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We carefully discuss how to deal with y
5 

in the dimensional regularization 

scheme when IR singularities are present. The dimensional continuation of the 

Dirac algebra in odd-parity fermion traces leads to anomalous IR axial and 

charge conjugation contributions. In an expligit calculation, namely the 
y,Z 

O(a 2 ) parity 
s 

violating contributions to e+e- ---------7 q(ig, we demonstrate that 

the IR charge conjugation anomaly vanishes and ·that the finite IR axial anoma

lies are spurious in the sense that they cancel among the real and virtual 

contributions to the p.v. cross sections as do the IR singular contributions. 
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It is well-known that the union of y
5 

(or the fully ant.isymmetric tensor 

saSyO ) and the dimensional regularization s~heme is a problematic one 

[1-7]. In the case of odd-parity fermion loops, then-dimensional Dirac 

traces generate O((n-4)m;m>D) anomalous contributions, which in turn lead 

to finite anomalous terms when multiplied with ultraviolet or infrared di-

vergent integrals. 

Spurious UV anomalies can be and must be cancelled by taking the appro

priate renormalization scheme [4-6]. In the IR case one encounters axial 

and charge conjugation anomalies. These cannot be removed by renormaliza-

tion. One expects these to be spurious in the sense lhat they cancel when 

the appropriate real and virtual cross sections are added together just 

as the IR singular terms cancel among the two contributions. 

To our knowledge the occurrence of IR anomalies in odd-parity fermion loops 

in the dimensional regularization scheme and their cancellation among real 

and virtual contributions has never been discussed before. In order to de-

monstrate the compatibility of y5 and the IR dimensional regularization 

scheme we calculate through a sufficiently complex process containing both 

UV and IR singularities, 
y,Zo 

namely the Q(a 
2

) parity violating contributions 
s 

to e+e-~ qqg. 

Let us first present an argument that an anticommuting y5, cif. 

{y~, r5l = o (1) 

is not compatible with an-dimensional Dirac algebra, cif. 

y yfl:::gfl:::n 
~ ~ 

(2) 

Consider the trace Tr y
5
y y y y y y and anticommute y~ once around 

a fir flz f13 f14 fls 
the trace. This leads to the identity 

£ g + eye!. (fl.l ... lls) 
fl1flz\.13\l4 ll-sa 

b (3) 
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where we have introduced the totally antisymmetric £-tensor via 

Tr r 5 Ya r8 Yy r 6 = 41 €aSyO . 
a~ 

Contracting (3) with g S gives 

= 0 (n-4) Efll!-l21!31l4 

which shows that (1) and {2) prevent one from analytically continuing 

( 4) 

Tr Ys Ya y8 Yy Yo or EaByO from 4 to n ~ 4. 

There exist several proposals to escape the impalatable conclusion (4) 

[1,2,3]. 

The authors of Ref.[2] decided to work with an anticommuting 0
5 

(l) but 

dropped (2). In order to give a meaning to the trace Tr r 5 y~ y~ Ya yb Yc Yd 

in the absence of (2), they assigned a one-parameter ambiguity to its value 

cif. Try5 y11 Y~ Ya Yb yc yd = (an+ (l-a)(8-n)) 4i £abed' In their calcu

lation of the VVA triangle anomaly the free parameter was then fixed by 

postulating the "correct" value for the anomaly. 

It is not clear whether the scheme of Ref.[2] can be consistently formu-

lated in more general situations. In particular, it is not clear whether 

the prescription of Ref.[2] is applicable to higher order IR calculations 

with their multiple y-contractions inside parity-odd traces. These multiple 

y-contractions would necessitate the introduction of multifold parameter 

ambiguities and it is not clear whether one could find enough physical con

ditions to fix them. Also dropping (2) implies~~~ €2 (e is an n-dimensio-

nal integration momentum) which spoils the validity of higher order field 

equations. 

Siegel in his dimensional reduction scheme [3] attempts to keep the Dirac 

algebra in four dimensions, whereas the integrations are in n dimensions. 

