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ABSTRACT. We introduce a. class of chiral·symmetry breaking real space renor
m~zation transformations, intended for. renorma.lization group studies of lattice 
theories involving fermions. In massless free fermion theory {for a sensible choice of 
a certS:in parameter of the transformation) the scheme yields an acceptably local, 
Wilson-fermion-like .fixed point action, We attempt to calculate a certain critical 
exponent in the two-flavour -Schwinger model via a cumul8Ilt expansion based on 

our scheme. Possibilities for Monte Carlo renormalization group calculations are 
briefly mentioned. 

Type•et by A.MS-TEX 

1. Introduction. 

Several groups of workers have recently reported numerical results from 
the application of Monte Carlo Renormalization Group techniques to lattice 
gauge theories [1]. This work has so far been restricted to the pure gauge 
sector, but presumably one may eventually wish to apply similar techniques 
to theories involving matter fields, and in particular fermions. 

Real space renormalization methods [2] were originally developed for 
studying the critical properties of statistical mechanical systems. In this case 
the renormalization group (RG) structures of primary interest were the fixed 
points governing the • critical surface" (in the space of conceivable hamilto
nians, a subspace on which the associated correlation length diverges.) The 
RG behaviour of the hamiltonian in the vicinity of these fixed points deter
mines the "universal" features (such as the critical exponents) of the phase 
transition. 

In four dimensional QCD the emphasis is rather different. There is then 
(one sincerely hopes!) no phase transition at finite inverse-coupling (in the 
simple Wilson gauge theory, with link variables in the fundamental repre
sentation)- The application there is to study the more general, non-critical 
scaling properties of the theory. The RG structure of primary interest is then 
the so-called Renormalized Trajectory, and the most interesting quantity to 
calculate is the non-perturbative beta function. 

Once fermions enter the picture the situation is somewhat changed [3] . 
QCD with fermions does have a critical structure; the critical surface is the 
subset of couplings for which the pion mass vanishes. Thus one application 
of MCRG methods to QCD + quarks might be in the study of this "phase 
transition". An example· of a critical exponent associated with this transition 
is the exponent relating the pion and quark masses near the chirallimit. This 
exponent is not particularly controversial in four dimensions - it is equal to 
t (this is a "mean-field" result [4], not valid in lower dimensions [5]). Perhaps 
a more important application would be to the study of the general scaling 
behaviour of the theory, as has been done with the pure gauge sector. 

The present paper will not give any detailed scheme for doing such calcu
lations (although we will make one or two suggestions in this direction). We 
will, however make-some general remarks about the-kind of blocking transfor
mation that might be required for such work, and illustrate these considera
tions in the context of free-fermion theory and two dimensional lattice QED. 
Such a study is clearly a useful preliminary in assessing the feasibility of Monte 
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where 
b,. = 2u,. - 1. (2.2a) 

The sum is over the sites of the block; the vector b is (twice) the displace
ment of the site from the centre of the block. The constant 1 is an essential 
("wave function") renormalization factor, and the only other parameter of the 
transformation is the constant p. 

If p is set equal to, zero the new block variable, up to wave function 
renormalization, is just the average of the 2d old variables in the block. In 
the next section we look at this most naive blocking scheme (p = 0) in the 
context of free field theory, and establish in fact that this particular scheme 
is probably not very useful. Before doing this we derive the general form of 
the recursion relations for a free field action under the transformation (2.1). 

Take a bilinear form 

A(~,¢)= L~(x) K(z- y) ¢(y), (2.3) 

••• 
for the action. In matrix notation, 

A(~,t/i)=~K¢. (2.3a) 

K should satisfy the constraints required by symmetry under the lattice group, 
but is otherwise essentially arbitrary, involving, a priori, couplings between 
arbitrarily remote sites. Because of the discrete rotation symmetry we may 
make the decomposition 

d 

K(u) = Ko(u) + L K,.(u)'Y,.. (2.4) 
#=1 

(In a gauge theory one could have extra""" terms, but we will not be including 
gauge field dependence inK, or P, in the next few sections). 

