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Abstract: We consider in detail a chiral SU{N) gauge 
theory which undergoes multiple tumbling. An extension 
of the notion of complementarity is used which allows 
us to deduce the set of massless fermions, in the con
fining phase of the theory, which we needed for anomaly 
matching. The likelyhood of this confining phase ever 
being realized in practice is discussed. 
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An important and very interesting question has emerged in composite models 
of quarks and leptons, namely, do there exist confining theories with massless 
spin l/2 fermions in the bound state spectrum? In models which possess a chiral 
symmetry at the preen level such massless composite fermions can arise when
ever the chiral symmetry remains unbroken at the bound state level. 't Hoeft [1) 
has given a precise necessary condition for the preservation of chiral symmetry 
in the binding: there must be a matching of the value of the chiral anomaly, 
computed at the preen level, with the value obtained at the bound state level 
by computing this anomaly in tenns of all the spin l/2 massless states. To be 
more precise consider a set of conserved chiral currents 

.. ' - ... 1- =. L. ""' '(1'- \1- r,.l t .. "!'· r· i,j ~l J 

where i, j run over the color and flavor indices of the fermions . The 
't Hooft matching condition can then be written as 

(r r t ""l t •. t 'J) 
prt:_o\1\.> 

"' (rr t""{ t", t'J) 
l'l'\.CC.~!.tC.\~ 

C."""-I'Q~itc. 
~e..-""~o""'• 

( 1) 

(2) 

This condition is only a necessary condition for chiralit_v to be preserved 
in thP. binding. Actually massless Goldstone bosons can also reproduce the ano
malies at the composite level, thus signallinq spontaneous breakdown of the chi
ral symmetry. This latter possibility is realized in OCO and orobably in most 
vector gauge theories (i. e. theories with vector couplings of gauge fields to 
fermions) as can be argued by considering mass inequalities between bound 
states [2] or by using large N considerations l3], for example. The behaviour of 
chiral gauge theories, i. e. gauge theories with fermions transforming in such 
a way under the gauge group that no mass terms can be formed at the preon level, 
should, on the other hand, be quite different. For some special chiral gauge 
theories, fonnally allowing a large N limit, it actually can be shown that mass
less spin 1/2 bound states must be present in the spectrUm at N = ~ [4J, pro
vided some mild assumptions about the behavior of the large N limit hold. Chiral 
gauge theories therefore hold some promise of being candidates for bound state 
models of quarks and leptons, and therefore deserve continuing investigation. 



3 

In general the algebraic constraints imposed by Eq. (2) are difficult to 

satisfy: one has to solve Diophantine equations which become particularly in
tricate when the subgroup H that the flavor group G at the preon level is bro

ken to has to be determined at the same time. However, there exists a way to 

systematicallY generate solutions in a large number of chiral gauge theories 

[s]. It is based on ccmplementarity, i. e. the hypothesis that a gauge theory 

spontaneously broken by a scalar condensate in the fundamental representation 

of the gauge group is in a phase which analytically continues into the confin

ing phase of the theory [6]. In particular, one expects the spectrum of mass
less states to be identical in the Higgs and the confinement phase of the 

theory ls]. 

In this 

chi ral Sli(N) 

st .. l 
'ol 

paper we shall investigate an interesting. but rather intricate, 

gauge theory with three species of left handed fernions: 

A[;, j] F'"" 'tJ: 1, ... , N; at.=. 1, ... 
1 
t (3) 

These fields transform, respectively, under the conjugate of the second rank 

synmetric, the second rank antis.vrnmetric and the fundamental representation of 

SU(N) . The number a of chiral fermi ens Fi-. is chosen so that the model is ano

maly free in the gauge sec tor. It is an easy matter to check that this theory 

is asymptotically free. This model has been investigated previously by Eichten 

and Pres kill [7]. in their general analysis of chiral gauge theories. Seme fea

tures of this model, notably the fact that it admits a repetition of states 

(families?) at the bound state level. have been reported by Preskill[a]. Two of 

us, in collaboration with Eichten and Preskill [4] have also studied some aspects 

of the model for large tL Here we would like to examine the model in a tumbling 

version of complementarity, which will be more precisely defined below. 

