DEUTSGHESERERTROMEM-SYMERROTROM

 DESY 85-068 July 1985

DESY behält sich alle Rechte für den Fall der Schutzrechtserteilung und für die wirtschaftliche Verwertung der in diesem Bericht enthaltenen Informationen vor.

DESY reserves all rights for commorcial use of information included in this report, especially in case of filing application for or grant of patents.

To be sure that your preprints are promptly included in the HIGH ENERGY PHYSICS INDEX, send them to the following address (if possible by air mail) :

DESY
Bibliothek
Notkestrassa 85
2 Hamburg 52
Germany

RADIATIVE DECAYS OF THE $\mathbf{~}(2 S)$
 \section*{INTO THE THREE χ_{b} STATES}

The argus collaboration

H.Albrecht, U.Binder, G.Harder, I,Lembke-Koppitz, A.Philip W. SOHMDT.PARZEFALL, H.SOHROODER, H.D.SOHULZ, R.WURTH desy, Hamburg, Germany
A.Dresoher, B.Gräwe, U.MAtthiesen, H. SCHECK, J.SPENGLER, D.WEGENER institut für Physik,
Universität Dortmund ${ }^{1}$, Germany
K.R.Sohubert, J.Stiewe, R.Waldi, S.Weseler INSTITUT FUR HOCHENERGIEPHYSIK, Universitüt Heidelberg ${ }^{1}$, Germany
N.N.BROWN ${ }^{2}$, K.W.EDWARDs ${ }^{3}$, W.R.FRISKEN ${ }^{4}$

CH.FUKUNAGA ${ }^{4}$, D.J.GILKINSON ${ }^{5}$, D.M.GINGRICH ${ }^{5}$, M.GODDARD ${ }^{4}$, H.KAPITZA ${ }^{3}$, P.O.H.KIM ${ }^{6}$, R.KUTSOHKE ${ }^{5}$, D.B.MAOFARLANE ${ }^{5}$, J.A.MCKENNA ${ }^{5}$, K.W.MCLEAN ${ }^{2}$, A. W Nilsson ${ }^{2}$, R.S.Orr ${ }^{\text {b }}$, P.Padley ${ }^{5}$, P.M.Patel ${ }^{2}$, J.D. Prentioe ${ }^{5}$
H.C.J.SEYWERD ${ }^{5}$, B.J. institute of Partiole Physios ${ }^{6}$, Canada
R.ammar, D.Coppage, R.Dayis, S.Kanekal, N.Kwak University of Kansas ${ }^{7}$, Lawrence, Kansas, usa G.Kernel, M.Plesko
J.Stefan Institute and Department of Physios University of ldubljana ${ }^{8}$, Yugoslavia

L.JÖNSSON, Y.OKU

institute of Physics, university of Lund ${ }^{9}$, SWEden
A.babaey, M.Danlov, A.Golutvin, V.Lubimov, V.Matveev, V.NAGOVITSIN, V.RYLTSOY, A.SEMENOV, V.SHEVOHENKO
V.SOLOSHENKO, V.SOPOV, I.TICHOMIROV, Yu.ZAITSEV
institute of theoretioal and experimental physios, mosoow, ussr
R.Chllders, C.W.DARDEN, AND H.GEnNow ${ }^{10}$ University of South Carolina ${ }^{11}$, Columbia, S.C., USA

ABSTRACT

The ARGUS detector at the $\mathrm{e}^{+} \mathrm{e}^{-}$storage ring DORIS II has been used as a pair spectrometer to study the photon transitions in the reaction $\boldsymbol{\Upsilon}(2 S) \rightarrow \gamma \chi_{b}\left(1^{s} P_{2,1,0}\right)$. Three photon lines were observed with energies $(110.6 \pm 0.3 \pm 0.9) \mathrm{MeV},(131.7 \pm 0.3 \pm 1.1) \mathrm{MeV}$ and ($162.1 \pm 0.5 \pm 1.4$) MeV , respectively. The corresponding branching ratios were found to be $(9.8 \pm 2.1 \pm 2.4) \%,(9.1 \pm 1.8 \pm 2.2) \%$ and $(6.4 \pm 1.4 \pm 1.6) \%$. Upper limits for full widths at the 90% confidence limit are 1.0 MeV for the $\chi_{\mathrm{b}}\left(1^{3} \mathrm{P}_{2}\right)$ and 2.6 MeV for the other two states.

