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Abstract: It is shown that in a quantum field theory describing free, scalar 

particles with masses 'Wl~ 1 ~E fN there exist locally normal equilibrium states 

with finite energy density for all temperatures fi > 0 if and only if 

~ 

L e.- fom~ < oo. 
Lo:1 

This result lends support to the conjecture that the nuclearity criterion pro

posed in [1] is sensitive to the thermodynamical properties of field theoretic 

models. 

- 1 -

1. The general frrunework of local quantum field theory includes many models 

which do not have a reasonable particle interpretation. Therefore it has 

been proposed by Haag and Swieca to amend the fundamental postulates by 

another condition which is based on the idea that the number of states 

occupying a finite volume of "phase space" should be finite [2]. 

Following Licht (3], one can identify the states which are, at a given time, 

strictly localized within a bounded region 0 of Minkowski space with the 

set of vectors 

[uQ. 1 u. IJlWl, u"u. 1.} (1) 

in the physical Hilbert space ~ • Here C'(((!;l) denotes the algebra of fields 

(respectively observables) which are localized in (Q , and Q is the vacuum 

vector, By cutting off the total energy of these vectors, e.g. with the help 

of the e~ponential function e - /!> H , fo > 0 of the Hamiltonian, one then 

obtains a set of states 

Jf(0, r> 1 .. { e-1> 11 u Q. 1 u. atcvl, u•u. 1} (2) 

which, roughly speaking, occupies a finite volume in configuration as well as 

momentum space. Haag and Swieca argue that the sets JJ'(0
1
J3), although not 

finite dimensional, should be relatively compact in the norm topology in phy-

sically acceptable models. 

In a recent article [1] it has been pointed out that under quite general 

conditions the sets J.f U!J
1 

{!J) should even be nuclea:c, i.e • .){'(0
1 
(3) should 

be contained in the image of the unit ball ar1 in ~ under the action of some 

trace class operator T , 
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JIH>,(") c T 'd{
1 • (3) 

(For a slightly more general definition of nuclearity due to Grothendieck 

cf. [1].) The argument is based on the following heuristic consideration: 

disregarding long~range correlations, one can compare the set of vectors (1) 

with the unit sphere !fev 1 in the Hilbert space ~V of the theory for finite 
' 

volume V . On the same heuristic basis one can compare Jf'(0 1 ~) with the set 

of vectors where HV is the finite volume Hamiltonian. Now e-flHv. :lev,< 
the crucial input is the assumption that the operators e -(3 Hv, describing 

the Gibbs ensemble, have a finite trace for all ~ > 0 • This should be true 

in most models of physical interest, one of the few exceptions being the 

Hagedorn model [4], for which a maximal temperature exists. It then follows 

that the sets e-fl Hv. 'de, v ,1 are nuclear, so according to the above picture 

the same should be true for the sets J{'[(9J ~) in the infinite volume theory. 

A measure for the size of the sets Jf[0)~) is provided by the nuclear index 

IJJf(C'!,P.,)//1 given by [1 J 

IIJi'l0,P.,lll 1 c '"{Tt-ITI 
T 

( 4) 

Here the infimum is to be taken over all trace class operators ~ for which 

relation {3) holds. So the nuclear index is the analogue of the partition 

function 

HV, P.,) T, -i1>Hv e ( 5) 

The condition that the partition function (5) exists is equivalent to the 

requirement that the equilibrium (Gibbs) states in the finite volume theory 

are normal states on the algebra of all bounded operators on ~V • Proceeding 

to the thermodynamic limit (if it exists) one may therefore expect that the 

equilibrium states W~ of the infinite volume theory are local~y normal, i.e. 

- 3 -

should be represented 

A significant test for the existence of the thermodynamic limit is based on 

the analysis of thermodynamical quantities, such as the pressure 

(V(I)- 1 -tv.. lCV, (',) , in the limit of large volume V . In view of the 

similarity of the nuclear index f! .}['((9 1 (!;) 1/ 1 to the partition function l:.(V
1 

(3) 
it should be possible to express these quantities also in terms of fl ,N'(tJJ {)) /)", 
From a fundamental point of view this possibility appears to be very attrac-

tive, It would allow one to distinguish, within the general setting of quantum 

field theory, all models with a reasonable thermodynamic behaviour. This input 

could then be used to derive more specific properties of these models (cf, (1]). 