Thus, y5 is anticommuting (1), but (2) is changed to y
11 

yll = 4. As neces

sarily~~= f 2 Cl is ann-dimensional integration momentum) this implies 
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• • 
g ga = g , where g and g are the "4-dimensional" and the "n-dimen-

llCt V \iV f.l.V )lV 

sional" metric tensors. Latter condition can be shown to lead to 

(n-4)(n-3)(n-2)(n-l) = 0 which shows that altering (2) to y\i yli = 4 is not 

a consistent procedure. *) 

A third possibility is to drop (1), as originally proposed by 't Hoeft 

and Veltman [7] and later systematized by Breitenlohner and Maison (BM) 

[1]. The main points of the BM scheme are the following: 

i) in addition to the 

(g~~ = n) introduce 

(~~~ = 4) such that 

"n-dimensional" metric tensor g~v 

a "4-dimensional" metric tensor ~ll\J 

:::a :::: 
g\-ilig\)=gll\) 

ii) Eq.(l) is replaced by 

where YJ-l 

{y~, r 5l 2(y~ - {~J r 5 

g ay is a "4-dimensional 11 Y-matrix 
~ a 

(5) 

(6) 

iii) Traces involving y5 are calculated by substituting y
5 

by its defini-

tion 

Y5 = ~! 12aByO YalyyyO (7) 

In particular, one has 

Tr y5 Ya Ys Yy Yo = 4i £aByO 

Tr({yA' y5} YA Ya Ys Yy Yo) = 8(n-4)i caSyO (8) 

iv) identities involving £-tensors are valid only for "4-dimensional" co-

variants, i.e. 

a) £ £ 
llrll2113114 vlv2v3v4 

. ) 
-det(gaS 

b) £ llrflz113114 gllso( + cycl. (Ill" ·lls) 

*} D. Maison, private communication. 

a 1-11 .. ·fl4' B \)1'"1)4 (9) 

0 (10) 

-~--~-~-~~-~~~----- a ~~~--------~-~~-------------~---~----~--~-J'---------·--------~-- ~----~---, ------------~--~-J·---· 
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Eq.(IO) is the "4-dimensional" version of (3) and will be referred to as 

the Schouten identity. In contrast to the scheme of [2] the BM scheme gua-

rantees well-defined and unique y-matrix trace results. 

That the BM scheme provides a consistent treatment of the singularities 

in the UV-realm (correct anomalies, all order renormalizability) has been 

demonstrated in Refs.[l,6,8]. 

That the BM scheme also provides a consistent and practicable calcula-

tiona! scheme for the treatment of IR-infinities will be demonstrated in 

the following by calculating through an example. 

First note that in parity-odd traces there is no need to use the "ugly" 

anticommutation relation (6) since all trace manipulations can be per-

formed without commuting by y
5 

because of the cyclic property of a trace. 

Second, the y5-substitution (7) yielding long traCes need not be done ex

plicitly if one works with suitable parity-odd projection operators. The 

action of the parity-odd projection operators finally bring into play "4-di-

mensional" scalars via (9) . These have to be treated separately from the 

'\,-dimensional" scalars resulting from the trace manipulations. As will be 

clear in a moment, there will be only one relevant "4~dimensional" scalar 

for every infrared region, which the computer can easily handle. Even though 

the BM-scheme as formulated in (5-10) looks formidable at first sight from 

a calculational point of view, we found it to be no more difficult to imple-

ment on a computer than the corresponding parity-even IR-problem. 

We shall now turn to our specific example, the O(a 2 ) corrections to s 

the p.v. structure functions in e+e- + qqg. 

First we discuss the real tree-graph contributions. Some of the 

contributing 4-parton diagrams are drawn in Fig.!. To bring out the gene-

ral features of our calculation we concentrate on the 3-4 IR-regions, i.e. 

when the two gluons with p3 and p4 (see Fig.la), and quark and antiquark 

with momenta p3 and p4 (see Fig.lb), become infrared unresolvable. As 

-~~~~-r---~~---~-----,~-,-~-~~,---~~~~~~..,;-~ 
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infrared cut-off we choose an invariant m8ss cut-off sij 2pipj 
2 *) < y q (q ~ Pr + Pz + p3 + p4). 

