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Abstract: We consider in detail a chiral SU(N) gauge
theory which undergoes multiple tumbling. An extension
of the notion of complementarity is used which allows
us to deduce the set of massless fermions, in the con-
fining phase of the theory, which we needed for anomaly
matching. The }ikelyhood of this confining phase ever
being realized in practice is discussed.,

An important and very interesting question has emerged in composite models
of quarks and leptons, namely , do there exist confining theories with massless
spin 1/2 fermions in the bound state spectrum? In models which possess a chiral
symmetry at the preon level such massless composite fermions can arise when-
ever the chiral symmetry remains unbroken at the bound state Tevel. 't Hooft [1]
has given a precise necessary condition for the preservation of chiral symetry
in the binding: there must be a matching of the value of the chiral anomaly,
computed at the preon level, with the value obtained at the bound state level
by computing this anomaly in terms of all the spin 1/2 massless states. To be
more precise consider a set of conserved chiral currents

JP=‘_'ZJ~?‘.;;,,H-7;H:‘;¢J. (1)

where i, j run over the color and flavor indices of the fermions . The
't Hooft matching condition can then be written as

. . (2)

(Tr t“{tb't j)l’re.av\.s N (T"' ts{‘t 'tc‘})musstnb
composite
;ermiows

This condition is only a necessary condition for chirality to be preserved
in the binding. Actually massless Goldstone bosons can also reproduce the ano-
malies at the composite level, thus signalling spontaneous breakdown of the chi-
ral symmetry, This latter possibility is realized in 0CO and probably in most
vector gauge theories {i. e. theories with vector couplings of gauge fields to
fermions) as can be argued by considering mass inequalities between bound
states [2] or by using large N considerations [3], for example. The behaviour of
chiral gauge theories, i. e. gauge theories with fermions transforming in such
a way under the gauge group that no mass terms can be formed at the preon level,
should, on the other hand, be quite different, For some special chiral gauge
theories, formally allowing a large N limit, it actually can be shown that mass-
less spin 1/2 bound states must be present in the spectrim at N = = [4], pro-
vided some mild assumptions about the behavior of the large N Timit hold. Chiral
gauge theories therefore hold some promise of being candidates for bound state
models of quarks and Teptons, and therefore deserve continuing investigation.



In general the algebraic constraints imposed by Eq. {2) are difficult to
satisfy: one has to solve Diophantine eguations which become particularly in-
tricate when the subgroup H that the Flavor group G at the preon level is bro-
ken to has to be determined at the same time. However, there exists & way to
systematically generate solutions in a large number of chiral gauge theories
[5]. it is based on compliementarity, . e. the hypothesis that a gauge theory
spontaneously broken by a scalar condensate in the fundamental representation
of the gauge group is in a phase which analytically continues into the confin-
ing phase of the theory [6]. In particular, one expects the spectrum of mass-
less states to be identical in the Higgs and the confinement phase of the
theory LS].

In this paper we shall investigate an interesting. but rather intricate,
chiral SU(N) gauge theory with three species of left handed fermions:

() i i
Sy o A ’I, F Lis e N, a=t. f O
These fields transform, respectively, under the conjugate of the second rank
symmetric, the second rank antisymmetric qnd the fundamental representation of
SU{N) . The number 8 of chiral fermicns F'% is chosen so that the model is ano-
maly free in the gauge sector. It is an easy matter to check that this theory
is asymptotically free. This model has been investigated previously by Eichten
and Preskil} [?J, in their general analysis of chiral gauge theories. Some fea-
tures of this model, notably the fact that it admits a repetition of states
(families?) at the bound state level, have been reported by Preskil1l8}. Two of
us, in cellaboration with Eichten and Preski!1[4] have alse studied some aspects
of the model for large N. Here we would like to examine the model in a tumbling
version of complementarity, which will be more precisely defined below.

