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HAMILTONICITY IN INFINITE TOURNAMENTS

RUBEN MELCHER

Abstract. We prove that for all countable tournaments D the recently discov-
ered compactification |D| by their ends and limit edges contains a topological
Hamilton path: a topological arc that contains every vertex. If D is strongly
connected, then |D| contains a topological Hamilton circle.

These results extend well-known theorems about finite tournaments, which
we show do not extend to the infinite in a purely combinatorial setting.

1. Introduction

A natural aim in infinite graph theory is to extend known theorems about finite
graphs to infinite graphs. However the right way to do this is not always to apply
the finite statement to infinite graphs verbatim: it often fails for trivial reasons,
or becomes trivially true. A fruitful attempt to overcome this issue is to not only
consider the graph itself, but the graph together with ‘points at infinity’: its ends.

Formally, an end of a graph is an equivalence class of its rays, where two rays
are equivalent if no finite set of vertices separates them. A graph G together with
its ends naturally forms a topological space |G|. For locally finite G, this is its well-
known Freudenthal compactification. The topological properties of the space |G|
have been extensively studied [8, 10, 18, 21, 22, 26]. Letting topological arcs and
circles in |G| take the role of paths and cycles in G, it often becomes possible to ex-
tend theorems about paths and cycles in finite graphs to infinite graphs. Examples
include Euler’s theorem [11, 20], arboricity and tree-packing [7, 27], Hamiltonic-
ity [9, 12, 13, 15, 16, 17, 23], and various planarity criteria [1, 14, 24].

A similarly useful notion for ends of digraphs has been found only very recently.
In a series of three papers [2, 3, 4], Bürger and the author introduced a notion
of ends in digraphs for which the fundamental techniques of undirected end space
theory naturally generalise to digraphs. Unlike for undirected graphs, some ends of
digraphs are joined by limit edges. A digraph D together with its ends and limit
edges naturally forms a topological space |D|. So the scene is set now to attempt,
also for digraphs D, to extend finite to infinite theorems by letting the naturally
oriented topological paths and circles in |D| take the role of directed paths and
cycles in D. The purpose of this paper is to make a start on this programme, with
two well-known Hamiltonicity theorems for digraphs.

Two folklore theorems in finite graph theory, due to Rédei [25] and Camion [5],
respectively, say that every finite tournament has a Hamilton path, and every finite
strongly connected tournament has a Hamilton cycle. In this paper we show that
these results have natural analogues in the space |D|. We shall see that ends and
limit edges are both crucial for such extensions to exist: there exists a countable
tournamentD whose compactification by just the ends of the underlying undirected
graph contains no topological Hamilton path. (Similarly, D has no topological
Hamilton path in |D| that avoids all its limit edges, and D has no spanning ray or
double ray.)

2020 Mathematics Subject Classification. 05C63, 05C20, 05C05, 05C45, 05C38, 05C85, 68R10.
Key words and phrases. infinite graph; infinite digraphs; end; limit edge; end space; depth-first

search tree, arborescence; normal tree.

1

http://arxiv.org/abs/2101.05264v1


2 RUBEN MELCHER

To state our results formally, we need a few definitions. A ray is an infinite
directed path that has a first vertex (but no last vertex). The subrays of a ray are
its tails. A ray in a digraph D is solid in D if it has a tail in some strong component
of D−X for every finite vertex set X ⊆ V (D). Two solid rays in D are equivalent if
for every finite vertex set X ⊆ V (D) they have a tail in the same strong component
of D −X . The classes of this equivalence relation are the ends of D. For an end
ω we write C(X,ω) for the strong component of D − X in which every ray that
represents ω has a tail. For two ends ω and η of D a finite vertex set X ⊆ V (D)
is said to separate ω and η if C(X,ω) 6= C(X, η). For two distinct ends ω and η
of D we call the pair (ω, η) a limit edge of D from ω to η if D has an edge from
C(X,ω) to C(X, η) for every finite vertex set X ⊆ V (D) that separates ω and η.
For a vertex v ∈ V (D) and an end ω we call the pair (v, ω) a limit edge of D from
v to ω if D has an edge from v to C(X,ω) for every finite vertex set X ⊆ V (D)
with v 6∈ C(X,ω). Similarly, we call the pair (ω, v) a limit edge of D from ω to
v if D has an edge from C(X,ω) to v for every finite vertex set X ⊆ V (D) with
v 6∈ C(X,ω). For example if R is a ray and every vertex of R sends an edge to a
vertex v, then there is a limit (ω, v) from the end ω that is represented by R to v.

