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The maxtmutJI possible growth (damping} rate is given by (6) or (19) 

lol z,.LJB IDoXoo! 
fo E/e 

For PETRJI. we use the following parameters: 

00 = 30 em, X00 = 5 mm, E = 7 GeV, J ~ 5 mA, f 0 = 130kHz and 
z11 = 1.3 • loa Qjcm~ at o5 = 1 em for 56 seven-cell and 56 fifteen-cell 
cavities 3

). 

From equ. (55) we obtain 

I m· 5.4 msec 

(56) 

In the transverse direction this effect could not occur in PETRA, since the 
transverse feedback system cures any instability of such strength, 

In the longutudinal direction'~ ho~>lever, the instabllity could have occured. 
Sometimes we observe longitudinal instabilities in PETRA which can be cured by 

a1·tificial bunch lengthening. These instabilities were interpreted as induced 
by parasitic cavity modes balanced by Landau-damping. 

Experimental study is necessary to flnd out whether longitudinal instabilities 
in PETRA can be identified as effects described in this note. 

On could think of applying this effect to stabilize longitudinal multi-bunch 

instabilities in a high single bunch current machine by providing a sufficient 
amplitude Xco 00 < 0 in the cavity and applying only a transverse feedback 
system*). 

*) In this note only coherent oscillations were considered. However~ also 

higher order interna 1 long i tud ina 1 and higher head- ta i 1 modes can become 

unstahle. Work along this line in in progress. 
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Abstract 

!SSN 0418-9833 

In the presence of a transverse cavity impedance there is a contribution to 

the higher order mode losses depending on the beam position within the cavity. 

This part of the higher order mode losses causes longitudinal and transverse 

single bunch instabilities depending on the product of dispersion and closed 

orbit deviation in the rf section. 

_ _,_.._ ~. 
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Introduction 

The discrepancy between observed {longitudinal and) transverse single bunch 

instabilities and the theoretical predictions led to an intensive search for 

"missing impedances". It was suspected. however. that part of these di screpan­

ces might be due to effects that had not -yet been cons ide red. 

In this note an example of such an effect, not considered before, is studied, 

That part of the higher order mode losses which depends on the closed orbit in­

duces longitudinal and transverse single bunch instabilities dependent on clo­

sed orbit deviation and the dispersion in the cavities. 

The mechanism 

In the presence of a transverse impedance Z_L there is also a longitudinal im­

pedance ZI.L which causes a contribution to the higher order ·mode losses of a 

single bunch depending on the off-axis coordinate x0 in the cavity 1 ): 

oE z 11. • Js Xo' (1) T=-E"/0 

oE = relative energy loss 
E 
E - energy 

z l.l - "long.-transv." impedance with dimension Qjm 2 

Js - bunch current. 

Since the totq.J deviation x0 from the cavity axis can be split into a "closed 

orbit" deviation Xco and a varying deviation X, we find a contribution to ~E 
proportional to X*): 

oE z I.L • Js 
--+-2 --- X • X 
E E/e co 

(2) 

This part is the source of longitudinal and transverse instabilities. 

*)the nonMlinear term does. not contribute to instability. 
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Differential equation approach 

a) longitudinal 
n, 

We assume· the synchrotron frequency f 5 (= -) to be slow with respect to 2n 
the fractional part of betatron oscillations (far from satellite resonan-
ces). Then the linearized equation for coherent synchrotron oscillations 
can be written as 

with 

6E=A~+]o•X 
E T 

~=-B•6E 
E 

X = 0 • 6E 
X E 

L = _ 
2 

z ll • J ---r;e- Xco 

T ; revolution time. 

From eqs. (3) one derives 

cp+Qs2cp-LDxcp=O' 

( 3) 

A•B=.Qsz (4) 

( 5) 

an equation containing damping or antidamping depending on the sign of 
LOx· The complexe frequency shift llws is simply given by 

. LOx 
6w5 = - 1 -

2
- f0 (6) 

keeping only linear terms in L. 

f0 ;;; revolution frequency. 

b) transverse 

We start with the coordinate of transverse deviation from the closed orbit X 
and define according to Courant-Snyder 

S- _x -VB; 

Bx ; amplitude function. 