At the classical Tevel the flavor symmetry of the model is

(;t = SU(8) x U) x U1 x u(1) {4)
<

where the U{1)generators can be taken as the fermion number operatorsn, , ng
and no . Each of these U{1) symetries has however a gauge anomaly, so that at
the quantum Tevel only two overall U(1) symmetries survive:

G-;w = SUQ®) x Wi x u, (5)

The linear combinations of the fermion number operators which are anomaly free
are easily determined and a convenient choice for their generators is:
= - n
Q1 = 2 N 2n, + n,
{6)
2 - - +
Q, = (N-2)mg - (N+2) n,

The generator QI has a direct physical meaning in the confining phase of the
theory. Obviousty, from its definition, Q1 counts the difference between the
number of upper and lower SU{N) indices. Hence it counts N times the number of
SU(N) €-tensors in any singlet state,

We want to examine this model, to begin with, in the Higgs phase where
condensate formation forces the breakdown of the gauge group, For N finite, the
most attractive channel (MAC) [9], is one where the fermions S and F condense
yielding an effective Higgs field in the fundamental representation of SU{N):

<S£jF3“> = (> s ("

Because &= 1,...,8 only, the condensate (7} can break in general the gauge sym-
metry only partially down, to SU(N-8). Depending on the explicit form of (7} the
gleobal symetry (5) will suffer some breakdown. If we demand that the end result
of the breakdown yield as large a global symmetry as possible, then it follows
that the condensate (7) must take the form

¢+N-8 (B}

C§5> = AT

For non vanishing A, the condensate (8} forces a breakdown of the gauge x
global symmetry of the model: [SU(N)]gauge x Lsu(8)x uy (1 ”2(1)]g1oba1- to

¥ '
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that is, the global symmetry is as large as that before the breakdown. Only the
gauge symmetry has been reduced to SU{N-8). The new global symetry SU({8} is
easily seen to be the diagonal part of the old global SU{8)} and the SU(8)} in



SU{N)gauge encompassing the fast 8 indices. The new U{1)'s are linear combina-
tions of U(1) and U (1) and the SU(N) generator lF1]

IN-: 0

= {9)
aN g8-N I ‘
7 £ ]

It is clear that (8) leaves both

' N-2% g
Q, = — [Q1 + O-N] (10a)
and

]

Q. = .;7[12(:\/—4)62' + N&, -~ B(N-6) QNJ {10b)

2
invariant. The complicated combination chosen for Qz, will be explained below,

After the breakdown {8) the theory will contain a number of massless
states, These can be easily identified, following the method of Oimopouloes,
Raby and Susskind [5]. Namely, one locks at which states in the theory cannot
acquire mass from effective SU{N) x un invariant four-fermion interactions

1 + +k F £
= - . 11
Ly = e Fin$ Sce (1)
once the condensate (8) forms. It is clear that among the massless fermions one
will have all the A’ X states, as well as the S states for i,j = 1,...N-8.,
Furthennore, it is easy to see that the ant1symmetr1c combination of F‘ with

= N-7,...,Nalsoacquires nomass.Table I summarizes the massless fermions in
the theory following the breakdown (8), classified according to their

4 ¥ = Iy

SUN-8) 4390 X [su(e) xu (1) x uy( 1)]g10ba1 transformation properties. As can be
seen from the table, there are two gauge singlet states which transform according
to the second rank antisymmetric representation of SU(8) and three states which

under SU({N-8) X [SU(S) X Ui(l) X Ué(lﬂ have precisely the same

gauge global

transformation properties that sij’ A1j and Fi* had under SU(N}gauge X

lSU(S) x Uy(l) x U2{1ﬂ910ba], except that N-¥ N-8. This was -the reason for
choosing. the somewhat complicated form of 62 in Eq, (10b). It guarantees that
the eigenvalues of the massiess fermions, with gauge quantum numbers, after the
breakdown (8) correspond precisely to those of the massless fermions before the
breakdown.

