3.21), and by the 

"overshooting" of asymptotic scaling according to Eq, (3 .20) ,) 

The calculation of two-point current amplitudes from Eq. (3.22) requires 

the quark-propagator combinations depicted in Fig. 5. This is somewhat more 

difficult than the combination in Fig. 1 for the local currents, because the 

quark propagator has to be evaluated from two neighbouring initial points. 

(For a first attempt see (Ali et al., 1983) .) 

Another way to calculate q2 ~ 0 matrix elements (like nucleon magnetic 

moments (Bernard et al., 1982; Martinelli et al., l982a) is to introduce an 

appropriate external classical field in the fermion part of the action, and 

compare the results with and without such fields. 

An important piece of information can be obtained by calculating matrix 

elements of the non-leptonic decay Hamiltonian (for K-mesons, D-mesons, F

mesons, etc.). The required quark propagator diagrams (Cabibbo et al., 1984; 

Brower et al., 1984) are shown in Fig. 6. The last diagram in the figure is, 

unfortunately, as difficult as the second part of Fig. 2, but the evaluation 

of the first two quark propagator configurations gives already some useful 

information. 

-35-

G. Outlook. In conclusion, the status of quenched lattice calculations can 

be considered as satisfactory. The quality of the present results corresponds 

reasonably to the invested effort. It is quite clear, however, that further 

improvement is both necessary and possible. Since the quenched calculation 

is, technically speaking, a part of the final task with dynamical quarks, high 

standard quenched calculations are absolutely necessary. An eKample of a nice 

"two-star" quenched calculation of the hadron spectrum would be: to take 12 3 

24 lattice at 8 ~ 5.7, 183 • 36 lattice at 8 ~ 5.8, or 243 • 48 at 8., 6.0 

with several thousand quark-propagators per quark-mass. The corresponding 

hopping expansion calculations would be: 43th order on 124 gauge-field at 8 

5.7 etc. In this case the optimal iteration for the quark propagators is 

presumably on a periodic spacial box, with copied gauge field in the time 

direction. In such calculations finite size effects would be probably very 

small (in the range of a percent) and the statistics would be enough to have 

agood accuracy for light quark masses (perhaps 0.03- 0.05 in lattice units). 
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IV. Dynamical Quarks 

A. General Formulae. 

As it was discussed at the beginning of the previous Section, the quark 

part S~ff of the effective gauge field action in Eq. (2.12) describes the 

effect of closed virtual quark loops on the gauge field dynamics. The 

resulting interaction is inherently non-local even if the original fermion 

action (before the integration over the anticommuting fermion variables) was 

local. This non-locality is the reason why it is so difficult to include 

dynamical quarks in the numerical calculations. 

In the updating procedure always the change of the action is needed for a 

given change of a link variable U(x,v). From Eq. (2.12) and (3.5) it follows 

• s" eff s" cu' l eff s~ff(u) - lndet - KM (U 1 ) 

KM (U) 

Introducing the notations 

D = M(U') - M(U) 
- 1 - KM(U) 

ll- KM(U)]-1hM, 

hM 
x2xl 

i 
x,. 

(r + y\1) 8 U(x,).l) 6 

8U (x,!.l) = U' (x,)J) - U (x,v), 

x
2

,x + \1 ' ' x,x 1 

( 4 .1) 

( 4 .2) 

one obtains 
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8 Sq "' - lndet (1 - KD) 
eff 

- Trln (1 - KD) 

• i 
j=l 
~ Tr (Dj) 

j 
(4 .3) 

These formulae are valid actually for a single quark flavour with hopping 

parameter K. In the many-flavour case the Wilson-fermion action is block 

diagonal in flavour, therefore 8 S~ff is a sum over flavours with different 

hopping parameters K + Kq (q ~ u, d, s, ••• ). 

In the expectation values like Eq. (2.11) and (2.13) the quark 

determinant det(1-KM) can, in principle, also be considered as a part of the 

gauge field dependent quantity to be evaluated with the pure gauge statistical 

distribution dUexp(-Sg(U)). Denoting such pure gauge field averages by ( ••• )
0

, 

the expectation value <F> in Eq. (2.11), for instance, can also be written 

like 

<F> 

-s" 
<F e eff> 

0 

-sq 
< e eff> 

0 

(4 .4) 

According to this formula one has to perform. the Monte Carlo updating with the 

simple gauge field ~ction Sg(U), and then calculate S~ff on the given gauge 

configurations. We shall see below, that such a procedure is impractical for 

small quark masses, .but for the theoretical ,understanding it could still be 

useful. In particul~r, if the quark part of the effective action S~ff can be 

considered small, one has the expansion (Joos et al., 1983): 
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<F> <F> - [ <s" F> - <s" > <F> J + o eff o eff o o 

lq2 q2 q q + 2 (Seff F>o- (Seff >o<F>o- 2 (Seff>o <SeffF>o + 

q 2 J + 2 (Seff)o (F)o ± ''' ( 4 .5) 

Here, on the right hand side, only the fluctuations of s:ff matter, namely 

with 

0 F :: F - (F) 
0

, 

o s:ff= s~ff <s:n>o' ( 4 .6) 

one has 

(F) q 1 q 2 <F>o- <O 5eff 0 F>o+ 2 <CO 8eff) OF)o ± ... ( 4 .7) 

This shows, how the non-locality of s:ff reflects physics: although s:ff 

extends over the whole lattice, in expectation values only its correlated 

fluctuations matter, therefore the non-locality of s:ff is practically 

restricted to regions in which correlations are actually produced by virtual 

quark propagation. In Eq. (4 .7) (F)
0 

corresponds to the quenched 

approximation and -the further terms on the right hand side represent the 

corrections to it. The difficulty in the application of Eq_, (4 .4) or Eq. 
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(4,7) to the calculation of unquenched averages lies in the fact that in a 

gauge configuration ensemble produced by the pure gauge action the 

fluctuations of S~ff are very large for light quarks. As an example, for 

SU(2) gauge group on 104 lattice with Nf = 1 flavours, this is shown in Fig• 

7. Therefore, Eqs. (4.4) and (4.7) can be applied in practice only for heavy 

quarks. In the above example the meson masses could be determined only for 

dynamical quark masses amq = (2Kq)-l- (2Kcr)-l > 0.2 (roughly 200 MeV in 

physical units) (Montvay, 1983), 

Another way to represent the difficulty of numerical calculations with 

dynamical fermions is to recall the expectation, that the bulk part of the 

quark determinant is needed just to produce the required renormalization of 

bare parameters. This means, that a relatively small change in physics (i.e. 

in mass ratios etc,) is accompanied by a rather inconvenient shift in the 

scale. The shift in bare parameters can be seen already in the lowest order 

approximations to s:ff 

s" eff l 

According to Eq. (3.17) we have 

j 
!...__ Tr 

j 
(M;) ' 1 s" (j) 

j ,. 1 eff ' 

Let us now consider only the Wilson-parameter valuer= 1. 

