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ABSTRACT 

Some recent Monte Carlo calculations in the SU(2) Higgs-madel 

with a scalar doublet field are reviewed. Questions about the 

dependence on the scalar self-coupling are discussed in the frame

work of a strong self-coupling expansion. The numerical results 

are consistent with an asymptotically free continuum limit at 

vanishing bare gauge coupling. 

1. INTRODUCTION 

Most of the recent efforts in Monte Carlo simulations of lattice 

gauge field theories 1•2) are concentrated on the study of pure 

SU(N) gauge theories and QCD-like theories with SU(N) gauge fields 

and a number of spin-~ fermion fields. The numerical study of 

quantum field theories containing scalar matter fields received 

up to now only a relatively limited amount of interest. The detailed 

investigation of pure gauge field theories is certainly the basis 

for any future understanding of the physical theories with matter 

fields, therefore it is unavoidable. The extraordinary numerical 

efforts invested in the latest simulations of QCD with quarks is 

motivated by the great challenge represented by the complex and 

experimentally well measured hadron spectrum. The fermionic matter 

* Lecture given at the Conference "Advances in Lattice Gauge Theory", 

April 1985, Tallahassee, Florida. 
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fields are, however, notoriously difficult for numerical studies. 

Scalar matter fields are, from the numerical point of view, much 

simpler. 

In the standard SU(3) ® SU{2) @U(1) theory of strong-electro

weak interactions scalar fields play a very important rOle, because 

they are responsible, via the "Higgs-mechanism", for the masses 

of all the particles. Experimentally the "Higgs-sector" of the 

standard model is unknown, the Higgs-particle and its couplings 

are not yet directly observed. Therefore, the numerical study of 

field theories with scalar matter fields, in particular the Higgs

sector of the standard model, is both interesting and important. 

Since from the technical point of view scalar fields are simpler, 

it is conceivable that the study of quantum field theories con

taining scalar matter fields can contribute rather substantially 

to our understanding of the gauge-matter interactions. 

One of the possible reasons for the limited interest in perform

ing Monte Carlo simulations with scalar fields is, perhaps, the 

almost rigorously proven triviality of the simplest renormalizable 

scalar field theory. Namely, as a result of almost 15 years of 

hard work 3), we almost definitely know, that the single-component 

~4-theory in the four-dimensional continuum is trivial, i.e. equi

valent to a free field theory. This fact, and the large number 

of apparently free parameters, discredited the Higgs-sector, too, 

because neglecting fermions and electromagnetism, the Higgs-sector 

of the standard model is the SU(2)-gauged version of a four-com

ponent (doublet) scalar field theory with ~4 self-interaction. 

It is, however, a priori not clear what is the consequence of the triviality 

o~4 interaction for the "standard" SU(2) Higgs-madel with doublet 

scalar field. There are, in principle, several possibilities: 

i) the standard Higgs-madel, too, is trivial in the four-dimen

sional continuum; 
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ii) 1ts continuum l:in·it .ts non-trivial bu~ A~in(iependent (tile 

4> 4 
self-coupling 'A is "irrelevant"); 

ii1) it is non-trivial and 'A -dependent. 

In the first case, the ~ 4 self-coupling "spoils" the otherwise 

nice gauge-intm·action too, and the only possible continuum li,:.it 

is a free theory of massive, spin-1 vector bosons ("W-bosons''i 

and a single massive scalar {"Higgs-bason"). In the other two cases 

the {>4 coupling has to be, presumably, asymptotically free, because 

the gauge interaction is asymptotically free. At high energies 

the gauge coupling is negligible and we are left with the "asyfl\oto

tically trivial" (i.e. asymptotica.lly free) f 4-theory. In the 

interesting case ii) the continuum theory has one independent para

meter less than the bare theory. Therefore, the Higgs-bason [TJ<Jss, 

for instance, is a function of theW-boson mass and of the (re

normalized) gauge coupling constant. 