In the 3-4 CM-system, the 4-parton momenta have the components 

p1 

p2 

s134 - s34 

21 s34 

s234 - s34 

2/ s 34 

(1, .•. , sinB, cosB) 

(1, ... ' o, 1) 

p3 = t I s34 (1, ... ' .! sinG cos e r • .! cos e) 
4 

(11) 

where sijk = (pi + pj + pk) 2 and the dots in p1 and p2 denote (n-3) zeros, 

and (n-3) equal and opposite unspecified angular factors in p3 and p4 . 

The IR-integration involves the angular integral in "(n-1) dimensions" 

J d Q(n-1) H(4)pv (p1,p2,p3,p4) 3-4 IJ.\) 
H(3)pv (q1,q2,q3) 
"v 

(12) 

-~-

where H(i)pv is the i-parton p.v. hadron tensor. We identify q1 "v Pl' qz ~ P2 

and q
3 

= p3 + p
4

. The r.h.s. of (12) can be expanded as 

(3)pv ( ( ) , ( ) Hll\) = H6 E fl\) qql) + H7 fl\) qq2 + H IJ.\) qlq2 

Use has been made of the ll +-+\) antisymmetry of 

Hpv = 1_ (H\JA + HA\1) 
tl\) 2 tl\) ll\) 

(13) 

(14) 

whore \1 and A denote the vector and axial vector parts in the current-cur-

rent contributions to the hadron tensor. Also the Schouten identity (10) 

has been used to limit (13) to three terms which is justified since we have 

choosen our coordinate system (11) such that the qi are 4-dimensional. Note 

that the nonconserved axial contributions appear in H'. 

Since H~~)pv in (13) carries only "4-dimensional'' tensor 

it is clear that the anomalous charge conjugation pieces in 

indices ll and '.J 

H( 4 )pv resulting 

"" from C(y y5) C-l j -Y y
5 

vanish after the IR angular integration (12). " ,, 
*_)___ 2 

We work with massless quarks and gluons 1 pi = 0, and use the Feynman gauge. 



- 6 -

Next we scalarize the integrand in (12) by contracting with the odd-pa-

rity projection tensors q2v ~(~ q1q2q3), q 1vt(~ q
1
q

2
q

3
) and qv €(~ q

1
q

2
q

3
) 

which leads to n4-dimensional" scalar contributions via Eq.(9). However, 

these are not hard to handle, since they all can be expressed in terms of 

:: 2 ::: ::: :::2 ::: 2 ::: 2 :: :: ::: 
e.g. P4 ' since P3 P4 = p4(p3 + p4) - P4• P3 = P4 and P1 P3 = P1 P3 = 

p1p3 etc. (see (5) and (ll)), The scalar integrand can then be expressed 

as I = A(s .. ) + ~4 2 
B{s .. ). The first term can be integrated conventionally 

s lJ lJ 
as in [9], whereas the second term requires the "(n-1)-dimensional" inte-

gral over the "4-dimensional" scalar ~4
2 

,elf. 

1 f n-1 :: 2 4-n 
N d Q34 P4 = 4(1-n) s34 

where N = fd Qn-1 *) 
34 • 

(15) 

We emphasize that the inclusion of contribution (15) is of crucial impor-

tance in obtaining the correct final result. However, due to the appearence 

of the explicit s .. factor in (15) these contributions need to be taken 
'J 

into account only for diagrams with true s~~ double pole contributions 

as depicted explicitly in Fig.! as long as one is working only to O(y 0
). 

Finally, after adding 

we obtain to O(y0) 

up the IR contributions from all O(o( 2) tree diagrams 
s 

H(3 )pv (real) 
"v 

4 c Nc N Nf 11 
g N/F(CFH + 2 H + ( 3 - 6 Nc) Hf) A( 3)pv(Born) 

"v 
(16) 

where 

A (3)pv (Born) 
"v (

1
-'23 1 ) 

o -8[ ~ - e -,- e("v 
13 23 23 

1-t12 
qq1)- (l-2) -e-,-,- e("vq

1
q

2
)] 

13 23 

is the p.v. Born term hadron tensor. We define E: = -
2
1 (4-n) and q2 t .. 