(3 .18) implies that the first non-vanishing term is S~£~ 4 ) 

( 4 .8) 

In this case Eq , 

(and only even 

values of the index j contribute). It can be easily shown that the first two 

non-vanishing terms look like 
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Sq ( 4) = - 16 K4N 2 Re Tr U 
eff fa 

- 4K
4 

Nf 1 i 
">o 

i ReTrU 
v~±ll (l!v)' X 

sq (6) K6 
eff '"'3 Nf i 1 

">o 
1 6 

v1 ••• v5 - ll, v1+ ••• + v
5 

Re Tr u(llv
1 

••• v
5

) T(llv
1 

•• v
5
)' 

X 

sq 
eff 

sq (4)+ sq (6)+ 
eff eff ( 4 .9) 

Here Nf degenerate flavours are taken and [J is a positively oriented 

plaquette, also denoted in the second form of s:ff (4 ) by (llv). In the 6th 

order term the factor T( ) is the Dirac-trace given by 
llVl o o .v5 

~{ 
- 32 for (11v

1 
••• v

5
) = c:J 

T - 16 for (llv
1 

••• v
5

) =OJ (llv
1 

••• v
5

) 

- 16 for (l!v
1 

••• v
5

) =Q 
(4 .10) 

As it is shown by Eq. (4.9), the 4th order term corresponds to a shift 

oB 4 16Nc Nf K (4.11) 

in the coefficient ~ = 2Ncg-2 of the 1-plaquette gauge action. Since AE is 

positive, the lattice spacing is decreased by s~fi 4 ) (and also by the whole 
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S~ff). The lowest order terms in Eq. (4.9) show, how, by the application of 

the formula (3.18) the quark part of the effective action can be decomposed 

into a sum over closed Wilson-loops, multiplied by some Dirac-trace and 

combinatorics factors. Since the mean values of more complicated Wilson-loops 

are correlated to the single-plaquette expectation value, it is not very 

surprising that the mean value of s:ff can be approximated quite well by (Joos 

et al., 1983) 

sq -
eff 
~ s(o) 
wll eff (K ~1 ). (4 .12) 

Here w11 is the single plaquette expectation value and S~~~(K) is the free 

quark effective action (see Eq. (2.8) for the derivation): 

5 (o) (K) 
eff 

= - 2 N Nf L ln {l1 - 2K r L 
c k u>O 

coskj 2 +4K2 

" 
lsin

2k}. 
l.l)o U 

The approximation formula (4.12) works well only for the average, the 

fluctuations of s:ff are, unfortunately, not properly reproduced. 

(4.13) 
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Pseudofermion method. For the gauge field updating with dynamical fermions, 

according to Eq. (4.1-4.3), matrix elements of the quark propagator Q-l = 
(l-KM)-1 have to be calculated. In the "pseudofermion method" of Fucito, 

Marinari, Parisi and Rebbi (Fucito et al., 1981) this is done by introducing a 

complex scalar "pseudofermion" field <Px• having the same number of components 

as the anticommuting quark field Wx• The quark propagator matrix elements are 

obtained by running a separate Monte Carlo calculation for the pseudofermion 

field over a fixed gauge field configuration. The action of the 

pseudofermions is given by the matrix 

n :: Q+Q "' 1 - KM - KM++ K2M+M (4 .14) 

This is positive definit1 as required for a Monte Carlo calculation and, due to 

Eq. (2 .4), its determinant is related to the quark determinant by 

det Q ldet1i . 

The matrix elements of the quark propagator can be obtained as 

-1 
Qij • 

I + + + ) d~ d; •i (Qo) .exp <-•, "kl•l 
+ + I d$ do exp (-Ok'\1$1) 

Since the quark matrix in Eq. (i.3) has only nearest neighbour matr-h: 

(4 .15) 

(4 .16) 

elements, the pseudofer-mion action n extends upto next-nearest neighbours. In 

the pseudofermion Monte Carlo it is convenient to introduce the auxiliary 

field (Hamber et al., 1983a) 
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/( Qij 4'j. 

With X,Eq. (4.16) can be written like 

-1 
Qij 

J d$+d4' exp 

J d't'+dojl exp 

<-x~x k) 
+ 

.Pi xj 
+ 

< -x,"") 

(4.17) 

(4 .18) 

In principle, the pseudofermion Monte Carlo has to be run after every change 

of a single link. This would cost, however, an enormous amount of time, 

-1 therefore the matrix elements Qij are kept usually for a full sweep over the 

gauge variables and then evaluated again. This implies some violation of the 

detailed balance condition for the Markov-process of Monte Carlo 

integration. Another approximation usually introduced in the pseudofermion 

method is, that in the expansion (4 .3) only the lowest order term with j = 1 

is taken. Since D is proportional to the change AU of the link variable, this 

is a good approximation for small changes 6 U + 0. 

The pseudofermion method was tested first in the 2-dimensional Schwinger 

model (Marinari et al., l981b; Otto et al., 1983; Burkitt, 1983). First 

studies in QCD were carried out on small (24 and 44 ) lattices (Otto, 1984a; 

Bhanot et al., 1983; Azcoiti et al•, 1983). Some results for the plaquette 

expectation value and <~~)were obtained on 84 lattice in (Hamber et al. 

l983c) with Kogut-Susskind fermions. We have seen in the previous Section 

that, at least in the quenched approximation, good results for the hadron 

spectrum can be achieved on 84 lattice copied at least twice in the time 

direction for the quark propagator calculation. Such a lattice size is not 

yet achieved in pseudofermion calculations of the hadron spectrum, but some 

studies on 44 (Azcoiti et al., 1984), or four-times copied 44 (Hamber, 1985) 

lattices were already performed with Nf = 3 light Wilson-quarks. 
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c. Iterative hopping expansion method. The matrix elements of the quark 

propagator required for the gauge field updating with dynamical fermions can 

also be directly evaluated in hopping parameter expansion. The change in the 

quark part of the effective action is given in Eq. (4.3) by the matrix D which 

has the detailed structure 

D l
oll 

021 

012 

"n 

-I 
Dll= (l - KM) 

x,x+l! 
(r + yll) 6 U(x,l!), 

-1 + 
o 12= (1 - KM)x,x(r - yll) 6 U(x,l!) , 

-1 
D = (I - KM) 

21 X + 
(r + y ) llU(x,Jl), 

J.lo X+ J.1 \.1 

-1 + 
o

22
= (1 - KM) " (r - -r~.~> 11 U(x,u) • 

x+JJ,x 
(4.19) 

In what follows only the case r = 1 will be considered. In this case the non-

zero contributions in the hopping expansion look like 

n
11

= L KtM(U).9,. (1 + Yll) b.U(x,li), 
t = 3,5, •• x,x+ll 

012= L KiM(UJ' (l 
t=>4,6.. x,x 

+ 
- yll) l!.U(x,J.I) , 

021= i K.tM(U)t " (1 + y ) AU(x,l.l), 

.t = 4,6 •• x+]l,x+ll 1l 

0 22= 'i. KJZ.M(U)"t h (l - y ) AU(x,ll)+ , 

!!. = 3,5,. 0 x+1.1,x 1l 

( 4 .20) 
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The "periodic box iteration" of the hopping parameter series (Hasenfratz et 

al., 1983, 1984a) was adopted for the unquenched updating in (Montvay, 1984), 

To speed up the code for the evaluation of the required matrix elements M(U)1 

in Eq. (4.20), a useful observation is that it is enough to compute only for 

half of the in~tial spin index values. In the Dirac-matrix representation 

given by Eq, (2 .18) this is trivial on links in direction 1l = 4, since (1 ± 

y4) is non-zero only for half of the index values. For the other directions 

one can use, for instance, (k = 1,2,3): 

(l + 
l-y4 

yk) -, = 

1+Y4 l-y4 
(1 + yk) -,- yk -,- (4 .21) 

This shows, how the two lower components of e.g. M(U) x,x+k (l + Yk) can be 

expressed by the upper two. 