(7) 
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In order to keep the model simple we assume Dxlv'B; to be constant as a 
function of longitudinal coordinate s. Then, we can write 
equation for the coordinate ~ of coherent betatron motion 

with 

Wf3 = 

~ + wf3z ~ z Dx • OE 
= wB • V1J7 E 

0 

~ , where -r is the "quasi time" defined by d't 

~X •= '"13 

circular betatron frequency 
~x = phase advance. 

From the definition (9) one finds 

d ~ = J: 
dt B 

R il = Bx/ Ox 

R = machine radius 
Ox ; betatron tune. 

The energy loss in a cavity is given by 

.!!_ 2!. = L Vi\'~·op(s - 5ol ds E 

a differential 

(8) 

(9) 

( 10) 

(11) 

op(s-sol periodic 0-function (periodic in the circumference 2HR) 
s0 ; cavity coordinate. 

According to (9) and (10) one obtains from (11) 
0 

oE 
E 

L Vi\'· S • c • B • op ( S - S0 ) 

c = velocity of light. 

Differentiating equ. (8) with respect to ~ and using (12) yields 

(12) 

0

~ +wr3 2 ~ =wf32
LDx·g·c•f3•0p(s- s0 ) (13) 

---...--
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In order to solve equ. (13} we make use of the "averaging process" keeping 

only the lowest Fourier component in the 0-functionl i.e. we make the replace-

ment 
1 

o(S[,J - <ol ----> r 
T 
I dT op(S[T] - S0) 
0 

T ~ revolution time 

Applying again (10) this is equivalent to 

op(S[T] 1 1 
So)----> T ilc 

and ( 13) yields 

000 20 'f:. 
~ + "'B. ~ = L Dx "'B • > 

For vanishing perturbation (L ~ 0) equ. (8) has two solutions 

Putting 

w" ± 

~ 

± WB 

~ e iw± T 

w± = w; + .1\w± 

and keeping only linear terms in L we obtain from (16) 

""· ""- = 
LDx fo 

2 

(14) 

( 15) 

(16) 

(17) 

(18) 

(19) 

So we conclude from (6) and (19) that synchrotron or betatron oscillations of 

a single bunch can become unstable depending on the product of LDx. 

The calculations done so far are based on the averaging process (14) and on 

the separate treatment of synchrotron and betatron oscillations. 

In the next section we will study the effect of cavity localization and will 

combine synchrotron and betatron motion. 
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Transfer matrix approach 

c M 

Figure 1 

In figure 1 we consider a simple model of a machine built up of a single (lo­

calized) cavity and a sequence of magnets, We define the coordinate vector Y 

~ 

y u·) (20) 

where x is the total orbit deviation with respect to the closed orbit, n is 

the relative energy deviation and o is the orbit length with respect to the 

equilibrium particle trajectory. 

Assuming constant dispersion and amplitude function in the cavity, the trans­

fer matrix M can be written as 

cos~ f3 0 sin~ (!-cos ~)00 0 

1 . 1 . 0 0 -- s1n ~ cos~ B s1n ~ 0 
M = I Bo 0 (21) 

0 0 1 0 

1 . 0 
o' 

B s1n ~ 0 (1-cos~)00 - (a+....2. sin~) 1 
0 Bo 

~ = phase advance of the machine 

Bo ; amplitude function in the cavity 

Do :; dispersion in the cavity 

a compaction factor 

Writing down {21) use has been made of the relation 

1 . ' "B = - (00 s1n ~ • XB + 0 0 B0 (1-cos ~) XB) 
Bo 

(22) 

where af3 denotes the change of trajectory length due to pure betatron oscilla­

tions Xf3, xS. This relation was derived under general conditions in ref. (2}. 
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Since we have introduced the total deviation X instead of X13 the matrix M is 
symplectic. 