It is the aim of the present note to substantiate this qualitative picture for 

the simple class of models of a countable number of free, scalar particles 

with masses 1'l1L 1 i.E JN . In order to abbreviate the subsequent discussion we 

will restrict our attention to models with a mass gap, i.e, we assume that 

7l1L ~ 'YYlo > 0 for all l E IN . A more significant restriction on the mass 

spectrum derives from the assumption that the sets }.{'((9
1 

(?,) 
1 

f'j > 0 are 

nuclear. It is easy to verify that in this case 

= 
L ._-flm, <oo for p., > 0. (6) 
ld 

Note that the sum in (6) provides a lower bound for the partition function (5). 

That (5) is also a sufficient condition for the nuclearity of Jr(6J ~)can be 

taken from the appendix in [1]. 

As to the thermodynamic properties of these models, we will show that there 

exist locally normal equilibrium states for all fo > 0 if and only if condi-



~. 
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• 
tion (6) is satisfied. Moreover, we will see that the energy density of these 

states is finite. In contrast, the energy density of the equilibrium states is 

infinite for large temperatures whenever the mass spectrum d~es not comply 

with (6). These results are in perfect agreement with the above heuristic 

considerations. We therefore presume that the nuclearity criterion proposed 

in [1] serves its purposes also in general [5]. 

We begin with a brief description of the model and of our notation. It will 

be convenient to work with the CCR-algebra generated by the "fields" <P at 

time t "' 0 and their canonical conjugate "momenta" 1( ; the respective test-

functions are elements of the complex Hilbert spaces 

00 

Kq, (!) L~( IR3 l and 
L:o-f 

Krr Gl L~CIR'l. 
i_.,. 1 

To simplifY the notation we also introduce the space K~K.p<~>Kn: 

and set, for F "'" f $ ~ C K , 

A(F) • cPlfl + rrl~) 

(7) 

(8) 

The scalar product of F 1 G- E K is denoted by ( F 
1 

(T) and the anti-

linear involution on K corresponding to complex conjugation of the functions 

f in configuration space by r . The adjoint of ACF) is given by 

A*CFl • A(r F) (9) 

and the commutator by 

[A*( F) , A l G-)] • ( F , (_~ ~) G-) i ( 10) 

in an obvious notation. The algebra :P of all polynomials in the fields A (f), 

FE K is thus a self-dual CCR algebra [6}. 

' c 
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The time translations i: E IR act on g:> by automorphisms c(t according to 

( 
c:os wt Sin wt) 

o(t (A(Fl): AI -scn;;,t cos~t ·F), ( 11 ) 

Here ~ denotes the operator which is defined on a dense set of vectors 
00 

f.=_$ f~ in k_J.. and Krt, respectively, by 
~:-f 't' 

~ f. : 
00 

ES w~.·fi.. 
l:1 

( 12) 

The operators (Ji., act on L
l , 
( fR ) as multiplication operators in momentUlll 

space according to 

c;:;;:-:f:l eel: le"'+mtl'"- fce1, ( 13) 

where r denotes the Fourier transform of F • 

~he vacupm state tJ
0 

is completely fixed by the requirement that it is a ground 

state for the dynamics (11). It is a quasifree state with the two-point function 

S,(F,G-) •wJA"LFlA(G-l)• £(F,(_: ~)G-). ( 14) 

Similarly, the equilibrium states (.)~ 1 f-,.>0 are fixed by the KMS-condi

tion [7]. Their two-point function is given by 

Sfl ( F, G-) : wl' (A'CF) AlG-l). i (F ( c:oth ~~ 
~ ' . -c (_()~~~)G-), ( 15) 

The local algebras CP ( Lr) , assigned to the bounded regions tJ c fR 3 , are 

the subalgebras of J> generated by the fields A ( F) ; where F f K ( tJ) := 

f<.p(IJ)$f<rr({j) and 

K (IJ) = ~-,t•$ ilWl 
<P (..'>0-1 

K'"un w 112 ;;; £) (() ) 
- ~,.4 

( 16) 
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Here .[l(lJ')is the set of all testfunctions with support in (J and the bar 

denotes the ~losure of the respective spaces. 

