
EDGE-CONNECTIVITY AND TREE-STRUCTURE
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Abstract. We show that every graph admits a canonical tree-like decomposition into its k-edge-connected

pieces for all k ∈ N ∪ {∞} simultaneously.

1. Introduction

Finding a tree-like decomposition of any finite graph into its ‘k-vertex-connected pieces’, for just one given

k ∈ N or all k ∈ N at once, has been a longstanding quest in graph theory until recently, when it was solved

completely by Diestel, Hundertmark and Lemanczyk [16]. One of the complications was that there are

many competing notions of what a ‘k-vertex-connected piece’ of a graph should be. Instead of providing a

dozen independent solutions for the dozen different notions of ‘k-vertex-connected pieces’ that are in use, the

ultimate solution deals with all these notions at once. Related results can be found in [2–7,11–24,26,29,31].

If we consider edge-connectivity instead of vertex-connectivity, however, there does exist a single notion

of ‘k-edge-connected pieces’ that undeniably is the most natural one. Let k ∈ N ∪ {∞} and let G be any

connected graph, possibly infinite. We say that two vertices u, v are <k-inseparable in G if they cannot

be separated in G by fewer than k edges. This defines an equivalence relation on the vertex set of G. Its

equivalence classes are the ‘k-edge-connected pieces’ of G, its k-edge-blocks. A set of vertices of G is an

edge-block if it is a k-edge-block for some k. Note that two edge-blocks are either disjoint or one contains the

other. In this paper we find a canonical tree-like decomposition of any connected graph, finite or infinite,

into its k-edge-blocks—for all k ∈ N∪{∞} simultaneously. To state our result, we only need a few intuitive

definitions.

An edge set F ⊆ E(G) distinguishes two edge-blocks of G, not necessarily k-edge-blocks for the same k,

if they are included in distinct components of G−F . An edge set F distinguishes two edge-blocks efficiently

if it does so with least possible size. Note that if F distinguishes two edge-blocks efficiently, then F must be

a bond, a cut with connected sides. A set B of bonds distinguishes some set of edge-blocks of G efficiently

if every two disjoint edge-blocks in this set are distinguished efficiently by a bond in B. Two cuts F1, F2 of

G are nested if F1 has a side V1 and F2 has a side V2 such that V1 ⊆ V2. Note that this is symmetric. The

fundamental cuts of a spanning tree, for example, are (pairwise) nested. Our main result reads as follows:

Theorem 1. Every connected graph G has a nested set of bonds that efficiently distinguishes all the edge-

blocks of G.

The nested sets N = N(G) that we construct, one for every G, have two strong additional properties:

• They are canonical in that they are invariant under isomorphisms: if φ : G → G′ is a graph-

isomorphism, then φ(N(G)) = N(φ(G)).

• For every k ∈ N, the subset Nk ⊆ N formed by the bonds of size less than k is equal to the set of

fundamental cuts of a tree-cut decomposition of G that decomposes G into its k-edge-blocks.

Tree-cut decompositions are decompositions of graphs similar to tree-decompositions but based on edge-

cuts rather than vertex-separators. They have been introduced by Wollan [32], and they are more general

than the ‘tree-partitions’ introduced by Seese [30] and by Halin [27]; see Section 4.
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The second additional property above is best possible in the sense that Nk cannot be replaced with N :

there exists a graph G (see Example 4.4) that has no nested set of cuts which, on the one hand, distinguishes

all the edge-blocks of G efficiently, and on the other hand, is the set of fundamental cuts of some tree-cut

decomposition. (This is because the ‘tree-structure’ defined by a nested set of cuts may have limit points,

and hence not be representable by a graph-theoretical tree.)

This paper is organised as follows. In Section 2 we introduce the tools and terminology that we need. In

Section 3 we prove our main result, Theorem 1, and we show that we obtain a canonical set N . In Section 4

we relate each Nk to a tree-cut decomposition. In Section 5 we remark a fact about ∞-edge-blocks.

