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Abstract:

We carefully discuss how to deal with s in the dimensicnal regularization
scheme when IR singularities are presént. The dimensional continuation of the
Dirac algebra in odd-parity fermion traces leads to anomalous IR axial and
charge conjugation contributions. In an expligit calculation, namely the
O(asz) parity violating centributions to ete” ILE* qqg; we demonstrate that
the IR charge cenjugation anomaly vanishes and that the finite IR exial anoma-

lies are spurious in the sense that they cancel among the real and virtual

contributions to the p.v. cross sections as do the IR singular contributions.
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It is well-known that the union of s (or the fully antisymmetric tensor
€aBy6 ) and the dimensional reqularization scheme is a problematic one
[1-7]. In the case of odd-parity fermion loops, the n-dimensiaopal Dirac
traces generate Dﬂn-ﬂ)m;m>0) anomalous contributions, which in turn lead
to finite anomazlous terms when multiplied with ultraviolet or infrared di-
vergent integrals.

Spurious UY anomalies can be and must be cancelled by taking the appro-
priate renormalizaticn scheme [4—6]. In the IR case one encounters axial
and charge conjugaticn anomalies. These cannot be removed by renormaliza-
tion. One expects these to be spuricus in the sense that they cancel when
the appropriate real and virtual cross sections are added together just
as the IR singular terms cancel among the two centributicns.

Te our knowledge the occurrence of IR anomalies in odd-parity fermion loops
in the dimensional regularization scheme and their cancellation among real
and virtual contributions has never been discussed before. In order to de-
monstrate the compatibility of s and the IR dimensional regularization
scheme we caléulate through a sufficiently complex process containing both
UV and IR siggularities, namely the U(GSZ) parity violating contributions
to e'e” LE’ qaqg-

Let us first present an argument that an anticommuting YS’ cif.

{Y!_L, Yl = 0 (0

is not compatible with a n-dimensional Dirac algebra, cif.

LI 2
Yl_L Y gu n (2)

Consider the trace Tr YSYmYulYqu#BYuaYuS and anticommute ﬁﬁ once around

the trace. This leads to the identity

4 g +eyeli(, v.. o) = 0 (3
Btghatt, Tpgl 1 5



W

where we have introduced the totally antisymmetric e-tensor via

Tr Ts Yy Y3 YY Ys = 4i EﬂﬁY5 .
Cg
Contracting (3) with g gives

(n-4) (4)

ytighatiy, ’
which shows that (1) and {2) prevent one from analyticaliy continuing
Tr ¥ ¥, Yg Yy Y5 OF €5pvs from 4 to n # 4.

There exist several proposals to escape the impalatable conclusion (4)
(1,2,3].

The authors of Ref.[2] decided to work with an anticommuting 33 {1) but
dropped (2). In order to give a meaning to the trace Tr 5 Y, W Ya Tp Yo Yy
in the absence of (2), they assigned a one-parameter ambiguity to its value
cifl Tryg Yp Yu Yo T YC Yq = (on + (1a)(B-n)) 4i €abed* In their calcu-
lation of the WA triangle anomaly the free parameter was then fixed by
postulating the "correct" value for the anomaly.

It is not clear whether the scheme of Ref.{2] can be consistently formu-
lated in more general situations. In particular, it is not ¢lear whether
the prescription of Ref.[2] is applicable to higher order IR calculations
with their multiple y-contractions inside parity-odd traces. These multiple
y-contractions weuld necessitate the introduction of multifold parameter
ambiguities and it is not clear whether one could find enough physical con-
ditions to fix them. Also dropping (2} implies £.4 £ Ez (f is an n-dimensio-
nal integration momentum) which spoiis the validity of higher order field
equations.

Siegel in his dimensional reduction scheme [3] attempts to keep the Dirac
algebra in four dimensions, whereas the integratians are in n dimensions.
Thus, Y5 is anticommuting {1}, but (2) is changed to Yu Y# = 4. As neces-

sarily £ & = 32 (¢ is an n-dimensional integration momentum) this implies

RV WS VU U DR ) S U U VNV S S S N U S U _ S G N N S S TN SO S VD U S S Y L P

-3 -

k3 =
ga =g , where g and g  are the "4-dimensional" and the "n-dimen-
pot 7w (1Y) Y 1AV

sional™ metric tensors. Latter condition can be shown tc lead to

g

{n-4}(n-3)(n-2){(n-1) = 0 which shows that altering {2) to i v* = 4 is not
*)

a consistent procedure.