The topological space |D| has as its ground set the digraph D, viewed as a
1-complex, together with the ends and limit edges of D. The topology on |D| will
be defined formally in Section 2.

A topological path in |D| is a continuous map α : [0, 1] → |D| that respects
the direction of the edges of D when it traverses them. For example, a ray that
represents an end ω naturally defines a topological path from its first vertex to ω,
and might be extended by a limit edge that starts at ω. A Hamilton path in |D|
is an injective topological path in |D| that traverses every vertex exactly once. We
remark that, as every end of D is a limit point of vertices of D, any topological
path that traverses all the vertices of D also traverses all its ends.

There are two trivial obstacles for |D| to containing a Hamilton path. The first
is that the cardinality of D may be larger than the cardinality of the unit interval.
For this reason we will only consider countable digraphs: these can have continuum
many ends, but no more. Another potential obstruction to the existence of a
Hamilton path in |D| is that the space |D| may not be compact. As any continuous
image of [0, 1] is compact, it is not hard to show that |D| is compact as soon
as a topological path traverses all the vertices of D. (We shall disallow parallel
edges, as these do not affect hamiltonicity.) For this reason we will only consider
those digraphs for which |D| is a compactification of D. These can be described
combinatorially, as fallows.

A digraph D is called solid if D −X has only finitely many strong components
for all finite vertex sets X ⊆ V (D). As shown in [3, Theorem 1], a digraph D is
solid if and only if |D| is compact. A vertex v can reach a vertex w in D if there is
a (finite) path in D from v to w. Our first main theorem reads as follows:

Theorem 1. Every countable solid tournament has a Hamilton path. This Hamil-
ton path may be chosen so as to start at any vertex that can reach every other
vertex.

For finite tournaments D there is a standard proof of this result: given a directed
path P in D, a quick case distinction shows that any vertex not yet contained in
P can be inserted into P . This proof strategy does not adapt easily to infinite
tournaments D. It is still possible to insert vertices one after the other to obtain a
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sequence of longer and longer finite paths which, eventually, contain all the vertices
of D. But even if we can show that these paths converge to a topological path in
|D| that contains all its vertices, this need not be a Hamilton path by our definition:
it might visit some ends multiple times, and thus fail to be injective.

But there is another proof for the finite case, which, as we shall see, can be
adapted to infinite digraphs. Every finite tournament D contains a vertex r that
can reach every other vertex of D. Let T be a tree obtained by a depth-first search
starting at r; note that r can reach every vertex of D even in T . Now T imposes a
partial ordering ≤T on V := V (D) = V (T ) defined by letting v ≤T w if v lies on the
path in T from r to w. As T is a depth-first search tree, this order ≤T has a linear
extension ≤ on V in which u ≥ v for ≤T -incomparable vertices u, v if our search
found u before v. (Note that this differs from when u and v are ≤T -comparable:
in that case we have u ≤T v, and hence u ≤ v, if our search found u before v.)

This is indeed a total order; it is known as the reverse post-order and widely
used in computer science. Crucially for us one can show that, if v is the predecessor
of w in ≤, the unique edge of D between them is directed from v to w [6]. Clearly,
therefore, this total order on V defines a directed Hamilton path in D. Let us see
now how the above proof adapts to infinite digraphs in our topological setting.

In the third paper of the series [4], depth-first search trees were adapted to
infinite digraphs; these infinite analogues are called normal arborescences. (An
arborescence, in any digraph, is an oriented rooted tree in which the root can reach
every vertex.) The notion of normality will be introduced in Section 2. For now
we only need that normal spanning arborescences exist in every countable solid
tournament; they define a tree-order on the vertices as in finite digraphs, and
this ordering extends to a total order on its vertices and ends in which (x, y) is
an (oriented) edge or limit edge whenever x is the predecessor of y. To prove
Theorem 1 it then only remains to show that this ordering is continuous at ends,
and thus defines a Hamilton path in |D| as before.

To illustrate Theorem 1, let us look at an example. Let D be a solid tournament
in which the infinite binary tree T is a normal spanning arborescence. Then D
has a Hamilton path α which traverses every tree-edge from a vertex v to its right
child v|1, and every limit edge from an end ωv represented by a ray v|1000 . . . to
the vertex v|0; see Figure 1. This α can be viewed as a limit of the Hamilton paths
discussed earlier of the finite subtournaments Dn of D spanned by the subtrees Tn

of height n in T , which are depth-first search trees of Dn.

v

v|0 v|1

ωv

··
·

··
·

··
·

··
·

··
·

··
·

··
·

··
·

Figure 1. A tournament with the infinite binary tree as a nor-
mal spanning arborescence. All edges between ≤T -incomparable
vertices run from right to left.
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A topological path α in |D| is closed if α(0) = α(1). A Hamilton circle of D is
a closed but otherwise injective topological path in |D| that traverses every vertex.
As remarked earlier, this implies that it also traverses every end (exactly once).

