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umerical estimates

The maximum possible growth (damping)} rate is given by (6} or (19)

413

= f, —m
I8 ° s

1D X5 ! (56)

For PETRA we use the following parameters:

Dg =30 cm, Xoo=565mm, E=76e¥, J=5mi, f,=130kHz and
Z;; = 1.3 +10® 9/cm® at o5 = 1 cm for 56 seven-cell and 56 fifteen-cell
cavities ),

Fram equ. (55} we obtain

Ao 5.4 msec

fsf =
In the transverse direction this effect could not occur in PETRA, since the
transverse feedback system cures any instability of such strength,

In the longutudinal direction, however, the instability could have occured.
Sometimes we observe longitudinal instabilities in PETRA which can be cured by
artificial bunch lengthening, These instabilities were interpreted as induced
by parasitic cavity modes balanced by Landau-damping,

Experimental study is necessary to find out whether longitudinal instabilities
in PETRA can be identified as effects described in this note,

On could think of applying this effect to stabilize longitudinal multi-bunch
instabilities in a high single bunch current machine by providing a sufficient
amplitude X, D,<0 in the cavity and applying only a transverse feedback
system#),

+) In this note only coherent oscillations were considered. However, also
higher grder intermal longitudinal and higher head-tail modes can become
unstahle, Work along this line in in progress.
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Abstract

In the presence of a transverse cavity impedance there is a contribution to
the higher order mode losses depending on the beam position within the cavity,
This part of the higher order mode losses causes longitudinal and transverse
single bunch instabilities depending on the product of dispersion and closed
orbit deviation in the rf section.

Introduction

The discrepancy between observed {longitudinal and} transverse single bunch
instabilities and ihe theoretical predictions led to an intensive search for
"missing impedances". It was suspected, however, that part of these discrepan-
ces might be due to effects that had not yet been considered.

In this note an example of such an effect, not considered before, is studied,

That part of the higher order mode losses which depends on the closed orbit in-
duces longitudinal and transverse single bunch instabilities dependent on clo-
sed orbit deviation and the dispersion in the cavities,

The mechanism

In the presence of a transverse impedance 7) there is alse a longitudinal im-
pedance Z|; which causes a contributioﬁ to the higher order mode losses of a
single bunch depending on the off-axis coordinate Xp in the cavity'):

s . _Lu-d .,

= = e D (1)
%; % relative energy loss

£ = energy

7, = "long.-transv,"* impedance with dimension /m?

Jg E bunch current,

Since the total deviation Xp from the cavity axis can be split into a "closed
orbit" deviation X.o and a varying deviation X, we find a contribution to %?
propartional ta X *);

i+ Jp

?—?-2——?7;— XCU ¢ X (2)

This part is the source of longitudinal and transverse instabilities.

*) the non-linear term does not centribute to instability.



Differential equation approach

a) longitudinal

b)

We assume the synchrotron frequency fq (= Ei) to be slow with respect to
the fractional part of betatron oscillations (far from satellite resonan-
ces). Then the Tinearized equation for coherent synchrotron oscillations
can be written as

5E L

g Aot Tk
@ =g 2 (3)
E

X —DX-A?E

L=‘2%‘j Yo » AB=gg° (4)
with T = revolution time,
From egs. (3) one derives

®+%9 - LD, =0 , (5)

an equation containing damping or antidamping depending on the sign of
L0y, The complexe frequency shift Awg is simply given by

Aw5=-1'-2—xf0 (6)

keeping only linear terms in L,

fo 2 revolution frequency,

transverse

We start with the coordinate of transverse deviation from the closed orbit X
and define according to Courant-Snyder

X
= A 7
g VB:' 7

By = amplitude function,

In order to keep the model simpTe we assume DX/VE; to be constant as a
function of longitudinal coordinate s, Then, we can write a differential
equation for the coordinate E of coherent betatran motion

a0
5 +ugtk -upt. X 8 (8)
B BBy 't
. ° d .
with = prdl where T is the "quasi time" defined by
Px
T = == 9
= (9)
wg = circular betatron frequency
Py z phase advance.

From the definition (9) cne finds

dt 1 = R
== - Z . = = 10
i B BX/Qx {10)
R = machine radius
Oy = betatron tune,

The energy loss in a cavity is given by

d 8B _
5 OE T LVE Sl - sp) (11)
Gp(s—so) periodic §-function (perjodic in the circumference 2nR)

ny n

Sg cavity coordinate,

According to (9) and (10) one obtains from (11)

% = LVB-§ec -g-ﬁp(s - Sg) (12)

-

o velocity of Tight.