A third possibility is to drop (1), as originally propeosed by 't Hooft
and Veltman [7] and later systematized by Breitenlohner and Maison (BM)
[1]1. The main points of the BM scheme are the following:

i)  in addition to the "n-dimensional® metric tenscr guv

(gpu = n} introduce a "4-dimensicnal" metric tensor éﬁV
(ﬁu“ 4) such that

20 2
e G v = Guv (5
ii) Eq.{(1) is replaced by
b ved = 20v - v v (6)

where ?H = au ﬂyais a "4-dimensional™ yY-matrix

iii) Traces involving Yg are calculated by substituting T by its defini-

tion

i a By 8 7

In particular, one has
Tr Y5 Yy YB YY Yﬁ = 4i €35Y6
A .
ey vsh ¥ v, v vy ) = Bln-A)i e g (8)
iv) identities involving e-tensors are valid only for "4-dimensional” co-

variants, i.e.

) E”l“Z“}”& Evlvzvjva = —det(gaB) Q= Wiy R = Vyseav, (9)
g e cycl.(ul...us) =0 (10)

Y e

*}

D. Maiscn, private communication.
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£q.(10) is the "4-dimensional® version of (3) and will be referred to as
the Schouten identity. In contrast to the scheme of_[Z] the BM scheme gua-
rantees well-defined and unique y-matrix trace results.

That the 8M scheme provides a consistent treatment of the singularities
in the UY-realm (correct anomalies, all order renormalizability) has been
demonstrated in Refs.[1,6,8].

That the BM scheme also provides a consistent and practicable calcula-
tional scheme for the treatment of IR-infinities will be demonstrated in
the following by calculating through an example.

First note that in parity-odd traces there is no need to use the "ugly”
anticommutation relation (6} . since all Erace manipulations can be pef—
formed without commuting by Ys because of the cyclic property of a trace.
Second, the YS-substitution (7) yielding long traces need not be done ex-
plicitly if orme works with suitable parity-odd projection operators. The
action of the parity-odd projection operators finally bring into play "4-di-
mensional” scalars via (9) . These have to be treated separately from the
"'n-dimensional”scalars resulting from the trace manipulations. As will be
clear in a moment, there will be only ore relevant "4-dimensional" scalar
for every infrared region, which the computer can easily handle. Even though
the BM-scheme as formulated in (5-10) looks farmidable at first sight from
a calculational point of view, we found it to be no more difficult to imple~
ment on a computer than the corresponding parity-even IR-prablem.

We shall now turn te our specific example, the U(usz) corrections to
the p.v. structure functions in e'e” > qqg.

First we discuss the real tree-graph contributions. Some of the
contributing 4-parton diagrams are drawn in Fig.i. To bring out the gene-
ral features of our calculation we concentrate on the 3-4 IR8-regions, i.e.

when the two gluons with Ps and Py (see Fig.la), and quark and antiquark

with momenta P and Py {see Fig.lb), become infrared unresclvable. As

e ot iy
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infrared cut-off we choose an ipvariant mass cut-off Sij = ZPipj

*)

2
SYQ(CISPl’rPZ*‘P}*'Pa)»

In the 3-4 CM-system, the 4-parton momenta have the components
s -5
P, :M (1, ..., sinB, cosB }
2/53a
5 -~ 5
P, ='—2—?;‘—_15‘ (1, ..., 0, 1) (11)
25y
1 :
pz : 5 ,/33.,4 (1, ..., + sin€@cos @', + cos @)

2z .
where Sijk = (pi +p. pk) and the dots in 2y and Py dencte (n-3) zeros,

J
and (n-3) equal and opposite unspecified angular factors in Pa and Py

The IR-integration involves the angular integral in "(n-1) dimensions"

H(3)pv (

(n-1) {4)pv _

(i)pv

v is the i-parton p.v. hadron tensor. We identify 9y = Py 9y = Py

where H

and q3 = p3 + py. The r.h.s. of (12) can be expanded as

3
Hév)pv =ty elpv qqq) + Hy (v qqy) + A (v a;q,) (13)
Use has been made of the p <>v antisymmetry of
pv _ 1 , VA AY
HHV =3 (Huv + Huv) (14}

where V and A denote the vector and axial vector parts in the current-cur-
rent contributions to the hadron tensor. Also the Schouten identity (10)

has been used to limit (13) to three terms which is justified since we have
choosen our coordinate system (11} such that the q; are 4-dimensional. Note

that the nonconserved axial contributions appear in H'.

Since Hﬁi)PV in (13} carries only "4-dimensional” tensor indices K oand ¥V
it is clear that the ancmalous charge conjugation pieces in Hﬁ:)pu resulting

from C(YHYS) etz Y, Ys vanish after the IR angular integration (12).