The average relative weight of the different orders of the hopping 

parameter series in Eq. (4,20) is shown in Table IV.l for some representative 

cases. It can be seen that the hopping expansion converges, in the average, 

reasonably well within 16th order. The 16th order calculation would, however, 

take still too much time. Actually calculated were in (Montvay, 1984; 

Langguth et al., 1984) (on every link) 8th or 12th orders. This takes still a 

lot of time: one sweep on the 84 lattice (Langguth et al., 1984) took ~ 40 

minutes in 8th order and ~ 240 minutes in 12th order on the CYBER 205 at 

Karlsruhe University. It is very important, that it is possible to correct, 

at least in the average, for the omitted higher orders. This is due to the 

fact that the higher order coefficients are strongly correlated to the lower 

ones. Such a behaviour is already suggested by the approximate validity of 

the formUla (4 .12). Using the correlation allows to estimate the result of 

the !max= 16 order series from some lower order (e.g. !!.max= 8 or !!.max= 12) 
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calculation. For instance, in the 64 calculation of (Montvay, 1984) the tmax 

= 16 result could be obtained in the average by multiplying the imax 8 

number by a factor A: 1.14. The same factor needed from imax = 12 to imax 

16 was A ';;;; 1,03. This brings a substantial gain in computer time but, of 

course, increases the error for the quark determinant. Monitoring the 

difference from time to time on a few hundred of links, it turned out that the 

estimate based on the extrapolation from imax = 8 deviates in the average from 

the exact tmax = 16 value by~ 16%. The corresponding average deviation for 

tmax ~ 12 extrapolated to tmax = 16 was 5%. The error in the determinant 

ratio caused by this extrapolation is far from being normally distributed. In 

most cases the deviation is much less than the average, but sometimes (in a 

few percent of cases) also errors in the order of 100% occur. It seems 

plausible that the effect of the few cases, where the error due to the 

extrapolation from the lower order to tmax = 16 is large, averages out and 

does not influence the updating process on the long-run. It is also possible 

to improve the extrapolation to the higher orders by a more elaborate use of 

the covariance matrix between individual lower and higher order expansion 

coefficients, 

First results on the hadron spectrum using the hopping expansion method 

in the updating with light dynamical quarks were obtained in (Langguth et al., 

1984) on a4 lattice. Nf = 3 degenerate quark flavours were considered in two 

-l 
points of the (6, vq)-plane (vq= (2Kq) ): 

point A: B 5 .4, 

"" 
3.0675 .. (Kq 0 .163), 

point 8: B 5 .3, 
"" 2.9762 •• (Kq 0 .168). (4.22) 
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For comparison, an 84 quenched calculation was performed, too, at B = 5.7. 

Some planar Wilson-loop expectation values are given in Table IV.2 for these 

three cases. Also planar and off-axis alongated Wilson-loop expectation 

values were measured in order to determine the static energy E of an external 

SU(J)-colour charge pair by 

aE(R) ~ - lim 
r-

l T ln W(R,T). (4 .23) 

Here W(R,T) stands for a Wilson-loop with length T in the time-direction and 

euclidean distance R between the endpoints in fixed time-slices. On the s4 

lattice T is, of course, restricted to T .;; 4 by the periodic boundary 

conditions and R has possible values R 1, 12, n, 2 fS, /6, 18, 3 and ITO 

(larger values of R were not considered because of statistics limitations), 

The obtained static energies are shown in Fig. 8a-8c. The expected screening 

due to the virtual quark pairs (Joos et al., 1983) cannot be seen. The static 

energies with dynamical quarks are, in fact, remarkably similar to the quark-

anti-quark potential in Fig. Be. Very probably, the distance between the 

external colour charges is not large enough (R ~ ITIJ corresponds roughly to 

0.5 fm, as we shall see below). 

The 1r p , p- and 6- masses were determined on the 84 configurations by 

32nd order (for the baryons 33rd order) "copied gauge field" iteration in 

hopping parameter. (See previous section.) The results are shown in Flg. 9a 

- 9c as a function of the quark mass v = (2K)-1 in the quark propagator. The 

quenched calculation (Fig. 9c) was already discussed in the previous Section 

(see Table III.2). In the physical points, where the quark mass in the 

determinant is equal to the quark mass in the propagator (vq = u), the 

unquenched result is 



Point A: 

Point B: 

am~~ 0.79 ± 0.01 

amp= 1.62 ± 0.02 

am, 
+0.1 

0 .3_0 .2 

a~ = 0.85 ± 0.15 
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amp 0.95 ± 0.01 

am a 1.74 ± 0.02 

amp 0.62 ± o.os ( 4 .24) 

am A 1.09 ± 0.15 amp+ (0.24 ± 0.09) 

It can be seen, that point B is quite near to the critical line ~cr(B), where 

the pion mass (and quark mass) vanishes (see Fig. 10). This is the reason of 

the deterioration of convergence for A S~ff" as shown by the last line of 

Table IV.l • This implies an unknown systematic error in point B. Taking 

(~q- ucr): 0.06 in point A and (uq- Ucr) ~ 0.01 in point Bas an estimate of 

quark mass in lattice units, and using Eqs. (5.15-5.17) one obtaines for the 

renormalization group invariant quark mass Mq and lattice spacing a: 

Point A: Mq "" 170 MeV a :: 0.87 Gev-1 

Point B: Mq :: 30 MeV a :: 0.76 Gev-1 ( 4 .25) 

(These numbers are different in (Langguth et al., 1984), because there Eq. 

(5.16) with c ~ 1 was taken. The estimate for c in Eq. (5.17) is probably 

closer to the reality.) Ass~ming the validity of asymptotic scaling (with 

zero quark mass) in point B, the obtained value of the A-parameter is: Alat(Nf - 3) 

""1.7 MeV. This corresponds (Kawai et al., 1981; Weisz, 1981) 
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to A:o: 1 = 180 MeV. Of course, the question of asymptotic scaling (or 

scaling in general) cannot be decided on the basis of only two points in the 

(8, Uq)-plane. Some evidence for both points A and B being within the scaling 

region comes, however, from the fact that rotation symmetry is well satisfied 

for the static energies shown by Figs. 8a-8b. 