The renormalized action, A', can be defined by 

e-A'[¢'' ,¢'] = I d~d¢ 6(1/- ~P) 6( ¢' - P ¢) e-A{¢',¢1. (2.5) 

A convenient representation for t_he fennionic c;ielta-function is 

6(y- z) =Ida e;a(y-x)' (2.6) 

4 . 

where x, y and 0! are anticommuting variables. (This representation only 
makes complete sense if these delta functions come in conjugate pairs, which 
they do). Substituting (2.6) in (2.5), and doing some gaussian integrals, one 
easily finds for the effective action after one RG transformation 

A'= 1/ K'vl, 

K' = [P K- 1 P]- 1 • 

(2.7a) 

(2.7b) 

Equation (2.7b) is the desired recursion relation for the "coupling constant" 
matrix K. The recursion relations take a more transparent form in terms of 
the propagator, S = K- 1 , namely 

S'=PSP, (2.8) 

a result which is essentially obvious if we noteS= {¢If}, and 

(¢'1/) = {P¢~P) = P{¢~)P. (2.9) 

3. Naive Blocking of Free Permlons. 

Let us start from an initial Wilson-type nearest-neighbour action [9]: 

A=~ (~¢(z) + k ~~(z)i'Yu- r]¢(:H u)), (3.1) 

where the sum on tt is over positive and negative unit lattice vectors, and 1u = 
"·'Y . Notice that (3.1) is the most general nearest-neighbour bilinear action 
compatible with the lattice symmetries, in the absence of gauge fields. We 
will suppose that the starting action is on its "critical surface", 1- 2dkr = 0, 

that is we are dealing with a massless fermion. Of course, after applying the 
RG transformation the action will will no longer have the form (3.1), but it 
will still have the general form (2.3), and it will still lie on the critical surface, 

LK~(u) = 0, (3.2) 
u 

associated with (2.3), where now the sum on u goes wer the entire lattice. 

We now successively apply a large number, l, of iterations of the naive 
(p = 0) transformation to (3.1). The new fermion variables, .p(1l(z(1)), are 
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(S'(l))-"S(0 l(o) ~ 2l(d- 1l. Ford> 1, sUl(o) grows without limit for large I; 
there is no fixed point propagator, and therefore no fixed point action. 

The propagator (3.8,9) can easily be transformed into momentum space. 
First note that the lattice Fourier transform of a function F(x) can be written 
as 

+oo +oo 
F(k) = E e-ik.• F(x) = E Foont(k + 2.-n) (3.10) 

2ll•••••a:d=-oo nl, ... ,n.:~=-oo 

where r+oo 
Foont(k) = }_

00 

ddxe-ik.•F(x) (3.11) 

is just the continuum Fourier transform of the same function (continued to 
non-integer x). But the continuum Fourier transform of the convolution (3.8) 
is just 

d fl 2(1-cosk~J . __ 1 

~= 1 (k~ + 2.-n~)2 I:~ k~"f~ 
(3.12) 

(The Fourier transform of a convolution of two functions is the product of the 
transforms of the individual functions). Thus 

Stiz(k) = (]}.2(1- cosk~)) X 

~ 1 1 
. (3.13) 

L..J n (k~- 2.-n~J• L:~(k~- 2.-n~h~ 
n1,. .. ,nd=-oo #<' 

Now, the momentum space form of the matrix, K, of coupling constants 
in the fixed point action is just the reciprocal of (3.13). The problem is that 
(3.13) has zeros at the points (.-,o, ... ,O),(o,.-, ... ,o),(.-,.-, ... ,O), etc., on 
the edges of the Brillioun zone, so that K,,.(k) has poles at these points. 
This means that the real space form of the fixed point action will be highly 
non-local. In fact the momentum space poles give oscillatory terms in the 
real-space matrix K falling off only like~ [x- y[-(d-1), (see equation (2.3)). 

With hindsight one can see that this is a consequence of general lore 
about lattice fermions [9, 10]. The transformation we have used preserves 
any chiral symmetry present in the starting action. Thus its fixed point is, 
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not surprisingly, chirally symmetric. Although we started from the chirally 
non-invariant Wilson action we therefore ended up with a chirally invariant 
fixed point action, and since (like the original action) it could only. represent 
a single species of fermion, it had to be non-local. 