Differentiating equ. (B) with respect to T and using (12) yields
o0C

Ei—mBag =w62LDx-§.c.E.5p{s_50) (13)



In order to solve equ. (13} we make use of the "averaging process" keeping
only the lowest Fourier component in the é-function, i.e, we make the replace-
ment

} T
§(S{tl - &) ---_>% ({ dv 8,(s0r] - Sy) (14)

~

H revolution time

Applying again (10} this s equivalent to

1 1
&,(S - S54)——> = ==
p( [T] 0) > T EC (15)
and (13} yields
[+]=]e] )
¥ +uge¥ = LOgwf-S (16)
For vanishing perturbation (L = 0) equ. (8) has two solutions
w = tug (17)
putting § = §el®:T
(18)
w, = m; + Awi
and keeping only linear terms in L we obtain from (16)
LDy
ALU+= Mo =1 T fO (19)

So we conclude from {6) and (19) that synchrctron or betatron oscillations of
a single bunch can become unstable depending on the product of LD,.

The calculaticns done so far are based on the averaging process (14) and on
the separate treatment of synchrotren and betatren oscillations.

In the next section we will study the effect of cavity localization and will
combine synchrotron and betatron motion.

Transfer matrix approach

M
Figure 1

In figure 1 we consider a simple mode] of a machine built up of a single (lo-
calized) cavity and a seguence of magnets. We define the coordinate vector ;

v = (20)

QD »=Xx

where x is the total orbit deviation with respect to the closed orbit, n is
the relative energy deviation and ¢ is the orbit length with respect to the
equilibrium particle trajectory.

Assuming constant dispersion and amplitude function in the cavity, the trans-
fer matrix M can be written as

cos p By sinn {L-cosp}D, 0
L sinp cos | 1 sinu Dy 0
M= Bo Bo (21)
0 0 1 0
D2
1 . 0 .
== sinu D, (1-cosp)D, -({ot=—sinp) 1
By ‘ B
u = phase advance of the machine
B, = amplitude function in the cavity
0, = dispersion in the cavity
@« = compaction factor

Writing down {21) use has been made of the reiation

og = Bl—e (Dg sinpt * Xg + Dg Bo(1-cos p) Xg} (22)

where op denotes the change of trajectory length due to pure betatron oscilla-
tions Xg, Xé. This relation was derived under general conditions in ref, {2}.



Since we have introduced the total deviation X instead of Xg the matrix M is
symplectic.

The transfer matrix for the cavity "section" can be written as

1 ¢] 0 0
0 1 0 1]
C = (23)
L 0 1 A
0 0 0 1

Here A together with o is related to the phase advance pg of the synchrotron
oscillation, as we will see Tater. The matrix C is only symplectic for L = Q.
This is not surprising, since L leads to damping (antidamping). The total
transfer matrix then reads

[cosp+LDy{1-cosp}] By sinp (1-cosp)d, ADg{1-cosp)
1 .. 1 . Dy .
-==- $inp(1l-LD,) cos|L = sinpD — sinp
s=MCc=] B ¢ Bo 0 By
L 0 1 A
DZ 1y
o [-}-DOsinp+LDo(1-cosu)] uby(1l-cosp) -foe+ 2 sinp) [1-Ala+-2 sinp)]
Bo Bo By
{24)
In order to study damping (antidamping), we solve
R(A) = §S-1-a] =0 (25)
with A= 210 (26)
and Ag = 22““10 (27)

where Ay is an unperturbed (L = 0} solution of (25}, Defining

A= A+ A (28)
we find Al = 2miAg -+ AQ
or A o= - %-)ifo (29)

For L = 0, equ. (25) has four solutions

Qoo = *p
(30)
Gont = *ug

as expected.

Before we solve (25) for L # 0 we restrict ourselves to a working point which
stays "far away" from a first order sateTlite resonance. In that case, the os-
cillating orbit lergth ¢ {synchrotron frequency) does not follow the betatron
oscillation (fractional part of betatron frequency), According to this the
tast row of (24) will be replaced by

(0 0 - 1-ah) (31)

The first and second rows remain uncharged, since the total X of course fol-
lows the {slowly) oscillating n via the dispersion. Instead of R{L) we there-
fore study Rgpepes{h) where S is modified by (31).. Equations (24), (25) and
the replacement (31) yields Al = aA,

Rnffres(k) =
[1-2&-AN1-2) +a2T[(cosp-A)2+sin2p] -1 - &g -AALDG[{1-cos p) (cosp-A)-sin®pl

(32a)
With help of cospg and sinpg equ. (32) can be written as

Roff real?) =

[{cospg-A)2+sin®pg) [(cosp-A)2+siny] -L2cospg -1-AIALD, [(1-cosp)(cosu-A} -sin?ul-