A direct comparison of the results in Eq. (4.24) with the quenched masses 

in Table Ill.2 is difficult because of the different quark mass dependence and 

because of the shift in scale. In spite of this, one can see already in point 

A with quark mass Mq :: 170 MeV, that the p/p mass ratio is decreased if one 

compares at similar values of (u-ucr> in Fig. 9a and Fig. 9c. The pfp ratio 

in point B with Mq :: 30 MeV is mplmp = 1,35, therefore considerably lower than 

in the quenched case. The error is, however, still somewhat large to draw a 

definite conclusion. 
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V. Scaling with Dynamical Fermions 

The detailed study of the scaling properties in pure gauge theory has 

shown (for SU{2) see (Gutbrod et al., 1984; Mackenzie, 1984; Patel et al., 

1984); for SU(3) (Hasenfratz et al., 1984b; Bowler et al., 1985; Gupta et al., 

1984), that asymptotic scaling (corresponding to the two-loop perturbative S-

function) is not yet reached in the intermediate coupling range, where most of 

the Monte Carlo calculations of physical quantities are performed. There is, 

howeve~ an important region where dimensionless ratios of physical quantities 

are, to a good approximation, independent from the bare coupling. In this 

"scaling region" physics is dictated by the continuum theory and the change of 

the lattice scale is given by some general non-perturbative S-function. In 

order to perform an optimal numerical calculation, the precise knowledge of 

the scaling region and of the S-function is very important. 

In the case of a lattice gauge theory with dynamical fermions a similar 

situation has to be expected. The additional complication in this case is, 

however, that the scaling properties depend on two parameters: besides on the 

gauge coupling also on the dynamical quark mass. Before discussing the quark 

mass dependence of the lattice renormalization scheme, let us first briefly 

summarize some facts about the renormalization group equation (RGE) with 

quarks. 

In a mass-independent renormalization scheme (for a reivew see (Peterman, 

1979) the RGE for a physical quantity P(\1, g, m) depending on the 

renormalization point mass parameter ~. the renormalized coupling g and 

renormalized quark mass m, is 

a a a } {•- + B(g) -- y(g) m- P 
a~ ag am o. (5 .1) 
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Here and in what follows it will be assumed, for simplicity, that the 

different quark flavours are degenerate in mass. The expansion of the RG-

functions is 

B(g) - s g3- a gs- s g7-
o 1 2 

y(g) 2 4 
yog + Y lg + 

In QCD with SU(Nc) colour and Nf flavours we have 

1 
B • - 2 

0 (41f) 

llNc 2Nf 
{-3-- -3-J. 

B • 
1 

y • 
0 

2 
1 _ 34Nc 

( -
(4n)4 -3-

1 

( 411")2 

3(N 2-1) 
c 

N 
c 

13Nc 1 
Nf(-3 - NJJ, 

c 

(5 .2) 

(5 .3) 

These are the universal expansion coefficients. All other coefficients depend 

on the renormalization scheme (lattice action etc.). 

The two standard solutions of the RGE (the so-called standard 

"renormalization group invariants") are the A-parameter and the 

renormalization group invariant (RGI) quark mass M: 

A 
2 -131/21302 

~(13og) e 

M 
2 -yo1213o 

m (213
0
g ) exp 

1 
--2. 

213
0

g 

{J dx 
0 

exp 
1 ~ (1 +-3 {- J dx F(x) 6 x 

0 0 

(
y(x) y 
1iTxT + so.Jl 

0 

IJ_)J, 
6 2

x 
0 

{5 .4) 

--- -----~----------·--'"-- ----'---~----------·-·---------- '-------- -_ _:-_ ~-----"----- "----~----~-------
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(The normalization of M corresponds here to (Gasser et al., 1982). Every 

physical quantity is a function of A and M only, therefore the "curves of 

constant physics" in the (~, g, m)-space are parameterized by M, A = const. 

Using the freedom of finite renormalizations, it is possible to introduce new 

renormalized parameters by 

g' g z1 (g,A), ].1' = ~. 

m' "'m q (g,A); 

where A = M/A is a dimensionless measure of the RGI quark mass, and the 

functions Zj (j = 1, 2) are assumed to have the small-g expansion 

Zj(g,A) 1 + a.(A) g
2+ 

J 

(5 .s) 

{5 .6) 

Introducing the dimensionless variable £ 
m' 
;- for the renormalized quark mass, 

one obtains from Eq. (5.1) the new RGE 

l~ ;il + ag(g' ,£) ;g + aJ.(g' ,.t) ~£} P o. 

The RG-functions are related to the old ones by 

ag(g' ,J.) {a<s> Lz1+ s 
az

1 
-.gllg g (g' ,A)' 

a J. (g' '£) 

A =.!:! A -

-< {1 + y(g) - a<s> 

!"c Hs> 
" 

<Hs>· 

a ln z2 
-,-g- }g=g(g' ,A)' 

(5 .7) 

{5 .s) 
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It can also be shown, that the new and old RGI 's are related by 

A' 
a 

1 
(A) 

A exp {-
8
--}. 

0 

M' M. (5 .9) 

Using the lattice as a perturbative renormalization scheme, the simplest 

convention is to keep the mass-independent scheme corresponding to Eq. (5.1). 

This was, in fact, done in previous works on the RGI quark mass (Gonzalez-

Arroyo et al., 1982; Hamber et al,, 1983d; Golterman et al., 1984a, 1984b; 

Gockeler, 1984), In the nonperturbati~e region, however, where the numerical 

calculations are done, it is more convenient to define the renormalization 

scheme by the hadron masses. In the case of Wilson-fermions one has to find 

first the critical line 1lcr(8) in the (8,1-lq)-plane (with a =. 2Ncg-Z for the 

gauge coupling, as usual, and ~q =. (2Kq)-l, where Kq is the hopping parameter 

of the dynamical quarks). In perturbation theory this is equivalent to cancel 

the linear divergences in the quark self-energy. In general, 1lcr(8) is the 

line where the lowest o- mass and the (bare, renormalized and RGI) quark mass 

vanish. Having the value of the critical hopping parameter Kcr = (21lcr)-l, 

one can define the bare quark mass parameter mq (in lattice units) by 

l 
am=~ 

q q 

l 
-~=-

cr " - " q cr 
(5 .10) 

In the case of Kogut-Susskind fermions the critical (zero) quark mass is not 

renormalized, therefore this step is not necessary. 

The next step, for any fermion formulation, is to find the lines, where 

the hadron mass ratios are constant. These are the "lines of constant 

physics" where the RGI quark mass is constant. Of course, scaling for finite 

lattice spacing is always sqmewhat broken by lattice artifacts, therefore 

• 
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"constancy" means always a statement within given errors and within a given 

class of hadron masses. To fix the renormalization scheme completely, it is 

reasonable to assume that the value of hadron masses (or equivalently, of a 

singled out hadron mass) is constant along the "lines of constant physics". 

Furthermore, by using the freedom of defining the value of, say, the proton 

mass for quark mass values different from the physical case, one can arrange 

that the value of the A-parameter be independent from the RGI quark mass. 