For the analysis of the local properties of 0(3 we will make use of a criterion 

of Araki and Yamagami [6], To this end we represent the restrictions of the 

positive forms So ( · J ·) 

operators So and .$ 13 

and 5~(.,.) to K ( (}) by positive bounded 

~ ( 1 i ) 5, o i E -i 1 E 

respectively, which are given on K by 

and 5 " fl 
:L r ( Coth ll_ fJ 
2. c 7... -

-l cothihJ t. ( 171 

Here E = (~~ ~rt:} denotes the orthogonal projection in K onto the closed 

subspace K(O) and E~ l E7C denote the projections in K~ and K' Tt 1 

respectively, onto the subspaces Kq,(CJ) and f<n:(CJ). We now can state the 

Criterion [6]: The state GV~ is locally normal (i.e. theGNS-representations 

of [P(cr) induced by GJf> and G)0 , respectively, are quasi equivalent) if and 

< Af~ s 1/~ . . only if the operator v {?> -
0 

is J.n the Hilbert SchmJ.dt class. 

3, To begin with we will show that (i)f3 is not locally normal for a given [3 > 0 

if the mass spectrum of the model is such that 

~ 

L 
l '"1 

Because of the identity 

-2..P,mi.. :::. oo. e ( 18) 

.s - S o Cs"~- s"'l~• s"'. Cs'"- s"'l + (5'12- S'"l· Sm (191 {?>o (J Do f3o {?.o o 

and the fact that the Hilbert Schmidt operators form an ideal in the algebra of 

all bounded operators on K it is, according to the above criterion, sufficient 
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to verify that .6.S = S ~ - S 
0 

is not in the Hilbert Schmidt class. Now 

a crude lower bound on the Hilbert-Schmidt norm of ~S is given by 

= 
Ti-K(65)

2
;,. L. 

~"' 1 

where 

:\.( ""') 5"-f' 

~ E c.{2 £)(0) 

A'l..Cmi..) , 

<~,Heath ~c.:>,-1) ~> 
<~ '\} > 

and < · ' · > denotes the scalar product in l '2. ( IR 3.) • Using the fact that 

i(coth%<Jc -1)o(efl"'i_ 1t;, e-flwl -flm; 
;,. e 

-fllet 
(' 

' 

(20) 

(21 I 

(22) 

where e is the momentum operator on L\1R3
) , it is easy to verify that 

?d. mi.);::::_ c. e -~m~ for some constant c > 0 depending only on a. 
From (20) and (18) it then follows that ~Sis not in the Hilbert-Schmidt class. 

We mention as an aside that the representations of ,P(LJ) induced by (VA and GJ 
,- 0 ' 

respectively, are even disjoint if (18) holds. 

Next, we will prove that Wf' is locally normal for a given temperature 0 > Q 

if 

r:_, - ~ "' e.. 21" t'Yl~ < 00. (23) 
~'" 1 

For the proof it is sufficient to show that the operator L'.S = 5~- .50 has 

. . . s'" 5 112 . . . ·a a fl.nJ.te trace, sJ.nce then f-o -
0 

l.S J.n the HJ.lbert SchmJ. t class 

(cf. for example the appendix 

on the elements f Gl t[ 
L ~1 

of [B]}.Let ~ be the operator which is defined 

of 1-<(4> and Kn. , respectively, by 

/ " 
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"' ~-£ ill 
L = 1 

X: t' . (24) 

The operator 1 acts on L~liR'l by multiplication (in configuration space) 

with a testfunction 1C~) which has compact support and is equal to 1 onLY. 

According to the very definition of the projections E4> and Err we have 

E _ -<n , "~ E E _ mot -112 E t-<0' ~0.. q,, '1:-<:Q "'"' . n: (25) 

and consequently 

(
!!!'