2. Tools and terminology

We use the graph-theoretic notation of Diestel’s book [9]. Throughout this paper, G = (V,E) denotes any

connected graph, finite or infinite. The following lemma is well known [9, Exercise 8.12]; we provide a proof

for the reader’s convenience.

Lemma 2.1. Every edge of a graph lies in only finitely many bonds of size k of that graph, for any k ∈ N.

Proof. Let e be any edge of a graph G, and suppose for a contradiction that e lies in infinitely many distinct

bonds B0, B1, . . . of size k, say. Let F be an inclusionwise maximal set of edges of G such that F is included

in Bn for infinitely many n (all n, without loss of generality). Then |F | < k because the bonds are distinct,

and any bond Bn ) F gives rise to a path P in G−F that links the endvertices of e. Now all the infinitely

many bonds Bn must contain an edge of the finite path P . But by the choice of F , each edge of P lies in

only finitely many Bn, a contradiction. �

Corollary 2.2. Let G be any connected graph, k ∈ N, and let F0, F1, . . . be infinitely many distinct bonds of

G of size at most k such that each bond Fn has a side An with An ( Am for all n < m. Then
⋃
n∈NAn = V .

Proof. If the inclusion is proper, then any A0–(V r
⋃
nAn) path in G admits an edge that lies in infinitely

many Fn, contradicting Lemma 2.1. �

2.1. Cuts, bonds and separations. The order of a cut is its size. A cut-separation of a graph G is

a bipartition {A,B} of the vertex set of G, and it induces the cut E(A,B). Then the order of the cut

E(A,B) is also the order of {A,B}. Recall that in a connected graph, every cut is induced by a unique

cut-separation in this way, to which it corresponds. A bond-separation of G is a cut-separation that induces

a bond of G, a cut with connected sides. We say that a cut-separation distinguishes two edge-blocks

(efficiently) if its corresponding cut does, and we call two cut-separations nested if their corresponding cuts

are nested. Thus, two cut-separations {A,B} and {C,D} are nested if one of the four inclusions A ⊆ C,

A ⊆ D, B ⊆ C or B ⊆ D holds.

2.2. Key tool. The proof of our main result relies on a result from [20]. To state it, we shall need the

following definitions. Let A be some set and ∼ a reflexive and symmetric binary relation on A. We say

that two elements a and b of A are nested if a ∼ b and two elements of A which are not nested cross.

A subset of A is called nested if its elements are pairwise nested. In our setting, A will be the set of all

the bond-separations of a connected graph G that efficiently distinguish some edge-blocks of G, and ∼ will

encode ‘being nested’ for bond-separations.

Given a, b ∈ A, we call c ∈ A a corner of a and b if every element of A which is nested with both a

and b is also nested with c. When a = {A,B} and b = {C,D} are two bond-separations, then c will usually
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be one of the following four possible corners: either {A ∩ C,B ∪D}, {A ∩D,B ∪ C}, {B ∩D,A ∪ C} or

{B ∩ C,A ∪ D}. These are the four possibilities of how a new cut-separation can be built from {A,B}
and {C,D} using just ‘∪’ and ‘∩’. Note that sometimes an intersection may be empty so some of the four

possibilities may not be valid cut-separations; and sometimes a possibility is a cut-separation but not an

element of A. We will see in Lemma 3.2 that every possibility that happens to lie in A is already a corner

of {A,B} and {C,D}, provided that {A,B} and {C,D} cross.

Consider a family (Ai | i ∈ I ) of non-empty subsets of A and some function | · | : I → N, where I is

a possibly infinite index set. We call |i| the order of the elements of Ai. We will consider I to be the

collection of all the unordered pairs formed by two disjoint edge-blocks of G, and each Ai will consist of all

the bond-separations of G that efficiently distinguish the two edge-blocks forming the pair i. Then every

Ai will be non-empty because the edge-blocks forming i are disjoint. Our choice for |i| will be the unique

natural number that is the order of all the bond-separations in Ai. Note that each of the two edge-blocks

forming i will be a k-edge-block for some k > |i|.
When we wish to prove Theorem 1 without its additional properties, then it suffices to find a subset

N ⊆ A that meets each Ai and that is nested. One of the main results of [20] states that we can find N

if the setup of the sets Ai and their order function | · | satisfies a number of properties. The result can be

applied even when I is infinite, and moreover it ensures that N is ‘canonical’ for the given setup. To state

the properties and the result, we need one more definition.