{32b)
Putting
A= )\ﬂﬂ + AN (33)
and retaining only terms linear in AX and L we obtain from equ. {32a)
AL = - ﬁ LDy*Ags (34)
Ag .

ith Kn = 1+
" B (T =32 < Ag) (L - Aog)



For Ag« 1, equ. (34) is equivalent to equ. (19)
Putting

A= Agg t+AM (35)
we obtain from {32b}

1
Bh = ge= 1o Aos (36)

cospg -1 . [{hyg-cosp)(l~cosp)+sin?pl
with L= (14§20 (Aos B u? i
Ks sinug {Ags -cosp)2+sin®pn

For .'_\.; «l, equ, (36} is equivalent to equ. (6)

Thus, for "weak” longitudinal focussing the "differential equation approach"
js a sufficient approximation if the working point is far from the 1st order
sateliite resonance.

Adjabatic approximaiion approach

If the growth or damping described in the forgoing sections is sufficiently
slow as compared to the corresponding oscillation, there is a third method to
drive the growth (damping) rates, making use of the "adiabatic® change of the
Hamiltonian function,

a) longitudinal

The Hamiltonian H of the synchrotron motion is given by
{37}

The variation of n, ¢ due to the unperturbed motion does not change the
Hamiltonian. The variation

2—2 = folDyn (38)

due to the perturbation, however, causes a variation of the Hamiltonian

So-fs fLoem (39)
Putting
' n= ncos{Ggt +#) {40}
yields
= foLDn® cos®(2st +¥) (81)
Since
N2 = 2H . (42)

one obtains From (41)
H= 2f,LDGH cos®(Rgt +%) (43)
Averaging equ. (43) over a synchrotron period leads to

L jdth= 2uD,f H L | dt cos?(Rgt +¥) (44)
T X0 T S
5 (period) s
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Here use has been wade of the fact that the variation of H due to the per-
turbation is siow as compared to the synchrotron oscillation, so that H can
be taken out of the integral on the r.h.s. of (44).

Applying the "adiabatic approximation" also on the r.h,s. of (44), this re-
Tation car be written as

Lrar fisn- foLO,H (45)
TS (period)
or

Because of n + VR' we finally arrive at

- 1
7o Tfol Dyt

so that the growth {damping) rate becomes

1
85 = 5 folby (46)

in agreement with (6).

transverse

For the transverse case we write down the emittance in terms of betatron
parameters in the cavity

€= yoX® 205 XX' + By X' (47)
with o, = - -%- B' (set to zero in the cavity)

o = 1+ u;

o} BO

The emittance is a constant for "free" betatron motior. The change &% of X

due to the energy loss i—E in the cavity (for D,'< = 0 in the cavity) is given

by
sk = -0, 3E = - Lp,x (48)

- 11 -

For one cavity only, this the change "per turn®:

§ X
dn

rey

~LDy *X =

The emittance changes according to

e

Putting
x = Ve VB, cos 9y
yields
dge = - 2¢elDy cos?e,

Tev

(49)

(50)

(51)

(52)

Averaging equ. {52} over the betatron periode and using the adiobatic approxi-

tion, we obtain

1 Se Se

e d

27 J 8N ey Px ® 8N ey
and therefore

€= g -e'LDxnrev
or

-iLogn
X e 2 X ''rev

In agreement with (19}.

(53)

(54)

(55)
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Numerical estimates

The maximum possible growth {damping) rate is given by (6} or (19)

z

1198
er 104 Xgo | (56)

IG!= fo E

For PETRA we use the following parameters:

Dy =30 cm, Xgo =5mm, E=7GeV, J=5mi, f,=130kHz and
Z;; = 1.3+10° 9/em® at o5 = 1 cm for 56 seven-cell and 56 fifteen-cell
cavities ?),

From equ. (5%} we obtain

1
~—— =~ 5.4 msec
8l
In the transverse direction this effect could not occur in PETRA, since the
transverse feedback system cures any instability of such strength.

En the longutudinal direction, however, the instability could have occured.
Sometimes we observe longitudinal instabilities in PETRA which can be cured by
artificial bunch lengthening. These instabilities were interpreted as induced
by parasitic cavyity modes balanced by Landau-damping,

Experimental study is necessary to find out whether longitudinal instabilities
in PETRA can be identified as effects described in this note.

On could think of applying this effect to stabilize longitudinal multi-bunch
instabilities in a high single bunch current machine by providing a sufficient
amplitude X.o 0,<0 in the cavity and applying only a tramsverse feedback
systemt),

*} In this note only coherent oscillations were considered. However, also
higher order internal lomgitudinal and higher head-tail modes can become
unstable. Work along this line in in progress.
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