(See F.q. (5.9)1) By this, the value of the lattice spacing a is fiKed 

everywhere in the "scaling region", where the "lines of constant physics" can 

be defined at all. Since there seems to be no reason, why this convention 

should define a quark mass independent scheme, the RGE on the lattice has a 

quark mass dependent form corresponding to Eq. (5.7): 

a a 
t-a aa + f3g(g,J.Iq) ag +f3ll(g,J.Iq) 

a a;>l p 
q 

O(a) • (5 .11) 

Here the right hand side represents the scale-breaking lattice artifacts, 

which in the continuum limit a + 0 tend to zero at least as fast as (some 

power of) the lattice spacing. 

The "lines of constant physics" llq 

differential equation 

d"q(g) f3ll(g,J.I ) --= q 
dg f3g(g,vq) 

llq(g) are determined by the 

The different values of the RGI quark mass belong to the solutions with 

(5 .12) 

different initial conditions. Defining the single variable f3-function for a 

given RGI quark mass by: 
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Bq(g) ' Bg(g,,q(g)), (5 .13) 

the single variable RGE for this quark mass is 

a a I l-a ~a + f3 (g) ~a P a q g 
O(a) • (5 .14) 

The quark mass dependence of the f3-function f3q(g) is assumed to appear only in 

the higher-order non-universal expansion coefficients 13 2 , r 1, ••• (see 

F4. (5.2)). Hence for g + 0 (f3 + ~) the quark mass dependence disappears and 

the renormalization scheme becomes indistinguishable from the mass independent 

scheme of lattice perturbation theory. This (perturbative) mass-independent 

regime is, however, presumably very difficult to reach by numerical hadron 

mass calculations. 

Since the perturbative regime is presently out of range, in the 

intermediate coupling range some pragmatic definition of the quark mass can be 

very useful. A possibility (Langguth et al•, 1984) is to introduce the RGI 

quark mass (Mq) by the lowest vector meson mass ml_: 

m = 1- 2 Mq + E(Mq) (5 .IS) 

For heavy quarks (like c, b, or t) E(Mq) can be taken, to a good approximation, 

from the Schr6dinger-equation, assuming some quark-antiquark potential. For 

light quarks (u, d, and s) we can take, as an empirical value E(Mq) = 0.75 GeV 

which agrees well with the p- and~- meson mass. In order to fix the 

lattice scale, besides Eq. (5.15), still another relation is needed. Near the 

critical line llcr• where the RGI quark mass is small, one Can assume 



aM 
q 

c(S) (u - u ) 
q cr 

c(S) 
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am 
q 

(5.16) 

with some function c(a). Having nothing better, one can take for c(a) the 

perturbative expression (Gonzalez-Arroyo et al., 1982; Hamber et al., 1983d; 

Golterman et al., 1984a, 1984b; Gockeler, 1984) at some arbitrarily fixed 

coupling S (g): 

ceii) (ZS -2)-y/2S 
og o 2.5 (5.17) 

The numerical value here corresponds to Nf ~ 3 and S 5.4 in SU(3). 

An important question is, how the scaling region can look like in the 

available part of the (a, Vq)-plane. For_Vq +=the quark mass tends to 

infinity and the theory reduces to a pure gauge theory. In this case the 

gluonic quantities (like string tension, glueball masses, gluonic energy 

density in thermodynamics etc.) show approximate scaling for a~ 5.7. In the 

region of light quark masses the results of a recent calculation (Langguth et 

al., 1984) indicate, that a tentative shape of the scaling region for light 

dynamical quarks could look like shown in Fig. 10. Note the difference of the 

scaling regions of pure gluonic quantities compared to quantities containing 

heavy quarks explicitly (like heavy quark bound state masses, quark energy 

density in thermodynamics etc.). 

Acknowledgements 

It is a pleasure to thank P. Hasenfratz, J. Kogut, M. LUscher and G. 

MUnster for very useful discussions during the preparation of this review. 

-57-

References 

Ali, A., and I. Montvay, 1983, Phys. Lett. 124B, 237. 

Azcoiti, V., and A. Nakamura, 1983, Phys. Rev.!£Z_, 255. 

Azcoiti, V., A. Cruz, and A. Nakamura, 1984, Frascati preprint. 

Banks, T., S. Raby, L. Susskind, J. Kogut, D. Jones, P. Scharbach, and D. 
Sinclair, 1977, Phys. Rev. DIS, 1111. 

Barad, K., M. Ogilvie, and C. Rebbi, 1984, BNL preprint 34573. 

Barkai, D., K. J. M. Moriarty, and C. Rebbi, 1984, Phys. Rev. D30, 1293. 

Berg, B. A., Billoire, and D. Foerster, 1982, Lett. Math. Phys • .&.., 293. 

Bernard, C., T. Draper, K. Olynyk, and M. Rushton, 1982, Phys. Rev. Lett. 49, 
1076. -

Bernard, C., T. Draper, and K. Olynyk, 1983a, Phys. Rev.~. 227. 

Bernard, C., T. Draper, K. Olynyk, and M. Rushton, 1983b, Noel. Phys. B220, 
I FS8], 508. 

Bhanot, G., U. M. Heller, and I. o. Stamatescu, 1983, Phys. Lett. 129B, 440. 

Billoire, A., R. Lacaze, E. Marinari, and A. Morel, 1984a, Phys. Lett. 136B, 
418. 

Billoire, A., E. Marinari, A. Morel, and F. P. Rodrigues, 1984b, Phys. Lett. 
148B, 166. 

Billoire, A., R. Lacaze, E. Marinari, and A. Morel, 1984c, Saclay preprint, 
SPhT/84-92, 

Billoire, A., E. Marinari, and R. Petronzio, 1985, Nucl. Phys. B251, [FS13}, 
141. 

Blairon, J. M., R. Brout, F. Englert, and J. Greensite, 1981, Nucl. Phys. 
Bl80, [FS2}, 439. 

Bowler, K. C., G. S. Pawley, D. J. Wallace, E. Marinari, and R. Rapuano, 1983, 
Nucl. Phys. B220, [FS8], 137. 

Bowler, K. c., R. D. Kenway, G. s. Pawley, ~nd D. J. Wallace, 1984a, Phys. 
Lett. 145B, 88. 

Bowler, K. C., D. L. Chalmers, A. Kenway, R. D. Kenway, G. S. Pawley, and D. 
J. Wallace, 1984b, Nucl. Phys. B240, [FS12], 213. 

Bowler, K. c., A. Hasenfratz, P. Hasenfratz, U. Heller, F. Karsch, R. D. 
Kenway, H. Meyer-Ortmanns, I. Montvay, G. S. Pawley, and D. J. Wallace, 1985, 
Edinburgh preprint 85/335. 



-58-

Bower, R. C., G. Maturana, M. B. Gavela, and R. Gupta, 1984, Phys. Rev. Lett. 
1l· 1318. 

Burkitt, T., 1983, Edinburgh preprint 83/240. 

Cabibbo, N., G. Martinelli, and R. Petronzio, 1984, Nucl. Phys. 8244, 381. 