The transfer matrix for the cavity 11 section 11 can be written as 

1 0 0 0 

0 1 0 0 
c = I (23) 

L 0 1 A 

0 0 0 1 

Here A together with a is related to the phase advance IJ.s of the synchrotron 
oscillation, as we will see later. The matrix C is only symplectic for L ~ 0. 
This is not surprising, since l leads to damping (antidamping). The total 
transfer matrix then reads 

[cos p + LD0 (!-cos p)] f30 sinJJ (l-cosp)D0 

. ...L sinp{l-LD0 ) 
13
1 siniJ 00 COS!l 

s = M c = I Bo 0 
L 0 1 

o' 
0 1 [.l.o0 sinp+LD0(1-cosp)] pD0 (1-cosp) -(o+ 

6
° sinp) 

Bo o 

In order to study damping (antidamping), we solve 

with 

and 

R (A) = Is - .l• A I = 0 

A 

'o 

e2ni Q 

2Tri0o e 

where >.. 0 is an unperturbed (L = 0) solution of (25}. Defining 

we find 

or 

A = A0 + IJ.A 

/J.A ~ 21Ti A0 • l1Q 

6w - gf 
Ao o 

AD0 (!-cosp) 

A00 • 
- Sln!l 
Bo 

A 

o' 
[1-A(o+--2. sinp)] 

Bo 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

- 7 ~ 

For L = 0, equ. (25} has four solutions 

Oos± = ± 11 

Ooo± = ± lls 

as expected. 

(30) 

Before we solve (25) for L t 0 we restrict ourselves to a working point which 
stays 11 far awayu from a first order satellite resonance. In that case, the os­
cillating orbit length o (synchrotron frequency) does not follow the betatron 
oscillation (fractional part of betatron frequency). According to this the 
last row of (24) will be replaced by 

(0 0 -o 1- oA) ( 31) 

The first and second rows remain uncharged, since the total X of course fol­
lows the (slowly) oscillating n via the dispersion. Instead of R(A) we there­
fore stt.dy R0 rrres(A) where S is modified by (31). Equations (24), (25) and 
the replacement (31) yields t.~ = aA, 

Roffres{A) = 

[!-!.:- A](!·A) + 6:][(cos p- >.)' + s in'p]- [1- 6; -A]HD0 [(1-cosp) (cosp -!. )- sin'pl 

With help of cos11s and sin11s equ. (32) can be written as 
(32a) 

Rorr rea( A) "' 

[(cos 11s- A) 2 +s in 2 11s] [ (cos 11-A) 2 +sin 2 11]- [ 2cos 11s -1-A]A LD0 [ ( 1- cos 11) (cos 11-A)- sin 2 11l 

Putting 

A = Aoa +-i'l.A 

and retaining only terms linear in t.A and L we obtain from equ. {32a) 

with 

1 t.A "' - - LD0•Aoa 
2KB 

6' 
1 + s 

( 1 - 6~ - Aoo) ( 1 - Aoo) 
KB 

(32b) 

(33) 

(34) 
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For ll5« 1, equ. (34) is equivalent to equ, (19) 

Putting 

A Aos + t:.A 

we obtain from {32b} 

with 

1 6A = - LOa• >.. 05 2K 5 

l_ = (1 + 
Ks 

.• coslJs-1) 
1 

sinps 

[(A 05 - cos 1-1Hl- cos IJ) + sin 2).l] 

(;\.05 -COSIJ) 2 +sin 2!l 

For 6~ « 1, equ. (36) is equivalent to equ. (6) 

(35) 

(36) 

Thus, for 11Weak 11 long itud ina 1 focussing the "differentia 1 equation approach" 

is a sufficient approximation if the working point is far from the 1st order 

satellite resonance. 
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Adiabatic approximation approach 

If the growth or damping described in the forgoing sections is sufficiently 

slow as compared to the corresponding oscillation, there is a third method to 

drive the growth (damping) rates, making use of the "adiabatic 11 change of the 

Hamilt.onian function. 

a) longitudinal 

The Hamiltonian H of the synchrotron motion is given by 

H:: !C_+ Q
2 -~ 

2 s 2 
( 37) 