1't<:Q- 1(e0"'-1r':i"""" o ) 
LIS= E 0 0.-'n ;& i<:J (e_ fo<,~ _ 1r1 t 'o' -1/~ E. (26) 

So it suffies to show that the operators in the diagonal of this matrix have 

a finite trace in K 4> and K n: , respectively. Since 

( "w· \-~ 
o~f\Wc e'" L-1} <:'/-

~ <.J· -iff r,.. L. IL e - T 

_8 e z:mL. 

and 0 < r,.,,-4 < IAA.-1 
- ....._,(.. - '"L , it is obvious that 

-H2,; ( {3w ;-1 ,- -it~ 
TrK 0 ~ c, e. -- 1 "' <:<! 

rr 

e 
-~lEI 

~_!!:. 
(3m, 

~ 

L, - /}_ I'Yli.. e 2 T+ L'! IR'l X e !l/f'l -v 
2 . A. ' 

i "'1 

(27) 

(28) 

where Yno is the minimal mass in the model. A similar argument leads to the 

estimate 

" -1 T..- w 1"X: w- 1 (e'o"'-1l X ev 112 
K~ - -- - -

0m~ , . Ti-L~CU>.') 
/J 

w112 /. e- 2 11"1 ;t ,0 If- t e. -4-mi 
~"'1 

w 11'1... 

' 

(29) 
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where GJ is the operator defined in (13) with mass 1n·=l7?· Now both, e-*/ef.(J( 
' 0 ,<. 

and e-~/eJ '/-u:f'2 are Hilbert Schmidt operators on L'l.(IR?) , Hence the 

right hand sides of (28) and (29) are finite, i.e . .6S has a finite trace, if 

condition (23) is satisfied. 

Combining the results of this section we thus arrive at 

Proposition 1: In a model with mass spectrum 'hlt. 1 L E JN all equilibrium 

states (J/3 
1
p>O are locally normal if and only if the nuclearity condition 

(6) is satisfied. 

(This results holds also if there is no mass gap in the model [9].) 

It is noteworthy that the simple class of models considered here can be used 

to give examples of theories in which no equilibrium states (J0 (i.e. states 

satisfying the KMS-condition) exist above a certain temperature. To this end 

one must only proceed from the field algebras [P((J) in the representation IT0 

induced by the vacuum state CJ0 to the corresponding von Neumann algebras 

0t_ UJ) ~ rr (:]>(_6"))
11

• As long as condition (23) is satisfied, i.e. as long 
0 0 

as the states GJfo are locally normal, one can extend these states to the net 

of algebras cr ~a UJ). and these extensions still satisfy the KMS-condition. 
0 

But if the mass spectrum is such that for some temperature (and consequently 

for all higher temperatures) relation (18) holds, it follows from a result of 

Takesaki and Winnink [10] that there cannot exist any state on the net 

(j --.,> Ci. ( ()) satisfying the KMS-condition for this temperature. For, such 
0 

a state would necessarily be normal on ()[
0
(LJ} , in contradiction to our results. 

Similarly, if (t0 UJ):: _rr
0

((]J(_tJ)/ where T((3 is the representation 

induced by some equilibrium state ~~ in a model with a mass spectrum for 
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which (18) holds, one obtains a net () ~ ex_!' (()) for which there exists 

(Jfo . Of course, these physically awkward 

models can be ruled out by the nuclearity condition. 

no other equilibrium state besides 

4. In conclusion we want to analyze the local energy content of the equilibrium 

states GU~ and its relation to the mass spectrum. First of all we notice that, 

irrespective of the mass spectrum, one can approximate the states GJ(3 by 

states in the vacuum representation. Namely, given W(b and [!>[(}) there exists 

some generalized sequence (J lEI (_][being some index set) of normal states 
Ol' 

with respect to the vacuum representation of SD such that 

wf'CA)" l'i.WJ Woe (A) 

' 
A E :P((Jl. (30) 

This fact can be used to evaluate the local energy content of the states GU~ 

relative to the vacuum. (Note that the algebra SD does not contain operators 

having the meaning of an energy density.) We say that a state GUp has finite 

local energy if one can ch~ose an approximating sequence GJ0l 

a way that for any ~ E ~ 

W0 ~..(H?1) :'f c'~"~ < oo 

in ( 30) in such 

I 311 

uniformly in L E:. ][ • Here H denotes the Hamiltonian in the vacuum repre-

sentation of 5J . 