2. STRONG SELF-COUPLING EXPANSION 

2.1 Motivation 

The standard Higgs-madel has three bare coupling parameters: 

~a4;g2 
is the SU(2) gauge coupling,~ the hopping parameter 

of the scalar doublet field and ~ is the <P 4 self-coupling (the 

precise definitions see below in the lattice action). In renorrnaJ ized 

perturbation theory the renormaliztd t 4 coupling A.ren is a free 

parameter which can be traded, for instance, against the value of 

the mass of physical Higgs-particle mH" At tree level the relation 

is 

( 1) M'\. = -m J 8 >-.-. 
H W 0 

-if""""' 
Here mw 1S the W-boson mass and gren denotes the renormalized SU(2) 

coupling constant. The low energy phenomenology (below -100 GeV) 
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i:_, rather wsensitive to '/, (or to the Higus-mass mH). If, however, ren 
4 

~ 

~~~ 1:0 very large (mH ...... 1 TeV), then the ~ self-coupling of the 

H1ggs-field implies a strongly interacting Higgs-sector, which 

can produce rich, non-perturbative phenomena in the few-hundred GeV 

range 4 •5 ) 

According to the tree-level formula (1), for A-'lo-oothe Higgs

mass goes to infinity. Of course, due to the strong interaction, 

the tree level relation is not valid and therefore mH can stay firn te. 

In fact, there are large-N expansion arguments G) imply1ng that 

a "Higgs-remnant" with the quantum numbers of the physical Higgs

particle remains in the spectrum even for A~l:>O . A first rough 

Monte Carlo investigation of the correlations showed ?) , that 

mH/mw~ 0(1) is possible even at infinitely strong bare self

coupling A- cO • A more detailed numerical study of the A -dependence 

was also carried out recently B), showing a remarkable universal 

behaviour of the mass gaps for different ~-values. Plotting, for 

instance, theW-mass in lattice units (amW) for fixed ~ == 2.3 

and ".:: 0.1, 0.5, 1.0 and co , as a function of an appropriately 

chosen third variable, one obtains Fig. 1. This shows, that the 

~-dependence in the given A -range is surprisingly weak, in fact, 

it is too weak to be seen by the limited numerical accuracy in 

Ref. 8). The interesting question is, of course, whether the 

~-dependence goes away completely in the continuum limit or not. 

We shall see below, that a powerful tool for the study of A -de

pendence is the strong self-coupling expansion (SSCE). 

2.2 Lattice Action 

The gauge field is described on the lattice, as usual, by the 

link variables U(x, fJ..) t:?: SU(2) (x = lattice point, 

~= !1, !2, !3, !4 lattice directions). The doublet field on the 

lattice points can be represented by its length ~\ .. ~ C and by 

an angular variable o<xE:: SU(2). Since 0(.< is equivalent to the 
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13 = 2.3 

• A=01 
• A=0.5 
• A= 1.0 
• A= .. 

1h I ~fi~t 
t Ilf ij I 

I 

(1/2 TrV (x,iJ.)) 

Q4 0.6 Q8 

Fig. 1. TheW-mass as a function of <T..,.V(~t1 f)> according to 

Ref. 8). 

local gauge freedom, it is possible to introduce the gauge invariant 

V ~ • 
link variables (lf1,f-)E o<x ... f- U(x,r)oe. ( f'= unit vector in direc-

tion f" ) . In terms of the physical degrees of freedom 

the lattice action is 
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s~~,._ = (l, Z.. ( ~- tk-vf) .-,- r -r (2) 

+~i- 3£...~. +-"~-~~c~>~- .. r~-iJJ.._ 
-lt'->._~ ~"~r~"~V(x,tl}. 

Here~ means a summation over plaquettes. The arbitrary scale 
, (4) 

factor ~)O in S "~~ corresponds to the rescaling (?;!( ~ A~x 
of the integration variable ~~ . The integration measure for 

the action (2) is d~~ times the SU(2) Haar-measure d3V(x,r)· In 

the limit ~~t:IO the length is fixed to the value 9,1(, = ~-.t 
For s = 1, the A-~ limit of the action is 

s).ooo 

~~)l '='- (l,£_ (,j- ~Tf.~)- >t-2. l.f.V{x,J'). 
1- 1' -<- x 1f" ( 

(3) 

2.3 General Scheme of SSCE 

The action in Eq. (2} can be splitted up into its h = 1, 

\:::o.t'O limit (3) at the hopping parameter value ~it plus the rest. 

The strong self-coupling expansion is obtained by expanding into 

powers of the coupling term ~t.>t (~x+f ~)(- tt)'-frl-V(K1(-) 