Theorem 2. Every countable strongly connected solid tournament has a Hamilton
circle.

As shown in [3, Theorem 4, Lemma 5.1], a countable solid digraph D is strongly
connected if and only if for any two points x, y ∈ |D| there is a topological path in
|D| from x to y. Again, there is a standard proof of Theorem 2 for finite tournaments
D: a quick case distinction shows that any vertex not yet contained in a given cycle
can be inserted. Again, for infinite D it is possible to insert new vertices, one after
the other, into a cycle to obtain at the limit a closed topological path containing
all the vertices. But, as earlier, this topological path might traverse ends multiple
times.

We will instead use Theorem 1 to prove Theorem 2. Ideally, we would like to fix
a Hamilton path α in |D| and then use an edge or a limit edge from the endpoint
of α to its starting point to obtain a Hamilton circle in |D|. This is not always
possible, as we are only free to choose the starting point of α. However, an analysis
of D and its ends will give us enough control over the endpoint of α to construct
the desired Hamilton circle.

This paper can be read without reading the series [2, 3, 4] about ends of digraphs
first. We only need a few terms and results from this series, which we collect in
Section 2. We will then prove Theorem 1 in Section 3, and Theorem 2 in Section 4.

2. Preliminaries

For graph-theoretic terms we follow the terminology in [9]. Throughout this paper,
D is an infinite digraph without infinitely many parallel edges and without loops.
We write V (D) for its vertex set, E(D) for its edge set, Ω(D) for its set of ends
and Λ(D) for its set of limit edges. For a finite vertex set X and an end ω of D we
write C(X,ω) for the strong component of D−X that contains a tail of every ray
that represents ω. We write Ω(X,ω) for the set of ends which are represented by a
ray in C(X,ω).

In the following, we give a concise definition of the space |D| and its topology. For
a detailed introduction of the space |D| and its topology, see [3, Section 2 and 3].
The ground set of |D| is obtained by taking V (D) ∪ Ω(D) together with a copy of
the unit interval [0, 1]e for every edge or limit edge e of D. Then we identify every
vertex or end x with the copy of 0 in [0, 1]e for which x is the tail of e and with
the copy of 1 in [0, 1]f for which x is the head of f , for all e, f ∈ E(D) ∪ Λ(D).
Basic open sets of vertices v are uniform stars of radius ε around v, i.e. an ε
length from every edge or limit edge that is adjacent to v. Basic open sets of
inner points of edges e are open subintervals of [1, 0]e containing it. For ends ω,
basic open sets Ĉε(X,ω) are the union of C(X,ω) together with Ω(X,ω) and every
limit edge which has both its endpoints in C(X,ω) ∪ Ω(X,ω) and an ε length of
every edge or limit edge which has precisely one endpoint in C(X,ω) ∪ Ω(X,ω),
for finite vertex sets X ⊆ V (D). For inner points z of limit edges (ω, η), basic
open sets Êε,z(X, (ω, η)) are the union of ε intervals around the copy of z in every
edge between C(X,ω) ∪ Ω(X,ω) and C(X, η) ∪ Ω(X, η), for finite vertex sets X
which separate ω and η. Similarly, for inner points z of limit edges (v, ω), basic
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open sets Êε,z(X, (v, ω)) are the union of ε intervals around the copy of z in every
edge or limit edge between v and C(X,ω)∪Ω(X,ω), for finite vertex sets X which
contain v. Basic open sets Êε,z(X, (ω, v)) are defined analogously.

ω η...
ω′

X
v

Ĉε(X, ω) Êε,z(X, (ω, η))

Êε,z(X, (v, ω′))

Figure 2. Basic open sets for ends and inner points of limit edges.