Fucito, F., E. Marinari, G. Parisi, and C. Rebbi, 1981, Nucl. Phys. 8180, 
[FS3], 369. 

FUcito, F., G. Martinelli, c. Omero, G. Parisi, R. Petronzio, and F. Rapuano, 
1982a, Nud_. Phys. 8210, [FS6], 407. . 

FUcito, Fo, G. Parisi, and S, Petrarca, 198Zb, Phys. Lett. 1158, 148. 

Fuucito, F., A. Patel, and R. Gupta, 1983, Phys. Lett• 1318, 169. 

Fukugita, M., T. Kaneko, and A. Ukawa, 1983, Phys. Lett. 1308, 199. 

Fukugita, M., T. Kaneko, and A. Ukawa·, 1984a, Nucl. Phys. 8230, [FSlOJ; 62. 

Fukugita, M., T. Kaneko, and A. Ukawa, 1984b, Phys. Lett. 1458, 93. 

G8.sser, J ., and H. Leutwyler, 1982, Phys. Reports, 87C. 77. 

Gilchrist, J.P., H. Schneider, G. Schierholz, and M· Teper, 1984a, Phys. 
Lett. 1368 1 87. 

Gilchrist, J. P., H. Schneider, G. Schierholz, and M. Teper, l984b, Nucl. 
Phys. 8248, 29. 

Gliozzi, F., 1982, Nucl. Phys. B204, 419. 

Colterman, M. F. L,, and J. Smit, 1984a, Phys. Lett. 1408, 392, 

Colterman, M. F. L., and J, Smit, 1984b, Nucl. Phys. 8245, 61. 

Gonzalez-Arroyo, A., F. J. Yndurain and G, Martinelli, 1982, Phys. Lett. 1178, 
437. 

Gottlieb, S., P. B. Mackenzie, H. B. Thacker, and D. Weingarten, 1984, Phys. 
Lett. 1348, 346. 

GOckeler, M., 1984, Phys. Lett. 1428, 197. 

Groot, R., J. Hoek, and J. Smit, 1984, Nucl. Phys. 8237, 111. 

Gupta, R., and A. Patel, 1983a, Phys. Lett. 1248, 94. 

Gupta, R., and A, Patel, 1983b, Nucl. Phys. 8226, 152. 

Gupta, R., G. Guralnik, A. Patel, T. Warnock, and C. Zemach, 1984, Phys. Rev. 
Lett. 1_l, 1721. 

-59-

Gutbrod, F., P. Hasenfratz, z. Kunszt, and I. Montvay, 1983, Phys. Lett. 128B, 
415. 

Gutbrod, F., and I. Montvay, 1984, Phys. Lett. 1368, 411. 

Hamber, H., and G, Parisi, 1981, Phys. Rev. Lett.!!!.._, 1792. 

Hamber, H., E. Marinari, G. Parisi, and C. Rebbi, 1982, Phys. Lett. 1088 1 314. 

Hamber, H. W., E. Marinari, G. Parisi, and C. Rebbi, 1983a, Nucl. Phys. 8225, 
{,;9], 475. 

Hamber, H., and G. Parisi, 1983b, Phys. Rev·~. 208. 

Hamber, H. w., E. Marinari, G. Parisi, and C. Rebbi, 1983c, Phys. Lett. 124B, 
99. 

Hamber, H. W ., and Chi Min Wu, 1983d, Phys. Lett, 1338, 351. 

Hamber, H. W., 1985, Nucl. Phys. 8251, [FS13], 182. 

Hasenfratz, A., and P. Hasenfratz, 1981, Phys. Lett. 1048, 489. 

Hasenfratz, A., P, Hasenfratz, z. Kunszt and C. Lang, 1982a, Phys. Lett. 1108, 
282. 

Hasenfratz, A., P, Hasenfratz, z. Kunszt and C. Lang, l982b, Phys. Lett. 1178, 
81. --

Hasenfratz, P., and r. Montvay, 1983, Phys. Rev. Lett. ~. 309. 

Hasenfratz, P., and I. Montvay, 1984a, Nucl. Phys. 8237, 237. 

Hasenfratz, A., P. Hasenfratz, u. Heller, and F. Karsch, 1984b, Phys. Lett. 
1438, 193. 

Hasenfratz, A., P. Hasenfratz, u. Heller·, and F. Karsch, 1984c, z, Physik, 
C25, 191. 

Householder, A., 1964, The theory of matrices in numerical analysis 
(Blaisdell, New York,) 

Iizuka, J., 1966, Progr. Theor. Phys. Suppl. 37-38, 21, 

Itoh, S., Y. Iwasaki, Y. Oyanagi, and T. Yoshie, 1984, Phys. Lett. 1488, 
153. 

Joffe, B. L., 1981 1 Nucl. Phys. 8188, 317. 

Jolicoeur, T., H. Kluberg-Stern, M. Lev, A. Morel, and B. Peterson, 1984, 
Nucl. Phys. 8235, [FSll], 455. 

Joos, H. and I. Montvay, 1983, Nucl. Phys. 8225, (FS9], 565. 



-60-

Karsten, L. H., and J. Smit, 1981, Noel. Phys. 8183, 103. 

Kawai, H., R. Nakayama, and K. Seo, 1981, Nucl. Phys. 8189, 40. 

Kawamoto, N., 1981a, Nucl. Phys. 8190, [FS3], 617. 

Kawamoto, N., and J. Smit, 198lb, Nucl. Phys. 8192, 100. 

Kluberg-Stern, H., A. Morel, 0. Napoly, and B. Peterson, 1981, Nucl. Phys. 
8190, [FS3], 504. 

Kluberg-Stern, H., A. MOrel, 0. Napoly, and B. Peterson, 1983, Nucl. Phys. 
8220, [FS8l, 447. 

KOnig, A., K. H. MUtter, and K. Schilling, 1984, Phys. Lett. 1478, 145. 

Kunszt, z., 1983, Phys. Lett. 1318, 173. 

Kunszt, z., and I, Montvay, 1984, Phys. Lett. 139B, 195. 

Lanczos, c., 1950, J. Res. Nat. Bur. Stand.~ 255. 

Lang, c. s., and H. Nicolai, 1982, Nucl. Phys. 8200, [FS4], 135. 

Langguth, w., and I. Montvay, 1984, Phys. Lett. 1458, 261. 

Lipps, H., G. Martinelli, R. Petronzio, and F. Rapuano, 1983, Phys. Lett. 

1268, 250. 

LUscher, M., 1984, in Progress in gauge field theory, edited by G. t'Hoft et 

al. (Plenum, New York, p. 451. 

Mackenzie, P. B., 1984, Fermilab preprint, FERMILAB-CONF. 84/48-T. 

Marinari, E., G. Parisi, and C. Rehbi, 1981a, Phys. Rev. Lett.~ 1795. 

Marinari, E., G. Parisi, and C. Rehhi, 1981b,_ Nucl. Phys. 8190, [FS3], 734. 

Marinari, E., E. Rabinovici, and P. Windey, 1984, Phys. Lett. 1358, 125. 

Martinelli, G., G. Parisi, R. Petronzio, and F. Rapuano, 1982a, Phys. Lett. 