At the classical level the flavor symmetry of the model is 

G = s u. (8) X IH1) X 1.((1) "U(1) 
d 

where the U(l)generator·s can be taken as the fermion number operators "A. n5 
and nF . Each of these U{l) symmetries has however a gauge anomaly, so that at 

the quantum level only two overall U(l) S)"tTlmetries survive: 

G, ... = SU.(6)" 1,((1) X (.(. (1) 
• t 

( 4) 

(5) 
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The linear combinations of_ the fermion number operators which are anomaly free 

are easily determined and a convenient choice for their generators is: 

Q = 2 "A - 2 "'~ + "F 
1 

a • = (N-2.)11.s - (N+Z) "'A 

The qenerator 0
1 

has a direct physical meaning in the confining phase of the 

theory. Obviously, from its definition, o
1 

counts the difference between the 

nll!lber of upper and lower SU(N) indices. Hence it counts N times the number of 

SU(N) E-tensors in any singlet state. 

(6) 

We want to examine this model, to begin with, in the Higgs phase where 

condensate formation forces the breakdown of the gauge group, For N finite~ the 

most attractive channel (MAC} [9], is one where the fermions S and F condense 

yielding an effective Higgs field in the fundamental representation of SU(N}: 

(5 .. f jo~.> 
• J 

= ( cf ~ > 
' 

;. 0 (7) 

Because .c,-, ~ ••.•• a only, the condensate (7) can break in general the gauge sym

metry only partially d01""· to SU(N-8). Depending on the explicit form of (7) the 

global symmetry (5) will suffer some breakdown. If we demand that the end result 

of the breakdown yield as large a global syrrrnetry as possible, then it follows 

that the condensate (7) must take the form 

<<Pd.>; 
' 

1\. ~-"""·"'-' • 
(B) 

For non vanishing~. the condensate (a) forces a breakdown of the gauge x 

global synmetry of the model: [SU(N)J
9

auge x lsu(B)x U1(1)xU2(1)] 910bal' to 

lsu.c"'-gi] ~[su.w" u.'c11 • v..~c11] (9) 
1 ..... , < 1 ,l.l. ... t 

that is, the global symmetry is as large as that before the breakdown. Only the 

gauge symmetry has been reduced to SU(N-a). The new global symmetry SU(B) is 

easily seen to be the diagonal part of the old global SU(8) and the SU(a) in 
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SU{N)gauge encompassing the last 8 indices. The new U(l)'s are linear combina

tions ofU1(l)andU
2
(l)and the SU(N) generator ln) 

( ';-· 0 

) Q ~ 
&- w I N 

g g 

(9) 

It is clear that {8) leaves both 

W- t [ 
Q1 

ll Q.N] Q • + --
N-Il 

(lOa) 

• N 

and 

Q, = - 12 (N-'+) Q + NG.L- ~(.II-') Q j I 1 [ 
N 1 N (lOb) 

invariant. The complicated combination chosen for Q2, will be explained below. 

After the breakdown (8) the theory will contain a number of massless 

states. These can be easily identified, following the method of Dimopoulos, 

Raby and Susskind (s]. Namely, one looks at which states in the theory cannot 

acquire mass from effective SU{N) x Gqu invariant four-fermion interactions 

1 + + j k S e ... t.,f = - F. S e F (lll 
., AL J... k 

once the condensate (8) fonns. It is clear that among the massless fennions one 

will have all the A'l states, as well as the S~j states for i,j = l, .... N_:8· 

Furthermore, it is easy to see that the anti symmetric combination of F-' with 

j = N-7, ... , N a 1 so acquires no mass .Table I summarizes the massless fennions in 

the theory following the breakdown (8), classified according to their 

SU(N-8)gauge X [ SU(8) Xu; (1) X u;(l )j global transfonnation properties. As can be 

seen from the table, there are two gauge singlet states which transform according 

to the second rank antisymmetric representation of SU(8) and three states which 

under SU(N-8) gauge X [SU(B) X u;(l) X u;(lil global have precisely the same 

transformation properties that S;j• Aij and Fi~ had under SU(N)gauge x 

lsu(8) x u1 (1) x U2(1l]global' except that N-t N-8. This was the reason for 

choosing the scmewhat complicated form of Q2 in Eq. (lOb). It guarantees that 

the eigenvalues of the massless fermions. with gauge quantum numbers, after the 

breakdown (8) correspond precisely to those of the massless fenmions before the 

breakdown. 
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The Higgs phase of the model which we have just discussed arose from a 