We will find the desired Hamilton path in Theorem 1 via an inverse limit con-
struction. As shown in [3, Section 4] for solid D, the space |D| is the inverse limit
of its finite contraction minors. In the following, we will give a concise recap of this
result for countable digraphs. For the general definition of an inverse system and
its inverse limit, see [9, Chapter 8] and for their topological properties, see [19].
Let D be a countable digraph, fix any enumeration of its vertex set and write Xn

for the set of the first n vertices. We denote by Pn the partition of V (D) where
each vertex in Xn is a singleton partition class and the other partition classes con-
sist of the strong components of D −Xn. Every such partition Pn gives rise to a
finite (multi-)digraph D/Pn by contracting each partition class and replacing the
edges running from a partition class to another by a single edge whenever there
are infinitely many. Formally, declare Pn to be the vertex set of D/Pn. Given
distinct partition classes p1, p2 ∈ Pn, we define an edge (e, p1, p2) of D/Pn for every
edge e ∈ E(D) from p1 to p2 if there are finitely many such edges. If there are
infinitely many edges from p1 to p2 we just define a single edge (p1p2, p1, p2). We
call the latter type of edges quotient edges. Endowing D/Pn with the 1-complex
topology turns it into a compact Hausdorff space, i.e. basic open sets are uniform
ε stars around vertices and open subintervals of edges. For m ≤ n there is a map
fn,m from V (D/Pn) to V (D/Pm), mapping every vertex of D/Pn to the vertex of
D/Pm containing it. This map extends naturally to a continuous map from D/Pn

to D/Pm by mapping edges of D/Pn to vertices or edges of D/Pm according to the
images of its endpoints. This gives an inverse system and if D is solid, its inverse
limit coincides with |D|:

Corollary 2.1 ([3, Corollary 4.4]). Let D be a countable solid digraph and let Xn

consist of the first n vertices of D with regard to any fixed enumeration of V (D).
Then |D| ∼= lim

←−
(D/Pn)n∈N.

Finally, let us recap the notion of normal arborescences from [4]. An arborescence
is a rooted oriented tree T that contains for every vertex v ∈ V (T ) a directed
path from the root to v. The vertices of any arborescence are partially ordered as
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v ≤T w if T contains a directed path from v to w. We write ⌊v⌋T for the up-closure
and ⌈v⌉T for the down-closure of v in T . Consider a digraph D and a spanning
arborescence T ⊆ D. The normal assistant of T in D is the auxiliary digraph H
that is obtained from T by adding an edge (v, w) for every two ≤T -incomparable
vertices v, w ∈ V (T ) for which there is an edge from ⌊v⌋T to ⌊w⌋T in D, regardless
of whether D contains such an edge. The spanning arborescence T is normal in D
if the normal assistant of T in D is acyclic; in this case, the transitive closure of
the normal assistant defines a partial order ET on the vertices of D and we call ET

the normal order of T . We remark that if D is a finite spanning arborescence it is
normal in D if and only if it defines a depth-first search tree, see [4, Corollary 3.3].
One of the most useful properties of normal arborescences is that they capture the
separation properties of their host graph [4, Lemma 3.4]:

Lemma 2.2. Let D be any digraph and let T ⊆ D be a normal spanning arbores-
cence in D. If v, w ∈ V (T ) are ≤T -incomparable vertices of T with w 5T v, then
every path from w to v in D meets X := ⌈v⌉T ∩ ⌈w⌉T . In particular, X separates
v and w in D.

Not every digraph has a normal spanning arborescence. However, as a direct
consequence of [4, Theorem 3], we have that all countable digraphs have one:

Lemma 2.3. Let D be a countable digraph and r ∈ V (D) a vertex that can reach
every other vertex in D. Then D has a normal spanning arborescence rooted in r.

If T is a normal spanning arborescence of a solid digraph D, then every ray of T
is solid in D and therefore represents an end of D. By Lemma 2.2, any two distinct
rays in T that start at the root represent distinct ends of D. Conversely, it is shown
in [4, Theorem 1] that any end of D is represented by a ray in T :

Lemma 2.4. Let D be any digraph and T a normal spanning arborescence of D.
Then for every end of D there is exactly one ray in T that represents the end in D
and starts at the root of T .

3. Hamilton paths

In this section we prove Theorem 1 and give an example which shows that ends
and limit edges are crucial for such an extension to exist. As mentioned in the in-
troduction we will find the desired Hamilton path of Theorem 1 alongside a normal
spanning arborescence of the tournament. This makes it possible to prove a slightly
stronger statement and we will need this strengthening in our proof of Theorem 2.
For a tournament D with a normal spanning arborescence T , we say that an injec-
tive topological path α in |D| respects the normal order of T if α traverses a vertex
t before a vertex t′ if and only if t is less than t′ in the normal order of T . Note
that the normal order of T is a total order, as D is a tournament.

Theorem 1. Let D be a countable solid tournament with a normal spanning ar-
borescence T . Then D has a Hamilton path that respects the normal order of T .