1168, 434. 

Martinelli, G., C. Omero, G. Pirisi, and R. Petronzio, l982b, Phys. Lett. 

1!7.8, 434. 

Martinelli, G., G. Parisi, R. Petronzio, and F. Rapuano, 1983a, Phys. Lett. 
1228, 283. . 

Martinelli, G., andY. c. "2hang, 1983b, Phs. Lett. 1238, 433. 

Martinelli, G., andY. c. Zhang, 1983c, Phys. Lett. 1258, 77. 

Martinelli, G., 1984, Phys. Lett. 1418, 395. 

-61-

Meyer, B., and C. Smith, 1983, Phys. Lett. 1238, 62. 

Montvay, I., 1983, Phys. Lett. 1328, 393. 

Montvay, I., 1984, Phys. Lett. 139B, 70. 

MUtter, K. H., and K. Schilling, 1984a, Nucl. Phys. B230, 

MUtter, K. H., and K. Schilling, 1984b, Nucl. Phys. 8235, 

Nussinov, S., 1983, Phys. Rev. Lett.1.!_, 2081. 

{ FSlO], 

{FSll], 

O'Caroll, M., and w. D. Barbosa, 1984a, Belo Horizonte preprint. 

0 1 Carol!, M ., 1984b, Harvard preprint, HUTMP, 8162. 

Okubo, S., 1963, Phys. Lett. 2_, 165. 

Otto, S., and M. Randeira, 1983, Nucl. Phys. B220, [FSS}, 479. 

Otto, S ., 1984a, Phys. Lett. 135B, 129. 

Otto, S., and J. D.Stack, 1984b, Phys. Rev. Lett. 2!_, 2328. 

Pais, A., 1966, Rev. Mod. Phys.l!!_, 215. 

275. 

259. 

Parisi, G., R. Petronzio, and F. Rapuano, 1983, Phys. Lett. 1288, 418. 

Patel, A., and R. Gupta, 1983, Phys. Lett. 131B, 425. 

Patel, A., R. Cordery, R. Gupta, and M.A. Novotny, 1984, Phys. Rev. Lett. 53, 
527. -

Peteman, A., 1979, Phys. Reports, 53C, 157. 

Politzer, D., 1984, Noel. Phys. 8236, 1. 

Schor, R., 1983, Nucl. Phys. B222, 71. 

Schor, R., 1984, Commun. Math. Phys. 2.!, 369. 

Stamatescu, I. 0., 1982, Phys. Rev. 025, 1130. 

Stehr, J., and P. Weisz, 1982, DESY preprint 82-057. 

Stoer, J ., and R. 8uliisch, 1980, Introduction to numerical analysis (Springer 
Verlag, Berlin). 

Susskind, L., 1977, Phys. Rev.!!.§._, 3031. 

1 t Hooft, G., 1974, Nucl. Phys. 872, 461. 

Varga, R. S., 1965, Matrix iterative analysis (Prentice-Hall. Inc.). 



-62-

Velikson, B., and D. Weingarten, 1985, Nucl. Phys. B249, 433. 

Weingarten, D. H. 1982, Phys. Lett. Bl09, 57. 

Weingarten, D. H., 1983a, Nucl. Phys. B215, [FS7], 1. 

Weingarten, 0. H._, 1983b, Phys. Rev. Lett. 2!_, 1830. 

Weisz, P., 1981, Phys. Lett. 100B, 331. 

Wilson, K. G., 1974, Phys. Rev. 014, 2455. 

Wilson, K. G., 1977, in "New phenomena in subnuclear physics", Erice 1975, 
edited by A. Zichichi, (Plenum, New York). 

Witten, E., 1983, Phys. Rev. Lett. 2!..,. 2351. 

Zweig, G., 1964, CERN preprint TH-412. 

-63-

Table III .1 

The number of points Nt with given lattice distance (measured in links) in a 

four-dimensional hypercubic lattice. 

• 0 2 3 4 5 6 7 8 

"• 8 32 88 192 360 608 952 1408 

• 9 lO ll l2 l3 l4 l5 l6 

"• 1992 2720 3608 4672 5928 7392 9080 11008 



-64-
-65-

'"' i' -I .p rr" -;;::: ::;t 
Table III.3 

1 eo • • " " ,.: 

~ : ! 
j: ~ ~ ~ Some results of quenched hadron mass calculations with Kogut-Susskind 

• -+--+--c";--,",-1 .a- a fermions. 
0 g 11: .. :::; 

0-~o""i~ e: 
"' I ..., I + "'~"' i: ,.... ..., 

II- If- oo 0 ... .. ,.. Ill 

0 0 b~ "" .. .. 0 0 

b N .,..., o ; ~ ? I 

0> g :.~ :;-~ 
0 ..., • .. .. 

'-" "'. ;> . ' " 
~::;; l .<> 

": ~; 
8=5.7 8=6.0 . . . 

•· 'f ~ (Gilchrist et al., (Bowler et al., 1984b) (Billoire et al., 

0 0 0 ;; ~"" 

~I 2 ... .., eo 't, ~ ';' ~ [ 1984a,l984b) 1985) 

II- H- II- II- j': ~ e. g 103 16 . a3 • 16 (copied) 103 0 20 

0 0 0 II- .... "' ..... 

b ..... 0 0 "' ... >-l = 
;.,.1 ..... 0 "" b " "' i: 

0 0 

~ '[ "' i ~ mpa 0.98 ± 0.06 0.88 ± 0.06 "'0.37 

..... ~ 1<'::. 
~ I ~ 

? :[ 8 
ma 1.21±0.14 1.05±0.30 .vQ,S 

-~o~(;o.i ~~ ~ p 

..... ..... "' .... ~ : ; ~ ----~--------------------------------------

; ? ~ ; : ~ : ~ ~ : (m1ra)
2

/(mqa) 7.6 7.0 "'6.5 

...., o o o " ,... a H 

"'""-oo• ;g H 
o o 0>o I - ~ .... ~ 

0> :.- ~ a 
e ! ; ~ 

'? :;,r 

~/ 51 ~ ~ : 0 i ---~ 
H- II- If- ...... "' .. " . . 
0 0 0 I+ .. 

:,_ 0 b 0 ~ "' I <' 

0 ..... "' • "' 
g b 
e ..., r . . 

0 " 

~ ' 
g :g 
" " ~ ~ 

>-1 >:j ~I <:j Ej 00 i ~ 
..... '-" '-" '-" Ill 

~ ~ ~ . ~ 

"' ! . . 
~ ~ 

• i' l 
0 0 0 ..... " t 

"' ~ ~ Ill 

0 ..., .... \ "' .. .. 

II- II- It I 0> ,. ~ 

0 0 0 " .... 