The Higgs phase of the model which we have just discussed arose from a
condensate (Q':) which transforms according to the fundamental representation
of the gauge group. Thus an application of complementarity would have been
warranted. Alas, the situation here is more complicated than that discussed by
Dimopoulos, Raby and Susskind [5]. In the examples discussed in Ref, [5], after
the spontanecus breakdown, the massless fermions left in the theory were either
gauge singlets or could be paired under the gauge group, thereby breaking the
global symmetry further. In our example, however, the fermions which are nonr
singlet under SU(N-8) are chiral. Dimopoulos, Raby and Susskind [5] make use of
complementarity in the following way. They arque that the fermionic bound
states of zero mass, found in the c¢onfining phase of the theory, should agree
precisely with the gauge singlet states found in the Higgs phase. Indeed, to
support their contention, they show that, in the examples they consider, pre-
cisely the set of these massless bound states suffices for anomaly matching. In
our case, however, we have additional chiral states which in the Higgs phase
have non trivial gauge guantum numbers. How are we to apply complementarity?

The solution we have found to this conundrum is the following. The spec-
trum of the SU(N-8) gauge theory {s precisely the same as that of the SU(N)
gauge theory. Hence it is Togical that also the SU(N-8) gauge group will be
broken by a condensate analogous to (8). In this way the qauge theory, in the
Higgs phase, goes through a tumbling sequence [9], fram SU(N), to SU(N-8), to
SU(M-16)}, ete. To be precise, let us write N = 8n + k, k = 0,...?. Then after n
steps the remaining symmetry is [SU(k}']gauge X ISU(B) X Ul(l)(" (n)]
[FZ] Similar considerations to those that led us to Table I, y1e1d for the fer-~
mionic massless states at this stage those indicated in Table II. The
(SU(k))gauge group finally is totally broken down by the condensate

l-:j.u> = A 5:‘ {12)
This condensate also breaks down the global group to
Cpimar = SULK) x SU(8-K) x U (1) x U, (1) (13)

Here the two remaining conserved Y(13)'s are linear combinations ofUﬂl)("),
Uz(l)(n) and the SU(8) generator -
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*k-8)1 0
Q, = (14)

A simple calculation shows that the generators 5] and 62 are given by

- (n}
3, - )@ - a,
{15)
(w)

1

- {n} Q
Q, = (k-2)Q,  +
The spectrum of massless fermions resulting at the end of the tumbling sequence
is given in Table I11,

At each stage, the successive breakdowns are caused by condensates which are
in the fundamental representation of the surviving gauge group. Hence one may
hope that there shouid be no phase boundary between the Higgs phose and the con-
fining stage. If this is so, then we may apply complementarity to the final
spectrum of fermions, since these states, although chiral, carry no gauge quan-
tum rumbers. Hence our considerations suggest that a set of massless fermionic
bound states with the quantum numbers under Gfina]shownin TableIll should match
the Gfinal
tarity, although intuitively appealing, is far from obvious if one thinks only
of the overall breakdown. One has a theory with an[SU(Bn#k}] auge X
Lsuay x u (1) x “2(”]g1oba1 symmetry, broken down to a pure [SU(k} x SU(8-k) x
51(1) X 52(11191oba1 symmetry, Such a breakdown necessitates condensates which
are both in the fundamental and the adjeint of the gauge group. Frem this point

anomalies at the preon level. We remark that this tumbling compiemen-

of view, there is nc reason why the set of fermions in Table III, viewed as bound
states of the ¢onfining phase, should match anomalies.

To show that tumbling complementarity really works, we must first identify
the generators of the global symmetry group Gfina1in terms of the generators
written at the preon Jevel. This is trivial for the non abelian SU(k} x SU(8-k)
symmetries, but is far from obvious for theUl(l) and U2(1) symetries. What
happered in the tumbling Higgs phase must be reinterpreted entirely in the con-
fining phase, which is difficult. Fortunately, one can bypass these complications
by the following observation. The U{1) generators 61 and 52 in the confining
phase must be a linear combination of 01 and Q2 given in Eq. (6) and of the SU{8)

generator Qg:

é = ol QR+ « Q + ol G
(16}

fwl]
i

“?
jw]
+
4
!
+
A

The six coeffﬁcieqfs “ﬁj:”_ﬁqs- (16; can be de}egpined by Esquiring that the
chiral anemalies @ SWikY, @ SUL&-k)", @, 5ulk); G‘ SUIS-Kk) as well as the
gravitational anomalies Tr a',T¥ 5; [IQI be matched at the preon and bound state
levels. These anomalies are linear in the coefficients uq and the solution of
the six Tinear equations is immediate.