Note that every solid tournament D has a vertex that can reach every other
vertex. Indeed, as D is solid it has only finitely many strong components and
one of them sends an edge to every other strong component; every vertex in this
component can reach any other vertex in D. Since D is countable, it has a normal
spanning arborescence T rooted at any given vertex that can reach every other
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vertex of D, Lemma 2.3. And any Hamilton path that respects the normal order of
T starts at the root of T , since it is the smallest element. So the above formulation
of Theorem 1 implies the formulation in the introduction.

Proof. Our goal is to show that the normal order of T naturally defines a Hamilton
path in |D|. We will show this by an inverse limit construction. It is straightforward
to find a sequence X1 ⊆ X2 ⊆ . . . of finite vertex sets of V (D) such that:

(i) the union of all the Xn is V (D) and
(ii) Xn is down-closed in T with regards to the tree-order.

Now, every Xn defines a partition Pn of V (D) and a finite contraction minor
D/Pn of D as in Section 2. These D/Pn form an inverse system with bonding
maps fn,m. By the first property (i), the partitions Pn are cofinal in a sequence of
partitions that arise by an enumeration of V (D). Hence, the D/Pn form a cofinal
(sub-)inverse system of an inverse system that arises by an enumeration of V (D);
so the inverse limit of both inverse systems coincides and we have by Corollary 2.1
that |D| ∼= lim

←−
(D/Pn)n∈N. Next, we will find compatible Hamilton paths in every

D/Pn so that the universal property of the inverse limit gives the desired Hamilton
path in |D|. By the second property (ii) and Lemma 2.2, the edges of T in D/Pn

form a spanning arborescence Tn of D/Pn. Moreover, as T is normal in D we have
that Tn is normal in D/Pn. As D is a tournament we have that the normal order of
Tn is a total order on the vertices ofD/Pn. Let v1 ETn

. . . ETn
vk be the sequence of

vertices ofD/Pn ordered by the normal order of Tn.
1 We claim thatWn = v1, . . . , vk

is a Hamilton path in D/Pn. Indeed, either vi and vi+1 are ≤Tn
-comparable in

which case (vi, vi+1) is a tree-edge of Tn or vi and vi+1 are ≤Tn
-incomparable,

in which case there is a cross-edge from vi to vi+1 as D is a tournament. These
Hamilton paths are compatible in the sense that fn,m(v1) ETm

. . . ETm
fn,m(vk)

is the sequence of vertices of Wm. However, as there might be parallel cross-edges
from vi to vi+1, it might happen that (fn,m(vi), fn,m(vi+1) does not coincide with
the edge from fn,m(vi) to fn,m(vi+1) in Wm. However, for every D/Pn there are
only finitely many Hamilton paths with vertex sequence v1, . . . , vk. So by Kőnig’s
infinity lemma, we might choose the edges of Wn such that fn,m(Wn) gives Wm.

Finally, fix for every n ∈ N a parameterisation αn : [0, 1] → D/Pn of Wn. It
is straightforward to choose the αn in a compatible way, i.e. the projection of αn

coincides with αn−1. Moreover, we may choose the αn so that they are nowhere
constant but on the strong components of D − Xn, i.e. on the vertices of D/Pn

not in Xn and that the intervals in [0, 1] on which αn is constant have length less
or equal to 1

n
. Now, the universal property of the inverse limit gives an injective

topological path α. It traverses every vertex of D as the Xn contain every vertex
eventually, so α is a Hamilton path in |D|. To show that α respects the normal
order of T , consider two vertices t ET t′ and choose n ∈ N so that t, t′ ∈ Xn. Then
t ETn

t′ and αn traverses t before t′. As the projection of α to D/Pn gives αn, we
have that α traverses t before t′. Conversely, if α traverses t before t′ a we have
that αn traverses t before t′ in D/Pn for n ∈ N with t, t′ ∈ Xn. Hence, we have
t ETn

t′ and as the normal order of T induces the normal order of Tn, we have that
t ET t′. �

1We remark that this is the reverse post-order of Tn.
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ω1ω2ω3

...
...

...

R1R2R3

Figure 3. A countable solid tournament together with a normal
spanning arborescence (black edges). All grey edges along a branch
are oriented from top to bottom, and all edges between any two
branches are oriented from right to left.

Example 3.1. The tournament D in Figure 3 satisfies the following properties:

(i) There is no spanning ray or double ray in D.
(ii) There is no Hamilton path in the space formed by D and its end compacti-

fication of the underlying undirected graph.
(iii) There is no Hamilton path in |D| that avoids all inner points of limit edges

of D.