[^0]The bound states of a b- and \vec{b}-quark form a sequence of levels analogous to the spectroscopy of positronium. A measurement of the masses of the various states provides in. formation on the details of the quark-antiquark interaction. In particular, for heavy quarks the interaction has been successfully described by potential models and properties of the $b \bar{b}$ system have been predicted by extrapolations from the charmonium system or from QCD sum rules ${ }^{(1)}$. The predictions, however, vary substantially between models. The triplet P states are characterized by parallel quark spins and an orbital angular momentum of $\ell=1$, leading to total spins $\mathbf{J}=0,1,2$. The three $\mathbf{1}^{3} \mathrm{P}_{0,1,2}$ states of the $b \bar{b}$ system can be reached by $\mathrm{e}^{+} \mathrm{e}^{-}$annihilations through photon transitions from the $\Upsilon(2 S)$ state:

$$
\begin{equation*}
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \Upsilon(2 S) \rightarrow \Varangle X_{b}\left(1^{s} \mathbf{P}_{J}\right) \tag{I}
\end{equation*}
$$

The potential models predict electric dipole transition rates proportional to $(2 J+1) \mathrm{E}_{\gamma}^{s}$, where \mathbf{E}_{γ} denotes the photon energy. These transitions have already been investigated by the CUSB ${ }^{(2)}$, CLEO ${ }^{(8)}$ and Crystal Ball ${ }^{(4)}$ collaborations.

We report here on a high resolution measurement of the three photon transitions using the ARGUS detector at the $\mathrm{e}^{+} \mathrm{e}^{-}$storage ring DORIS II. An integrated luminosity of 38.6 pb^{-1} accumulated on the $\Upsilon(2 \mathrm{~S})$ resonance was used for this investigation. The inclusive photon spectrum from the reaction:

$$
\Upsilon(2 S) \rightarrow \gamma X
$$

was studied using the ARGUS detector as a pair spectrometer, by measuring the energy of electron-positron pairs from photons which convert in the beam vacuum pipe, in the inner wall of the drift chamber or within the drift chamber volume out to a radius of 50 cm . These materials comprise $2.2 \%, 1.3 \%$ and 0.3% of a radiation length respectively. Figure 1 shows an example of such an event.

For the purposes of this study, no extra converter material was added, nor was the magnet run at reduced field. Thus very asymmetric pairs were lost, and the detection efficiency was only 0.3% to 1.2% in the photon energy range from 100 to 200 MeV . Nevertheless, this method provides optimal precision in the photon energy range investigated, once a suffcient statistical significance is reached to separate the photon lines of reaction (I) from the substantial background of photons from π^{0} decay.

The event selection started with multihadron events obtained by the standard ARGUS procedure ${ }^{(5)}$. These represent a complete inclusive data set for events with 3 or more charged
tracks. Beam gas, two photon and radiative Bhabha reactions in this sample were suppressed by requiring for each event a sphericity, $S>0.1$, a total shower counter energy, $E_{S H}>2.2 \mathrm{GeV}$ and for the sum of all charged track momenta and shower energy, $\sum_{j} p_{j}+E_{S H}<14.0 \mathrm{GeV}$. To ensure that the events have a well measured primary vertex, only those were accepted which contain 4 or more detected charged tracks originating from the annihilation point. This vertex had to lie within $\pm 2.5 \mathrm{~cm}$ of the centre of the interaction region along the beam direction. A total of $125000 \Upsilon(2 S)$ decays survived these cuts.

Pairs of oppositely charged tracks which come close to intersecting and have equal polar angles were selected as photon candidates. Both tracks were required to be consistent with an electron assignment based on energy loss measurements in the drift chamber. Tracks with a polar angle θ such that $|\cos \theta|<0.9$ were used, to ensure good acceptance. Finally, the photon candidates were selected by a 5-C flt, which accounted for the effects of multiple scattering and evergy loss, and adjusted the momenta and positions of the electrons by minimizing χ^{2} subject to the following constraints:

1. The invariant mass of the pair must be small (1-C).
2. The momentum vector of the pair must point backwards to the reconstructed primary vertex (2-C).
3. The pair must intersect in either the vacuum pipe or drift chamber wall or, for conversions in the drift chamber volume, in the drift cell containing the point of closest approach (2-C).

Details of this procedure can be found in reference 6.
The photon energy calibration and energy loss corrections applied were checked using events with two converted photons. The distribution of the invariant mass of such photon pairs is shown in figure 2. The π^{0} peak appears at $134.8 \pm 0.5 \mathrm{MeV} / \mathrm{c}^{2}$, consistent with the accepted value for the π^{0} mass.