The variation of n, cp due to the unperturbed motion does not change the 

Hamiltonian. The variation 

On = f 0 L Dx n ot (38) 

due to the perturbation, however, causes a variation of the Hamiltonian 

OH = H = f 0 L Dx n2 

ot 
Putting 

n n cos(n5 t +'f) 

yields 

H = f 0 LDn 2 cos 2(rlst +Cf) 

Since 

n2 = 2H 

one obtains ·rrom {41) 

H 2f0 L Dx H cos 2(rls t + YJ) 

Averaging equ. (43) over a synchrotron period leads to 

1 . - f dt H = 
T, 

(period) 

2LDxfo H 1.. f dt cos'(n 5 t +'I') r, 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 
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Here use has been made of the fact that the variation of H due to the per­
turbation is slow as compared to the synchrotron oscillation, so that H can 
be taken out of the integral on the r.h.s. of (44). 

Applying the "adiabatic approximation" also on the r.h.s, of (44), this re­
lation can be written as 

or 

I . . - I dt H • H ~ f 0 LOx H 
T s (period) 

H = Ho / 0 LDxt 

Because of ~ "" ~ we finally arrive at 

- 1 n t<~ e zf o L Dx t 

so that the growth (damping) rate becomes 

I 
Os = 2 foLDx 

in agreement with (6). 

b) transverse 

(45) 

(46) 

For the transverse case we write down the emittance in terms of betatron 
parameters in the cavity 

c = y 0 X2 + 2et0 XX' + B~X' 2 

with eta 

Yo 

-t B' (set to zero in the cavity) 

' 1 + Cto 

Bo 

(47) 

The emittance is a constant for "free" betatron motion. The change OX of X 
due to the energy loss ~E in the cavity (for D~ = 0 in the cavity) is given 
by 

ox 0 OE x­E 
- LOx X (48) 

- II -

For one cavity only, this the change "per turn": 

~ L Dx • X "' 
ox 

On rev 

The emittance changes according to 

Putting 

yields 

0£ 
On rev 

2 - B L Dx • X2 
0 

x = /€~ cos <rx 

0£ 
On rev 

2 slDx cosz<px 

(49) 

(50) 

(51) 

(52) 

Averaging equ, (52) over the betatron periode and using the adiabatic approxi­
tion, we obtain 

0£ L 1 -8-0-d~x ·---
21f Onrev 

and therefore 

or 

£ ~ € ·e-LDxnrev 
0 

_l L 0 
X'\..e2 xnrev 

In agreement with (19). 

On rev 
- L Dx c (53) 

(54) 

(55) 
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Numerical estimates 

Tile maximum possible growth {damping) rate is given by (6) or (19) 

161 zu.Js !Do Xoo I 
f o E/e 

For PETRA we use the following parameters: 

00 = 30 em, X00 = 5 mm, E = 7 GeV, J = 5 mA, f 0 : 130kHz and 
z11 = 1.3 • 10 8 Q/cma at o5 = 1 em for 56 seven-cell and 56 fifteen-cell 
cavities 3

). 

From equ, (55} we obtain 

I 
T6f" 5.4 msec 

(56) 

In the transverse direction this effect could not occur in PETRA, since the 

transverse feedback system cures any instability of such strength. 

In the longutudinal direction'~ however, the instability could have occured. 

Sometimes we observe longitudinal instabilities in PETRA which can be cured by 

artificial bunch lengthening. These instabilities were interpreted as induced 

by parasitic cavity modes balanced by Landau-damping. 

Experimental study is necessary to find out whether longitudinal instabilities 

in PETRA can be identified as effects described in this note. 

On ~ould think of applying this effect to stabilize longitudinal multi-bunch 

instabilities in a high single bunch current machine by providing a sufficient 

amplitude Xco 0
0 

< 0 in the cavity and applying only a transverse feedback 

system*). 

*) In this note only coherent oscillations were considered. However. also 

higher order internal long i tudina 1 and higher head-ta i 1 modes can become 

unstable. Work along this line in in progress. 
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