One finds, using Table ITI and doing a 1ittle algebra, at the bound state

Tevel:
Tr @ Suf)' = (8-K)(N+k)/2 (172)
Tr @, Sute-w)'= k(8-k-N}/2 (175)
Tr @, = 6k (%-k) (17¢)

and

Tr @ Suw)’s 2 u7 - 1 k(8- (182)
Tr 8, §u(2-1)" = 3IN" - 4 k(e-k) {180)
T &, = It - dk@-w {18¢)

On the other hand, at the preon level one has (i = 1,2}

Tr & s’ = Ma, v« (k-)]/2 (19)
T C_l; SLL(a‘:’-lv.)z = N[-L;1 + g k} /2 {1%)
T Q, « Mlew, - Vo] (19¢)

Thus the charges 61 and 52 are seen to be:



- (&~

Q'l s . N k—-)_ a“ a8

= k(8- k) {20)
@, = [%’N T Taw ] a, + Q.

In Table [V, we swawmarize the preon assicmments under Ge. .4, following frem the
above identification.

Having fixed all the charges and multiplets both at the preon and bound
state level, one still has é non trivial anomaly equations to check, namely
suk)?, su(s-k)®, @, 0. &,, B,@; and ;. Al these conditions in fact are
fulfilled. We 1ist the results of the calculation feor the preon level, after
some simplification, and as an illustration show how the a, a:anomaw is
matched. One finds

Te Suto® = N~ Te O, (21a)
Tr SU(E-KY = N Tr U:-u (21b)
e 80 = gk(2-K)[3Kk(8-K) ¢ N(2-2K)] (21¢)
e 8, : bk (&-K[NT- k (8- k)] (21d)
e @, 00 = 2k (8-k) LK (8-k) - 4] (21e)
T @) = IN-R)- 2 e[ k-x) - 8] @

= =2
The anomaly @, @, at the bound state level is given by

) Tnet 2
re @, a8 - ¥E Ul (v-2-4s)
30
v 2
+ k(&-k)(&-zk)g (M-2-43) (22)
-T?v\-‘l 2
, B-KIF-K) (2197 (M-2-4s)
z 22
It is easy to check that the terms proportional to EEb (AI-Z-95)‘ have in fact

zero coefficient. Hence

10

al = K(E-K)(F-2K) (V- 2-8n)"

23
e kike -0 fv-2- 8w o (V- 6-8w)] (&)

Since N-8n = I, a little algebra reduces the above equation to (2ie}. In a si-
milar way one can check that all the other anomalies in £q. (21} are matched at
the bound state level. Hence the set of fermions inferred from the tumbling com-
plementarity are precisely the set needed to match the Gfina1 anomalies.

Several remarks are in order. The massless bound states given in Table 11I,
when constructed in the confining phase,will contain up to O(N) preons. This is
easily seen from the following example. The combination {FSF} carries 52 charge
equal to N-2 and Q; charge equal to 2{8-k}, 8-2k, or -2k, depenging on the fla-
vor index of F. On the other hand the combination {AS} carries Q, charge equal
to -4 and no 61 charge. Hence the simplest representation [7,8] of the massless
bound states in Table IIT is given by the SU(N) color sirglet combination of
(FSF}(AS)S, s = 0,1,...2n+1. This is a surprising result, because it leads to
seifinteractions of the bound states growing with N alse [11]. We suspect,
therefore, that above a certain Ncritica? the model has really no confininq‘
phase at all. Indeed [a] for large emough N the adjoint condensate <5 AN
is ag attractive as the fundamental condensate (7) and the theory may tumbie
down in a way totally different from the one considered here.