A transformation which generates a non-local fixed point action is un
likely to be successful in MCRG work, which inevitably demands truncation 
to a small number of dominant operators. Thus we have to go to a more 
complicated transformation. 

4. An Improved Tranformation. 

The terms proportional to p in (2.2) break any chiral symmetry present 
in the starting action, so there are no longer any general grounds for expecting 
a non-local fixed-point action. Notice that the extra terms are proportional 
to a lattice derivative, thus in some sense chiral symmetry should only be 
damaged in the short wavelength regime - one can hope that the blocking 
transformation will not compromise the restoration of chira.l symmetry in the 
continuum limit. This is akin to the usual situation with Wilson fermions. 

It is more difficult to carry out the analysis of the previous section for 
this more general transformation, and we have not found any analytic result 
for the fixed point action. However in the free field case it is easy to do 
the blocking numerically by performing the inversions required for (2.7) by 
discrete Fourier analysis on some finite lattice. For reference we quote the 
following form for (2.7b) in momentum space 

[ 

1 ] -1 

K'(k) = 2
1
d ••··~=o K;}(~k + .-v) 

K;j,.(l) = P(-/)K-1(/)P(I), 

P(l) = E•-il.u P(u), P(l) = Ee-11·• P(u) (4.1) 
u u 

(see (2.1)). It is easy to arrange one's programs so that the "lattice-size" does 
not vary from iteration to iteration of the blocking transformation, unlike 
Monte Carlo "matching" type calculations, and also to ensure that one stays 
on the exact critical surface if one starts off on it. 

We have experimented with the transformation (2.2) for the case of two· 
dimensional free fermions. Applying several iterations of (2.2) with parameter 
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can be written as 

A'W) =-In[! dil\ TW, 4\) e-Ao(i>)] + (V)i>• + O(V2 ). 

where the intra-block average of an operator 0 is 

(0) = z;;.' I dil\T(il\',4\) 0 .-Ao(i>), 

zi>, = I dil\ T(il\1
' 4\) .-Ao(i>) 0 

(5.2) 

(5.3a) 

(5.3b) 

Neglecting the O(V 2 ) terms in ( 5.2) gives the linear cumulant approximation, 
which is the only case we will consider. 

For illustration consider again the two-dimensional free fermion theory. 
If we split the matrix K into an intracell part Ko, and an intercell part K 1 , 

then 
Z;p'.p• = I d'1fd>/J 6(fP -'1fP) 6( ,P' - p ,P) e-?iKo.P 

= det(Ko) det(P K01 P) e-?i'(P K;;' P)~'.P', (5.4) 

so the zeroth order part of (5.2) is 

-!n(Z;p•.p,) = const. + fP(P K01 P)- 1.p'. (5.5) 

The matrix Ko does not connect different blocks. Neither, of course, do P 
or P. So this zeroth order term does not connect block variables at different 
sites- it just yields K'(O). The linear term in the cumulant expansion, on 
the other hand is 

(If K, >/l);p'.p• = ('f);;.p• K 1 (>#);p•.pn (5.6) 

where the factorization in the averaging occurs because K 1 only connects 
different blocks .. Thus, in addition to (5.5) we need the average 

. (¢}~· ... = z~·~· I d'iid>/16(¢' -1iiP)6(,P'-P.P)'iie-''¢Ko.P, 

. = (P K01 P)-1 P K01 , . (5.7) 

and the corresponding average: for- 1/J. Now, in two dimensions, K 0 is just an 
8 by 8 •matrix (there are four sites in a block, and the. Dirac matrices are 2 by 

12 

2) with various symmetries, and it is easy to invert explicitly. For example, 
one obtains 

p Ki)' p = ,-• I+ 4pk- 2p2(1- 2kr) 
4 I+ 2k2 - 2kr 

(5.8) 

Substituting (5.7) and the conjugate expression in (5.6) we find that the ma
trix P K01 K 1 K0