condensate (iJ~) which transforms according to the fundamental representation 

of the gauge group. Thus an application of complementarity would have been 

warranted. Alas, the situation here is more ccmplicated than that discussed by 

Dimopoulos, Raby and Susskind [s]. In the examples discussed in Ref. tsJ, after 

the spontaneous breakdown, the massless fermions left in the theory were either 

gauge singlets or could be paired under the gauge group, thereby breaking the 

global symmetry further. In our example, however, the femions which are non

singlet under SU(N-8) are chiral. Dimopoulos, Raby and Susskind {5] make use of 

canp 1 ementarity in the fo 1 1 owing way. They argue that the fenni oni c bound 

states of zero mass, found in the confining phase of the theory, should agree 

precisely with the gauge singlet states found in the Higgs phase. Indeed, to 

support their contention, they show that, 1n the examples they consider, pre

cisely the set of these massless bound states suffices for anomaly matching. In 

our case, however, we have additional chiral states which in the Higgs phase 

have non trivial gauge quantum numbers. How are we to apply complementarity? 

The solution we have found to this conundnnn is the following. The spec

trum of the SU(N-8) gauge theory is precisely the same as that of the SU(N) 

gauge theory. Hence it is logical that also the SU(N-8) gauge group will be 

broken by a condensate analogous to (8). In this way the gauge theory, in the 

Higgs phase, goes through a tumbling sequence [9], fran SU(N), to SU(N-8), to 

SU(N-16). etc. To be precise, let us write N = 8n + k, k "'0, ... ;7. Then after n 

steps the remaining symmetry is [SU(k)]gauge x lsu(8) x u1(1)(n) x u2(l)(n)] 

lF2). Similar considerations to those that led us to Table I, yield for the fer

mionic massless states at this stage those indicated in Table II. The 

(SU(k))gauge group finally is totally broken down by the condensate 

- - j.t,. 
(s .. F > = 

'l 
!1.' d~ 

• 
( 12) 

This condensate also breaks down the global group to 

G. , SU.(K) J( SIA(8-K) )( u (1) J( u (1) (13) 
f U\.-.l 1 , 2 

Here the two renaining conserved U{l)'s are linear combinations ofU1(l)(n), 

U1(l)(n) and the SU(8) generator 
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,;.) 
A sir1ple colculation shOI'is that the generators Q

1 
and Q

2 
are given by 

a, 

a, 
• 

= 

l~l 
(~-k) Q 

1 

(~) 

u.-zJ a, • 

O.g 
l~) a. 

(14) 

( 15) 

The spectrum of massless fen11ions resulting at the end of the tumbling sequence 

is given in Table III. 

At each stage, the successive breakdowns are caused by condensates which are 
in the fundamental representation of the surviving gauge group. Hence one may 

hope that there should be no phase boundary between the Higgs ph.,se and the con

fining stage. If this is so, then we may apply complementarity to the final 

spectrll'll of fermions, since these states, although chiral, carry no gauge QtJan

tum numbers. Hence our considerations Sllf19f'St that a set of massless fermionic 

bound states \~ith th(' qunntum numbet·s uncler G1 inal sf~own in Tablciii should match 

the Gfinal anomGlir>sat the preen level. ~1f' r~"mnrk that this ~~~bling complEmen
tarity, although intuitively appealing, is far from obvious if one thinks only 

of the over a 11 breakdm·m. One has a theory with an [su ( 8n+k )j gauge x 
lsu(B) x u1(1) x u2(1l] 1 b 1 symmetry, broken down to a pure [SL!(k) x SU(S-k) x _ _ ] goa 
U1 (1) x u2(1) global symmetry. Such a breakdown necessitates condensates which 

are both in the fundamental and the adjoint of the gauge group. Fran this point 

of view, there is no reason why the set of fermions in Table III, viewed as bound 
states of the confining phase, should match anomalies. 

To Show that tumbling complementarity really works, we must first identify 

the generators of the global symmetry group Gfinal in tenms of the generators 
written at the preon level. This is trivial for the non abelian SU{k} x SU(B-k) 

symnetries, but is far from obvious for theU
1

(1) and 0
2

(1) synmetries. What 

happened in the tumbling Higgs phase must be reinterpreted entirely in the con
fining phase, which is difficult. Fortunately, one can bypass these complications 
by the following observation. The U(l) generators Q

1 
and Q

2 
in the confining 

phase must be a linear combination of 01 and 02 given in Eq. (6) and of the SU(8) 

8 

generator Q8: 

Q, : ... a, • d.. Q • ..... o., 1< 1t < 
(16) 

ii, = <::(.11 Q_.. + Cl(.,l.l Q2 + "'-u Qs 

The six coefficients ot.~· in Eqs. (16) can be detennined by requiring that the 
- Jt - 1 - l - 1. 

chiral anomalies Q1 ~U.l<l;_G,SIA~8-kl; Q1 51.(lkl; O.,Sttl8-~las •ell as the 

gravitational anomalies TrQ
1

, T""Q.z [10] be matched at the preon and bound state 

levels. These anomalies are linear in the coefficients ot'i and the solution of 

the six linear equations is immediate. 