Let us assume first that the mass spectrum satisfies the nuclearity condition 

(6) and let (.Jf-> be any equilibrium state, Then we define a quasi free state 

6) 0 (3 on §!which coincides with GJp on the algebra r:fJ((J) and with the vacuum 

UJ 0 on any algebra PC~) whenever o; is contained in the complement of some 
/'. 

sufficiently large region (1 ") CJ' • The two-point function of (i)
0
f3 is given by 
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(compare ( 26)) 

So(' (F, G-) 0 S
0 (F, G-) r 

(
w"';t w- 1 cefJ~-1r't w 11

'- o ) 13
2

1 

+(F, - ;- 'Q-mt_<:,J(efJ<;J_1t 1;{w-112 G-). 
Using the criterion of Araki and Yamagami [6] and the methods of the previous 

section it is easy to verify that CU0(3 is a normal state with respect to the· 

vacuum representation of SP . By a straight-forward calculation one can also 

show that (.i)
0
[3 can 

W01'(H~)< 

be extended to any power H 'l'1 1 '11 E fN of the Hamiltonian, 

i.e. oo • To give an example, one has 

w0 i' (H)" 
( 33) 

~~K</> '0 t <Q-1 (e flw_ 1 f1 t <i' + t T..-k'n: l: <,:> ( e (.lr.:>_ 1 )
1
:)'; 

which is finite if (6) holds, cf. the discussion in the previous section. So 

one may choose for the approximation ( 30) of Wft the constant sequence (J0~ , 

showing that (i)(!> has finite local energy. 

Let us assume now that the mass spectrum of the model is such that condition (6) 

is violated for some ~ • In order to see that the corresponding equilibrium 

state CV~ does not have finite local energy, we must exhibit a sequence of 

hermitean operators H~ E [}>(()) 
1 

'l1 E IN such that, firstly, 

;: n:)H~);; K (1 +He) (34) 

for fixed numbers k' 1 ~ > 0 and, secondly, et.m w~ ( /-{~)=- oo • Then the 
"~~ 

estimate 

t:..nu.,o w l1+He) 
t oc 

' 
> ~ 
- j( icm [ W0 , ( H ~) [ 

' 
k fwi' (H~ ll 

' 
(35) 
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which holds for fixed ~ and any sequence (00L converging to CJp, in the sense 

of relation (30), shows, that (J0L (He_) cannot be uniformly bounded in l • 

. H~ . . A natural cand~date for the sequence ~ lS the express1on 

'11. 

H~ o 1: L, •rr*c"'~" l rrc"' ~Kl + <P*c E~"l· ~( P ~) + (c'!l9Kl cPC>:!l$" l: 
f<~1 - - - - - ~ 

(36) 

where the colon indicates that the vacuum expectation value has to be sub-

tracted. m is the mass operator on K ,P which, on a dense set of vectors 
00 

f 0 $ 
L"'-1 

tc E K,p is defined by 

~ 

m £ ~ Ell mf! 
i.-=>1 ' ' 

(37) 

and the functions ~k E K,pUJl are to be properly chosen such that 7[0 ( f{~·) 

approaches {in the sense of bilinear forms on states with finite energy) the 

energy density integrated over the region cr . 

By standard arguments ((11] , cf. also l12]) one can establish for T[
0 

( H~) 

an energy bound of the form {34). Moreover, from (36) one obtains 

"' 
UJrCH~l L C~"' (;/cefo"" 

K""1 
1)-1~K) 

and taking into account the constraints on the functions 
~ 

fact that L e.-f->1-Y!~=oo one can show that the sequence 
L"' 1 

~ K as well as the 

~(3(1-/~) diverges. 

Since the arguments are very similar to those given in the previous section 

we omit them and just state the final result. 

Proposition 2: In a model with mass spectrum tn1.. 1 ie/N all equilibrium 

states (i}~ l p > 0 have finite local energy if and only if the nuclearity 

condition (6) is satisfied. 

(38) 
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