1 P is also required. This matrix just gives the nearest 
neighbour terms in the renormalized action. After some algebra we get the 
following results for the recursion relations in the linearized approximation 

k' = 
k (1 + 2k2 + 2kr)- 2pr(l- 6k2

- 2kr) + 2p2 (1 + 2k2 - 6kr + 8k2r') 
2 (I+ 2k"- 2kr)[l+ 4pk- 2p2(1- 2kr)] 

k'r' = "'_ (I+ 2pk)[(2k + r)- 2p{l- 3kr)] 
2 {I+ 2k2- 2kr)[1 + 4pk- 2p2(1- 2kr)]' 

2 4(1 + 2k2 - 2kr) 
> = I+ 4pk- 2p2 (1- 2kr) · (5·9) 

One now solves th~se recursion relations for their fixed points. In general this 
has to be done numerically, but there is one fixed point of (5.9) which has a 
particularly simple form, namely 

1 
r= -, 

2p 
k=e 

2' 

,. = ~· (5.10) 

· Calculating the matrix of derivatives of the recursion relations (5.9) at this 
fixed point (this is a somewhat tedious piece of algebra), one finds that it has 
eigenvalues 

2 and 
3- 2p2 

2(1 + p2 )' 

For p > !, the second eigenvalue is less than I, and therefore this is the stable 
fixed point governing the critical surface . In this case the linear approxima
tion reproduces the exact values for the two universal quantities, ) and the 
largest eigenvalue. 

This is obviously a fluke; but it suggests that the linear cumulant approx
imation might be reasonable in two dimensions. 

(For smaller values of p one has to find the stable fixed point numerically. 
This gives results which vary slowly with p, and matcll onto the above results 
at p = ~· This does not matter in principle, because one is free to optimize 
with respect to p) 
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homogeneously as the (unoccupied) site in the centre of the block. For a given 

density of matter variables we need four times as many gauge variables as the 

conventional lattice theory, but the continuum limit should be the same as 

the conventional theory. 

The prescription we will actually adopt is slightly more economical in 

gauge variables, but in the same spirit. We take a conventional two·dimension

alla\tice gauge theory, and put fermion fields on the odd sites ( ( -!)"+" = -1) 

of this lattice. The nearest-neighbour fermionic action is then 

A= L: (!ii.P(x) + ~ L: 1ii(x)[1u + 1•- i']U(x, x + u + v),P(x + u + v)), 
odd :t: "'" u•to=O 

U(x, x + u + v) = tiU(x, x + u)U(x + u, x + u + v) 

+ U(x, x + v)U(x + v, x + u + v)], (6.2) 

where the sum on u, v is over orthogonal pairs of positive and negative unit 

vectors. In fact there is another term which could be included in this action, 

proportional to u12 , with the antisymmetric gauge factor, but we will neglect 

this term. 

Note that apart from the gauge sector this is just a two-dimensional 

fermion theory on a square lattice, rotated by 45° relative to the gauge-bearing 

lattice. The blocking transformation for the fermions is just 

,P'(x') = ~~~ L[1 + hu]!/!(2x' + u), 
u 

-1 

;p'(;;1
) = s- L:1ii(2x' +u)[1- h.], (6.3) 

u 

where, as usual, the sum is over positive and negative unit vectors, and x' is an 

odd site of the new lattice, ( -1 )•', +•~ = -1. The transformation is illustrated 

pictorially in figure 3. We have not yet specified the transformation for the 

gauge fields, but we intend to use just "naive decimation", 

U'(x', x' + u) = U(2x 1
, 2x1 + u)U(2x' + u, 2x1 + 2u). (6.4) 

Hopefully this transformation should be adequate in two dimensions (the cu

mulant expansion would be difficult to implement with any more elaborate 
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blocking rule). In the case U = 1 one makes contact with the free-field calcu

lations of the previous two sections by rotating the lattice and putting 

k=2-kk, - ~ r = 2 ~ r, - 2' p = 'P· (6.5) 