'J 
Zq.q., where the q. are the three-parton momenta. N and Nf are the numbers 

_j_ J _j_ c 

of colours and flavours, and CF = (N 2 - l)/2N . The strong coupling cons-c c 

tant is denoted by g. The IR-structure is given by 3 functions 

*)Note that integral (15) is of O(n-4) in accordance with ~/+p42:o for n-+4. 

(17) 
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He 2 1 " " 2 C(-z- £ (2tn t 12 - 3) + 7 - 2tn y 
€ 

2 - 2n tl2 

+ 4Eny €n tl2 

2 

" 3fny + 3 

HN cc.L - ~ rn tl3 t23 + ~-
€2 € t 12 3 

~n2 tl3 - fn2 t23 + tn2 tl2 

2fn2
y + 4eny 

f 1 5 e H = C(- £- 3 + ny) 

tl3 t23 TTZ 
en---+-

tlZ 3 

(18) 

and where 

2 r(l-e) 2 
€2) c = ~ (411'2 )€ (l TI 

2n q ro-2sl 3 

One notes from (16) that the O(y 0
) IR result factorizes into a Born term 

con;~ribulion and an universal IR factor as in the p.c. case discussed in 

[lfl]. The universal IR factor is the same for the p.c. and p.v. contribu-

tions. 

We now turn to the virtual IR-contributions. The O(a 3/ 2 ) one-loop con
s 

v -tributions to the vector current amplitude J~ + qqg have been calculated 

in [11]. We fix the axial vector renormalization constant such that the 

corresponding axial vector current contributions to J~ A..,. q(jg are obtai

ned by substituting r
11 

+ y~y 5 in lhe vector current result [11]. 

In [11] it was shown that the IR-divergent parts of the vector current 

one-loop contributions are proportional to the Born term amplitude. In order 

to demonstrate the cancellation of IR singularities and axial anomalies 

we limit our attention only to these IR singular pieces.·*) Their contri

butions to the hadron tensor are given by **) 

where 

H( 3 )pv(virtual;sing.) 
"v 

4 c Nc N 
g NcCF(CFHv + 2 Hv + 

N 
(_f- ~ )Hf)A( 3)pv(Born) 

3 6 c V ).LV 

*)A more detailed account of our work will be presented in [12]. 
**) g is the strong coupling constdnt in the MS scheme. 

(19) 

~- '-----''-- ~'---"--



He 
v 

HN 
v 

2 1 0 C(- ~ + € (2tn t 12 - 3)) 
c 

t t 
C(- ~+l ln ~ 

(;2 E: t 12 

Hf = C _!_ 
v c 
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(20) 

Comparing the singular virtual O(a
8

2 ) contributions (19,20) to the real 

contributions in (16-18) one sees that IR singular contributions cancel, 

as well as the finite contribution to the anomalous structure function 

c(~v qlq2). 

In conclusion we summarize our results by writing out the various contri-

butions in a symbolic notation: 

n bn ba 
(real): ~ +-- +-- + cn(y) + c8 

£2 E: E: 

. an bn b8 
1n a 

(vutual): - E 2 - €- £ + c - c 

The normal IR singular pieces proportional to (an, bn) as well as the IR 

anomalous singular and finite pieces proportional to (b8
, c8

) cancel among 

the real and virtual contributions. The charge conjugation anomaly vanishes 

after IR integration. To O(y0
) the real contributions factor into the Born 

term and an universal IR factor. 

It would be interesting to find out whether the same mechanism that leads 

to the cancellation of the normal IR singularities is also responsible for 

the cancellation of the IR singular and finite anomalous contributions. 

It goes without saying that the expertise gained from this first expli-

cit calculation of a higher order QCD correction to a p.v. cross section 

will be quite valuable for the many higher order QCD calculations that have 

to be done for the interpretation of p.v. experiments at the high energy 

machines to be completed in the following years. 
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Figure Caption 

Figure 1: Sample 4-parton diagrams a) e+e- ~ q(p
1

) q(p
2

) g(p
3

) g(p
4

), 

b) e+e- ~ q(p1) Q(p2 ) q(p3) QCp4 ). The depicted diagrams have 

true l/s34
2 double pole singularities. The dots in a) stand for 

63 (plus 4 ghost) additional qQgg diagrams and in b) for 63 ad-

ditional qQqQ diagrams. 
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