One finGs, using Table III and doing a little algebra, at the bound state 
level: 

- . ( ~-k)(IV+k)/l T .- a, I U.fk) = (17a) 

- . k(f-k-N)/Z T.,- Q, Si.U8-~) = ( 17b) 

r..- ii, : 6 k (8-k) ( 17c) 

and 

- t l N'- ! 1((.1'-k) T.,- a, SU(kJ " 
8 8 (!Sa) 

- t 
1 "'' - i k (~-k) r..- o.,)(((8-k) • 
8 g (18b) 

r,.. Gi, " 1 N 1
- l lc(l/-k) z z. ( 18c) 

On the other hand, at the preen level one has (i ~ 1,2) 

T,- - . 
Q. S~l K) 

' 
= N [ "-;, + "-;g (k- ~)]/2 ( 19a) 

- . 
N["-; 1 +-<.; 8 k]/2 r..- Q. SIA.lli'-k) = 

' 
(1gb) 

T-r Q.i == N(6oti-t - fllot.;,1 ( 19c) 

Thus the charges Q1 and Q2 are seen to be: 
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Q : )<(8-k)Q 
Q! -

• N • 

Q : l~ N - kl8-k)]Q +0. (20) 

1 
'tN 1 1. 

In Table IV, we SUI'lmarize the preen Assi'}nnents under Gfinal' following from the 

above identification. 

Having fixed all the charges and multiplets both at the preon and bound 

state level, one still has 6 non trivial anomaly equations to check, namely 
l l -3 -1 - - - l -3 

SU(k}, SU(B-k) , Q.
1

, a .. Q.a.• G:,G~, and Gl. All these condition-; in fact are 

fulfilled. We list the results of the calculation for the preon level, after 

- -· 
some simplification, and as an illustration show how the Q.1 G.:r. anomaly is 

matched. One finds 

Tr SU\kl
3 

: N T,.. 0 l 
k 

l N Tr 0 l r ... so~Alg -~<l ; 
ll- k 

Tr 
- ) o.. = 8k {H-k) 13 k (8-1<.) ;- N(8-2kl] 

_, -
H (8-k)[N

1
- k(8-k)] r,.. a. G.

1 
• 

- -· Tr G., a.. : 2k (g-k)\.k(8-k) -4] 

- l 1 "/(N'-8)-.! 1<(11-kJLk.<i-~<l- 8] 
T,- Q~ • 2. ~ 

- -· The ancmaly Q.1 Q~ at the bound state level is given by 

- -· r,.. a. Q, 

1~+1 

= k <~-•1 2. (K-kJL (N-Z-'<•l' 
z. !.-=0 

·~ 1 
+ kl8-ld (8-ZK)L (N-Z- 1H) 

s:.o 
l.""-1 

+ (8-K)(;<-I<)(-2K)1" (11/-2-4~>'" 
2. ~:o 

( 2la) 

( 2lb) 

( 21c) 

(21d) 

(21e) 

(21f) 

(22) 

l~-1 ~ 

It is easy to check that the tenns proportional to L. (N-l-•u) have in fact 
••• 

zero coefficient. Hence 

10 

_, ) 1 

T.,.- a. 0., : k (i-k (8-Zk) ( N- 2- 8~) 

+ K(k-1)(11'-k)t('v-2-i" l' +(N- 6-8~)'1 
(23) 

Since N-Sn"' ~ .• a little algebra reduces the above equation to (Zle). In a si

milar \.Jay one can check that all the other anomalies in Eq. (21) are matched at 

the bound state level. Hence the set of fermions inferred from the tumbling com

plementarity are precisely the set needed to match the Gfinal anomalies. 