Proof. To (i): There are no edges into V (R1) and there are no edges out of V (R3);
hence, any ray or double ray that contains a vertex of R1 and a vertex of R3 contains
only finitely many vertices of R2.

To (ii): The underlying undirected graph of D is a clique; hence, it has exactly
one end ω. Moreover, its end compactification by the ends of the underlying undi-
rected graph coincides with its one-point compactification D∗. So the image of any
Hamilton path in D∗ defines either a spanning (reverse) ray or the disjoint union of
a ray and a reverse ray containing together every vertex of D. A similar argument
as in (i) shows that there are no such (reverse) rays in D.

To (iii): Suppose for a contradiction that D has a Hamilton path α that avoids
all inner points of limit edges of D. Then one of the ends ωi is not an endpoint of α.
So the image of α contains a ray that represents ωi and a reverse ray that contains
infinitely many vertices of Ri. However, D contains no such ray and reverse ray. �

4. Hamilton circles

In this section, we prove Theorem 2. For this we need some definitions and two
Lemmas. The reverse subrays of a reverse ray are its tails. A reverse ray R in a
digraph D represents an end ω if there is a solid ray R′ in D that represents ω
such that R and R′ have a tail in the same strong component of D −X for every
finite vertex set X ⊆ V (D). It is straightforward to show that a reverse ray R that
represents an end ω defines a topological path from ω to the first vertex of R. For a
(reverse) ray R = v1, v2, . . . the subpaths of the form v1, . . . , vn are the finite initial
segments of R. For a double ray W = . . . , w−1, w0, w1, . . . we denote by Wn< the
ray wn+1, wn+2, . . . and by W<n the reverse ray . . . , wn−2, wn−1.
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We say that a vertex v of D can be inserted into a (reverse) ray R = v1, v2, . . .
if there is a path P that starts (ends) at v such that v1, . . . , vi−1, P, vi, . . . is a
(reverse) ray in D, for some i ∈ N. Similarly, we say that a vertex v of D can
be inserted into a double ray W = . . . , w−1, w0, w1, . . . if there is a path P that
contains v such that . . . , wi−1, P, wi, . . . is a double ray in D, for some i ∈ Z. A
quick case distinction shows:

Lemma 4.1. Let D be a strongly connected tournament. Any given vertex can
be inserted into any given (reverse) ray. Any given vertex with finite in- or finite
out-degree can be inserted into any given double ray. �

There is a natural partial order on the set of ends of a digraph D. For two
ends ω, η ∈ Ω(D) write ω ≤Ω η if there are rays Rω and Rη that represent ω
and η respectively, such that there are infinitely many disjoint paths from Rω to
Rη. This gives a (well-defined) partial order on Ω(D). If (ω, η) is a limit edge of
D then clearly ω ≤Ω η; the converse is false in general. If D is a tournament then
any two ends of D are comparable, so ≤Ω gives a total order on Ω(D).

Lemma 4.2. Let D be any countable solid tournament, then Ω(D) has a greatest
and a least element.

Proof. First note that Ω(D) is non-empty; it is straightforward to construct a ray
in D since the deletion of any finite vertex set leaves only finitely many strong
components and every ray in a solid digraph is solid. We show that Ω(D) has a
greatest element; the proof for the least element is analogue.

Fix an enumeration of V (D) and let Xn denote the set of the first n vertices.
We have that |D| ∼= lim

←−
(D/Pn)n∈N by Corollary 2.1. Now, consider the strong

components of D − Xn. We may view them as partially ordered by C1 ≤ C2 if
there is a path in D − Xn from C1 to C2. As D is a tournament, this gives a
total order on the strong components of D − Xn. Hence, for every Xn there is a
greatest strong component Cn of D−Xn with regard to the aforementioned order
of strong components. This strong component is a vertex in D/Pn, and this choice
of vertices is compatible in the sense that Cn includes Cn+1 as a subset. So this
choice of vertices gives a point in the inverse limit, which in turn corresponds to a
point ω in |D|. It is straightforward to show that this point ω is an end of D and we
claim that it is the greatest element of Ω(D). Indeed, for any other end η ∈ Ω(D)
there is a Xn that separates ω and η. Now, C(Xn, ω) and C(Xn, η) are distinct
strong components of D − Xn, and by the choice of ω we have that C(Xn, ω) is
greater than C(Xn, η). Consequently, there are only finitely many disjoint paths
from a ray representing ω to a ray representing η. �

Theorem 2. Every countable strongly connected solid tournament has a Hamilton
circle.