and then performing the integrations cl~, over the length of the 

Higgs-field. The occurring integrals can be expressed by the para

bolic cylinder function 0 (z) like 
oo P I. 

~ -x'-( A ~~+:t J ()."\- d~ Q.. A +..L--
1<., •J 'I oJ}; ,:Z>, = 

.f> • (Z[);)"1 ( 4 l 

- [-i(L -m) .. J r(z+~) 1) (_1_ -m:1 - exr ~ a}: JI(2">.f'"<+f</4 +1 m "'). 
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In the expectation values only the ratios ( k = 1, 2, ... ) 

. J..._().) -
t-r.."' '3 ().) 

• 

rrz .. ~) ~~-%:(~-a~) 
l2.. ')..) ... ,~ n ( -1 - .rz;;) 

-~ & 

appear. These behave asymptotically like 

(5) 

i~-{ 
~ + -k(~-2) + o-(l\"') 

AbA (GJ 

r(2.+~)(1-'A ~(~+b) +O"(>.·~. 

( '>-.., "") 

()..~ 0) 

From the first line it can be seen, that for A_,.c:o0 the expansion 

is similar to a series expansion into the inverse powers of A . 
For small " , however, every term in the series remains finite. 

In general, the terms of the SSCE series are given by some 

correlation functions at A-=- C4 • In particular, as we shall see 

below, in many ilolportant quantities the expectation value of 

-r;..vc~,f) appears. Therefore, it is natural to choose the free-

dam in the scale factor s by requiring 

<c;..vc.,r'l~ = <wVIv-)/ , . 
). ~ ><- I )>.-"", ~~ h lt. 

(7) 

This means that SSCE is done (for fixed~ ) along the curves with 

constant link expectation value <,::;.. Y (x1JA}> . Since the phase 

trans1tion between the confinemen~like and Higgs-like phases (for 

fixed ~ and different A ) occurs at nearly the same value of 

(-r:t-V(x1f)) B), the choice in Eq. (7) implies that the ex

pansion is done along curves which do not cross the phase transi

tion surface. This is, of course, important for an optimal conver

gence radius. 
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2.4 Examples: Average~ and Two-Link Correlations 

The second order expansion for the average Higgs-field length 

is, to a good approximation, 

<?~),.>t. = {~ + 3>t.:Jt:z:-t.L)(I-rVIK,f)/, + 
\-' )-.2. .0 (8) 

+4>t '- ( <T..-VC•,tl?,=., 't' ( -t:3t~_r i.:, i 1
\13<., .._~\3o,;~~ 51 t~ i1

3 
)•··· 

The complete second order contains, in addition, an s-dependent 

p1ece which is proportional to some specific combinations of the 

connected 2-link correlations <"K-V(~,. f., l \...,- V(-.2-f"t. ))~ .,..~ 
r:oe the choice of s in Eq. (7), however, this is only a small correc

tion to the second order contribution given above. "<> fl:-,vther ex~ 

ample, the lowest non-trivial order of the conner~ed two-link 

correlation function is 

<-,;:;.. VI~<"• ') T.-V I'J. -J,l'j~)l. = <-.:;.\ (~<'• )-,;;.VI~.._~,};:.,,,; 

.. lt-(..:'"- ~'J L. <-r:.-V(~,...,sr;.-vr~~-~~)-r:.-vryJ;"- .. 
If x}r..,o ).'::.,0 

Such expressions c<:n be used, for instance, for the SSCE of the 

r1ass gaps. 

The comparison of Eq. (8) with the Monte Carlo data B) at 

A 1. 0 and 0. 1 is shown by Table I. As it can be seen, the agree-

n·ent of this low order SSCE and the lent.. Carlo results is im

pr.~ssive. As a preliminary numerical study has shown, Eq. (8) 

qualitatively describes the average Higgs- field length ( 9'i ') 
even at A = 0.01. Higher order expansions for the IW = 0 and 

IW = 1 mass gaps, and a detailed comparison to numerical data will 

be published elsewhere S). The present conclusion ~vncerning SSCE 

lS: 

i) ~ ~ 0.1 seems to be the region of strong self-coupling, where 

low orders of SSCE are sufficient; 
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Table I. 

The second order SSCE 

r.ompared to the Monte 

for the average Higgs- field length < ({ /.. 
~ B) St 

Carlo data <~/Me at :h= 1.0;0,1 and 

-.- ' --
:>.=~.o 

lt(~:2.>) <<?'?so <<?! ... , 't{~woo) <<?/sc ('\ifMt 

0.2 1.059 1.060 0.22 1.069 1.070 

0.3 1.114 1.115 0,24 1.080 1.081 

0.31 1.151 1.152 0,25 1.096 1.092 

0.32 1.178 1.178 0.26 1.122 1.124 

0,35 1.246 1.241 0.27 1.148 1.149 

0.4 1.347 1.331 0.28 1.173 1,173 

0.3 1.219 1.216 

0.32 1.289 1,256 

A=O.~ 

1!.(~~:1..1>) <<?>sc <~) ... , lt(~aoo) <9/so <~! ... , 
0.19 1.336 1.353 0,155 1.280 1,290 

0,195 11.423 1.450 0,16 1.291 1.302 