Several remarks are in order. The massless bound states given in Table III, 

when constructed in the confining phase,will contain up to O(N) preens. This is 

easily seen fran the following example. The combination (FSF) carries Q2 charge 

equal to N-2 and Q1 charge equal to 2(B-k), 8-2k, or -2k, depen~ing on the fla

vor index of F. On the other hand the combination (AS) carries Q2 charge equal 

to -4 and no Q1 charge. Hence the simplest representation [7,8] of the massless 

bound states in Table III is given by the SU(N) color singlet combination of 

(FSF)(AS)s, s = 0,1, ... 2n+l. This is a surprising result, because it leads to 

selfinteractions of the bound states growing with N also [11]. We suspect, 

therefore, that above a certain Ncritical the model has really no confining .. 

phase at a 11. Indeed [4) for 1 arge enough N the adjoint condensate ( S;j A 'J} 

is ns attractive as the fundamental condensate (7) and the theory may tumble 

down in a 1ny tot{llly different fr·om U,e one considered here. 

A second remark in the same vein concerns the breakdown of the original 

U{l) SJ1ffi\etry 01 connected with the number of € -tensors ; n any singlet state of 

SU(N). Because in Gfinal Q1 .2_s not a ~ood sj1ffi\etry, the breakdown SU{8) x u1 (1) 

x u2(1) -?SU(k) x SU(8-k) x u1(1) x u2(1) must be caused by condensates which 

carry E -number, an example being 

( (FS) 2 "[(A.S)I<+~ Atn F'J") (24) 

These condensates will again contain O(N) fields and it is difficult to see how 

they would dynamically fonn. 

Noti-Jith<;tandin0 these remarks it i<; worth reenphasizing that ttA!lbling com

p1~1entarity allo1·.'s the deduction of the states which match anomillies in a very 
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neat way. Without the guide obtained by these c0nsiderations, the deduction of 
the set of states to use to match the chiral anomalies is much more open and 
one has to try to use other dynamical guides l7]. Fran this point of view, the 
considerations presented in this model may prove useful elsewhere. 
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Appendix 

In this appendix we consider the case N mod 8 = k = 0,1 which requires 
spec i 2.1 care bee au se in the 1 as t step of the tumb 1 i ng sequence one is f anna lly 
left with the ''gauge group" SU(O) or SU(l). Even though an "analytic continua
tion" of the results derived fork= 2, ... ,7 to k = 0,1 leads to a consistent 
anomaly matching, a more careful treatment is worthwhile because it leads to a 
larger surviving symmetry and correspondingly to a larger number of massless 
composite fermions. 

In order to see this let us write N = 8 n' + k' with k' = 8,9. After n' 
tumbling steps we are left with exactly the massless fermions of table II (with 
(n,k) replaced by (n',k' )). For the last step of the tumbling sequence we again 
assume the condensate 

(s.Fj"")= 
'J 

A' S ... 
' 

,,ell. .:. ..,, ... , e (AI) 

to fonn, which breaks SU(k')local x lsu(8) x U(l) x U(1)]910bal to Gfinal = 
lsu(S) x U(l)j 910 bal fork'= 8 and to Gfinal = lsu(S) x U(l) x U(1)] 910bal for 
k' = 9. The new SU(8} generators are a sum of the old SU(8) and the old SU{k') 
generators. Out of the original U(l)'s only one is respected by the condensate 
(Al). Its generator can be chosen as 

a = z 

( "'') 
( k' - 2 ) a.. + Q. c~') 

• (A2) 

in terms of the charge assignment of table II. Fork' = 8 this is the only U(l) 
generator COilli1Uting with the condensate (Al), while fork' = 9 the remaining 
diagonal SU(9) generator 

( !g _;IJ 0.. = 3 0 
(A3) 

("''' CCXllbi nes with a .. to form the generator 

o... = 
l11') 

.! ( a. 
' 

Q3) (A4) 

of another conserved U(l). 
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When the condensate (Al) forms, most of the SU(k') nonsingl~t fennions ob

tain masses due to residual four fermion interactions analogous to Eq. (11). 

Fork'= 8. only the i\ij and the antisymmetric ccmbination ( Fi.<A.- Fo~..LJ/R 

(; 1 L~. = 1, ... 1 8) rrmain massless while the case k' = 9 does not allow mass terms 

for A~ 3 (i: 1, ... ,(~) and s~9 either. The resulting spectrum of massless fer

miens and their charge assigrment is qiven in Table V. 

When turning to the confinement 

actly like in the case of general k. 

phase, tumbling complementMity works ex-
1 

Matching the "linear" anomalies TT" Q. S.tH8) 

and TTQ.via the massless fennion multiplets of Table V, now being interpreted 

as massless bound states, identifies the charge assignment of the preens. We 

find (k = o,l) 

a., " ~a., : .i(2" 
N 4 + ttF-z..,5) 

N
2

+ 3 k 

(AS) 

Q : .! a., .,. a.. 
1 ., 

N 

3 -3. -3 -l-
The renaining ancmalies, namely SU(8) , ll 1 and, fork= 1, a .. , a.. 0.~,, 

- -· G.1 Ql.' again constitute a nontrivial con<>istency check on tumbling complementari-

ty. As expected, they all match. 