The resulting photon energy spectrum is shown in figure 3. The three photon lines from the transitions $\Upsilon(2 S) \rightarrow \gamma \chi_{b}\left(1^{3} P_{0,1,2}\right)$ are clearly visible. The fitted curve is a fifth order Legendre polynomial series for the background plus Gaussians with radiative tails to represent the three lines. The parametrization of the line shape was obtained from Monte Carlo simulation which included energy loss by ionization and radiation of the $\mathrm{e}^{+} \mathrm{e}^{-}$pair. The observed line widths are consistent with the detector energy resolution of $\sigma_{\mathrm{E}}=1.1 \mathrm{MeV}$.

Upper limits for the full widths of the χ_{b} states were obtained by fitting a Breit-Wigner distribution folded with the detector resolution function to the lines.

The photon detection efficiency was determined by a Monte Carlo simulation. A check of this calculation was made by comparing the observed background with that predicted by assuming the converted photon spectrum to be entirely due to π^{0} production originating from the $\Upsilon(2 S)$ and underlying continuum, and that the π^{0} momentum distribution is the same as that measured for charged pions ${ }^{(7)}$. The photon polar angular distributions used in the acceptance calculation were based on the assumption that the masses of the three P states are ordered as follows:

$$
\mathrm{m}\left(1^{s} \mathrm{P}_{0}\right)<\mathrm{m}\left(1^{3} \mathrm{P}_{1}\right)<\mathrm{m}\left(1^{3} \mathrm{P}_{2}\right)
$$

and that the transitions were purely dipole (E1). The ordering of the states has been recently confirmed by the Grystal Ball collaboration ${ }^{(8)}$.

The results obtained from the photon energy spectrum are summarized in table I. A comparison with previously reported results is given in table II. There is good overall agreement on the energy of the photon transitions to the $X_{b}\left(1^{3} P_{2,1}\right)$ states. The energy of the third line reported here agrees well with the result of the Crystal Ball collaboration ${ }^{(4)}$; the existence of this transition is thus well established. The branching ratios obtained by this experiment are in good agreement with those reported by the CLEO collaboration ${ }^{(3)}$, also obtained using $\mathrm{e}^{+} \mathrm{e}^{-}$pairs from converted photons. However, our results appear to be systematically higher than those obtained with the CUSB and Crystal Ball detectors using electromagnetic shower counters ${ }^{(2,4)}$. The expected proportionality of the branching ratios to

$$
(2 J+1) \mathbf{E}_{\gamma}^{\mathbf{s}}
$$

is well satisfied, supporting the assumed spin assignment. The absence of Doppler broadening of the photon lines excludes the possibility that they are due to the reaction $X_{b}\left(1^{3} \mathrm{P}_{2,1,0}\right) \rightarrow$ ${ }_{\gamma} \Upsilon(1 \mathrm{~S})$. Comparison of recent results with theoretical predictions can be found in reference 1 . There is qualitative agreement with most approaches, but none of the calculations reproduces in detail the observations presented here. The precision with which we have determined both the centre-of-gravity mass and the mass splitting of the χ_{b} states provides new constraints for adjusting the parameters of these models.

In summary, we have observed the three photon transitions $\Upsilon(2 S) \rightarrow \gamma \chi_{b}\left(1^{s} \mathbf{P}_{0,1,2}\right)$. We have measured the branching ratios, determined the mass of the three χ_{b} states with high precision and obtained upper limits for their widths.