0. 2 1. 523 1. 558 0.163 1,306 1. 319 

0.205 1.594 1.636 0,165 1.330 1,346 

0,21 1.663 1. 712 0,167 1.360 1,379 

0.22 1. 780 1.845 0.17 1.408 1.430 

0.3 2,535 2.628 0,175 1,484 1.514 

0.18 1.554 1.589 

ii) SSCE may well be a convergent expansion for all A>o values; 

iii) a natural variable, instead of the hopping parameter ~ 

(for fixed ~ and fixed lattice size) is l :=. < ~ ,;\J (K1f)>. 

The practical advantage of SSCE is, that it allows to concen

trate the numerical study to ~~co . The time consuming coverage 
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of the whole 3-parameter space ().I~IJL) with the measured points 

is not necessary. Combined with the usual lattice perturbation 

theory in the gauge coupling g (at g-o ) , the SSCE may also help 

to pin down the question of~ -dependence in the continuum limit, 

A completely analytic study is also possible if, in addition, a 

hopping parameter expansion is done in the remaining ()..=. t10 J ~=tiD) 

non-linear cr-model. This latter procedure is equivalent to the 

combination of the usual "high temperature expansion" 10 ) in the ~==.co 

~4 -model with the g = 0 perturbation theory. 

3. SOME RECENT NUMERICAL RESULTS 

In two recent papers l,S) the correlations in W-boson and Higgs

bason channels and the static energy of an external colour charge 

pair were investigated in the standard Higgs-madel by numerical 

Monte Carlo simulation. (For references to earlier numerical stuJies 

in the standard Higgs-madel see these papers. For some new results 

see also the lecture of J. Jers8k in thesP Proceedings). The numerical 

study of the correlations is useful for the understanding of the 

phase structure and of the continuum limit. In general, it is re

latively easy to determine the correlations (much easier than e.g. 

the plaquette-plaquette correlations in pure gauge theory). In the 

vicinity of the phase transition between the confinement-like and 

Higgs-like regions, however, the long range correlations require 

large lattices and the critical slowing down (or metastability) 

is very dangerous. Sometimes surprisingly long runs are needed 

in order to be reasonably sure that the results refer to the equi

librium situation. 

As examples of some new, high statistics results on 124 lattices 

with the full SU(2) group 11 ) let us consider the W-boson and Higgs

bason masses in lattice units in two points. At (A • eo , ~ = 2. 3, 

)t~ 0.41), which is above the phase transition surface, one obtains 

amW = 0.507(14) and amH = 0.79(3). Lorentz-invariance is well 
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satisfied in this point. In particular, one obtains fro,Jl 

the zero momentum correlations amw = 0,505(15) and from the p=l 
(in lattice units) correlations amw = 0.510(48). In another poi~t 
( 'A~oo , ~ = 2.3, X..= 0.39), below the phase transition surface, 

the result is: amW = 1.27(8) and amH = 0,39(2). 

In Ref. 8} the static energy of an external colour charge pair 
(in short, "potential'~) was investigated in detail on 124 lattice 
and using the icosahedral approximation for SU(2}. The aim was 
to obtain information about the renormalization group trajectories 
(RGT's), since along a RGT the potential can be rescaled to a 
common, physical curve. (This method was used for the study of 
scaling in pure SU(2) gauge theory in Ref. 12).) It turns out 8), 
that the potential shape sensitively depends on the value of 
mH/mw, therefore the RGT's can be determined quite well. An im
portant point is, that the rescaling of the potential is possible, 
to a good accuracy, along curves in the ~ = canst. planes. This 
and- the weak dependence of the masses on A (if plotted like in 
Fig. 1} suggests, that the continuum limit can be ?\-independent. 
Of course, this question has to be considered in more detail lll 

future studied. In particular, the crucial point is, whether com
paring the appropriate 'X= canst. RGT's, the ;\ -dependence weakens 
for growing ~ . For fixed ~ the scaling properties of the standard 
lattice Higgs-madel are qualitatively similar to the situation in 