While the k = 0 solution can be considered a simple extension of the k 

2, ... ,7 cases, the k = 1 spectrun is qualitatively different: 

i) the original global sy11111etry remains unbroken, 

ii) it contains mJssles-: states of nonzero SU(N) 6 -number, 

iii) fundamental and singlet representations of SU(8) occur. 

It is a simple exercise to find color singlet operators which create the 

bound states of Table V. For the antisymmetric representation of SU(8) they 

are again the (FSF)(AS)s operators encountered previously. The Q1 = -2 state 
cA+ '< )< ·~J~ --

can be represented by SL( F) SF A and {for n even) the Q1 = +1 state is 

created by operators 1 ike F( (S+F*)3(AFtl A-41] "(~ Even though these operators 

possess the correct quantum numbers, the dynamical question whether they actu

ally do create massless bound state fennions out of the vacuum remains open. 

-- -v-- ..... 
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Footnotes 

[Fl] Here Ik is the k-dimensional unit mntrix. 

lFzj The cases k = 0,1 are slightly more special. They are disC'r:.sed in some 

detai 1 in the Appendix. 
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Table 1 Massless fermions after the breakdown lSulN)J x[~tA.C8)KIA..,.l1)xLl/flj 
--;. [sv..<W-81] .[SIA.<8Ix a;c•> ><t<~l•l] 

st .. to S IA.UH) SIA.lfl Lt:l11 1.( I (1) 

• 
.1 (Fi,.__ F"'~ll-t,.j-IV+t)], 1 g 0 N-Z fi! l' IJ-~ .. , N 

j d..+/11-8 <:~..c:.-1, .. ,8 
1 fl 0 f./- f. A ' 

A 'J C:: of,. ,
1 
N~ t; j ~ .V·), .. 

1 
IV 0 a 1 0 

A 'I i,j: 1, ... 1 AI-& g 1 2 -Kw- 8) • 7.] 

s.' " 1 w 8 
• J 

'd : , ... , . CD 1 -Z t[lW-8)- 2] 

Table II Massless fennions after the breakdown lSu.li'"'•kSxlStAtl)xU4tf)KUt.tfj 

-..lSLtlk)j x[ SU\8) < U (111~ 1 x U (11 1 ~ 1) 
1 1 

StU~) 
<•) I•) States SIA.lk) 1.( (1) lA (1) • 1 

8 0 N-2.-'<> Gauge singlets 1 (~-.0,1 .. ,t""-1: 

Fundamental ' a 0 1 0 
Anti symmetric )\ 8 1 2 - ( k + 1) 

Synmetric , ffi 1 -2 + (k-2.) 

Table III 

SIA.lkl 

8 
0 

1 
---

Table IV 
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Massless fermions after tumbling and their transformation 
properties under Gfinal 

s lA. (g- k) IA.,(1) 1 iA:.t1) Number of states 

1 2 ( 8-k) 
·I-· 

!l/-2-4s S= 0,-1, ... , 2""+1 

a 8-2k N-2.-<ts s ~ 0, -t, ... 'l"" 

8 -Zk N-Z-4s s = o,-., ... ,z""-1 

Transformation of preons under Gfinal 

Preon ~(,((11) SUlk) su <6'- k u. ( 1) u (-1) • 
F (1 

F 0 

A B 
s rn 

Table V 

k = 0 

k = I 

a 1 
(f-k) (I<+ IV) l.N- k(il-lc) 

N ~ 'I IV 
·-·-

K(f-k-N} 
]_ N -

k (f-k) 
-1 Q N ~ '1f'l 

1 
2k (f-k) !;! _ z _ K I ii- I<) 

1 
N 2. ZN 

1 1 
ZK (8-1<) -"!.-z + ~<ll-1<1 - N 2. ZN 

Massless fermions after tumbling and their transformation 

properties under Gfinal for k " 0 and k ,. 1 

SUIS) u1 1 1) u1 I I) Number of states 

fJ ~ N-1-4s s "' 0,1. ... ,2n-1 

8 0 N-1-4s s = 0,1, ... ,2n-1 

(] I 3 1 

1 -1 -7 1 
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