Now we are in a position to calculate recursion relations in the linear 

cumulant approximation. We will restrict ourselves to the infinite coupling, 

fJ = 0, case (it is easy to convince oneself that this is the exact fixed point 

of the linearized recursion relations). Thus (6.2) is our complete action. Two 

adjacent blocks or cells are illustrated in figure 4, with a convenient labelling 

of sites. Each block contains four fermion spin or variables (at sites 1, 2, 3 and 

4), plus sixteen link variables. The matrix of the fermion action is now gauge

field dependent, but as in the previous section it can be split into intracell 

and intercell pieces K 0 and K 1 • Using an obviou&shorthand for the four delta 

functions for the gauge fields associated with a single block, the intra-block 

"partition function" becomes 

Z~'>P'U' =! dU 6(U'- UU)! d¢d.p o(;p' -Iii P) 6(1/!1
- P,P) e-~K,(U)>P, 

(6.6) 

where according to (6.3) the matrices P and P also now have some gauge 

field dependence. Consider the block consisting of sites 0, 1, 2, ... , 12 in 

figure 4. The four outermost link variables U(1, 9), ... , U(4, 12) only appear 

in the delta functions, so they can be integrated out. In the process the U' 

dependence of (6.6) goes away. Then we can use the symmetry under local 

gauge rotations at the sites 1,2, ... ,8 to set U(O, 1) = · · · = U(0,4) = 1, 

and to replace the four products U(1, 5)U(5, 2), etc., by four single variables 

u,2, u.s, u34> u., associated with the four outside corner paths of the block, 

since these are the only form in which U{l, 5), etc., appear in the integrand 

(in K0 ). We cannot, of course, fix the gauge with respect to symmetry under 

the local rotations at the sites 0, 9, 10, 11, 12, because these are part of the 

gauge symmetry of the renormalized action. So now the intra-block gauge 

integration is reduced to a four~fold group integral, rather than the original 

sixteen-fold form. Doing the fermion-integration, we get now (c.f. (5.7)) 

z~'>P' = ! dU12dU2sdU,.du., ll.(U) e-~'[P K;' (U) P[-'>P' 

ll.(U) = ( det[Ko(U)] det[P K01(U) PJ) N,, (6.7) 
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The integrals in (6.12) and (6.13) look messy, but for the case of a U(1) gauge 
group, K 0 is only an 8 by 8 matrix, whose determinant and inverse one can 
trivially calculate numerically (in fact there are certain properties of K 0 which 
make this particularly simple), and the integral is only four dimensional. In 
other words it is easy to calculate the recursion relations on a computer. 
Another approach we have tried is calculating the coefficients A, B and G in 
a hopping parameter expansion. We made a third order expansion, which 
worked reasonably well, but we prefer to concentrate on the more definitive 
numerical results. 

Unfortunately we have to report that taken as they stand the recursion 
relations (6.14) have IJ.o fixed point! Since the theory they purport to describe 
presumably indeed has a critical point, at least for N1 > 1, we assume that 
this res.ul~ is a consequence either of our fairly drastic tru-ncation of the ac
tion, or of our simple linear approxiination. We do not want to abandon our 
apprhxfm"ation scheme too- qUickly, bEic·ause it has some quite nice features, 
so we· will i-nstead invent an ad hoc way of getting predictions for the criti
cal point out of our recursion relation·s anyhow. In fact what we will do is 
allow the coupling' constants to become complex, whereupon we can always 
find a fixed point (although it is non-trivial for this fixed point to have the . 
proper stability properties). We will make two excuses for this procedure. 
Firstly, in our experience, from looking at simple lattice gaussian models, it is 
not unc;oinmon fol-' t.runcdted recursion relatlon$ not to have a~y fixed points, 
even when one can actually calculate the exact fixed point of the untruncated 
system. If this happens one can often get a decent approximation to the true 
fixed point action by finding the complex fixed point of the truncated recur
sion relations. Secondly, it happens that when A, B and G are calculated 
approximately in a third order hopping parameter expansion, one does get a 
sensible real fixed point, close to the exact numerical, complex fixed point. 
This somehow suggests that there is almost a fixed· point in our recursion 
relations. One would hope that refining the approximations would reduce or 
eliminate the imaginary parts. 