Proof. First note that for every vertex v ∈ V (D) and any end ω ∈ Ω(D) the tour-
nament D has a limit edge from v to ω or vice versa. Indeed, for a ray R that
represents ω the vertex v sends infinitely many edges to V (R) or receives infinitely
many edges from V (R). Furthermore, for a vertex v ∈ V (D) there is a limit edge
from some end of D to v if and only if v has infinite in-degree, and there is a limit
edge from v to some end of D if and only if v has infinite out-degree. We split the
proof into two main cases:
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First case: The tournament D has only one end ω. In this case, first suppose
that every vertex of D has infinite in- and out-degree. Then it is straightforward to
construct a spanning ray R. The first vertex v of R receives a limit edge from ω, and
following first R to ω and then the limit edge (ω, v) yields the desired Hamilton
circle in |D|. We remark that in this situation it is also possible to construct a
spanning reverse ray or a spanning double ray to obtain a Hamilton circle in |D|.

Second, suppose that there is a vertex, v say, of D that has finite in- or finite
out-degree. We discuss the case where v has finite in-degree, the other case follows
by considering the reverse of D. Fix a normal spanning arborescence T of D rooted
at v, Lemma 2.3, and apply Theorem 1 to D and T to obtain a Hamilton path α
in |D| that starts at v. As D is solid and one-ended, T has exactly one ray Rω

that starts at v, Lemma 2.4. All vertices of Rω are traversed by α before ω, in
particular the vertices that are traversed by α before ω form a ray R, in the order
in which they are traversed by α. Conversely, the vertices that are traversed by α
after ω form a reverse path or a reverse ray

←

R. Furthermore, every vertex v′ of
←

R
has finite out-degree as there are only finitely many vertices greater than v′ in the
normal order. If

←

R is a reverse path we are done by Lemma 4.1, as we can insert
all the vertices of

←

R into Rω one after another to obtain a spanning ray and then
use a limit edge from ω to its start vertex to obtain the desired Hamilton circle
in |D|. If

←

R is a reverse ray there is an edge from some vertex of
←

R to v, since
v has finite out-degree. Consequently, we find a double ray W that contains R
and all but finitely many vertices of

←

R. By Lemma 4.1, any vertex of
←

R not yet
contained in W can be inserted into W to obtain a spanning double ray of D. As
D has only one end, a spanning double ray naturally defines a Hamilton circle in |D|.

Second case: The tournament D has more than one end. For the rest of the proof
denote by ω∗ the least and by ω∗ the greatest end of D, Lemma 4.2. Our first goal
is to find a double ray W such that its finite subpaths separate every vertex and
every other end from ω∗ and ω∗ respectively, and such that its subrays represent
ω∗ and its reverse subrays represent ω∗. In order to find such a double ray, fix
a normal spanning arborescence T of D. Then there is exactly one ray Rω∗ in T
that starts at the root of T and represents ω∗ in D, Lemma 2.4. This ray Rω∗

has the property that its finite initial segments separate ω∗ from every vertex and
every other end eventually, Lemma 2.2. Now, consider

←

D the reverse of D and fix
a normal spanning arborescence

←

T of
←

D. The ends of D and
←

D are in a one-to-one
correspondence in that the reverse of every ray in D represents an end in

←

D. Let
Rω∗ be the unique ray in

←

T that starts at the root and represents the least end of
←

D, Lemma 2.4. Then the reverse
←

Rω∗ of Rω∗ is a reverse ray in D that represents
ω∗ and its finite initial segments separate ω∗ from every vertex and every other end
eventually, Lemma 2.2. As ω∗ 6= ω∗, we have that Rω∗ and

←

Rω∗ have only finitely
many vertices in common. Consequently, there is a double ray W ′ that contains a
tail of Rω∗ and a tail of

←

Rω∗ . Let S be the set of all the vertices of Rω∗ and
←

Rω∗

not contained in W ′. If we can insert all those vertices of S into W ′ that are not
separated from ω∗ or ω∗ by any finite subpath of W ′ then we obtain our desired
double ray. So let s ∈ S be a vertex that is not separated from ω∗ or ω