TABLE 1. Measured properties of the $1^{3} \mathrm{P}_{\sqrt{ }}$ states

Assumed transition	$2{ }^{3} \mathrm{~S}_{1} \rightarrow 1{ }^{3} \mathrm{P}_{2}$	$2^{3} \mathrm{~S}_{1} \rightarrow 1^{3} \mathrm{P}_{1}$	$2^{s} S_{1} \rightarrow 1{ }^{3} \mathrm{P}_{0}$
Photon Energy ${ }^{\text {a) }}$ [MeV]	$110.6 \pm 0.3 \pm 0.9$	$131.7 \pm 0.3 \pm 1.1$	$162.1 \pm 0.5 \pm 1.4$
Efficiency [\%]	0.41	0.59	0.86
Assumed Angular Distribution	$1+\frac{1}{13} \cos ^{2} \theta$	$1-\frac{1}{3} \cos ^{2} \theta$	$1+\cos ^{2} \theta$
Branching Ratio (\%]	$9.8 \pm 2.1 \pm 2.4$	$9.1 \pm 1.8 \pm 2.2$	$6.4 \pm 1.4 \pm 1.6$
Branching Ratio relative to ${ }^{3} \mathrm{P}_{1}$	1.08 ± 0.30	(1.00)	0.70 ± 0.21
$\begin{aligned} & (2 \mathrm{~J}+1) \mathrm{E}_{\gamma}^{s} \\ & \text { relative to }{ }^{3} \mathrm{P}_{1} \end{aligned}$	0.99 ± 0.05	(1.00)	0.62 ± 0.03
$\begin{aligned} & \text { Upper limit for } \Gamma[\mathrm{MeV}] \\ & (90 \% \mathrm{CL}) \end{aligned}$	1.0	2.6	2.6
$\begin{aligned} & \mathrm{M}\left(1^{s} \mathrm{P}_{\mathrm{J}}\right)^{b)} \\ & {\left[\mathrm{MeV} / \mathrm{c}^{2}\right]} \end{aligned}$	9911.9 ± 1.5	9890.5 ± 1.7	9859.6 ± 2.1
$\begin{aligned} & \mathbf{M}\left(1^{3} \mathbf{P}_{J}\right)-\mathbf{M}_{\mathrm{COG}}{ }^{\boldsymbol{c})} \\ & {\left[\mathrm{MeV} / \mathrm{c}^{2}\right]} \end{aligned}$	12.9 ± 0.9	-8.4 ± 1.4	-39.3 ± 2.1

a) $\quad \mathrm{R}=\frac{\mathrm{E}_{\gamma}\left({ }^{3} \mathrm{P}_{1}\right)-\mathrm{E}_{\gamma}\left({ }^{9} \mathrm{P}_{2}\right)}{\mathrm{E}_{\gamma}\left({ }^{3} \mathrm{P}_{0}\right)-\mathrm{E}_{\gamma}\left({ }^{3} \mathrm{P}_{1}\right)}=0.69 \pm 0.04$
b) $\Upsilon(2 \mathrm{~S})$ mass of $(10023.1 \pm 0.04 \pm 0.05) \mathrm{MeV} / \mathrm{c}^{2}$ taken from reference 9
c) $\mathrm{M}_{\mathrm{COG}}=\frac{\sum_{\mathrm{J}}(2 \mathrm{~J}+1) \mathrm{M}\left({ }^{3} \mathrm{P}_{J}\right)}{\sum_{\mathrm{J}}(2 \mathrm{~J}+1)}=9898.9 \pm 1.0 \mathrm{MeV} / \mathrm{c}^{2}$.

TABLE 2. Gomparison of results for photon lines from inclusive $\Upsilon(2 S)$ decays

	Photon Energy $[\mathrm{MeV}]$	Branching Ratio [\%]
ARGUS This Experiment	$\begin{aligned} & 110.6 \pm 0.3 \pm 0.9 \\ & 131.7 \pm 0.3 \pm 1.1 \\ & 162.1 \pm 0.5 \pm 1.4 \end{aligned}$	$\begin{aligned} & 9.8 \pm 2.1 \pm 2.4 \\ & 9.1 \pm 1.8 \pm 2.2 \\ & 6.4 \pm 1.4 \pm 1.6 \end{aligned}$
CLEO ${ }^{(3)}$	$\begin{aligned} 109.5 & \pm 0.7 \pm 1 \\ 129.0 & \pm 0.8 \pm 1 \\ (158.0 & \pm 7.0 \pm 1) \end{aligned}$	$\begin{gathered} 10.2 \pm 1.8 \pm 2.1 \\ 8.0 \pm 1.7 \pm 1.6 \\ (4.4 \pm 2.3 \pm 0.9) \end{gathered}$
CUSB ${ }^{(2)}$	$\begin{aligned} & 108.2 \pm 0.3 \pm 2 \\ & 128.1 \pm 0.4 \pm 3 \\ & 149.4 \pm 0.7 \pm 5 \end{aligned}$	$\begin{aligned} & 6.1 \pm 1.4 \\ & 5.9 \pm 1.4 \\ & 3.5 \pm 1.4 \end{aligned}$
CRYSTAL BALL ${ }^{(4)}$	$110.4 \pm 0.8 \pm 2.2$ $130.6 \pm 0.8 \pm 2.4$ $163.8 \pm 1.6 \pm 2.7$	$\begin{aligned} & 5.8 \pm 0.7 \pm 1.0 \\ & 6.5 \pm 0.7 \pm 1.2 \\ & 3.6 \pm 0.8 \pm 0.9 \end{aligned}$

ACKNOWLEDGEMENTS

It is a pleasure to thank E. Michel, W. Reinsch, Mrs. E. Konrad and Mrs. U. Djuanda for their competent technical help in running the experiment and processing the data. We thank Drs. H. Nesemann, K. Wille and the DORIS group for the good operation of the storage ring. The visiting groups wish to thank the DESY directorate for the support and kind hospitality extended to them.