The results on the fixed point and eigenvalues in the N1 = 2 theory, for 
various values of p, are given in table 2. The prediction for v is (log2 .q- 1 , 

where .A is the leading eigenvalue. Taking .A here to be the modulus of its 
complex value, or about 2.47 (p = 0.5), we get 1/ "" 0.768, to be compared 
with the true value for this theory of ~ "" 0.667. This is not a bad result, by 
the standards of such calculations. 

We get very similar results for the N1 = I case, which in the continuum 
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has no massless states. This is rather worrying, and is presumably another 
shortcoming of our approximations. (The N 1 = 0 case is even worse. We 
expected that this case would mimic the N, _:., oo, mean-field case, with 
v = ~- In fact it gives v closer to the free fermion v =I than N1 = 2 does). 

Whether the problems we have encountered in this calculation can be 
removed or alleviated by including more terms in the action, or going be
yond the leading order in the cumulant approximation, is an interesting open 
question. 

7. Conclusions. 

The indications from free-field theory are that a blocking transformation 
like (2.2), with an appropriately chosen value for the parameter p, should be 
suitable for RG calculations. In particular when ·applied to a massless fermion 
action it leads to a well-defined fixed point action, and it appears that errors 
induced by truncation of the effective action to a finite number of operators 
ought to be controllable. 

As it stands the transformation (2.2) is not very convenient for the in
corporation of gauge fields, but we saw that this problem could be overcome 
in the two-dimensional example of section 6. In four dimensions an approach 
similar to the -/3-transformation of [12J might be more suitable. 

The original motivation of this paper was to suggest a scheme intended 
for Monte Carlo renormalization group work, so we should say a few words 
about how this might be done. Firstly we assume that we are probably re
stricted to calculating fermion correlation functions in quenched .approxima
tion. Whether one can really carry out a self-consistent RG study in this 
approximation, we do not know. Assuming one can, one then .needs some 
method of calculating the complicated correlation functions required by most 
MCRG methods. Because the kind of expectation values one looks at in 
MCRG calculations tend to be rather non-local, calculating the propagator 
by purely numerical methods like Relaxation or Conjugate Gradients may not 
be very practical, but perhaps one can adapt some "random" method (such as 
Pseudofermions) for calculating the propagator (or even directly calculating 
the required expectation values) in the quenched background field. 

One needs to define some concrete goal for these calculations, analogous 
to calculating the beta function in the pure gauge sector. Presumably one can 
construct similar quantities which control the scaling of the fermionic sector 
of the theory. 
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p 
0.1 

0.3 

0.5 

0.7 
0.9 

p 
0.1 

0.3 

0.5 
0.7 

0.9 

k i' ,. 
0.504 + 0.277i 1.129- 0.143i 0.505- 0.156i 

0.490 + 0.255i 1.154- 0.142i 0.673 - 0.126i 

0.478 + 0.237i 1.173- 0.138i 0.836 - 0.075i 

0.467 + 0.221i 1.190- 0.133i 0.994- O.Olli 

0.458 + 0.205i 1.205 - 0.126i 1.143 + 0.062i 

AI Ao lAd 
1.653 - 1.688i 0.107- 0.07li 2.363 

1.689 - 1.835i . 0.119 + 0.036i 2.494 

1.657 - 1.825i 0.144 + O.Olli 2.465 
1.615- 1.717i 0.177- 0.008i 2.357 

1.577 - 1.554i • 0.214- 0.023i 2.214 

Table 2. Fixed point in 2-flavour QED2 

FIGURE CAPTIONS 

FIG. 1: Coupling constant flow in m, r plane In truncated free theory: a) 
p = 0.25, b) p = 0.50, c) p = 0.75. 

FIG. 2: "Universal" quantities in truncated free theory (solid lines). 

FIG. 3: Old and new lattices. x = site occupied by matter field. 

FIG. 4: Two "unit cells". NB. 5 = 't, 9 = l2, 10 = 1\ the x 1 -direction is 
horizontal, the x2 -direction is vertical. 
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