A second remark in the same vein concerns the breakdown of the original
U(1) symmetry 01 connected with the number of &€-tensors in any singlet state of
SU(N}. Because in Ge. 4 0 is not a gpod symetry, the breakdown SU{8) x Ul(l)
X Uz(l) -»SU{k) % SU(8-k) x Ul{l) X Uz(l) must be caused by condensates which
carry € -number, an example being

((FS)“[(AS)“"A+11 FE17 D (24)

These condensates will again contain G{N) fields and it is difficult to see how
they would dynamically form.

Motwithstanding these remarks it is worth reemphasizing that tembling com-
plementarity allows the deduction of the states which match anomalies in a very
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neat way. Without the guide obtained by these consideraticns, the deduction of
the set of states to use to match the chiral anomalies is much more open and
one has to try to use other dynamical guides [7]. From this point of view, the
considerations presented in this model may prove useful elsewhere.

12

Appendix

In this appendix we consider the case N mod 8 = k = 0,1 which requires
special care because in the last step of the tumbling sequence one is formally
lTeft with the "gauge group" SU{0) or SU{1). Even though an "analytic continua-
tion" of the results derived for k = 2,...,7 to k = 0,1 leads to a consistent
anomaly matching, a more careful treatment is worthwhile because it leads to a
larger surviving symetry and correspondingly to a larger number of massiess
composite fermions,

In order to see this let us write N = 8 n' + k' with k' = 8,9. After n'
tumbling steps we are Teft with exactly the massless fermions of table II {with
{n.k) replaced by {n',k'}). For the last step of the tumbling sequence we again
assume the condensate

¢35 Fitys At P R (A1)

to form, which breaks SU(k'), . x [su(8) x u(1) x ”(”]gmw t0 6y
Lsugs) x UL grobar For k' = 8 and to 6.0 = Lsugs) x u(1) x U(1)] g1gpar For
k' = 9. The new SU(8) generators are a sum of the old SU{8) and the old SU{k"')
generators. Jut of the original U{l}'s only one is respected by the condensate
(Al}. Its generator can be chosen as

- {w') (“‘)

Q, - (k'-2)Q, + Q, (A2)
in terms of the charge assignment of table II. For k' = 8 this is the only U(1)
generator commuting with the condensate {Al), while for k' = 9 the remaining

diagonal SU(9) generator
A 0
Q. = A3
3 o -8&I (A3)
(W'}
combines with @ to form the generator
(n')

Q, = 3 (2, - @) | (n4)

of another conserved U(1).
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When the condensate (A1} forms, most of the SU(k') nonsinglet fermions ob~
tain masses due to residual four fermion interactions analegous to Eq. {11).
For k' = 8, only the A'J and the antisymetric combination (Fé LE=9/ 02
(43,% = 1,..,8} romain massless while the case k' = 9 does not allow mass terms
for A" (i = 1,...,8) and S—35 either. The resulting spectrum of massless fer-
mions and their charge assigmment is given in Table V.

When turning to the confinement phase, tumbling complementarity works ex-
actly like in the case of general k. Matching the "linear" anomalies T'I'QS“W)
and Tr@via the massless fermion multipiets of Table V, now being interpreted
as massless bound states, identifies the charge assignment of the preons. We
find (k = 0,1)

-~ 4
a, = L@, = Z(2n, + np=2ng)
. (AS}
" = 3 N ik
I T

-3 -3 =2
The remaining anomalies, namely SU(8)3, @, and, for k = 1, Q, a,q,,

01(2‘, again constitute a nontrivial consistency check on tumbling compiementari-
ty. As expected, they all match.

While the k = 0 solution can be considered a simple extension of the k =
2,...,7 cases, the k = 1 spectrum is gualitatively different:

i) the original global symmetry remains unbroken,
i) it contains massiess states of nonzero SU(N) € -number,

iii) fundamental and singlet representations of SU(8) occur.

It is a simple exercise to find color singlet operators which create the
bound states of Table V. For the antisymmetric representation of SU{8} they
are again the (FSF)(AS) operators encountered previously. The Q1 = -2 state
can be represenied by S[(A‘F) 5E)° A“’I and (for‘ n even) the T, = +1 state is
created by operators like FL(SYFY) (AF")SA"J 2 Even though these operators
possess the correct quantum numbers, the dynamical question whether they actu-
ally do create massless bound state fermions out of the vacuum remains open.