FIGURE CAPTIONS

Figure 1 Example of an event with a photon of 130 MeV energy, which converted into an $\mathrm{e}^{+} \mathrm{e}^{-}$pair in the beam pipe.

Figure 2 Distribution of invariant masses of pairs of converted photons showing a clear π^{0} signal, used to check the photon energy calibration.

Figure 3 Inclusive photon spectrum from the $\Upsilon(2 S)$ resonance and the underlying continuum. The curve shows the best fit to the three photon lines with shape given by the detector energy resolution for converted photons, plus a smooth fifth order Legendre polynomial series for the background.

REFERENCES

(1) For a recent review of the potential model see, for example, E.Eichten, in Proceedings of the 11th SLAC Summer Institute on Particle Physics, Stanford (1983) and J.L.Rosner, Enrico Fermi Institute Report No. EFI 83/17 (1983).

For several theoretical predictions, see
M.B.Voloshin, ITEP preprint ITEP-54 (1979) as reported by M.A.Shifman in the Proceedings of the International Symposium on Lepton and Photon Physics at High Energy, Universität Bonn (1981), 242;
E.Eichten and F.Feinberg, Phys.Rev. D23 (1981), 2724;
A.Khare, Phys.Lett. 98B (1981), 385;
S.N.Gupta, Phys.Rev. D26 (1982), 3305;
W.Buchmüller, Phys.Lett. 112B (1982), 479;
P.Moxhay and J.L.Rosner, Phys.Rev. D28 (1983), 1132;
R.McClary and N.Byers, Phys.Rev. D28 (1983), 1692;
M.Bander et al., Phys.Rev. D29 (1983), 2038;
M.Bander et al., Phys.Lett. 134B (1984), 258;
A.A.Bykov, I.M.Dremin and A.V.Leonidov, Usp.Fiz.Nauk. D23 (1984), 3;
J.R.Hiller, Phys.Rey. D30 (1984), 1520;
S.N.Gupta et al., Phys.Rev. D30 (1984), 2424;
D.Gromes, Z.Phys. C26 (1984), 401.
(2) C.Klopfenstein et al. (CUSB collaboration), Phys.Rev.Lett. 51 (1983), 160.
(3) P.Haas et al. (CLEO collaboration), Phys.Rev.Lett. 52 (1984), 799 .
(4) R.Nernst et al. (CRYSTAL BALL collaboration), Phys.Rev.Lett. 54 (1985), 2195.
(5) H.Albrecht et al. (ARGUS collaboration), Phys.Lett. 194B (1984), 137.
(6) A.Philipp, Ph.D. Thesis in preparation
(7) H.Albrecht et al. (DASP II collaboration), Phys.Lett. 102B (1981), 291; H.Albrecht et al. (ARGUS collaboration), Heidelberg preprint IHEP-HD/84-6, contributed paper to the XXIInd International Conference on High Energy Physics, Leipzig (1984).
(8) T.Skwarnicki, DESY preprint DESY 85-042, to appear in the Proceedings of the 22nd Recontre de Moriond, Les Arcs-Savoie (1985).
(9) D.P.Barber et al., Phys.Lett. 185B (1984), 498.

Figure 1

[^0]: Supported by the Bundegminiaterium fur Forschung und Technologie, Federal Repubic of Germany.
 ${ }^{2}$ McGill University, Montreal
 ${ }^{8}$ Carleton University, Ottawa
 ${ }^{5}$ York University of Toronto, Toronto.
 ${ }^{6}$ Supported by the Natural Sciences and Engineefing Research Counncit, Canada.
 'Supported by the U.S. National Science Foundation and a University of Kansas Faculty Improvement award.
 Supported in part by the Internationales Būro K1A, Jülich and DESY,Hamburg.
 -Supported by the Swedish Research Council.
 ${ }^{11}$ Supporited by the U.S. Department of Energy, under contract' DE-AS00-80ER10680.