∗ by any finite
subpath of W ′. If s can be separated from ω∗ but not from ω∗ by a finite subpath
of W ′, or vice versa, then it is straightforward to insert s into W ′, Lemma 4.1.
So we may assume that s cannot be separated from ω∗ and from ω∗ by any finite
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subpath of W ′. Furthermore, we may assume that for W ′ = . . . , w−1, w0, w1, . . . we
have that s receives an edge from wn for 0 ≤ n and sends an edge to all the other
vertices of W ′, otherwise s can clearly be inserted into W ′. As ω∗ <Ω ω∗, there is
a finite subpath WN = w−N , . . . , wN of W ′, for 2 ≤ N , such that there is no edge
from W<N to WN<. Now, there is a non-trivial path P in C(WN , ω∗) = C(WN , ω∗)
from W<N to WN<. If P contains s it can be inserted into WN< via a subpath of
P (and into WN<). If s is not contained in P consider any inner vertex v of P ,
then s can be inserted into WN< or W<N depending on whether D contains the
edge (s, v) or the edge (v, s). Hence, we obtain a double ray W such that its finite
subpaths separate every vertex and every other end from ω∗ and ω∗ respectively
and such that its subrays represent ω∗ and its reverse subrays represent ω∗.

Our next goal is to show that there is even a double ray with the defining
properties of W that contains all vertices which send a limit edge to ω∗ and all
vertices that receive a limit edge from ω∗. We will show this claim by inserting all
these vertices, not yet contained in W , one after the other into W in such a way
that the limit is still a double ray.

Denote by S∗ all vertices not in W which send a limit edge to ω∗, and by S∗

all vertices not in W which receive a limit edge from ω∗. Note that S∗ and S∗ are
disjoint, as there is a finite subpath of W that separates ω∗ and ω∗. First consider
S∗ and choose N ∈ N so that WN separates ω∗ and ω∗. It is straightforward to
check that all vertices in S∗ that are separated from ω∗ by WN can be inserted into
W without changing WN< or W<N . Now, for any other vertex s ∈ S∗ there is a
smallest n(x) ∈ N such that Wn(s) separates s from ω∗. Again, it is straightforward
to check that all vertices in S∗ with index n(s) can be inserted into W by a path
from wn(s) to wn(s)+1. An analogue technique shows that all vertices in S∗ can be
inserted into W . As we substituted only edges of W by a path at most once, we
end up in the limit step with a double ray.

So let us assume that W additionally has the property to contain S∗ ∪ S∗. Our
final goal is to find an injective topological path α from ω∗ to ω∗ that contains
precisely the vertices not in W . Having α at hand, the desired Hamilton circle in
|D| is obtained by first following α and then following W .

Consider the strong components of D−W , for any such strong component there
is a finite subpath Wn of W such that C is a strong component of D−Wn. Indeed,
for every v ∈ C there is an n(v) ∈ N such that Wn(v) separates v from ω∗ and
ω∗ and this n(v) has to be the same for any two vertices in C. Moreover, these
strong components are totally ordered in that every vertex of C sends an edge to
any vertex of C′, or vice versa, for any two strong components of D −W . For all
strong components of D−W fix a Hamilton path αC in |C| (or in C if it is finite).
Now, all these Hamilton paths can be linked up to the desired injective topological
path α, see Figure 4. Indeed, if C is the predecessor of C′ in the aforementioned
order of strong components of D−W , then there is an edge or limit edge from the
endpoint of αC to the starting point of αC′ . Moreover, if there is a least element,
C∗ say, of the strong components of D −W , then ω∗ sends a limit edge to every
vertex of C∗. Similarly, if there is a greatest element, C∗ say, then every vertex of
C∗ sends a limit edge to ω∗.

Conversely, if there is no greatest element, then the strong components of D−X
converge to ω∗ in that traversing the αC one after the other in their total order
yields an injective continuous path that ends at ω∗. Similarly, if there is no least
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element, then the strong components of D−X converge to ω∗ in that traversing the
αC one after the other in their inverted total order yields an injective continuous
path that starts at ω∗. Note that the open sets Ĉε(Wn, ω∗) and Ĉε(Wn, ω

∗) form a
neighbourhood base for ω∗ and ω∗, respectively. This topological path traverses all
the vertices of D−W as W contains S∗∪S

∗. We remark that if there are no strong
components of D −W , i.e. W is spanning then we obtain a directed topological
path from ω∗ to ω∗ that avoids W by the limit edge (ω∗, ω

∗). �

...
...

ω∗ω∗

w0
w1w−1

C(W1, ω
∗)

CC′

Figure 4. Strong components of D −W are indicated as circles.
Strong components of the form C(Wn, ω∗) or C(Wn, ω

∗) are in-
dicated as parabolas, which might contain strong components of
D −W not yet separated by Wn.
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