*)

We work with massless quarks and gluons p? = 0, and use the Feynman gauge.
1Py Y



Next we scalarize the integrand in (12} by contracting with the odd-pa-
rity projection tensors q, elp qlq2q3), qlve(u qlqij) and q, el(p qiqij)
which leads to "4-dimensional"™ scalar contributions via Fq.{9). However,
these are not hard to handle, since they all can be expressed in terms of

22 ER Rz 22 =82 % 2
e.g. p, , since py p, = pa(p3 + pa) - Py P37 p, and pg Py =B P3 =

pp3 etc. (see (5) and (1I)). The scalar integrand can then be expressed
as I = A(sij) + ﬁaz B(sij). The first term can be integrated conventionally

as in [9], whereas the second term requires the "(n-1)-dimensional"” inte-

gral over the "4-dimensional™ scalar Sa?,cif.
3 faeft 5240 s (15)

where N = fd Q

We emphasize that the inclusion of contribution (15) is of crucial impop-
tance in obtaining the correct final result. However, due to the appearence
cof the explicit Sij factor in (15) these contributions need to be taken
inte account only for diagrams with true S;j double pole contributions

as depicted explicitly in Fig.l as long as une is working only to O(y%).

Firally, after adding up the IR contributions from all D(ugz) tree diagrams

we obtain ta D(yﬂ)

N N
(3)pv _ 4 c c ,N £ 1l F, ,(3)pv
Huv (real) = g NCCF(CFH + 5 H + { - NC) H } Auv (Born)  {16)
where
1-t 1-t

{(3pv 23 1 12
A {Born) = -8[(_ - ety qq, ) - {142} e —=— e(pva,q,}] (17)
N t13t23 t23 ! t13t2s 172

is the p.v. Born term hadron tensor. We define € = % {4~n) and q2 tij =

Zqiqj, where the q; are the three-parten momenta. Nc and Nf are the numbers

of colours and flavours, and CF = (NC2 - l)/ZNC. The strong coupling cons-

tant is denoted by g. The IR-structure is given by 3 functions

*) Nete that integral (15} is of 0(n-4) in accordence with 6a24-pﬂ2:0 for n+4,

-7 -
HE =c(—%—l(22nt - 3) + 7 - 20nfy + afny ot
£ 12 N 12
€ 2 (18)
2
-t t12 - SEny + %—
Nz 2z i3t o4 2 2 2
H = E(“ﬁ“-—gh’l“*t—-‘+§— gl‘l t13_ En t23+En t12
[ iz
t t 2
- anzy + aEny En 13 23 PRI
tlZ 3
HF= C(- %-— §-+ gny) -
and where
eo 1 (zmﬂz)e ree) 1t L2y
- 2TT2 q2 r{1-2¢) )

OUne notes from (16) that the O(yo) IR result factorizes into a Born term
caniributien and an universal IR factor as in the p.c. case discussed in
[1]. The universal IR factor is the same for the p.c. and p.v. contribu-
tions.

We now bturn to the virtual I[R-contributions. The D(QSB/Z) one-loop can-
tributions to the vector current amplitude J; + ggg have been calculated
in [11]. We fix the axial vector renormalization constant such that the
corresponding axial vector current contributions te JuA + gqg are obtai-
ned by substituting YM > YuYS in the vector current result [11].

' In [11] it was showh that the IR-divergent parts of the vector current
one-loop contributions are proportional to the Born term amplitude. In order
to demonstrate the cancellation of IR singularities znd axial anomalies

we limit our attention only to these IR singular pieces.*) Their contri-

butions to the hadron tensocr are given by **)

N N
(3pv, . s _ 4 c . e N ,f 11 Fyal3)py
HHU {virtual;sing.} = g NcCF(CFHV +g H o+ (5 - E"NC)HV)AuV (Born) (19)
where
*
) A more detailed account of our work will be presented in [12].
) g is the strong coupling constant in the MS scheme.
- ST L U VD ST ENGUUY S L U I VS DT Y W W W Sy
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the real and virtual contributions. The charge conjugation anomaly vanishes
after IR integration. To O(yo) the real eontributions factor into the Born
term and an universal IR factor.

Figure Caption

It would be interesting to find out whether the same mechanism that leads

to the cancellation of the normal IR singularities is also responsible for Figure 1l: Sample 4-P5Pt0ﬂ diagrams a) e'e” + q(pl) q(pz) g(p3) g(pq),

the cancellation of the IR singular and finite anomalous contributions. b) e » q(Pl) a(PZ) q(p3) a(pa). The depicted diagrams have
It goes without saying that the expertise gained from this First expli- ‘ true l/Sjaz double pole singularities. The dots in a) stang for

cit calculation of a higher arder QCD correction to a p.v. cross section 63 {plus 4 ghost) additional qqgg diagrams and in b) fer 63 ad-

will be quite valuable for the many higher order (CD calctlations that have ditional qgog diagrams.

to be done for the interpretation of p.v. experiments at the high energy

machines to be completed in the following yeafs.
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