0 0 0 ~ ~ ; 
.,.. ~ "' !} t: 

e ~ 



-66-

Table IV .1 

The average relative magnitude (in percent) of different orders of hopping 

expansion in A S~ff The numbers in the table are obtained from the ratio of 

the absolute value of a given order divided by the sum of the absolute values 

upto 16th order. The first row was obtained on 64 lattice (Montvay, 1984) the 

last two rows on a4 lattice (Langguth et al., 1984). In both cases 10 hits 

per link were done in the Metropolis updating and Nf = 3 degenerate quark 

flavours were considered. 

order 4 6 8 10 12 14 16 
6 - 5.7 44.0 27.9 15 .1 7 .4 3.3 1.5 0.8 
K = 0.15 
8 = 5.4 

A' 35.2 27.9 17 .7 9.6 5.8 2.6 1.2 
K = 0.163 
8 5.3 ., 24.2 23.3 17 .o 13.7 10 .1 7.7 4.0 
K = 0.168 
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TABLE IV .2 

1 Wilson-loop expectation values Wij = 3 TrCij in the points A and B (see Eq. 

(4.22) for parameters). The numbers in paranthesis are the estimated errors 

in last numerals. In the last line the Wilson-loop expectation values on the 

configurations used for the quenched calculation at a = 5.7 are given. 

I w11 I w!Z I W13 I W22 I W23 I W33 

A 

I 
0.5298 (9) I" .2996 (12) 

1

0.1719 (11) I 0.1099 (lO)I o .0428 (8) I o .0!28 (7) 

B 0.5428 (10) 0.3205 (12) 0.1912 (13) 0.1295 (8) 0.0546 (9) 0.0175 (9) 

"' = o ~I 0.5468 (10) lo .3218 (11) lo.1922 <11> I o.1298 <8l I 0.0557 (7)1 0.0186 (7) 
a = s .7 



Figure Caption 

Fig. 1: 

Fig. 2: 

Fig. 3: 

Fig. 4: 

Fig. 5: 

Fig. 6: 

Fig. 7: 

Fig. Sa: 
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The quark propagator configuration needed for flavour non-

singlet mesons. 

The same as FLg. 1 for flavour singlet mesons. 

The same as Fig. 1 for baryons. 

Illustration of the iteration for the calculation of the hopping 

expansion coefficient <fiMnli>. In every step the open points 

are calculated from the full ones. 

The quark propagator configuration for a matrix element of 

flavour non-singlet point-split current in Eq. (3.22). 

Quark propagator configurations needed for non-leptonic decay 

matrix elements. The points connected by a dotted line are at 

the same site. 

The dependence of the fermion part of effective action S~ff 

(the average subtracted: 6 S~ff= s:ff- <S~ff> 0 ) on the hopping 

parameter K, for 20 different gauge configurations (Joos et al., 

1983). The colour group is SU(2) at S ~ 2.3 and Nf = 1 flavour 

is taken. 

The static energy of an external quark-antiquark pair as a 

function of the lattice distance for~= 5.4, Kq = 0.163 with Nf 

Fig. Sb: 

Fig. Sc: 

Fig. 9a: 

Fig. 9b: 

Fig. 9c: 

Fig. 10: 
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3 degenerate flavours (point A in (Langguth et al., 1984). 

The same as Fig. Sa for S 5.3, Kq 0.168 (point B in 

(Langguth et al., 1984). 

The same as FLg. Ba in the pure gluon theory at S = 5.7, The 

gauge configurations are those in the quenched calculation of 

(Langguth et al., 1984), 

Hadron masses as a function of quark mass parameter in the 

quark propagator ~ = (2K)-l for S = 5.4, Kq ~ 0.163 with Nf 

degenerate flavours (point A in (Langguth et al., 1984), 

The same as FLg. 9a for S 5.3, Kq 0.168 (point B in 

(Langguth et al., 1984), 

Hadron masses as a function of quark mass parameter ~ ~ (2K)-l 

in the quenched approximation for S = 5.7 (Langguth et al., 

1984). 

Tentative shape of the scaling region in the (S,~q)-plane with 

Nf = 3 degenerate Wilson-flavours. Scaling could be valid for 

3 

purely gluonic quantities to the right of the line (SG), for all 

quantities to the right of the line (SQ), The critical line 

with zero quark mass iS' ~cr(S), its perturbative 1-loop 

approximation is the dashed line. The cruves ~q belong to 

constant RGI quark masses ("constant physics"), The position of 

the two points A, B measured in (Langguth et al., 1984} is also shown. 



.~ 
u.. .~ 

u.. 

f 
t + 
• 

t 

+ 

+ 

t 

+ 
0 
0 c:i X 

+ 
X 

N 

c:h 
u: 

.-

.~ 6 u.. M 

Q 
c:h u: 

X 

X 



.., 
~ .., ~ 
Ll'i II d 
II ..., II 

~z~ 

• 

• 

ro 
00 

~ 
u... 

... 

• 

~~----~--~--~C>~.--~-----L----L----L--~LO~--~----_L_j 
~ d 

.., 
........... 
N~N 
.._.,. II It -::>ZC!l. 
(/) 

0 - 0 "' I S2 
I 

Ill ....... ... 
~ .., 
~ 

l!g 

~ 
N 

~ 

·~ 



("') 

Mo.ri 
II II 

-Zc:: 

~ ~--J---~----0~--~~--J_--~ ____ J_ __ ~~~---L--~L_J 
..... 0 

N c.o 
I' 
~ 
N ..0 
II r:P 
a 

L:l ::1. 
~ 1.1.. 

CX) 
c.o ..... 
d • II 

a • ~ 

........... 

1---+--4 

>~----~--~----~--~----~--~----~--~----~--~~ 0 0 
..... o.n 

0 

0 ...... ... 
~ 
("') 

~ 

~ 
~ 
N 

~ 

~ 

-



~ 

("') .ri 
" •• -z c:!l. 

-I;:; 
Ill 

N 
<D 

:::1. 
r--m 
c-.i 
II 

("') <7 
M.ri :i 
II II - co 
z~ <D 

~ 

d 
II 
<7 
~ 

E 
0 q &n q &n 

N 
,....: - d 

~I~ 
Ill 

&n 
:::1. 

r-- 111 
<D m 
0 cil M 

" 
u. 

<7 
:::1. 

("') 
<D 

a 
" r::T 
~ 

E 
111~--~~--------~----------~~--------~k---------__J 

~ ~ !3 ~ 

("') 

M 

N 
M 

~ 

M 

m 
N 

N 
M 

...., ,., 

0 
M 



am 

2.0 

1.5 

1.0 

0.5 

, ,, 

2.9 

..... 
.......... 

./' 

3.0 

2 .,........-!amnl 

3.1 

f3 : 5.7 
N1 :0 

84 lattice 

Fig.9c 

3.2 

~~._~--~-------'' 

1 
J.l.q"2Kq 

G 

Fig.10 

~, •• ~ ' ' ' ' !"' t, ao P• •' T ' ' ' I ' ' ' ' ' gQ~ 

J.l.q ( Mq large) 

---------J.l.cr !f3)110~;--------------
\).CI l l'/IQ sffla\\) 

J.l.q:3 

s 

·~~-------........--.-~--....___--~-~--~~-~-._...._, __ _,---~--~"'---~-...r'----.r-..r--•--"----......___".,___..r _ _...._~--...-~ __ 