14
Footnotes
I_Fl] Here I s the k-dimensicnal unit matrix.

13

[FZ} The cases k = 0,1 are slightly more special. They are discussed in some
detail in the Appendix.
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Table III Massless fermions after tumbling and their transformation
Table 1 Massiess fermions after the breakdown [SuLN)]xISu{B)xbl‘l't)xuz(ﬂ] properties under G, .
T ] ]
= Suv-8)] x [SUg)x . (1) x ' t1) ~ -
[ J + 1 J S LK) S U (3 k) u, 1) Mz(") Number of states
States SWN-B) SU(8)] u,() | W ) 8 1 2(8-K) | N-2-4s | 5204, 2n+1
a a g8-2k N-2-9s §204,- 2w
4 R SLA RV A 0 N-~2 )
fi'(F F ) J“'”’%“r” ! B 4 H -2k M-2-%s $s=20,1..,qn-1
Aj."h”‘-g d"'{f“ng 1 B 0 N-¢&
Table IV Transformation of preons under Gfina1
AL e M- N N a ¥ 1 0
reon Sl Sw k)| Suta-k) U, (1) U, (1)
A e e Vo8 H 1 2 |l @-k) (k+¥) | 3 5 _ k(2-¥)
F u q 1 AR ) 4w
. = 4,..,M-8 1 -2 +(“"3J'zj K {2k -~/ _ ktg-k}
I ! : L 0o | e
2K (F-k) N K(8-K)
8) ul)u“j A B 1 1 N I_Z‘ inN
1
Table 11 Massless fermions after the breakdown lSul,&ukﬂXIsu( KRR —_— 2Kk (8-Kk) N w (§-Kk)
(427 n) S o 1 4 e R Lo/ - T -2 + T
slsut)] x[sucg)x u W x u (0] N
R (n} in}
States SUtk) SutR) Ul‘U) u;“) Table V Massless fermions after tumbling and their transformation
-2 =Y ; - -
Gauge singlets 4 B ] (::0.1"”'2:_1) properties under Gﬁ'nal for k = 0 and k = 1
Fundamental F a q 1 0 Su{8) Ul(l) Uz(l) Number of states
Antisymmetric A H 1 2 -{k+2} k=0 H / N-2-4s s =0,1,...,2n-1
Symetric T E 1 -2 + (k-l) k=1 8 0 N-2-4s s = 0,1,....2n-1
¥} 1 3 1
1 -2 -7 1




17

References

1] 6.

't Hooft, in "Recent Developments in Gauge Theories", Cargése Lectures

1979 (Plenum Press, New York, 1930) p. 135

[2] 0.

L7

13)

l4] £
ls] s.

le]

Fad

Weingarten, Phys. Rev. Lett. 51 (1983) 1830

. Coleman and E. Witten, Phys. Rev. Lett. 45 (1980) 100

Eichten, R.D. Peccei, J. Preskill and 0. Zeppenfeld, in preparation
Dimopoulos, S. Raby and L. Susskind, Nucl. Phys. 8173 (1980) 208

Osterwalder and E. Seiler, Ann. Phys. 110 (1978) 440

. Fradkin and S.H, Shenker, Phys. Rev. D19 (1979) 3682
. Banks and E. Rabinovici, Nucl. Phys. B160 {1979) 349

[7] e
lal 4.

Eichten and J. Preskill, in preparation

Preskill, in "Particles and Fields - 1981:; Testing the Standard Model",

Proceedings Santa Cruz 1981 {American Institute of Physics, New York, 1982}

p.
Lo) s.
Lo 1.
iy e

572
Dimopoulos, S. Raby and L. Susskind, Nuci. Phys, 8169 (1980} 373
Alvarez-Gaumé and £. Witten, Nucl. Phys. B234 (1983} 269

Witten, Nuci. Phys. B160 (1979) 57