QCD with a single quark mass parameter, i.e. there is an asympto
tically free fixed point at ~o::o.oOand a ( " -dependent) critical 
hopping parameter i = >t . t (A ) . The different RGT' s are parametrized en 
by the mass parameter in the Higgs-potential: above the phase tran~ 
sition line there are the trajectories with spontaneous symmetry 
breaking, below the phase transition line the trajectories describing 
a confining theory with scalar matter fields (see Fig. 2). 

Once the questions concerning the continuum limit are cleared, 
it becomes possible to calculate such phenomenologically interest-
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ing quantities like the ratio of the Higgs-bason mass to the W-boson 
mass mH/mw. Since the renormalized SU(2) coupling is weak pheno
menologically (g2 ~0.5 at the energy scale of mwl, one has to ren 
perform the Monte Carlo calculation at high~. This makes the cal-
culation difficult. In a first attempt one can simplify the shape 
of the RGT's: as a zeroth approximation one can assume that the 
RGT goes nearly parallel to the phase transition surface between 
~ ~ 00 and the considered large ~ , and then it departs almost 

perpendicularly towards X.= oo . 

In the Monte Carlo calculation I took 'A= 1. 0; ~ = 8. 0 and 
It~ 0.30 on 104 lattice with the full SU(2) group. The measured 
value of the renormalized gauge coupling, as determined by the 
Coulomb-potential at lattice distances 1-5, is o(= 0.034(3). This 
roughly corresponds to the expected value 3g;en/(161t)~ 0.03. 
From 10000 measured sweeps, I obtained for the masses in lattice 
units amH = 1.4{2) and amw = 0.23(3), therefore 

mH 
"'6 mw 

(10) 

I also checked in similar runs, that 
appreciably between)(= 0.28 and)(.= 

this ratio does not change 

0.32. Eq. (10) gives for the 
physical Higgs-bason mass mH "¥ 500-600 GeV, but this has to be 
considered only as a first estimate. Completely neglected are 
here the virtual fermion loops and the electromagnetic U(1)-coupling. 
Furthermore, there is an unknown (presumably large) error due to 
finite lattice size effects. One has to study, in the future, also 
the scaling in this ~-range (the precise shape of the physical 
RGT) and the question of /t -dependence. 
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Fig. 2 

Fig. 2, The schematic shape of the RGT's in a A = canst. plane. 

The full line gives the position of the phase transition. The 

dashed-dotted lines are the RGT's in the Higgs-phase, the dashed 

ones the RGT's in the confinement-like phase. 

4. DISCUSSION 

An important parameter in the standard Higgs-madel is the ratlo 

of the Higgs-bason mass to the W-boson mass ~e. mH/mW' According 

to the Monte Carlo simulations 7 ' 8 •11 )ft is greater than 1 in the 

Higgs phase and smaller than 1 in the confinement phase. For the 

phenomenological value of the weak SU(2) coupling a first nu:nencol 

estimate gives ~"' G.If in the continuum limit (A= canst., 

~~oo ) ).{ -7-)f?~t-().) ) the second alternative mentioned 

in the introduction is realized (i.e. if J\ is irrelevant) then, 

besides the A -parameter for the SU(2) gauge coupling,~ is the 

only free physical parameter of the theory. Every other ouantJty 
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Like for instance mW/ 1\ SU( 2) or the value of the 4' 4 
coupling at 

some specific point ( "'ren), is a function of 1\ SU(2 ) and~. 
The renormalization group equations for the renormalized Green's 

functions are valid with only two coupling parameters, In the 

usual weak coupling perturbation theory of the standard Higgs-

madel there are three free parameters. In order to take into account 

the non-perturbative constraint implied by the requirement of the 

existence of a mathematically well defined continuum theory, one 

has to impose on the three parameters of renormalized perturba-

tion theory some external constraint, This is similar to the situs-
. . .>,4 

tlon ln pure 'f' theory, where 'A = 0 is such an external con-ren 
straint. 
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