The k-crossing number of a, for an a ∈ A and k ∈ N, is the number of elements of A that cross a and

lie in some Ai with |i| = k. Note that in our case, every bond-separation of order k can only possibly lie

in sets Ai with |i| = k. Thus, the k-crossing number of a bond-separation or arbitrary finite order will be

the number of efficiently distinguishing bond-separations of order k crossing it.

We say that the family (Ai | i ∈ I ) thinly splinters if it satisfies the following three properties:

(i) For every i ∈ I all elements of Ai have finite k-crossing number for all k ≤ |i|.
(ii) If ai ∈ Ai and aj ∈ Aj cross with |i| < |j|, then Aj contains some corner of ai and aj that is nested

with ai.

(iii) If ai ∈ Ai and aj ∈ Aj cross with |i| = |j| = k ∈ N, then either Ai contains a corner of ai and aj

with strictly lower k-crossing number than ai, or else Aj contains a corner of ai and aj with strictly

lower k-crossing number than aj .

The following theorem from [20] will be the key ingredient for our proof of Theorem 1:

Theorem 2.3 ([20, Theorem 1.2]). If (Ai | i ∈ I ) thinly splinters with respect to some reflexive symmetric

relation ∼ on A :=
⋃
i∈I Ai, then there is a set N = N((Ai | i ∈ I )) ⊆ A which meets every Ai and is

nested, i.e., n1 ∼ n2 for all n1, n2 ∈ N . Moreover, this set N can be chosen invariant under isomorphisms:

if φ is an isomorphism between (A,∼) and (A′,∼′), then we have N((φ(Ai) | i ∈ I )) = φ(N((Ai | i ∈ I ))).

3. Proof of Theorem 1

Let G be any connected graph, possibly infinite, and consider the set A with the relation ∼ of ‘being

nested’, the family (Ai | i ∈ I ) and the function | · |, all defined with regard to the efficiently distinguishing

bond-separations of G like in Section 2.2. Our aim is to employ Theorem 2.3 to deduce Theorem 1. In

order to do that, we first have to verify that (Ai | i ∈ I ) thinly splinters. To this end, we verify all the

three properties (i)–(iii) below. The following lemma clearly implies property (i):
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Lemma 3.1. Every finite-order bond-separation of a graph G is crossed by only finitely many bond-sepa-

rations of G of order at most k, for any given k ∈ N.

Proof. Our proof starts with an observation. If two bond-separations {A,B} and {A′, B′} cross, then A′

contains a vertex from A and a vertex from B. Let v ∈ A′ ∩ A and w ∈ A′ ∩B. Since G[A′] is connected,

there exists a path from v to w in G[A′]. This path, and thus G[A′], must contain an edge from A to B.

Similarly, G[B′] must contain an edge from A to B.

Now suppose for a contradiction that there are infinitely many bond-separations of order at most a given

k ∈ N, which all cross some finite-order bond-separation {A,B}. Without loss of generality, all the crossing

bond-separations have order k. Using our observation, the pigeon-hole principle and the finite order of

{A,B}, we find two edges e, f ∈ E(A,B) and infinitely many bond-separations {A0, B0}, {A1, B1}, . . .
that all cross {A,B} so that e ∈ G[An] and f ∈ G[Bn] for all n ∈ N. Let P be a path in G that links an

endvertex v of e to an endvertex w of f . Now v is contained in all the An and w is contained in all the Bn,

thus for every {An, Bn} there exists an edge of P with one end in An and the other in Bn. However, every

{An, Bn} corresponds to a bond of size k of G and, again by the pigeon-hole principle, infinitely many of

theses bonds must contain the same edge of P . This contradicts Lemma 2.1. �

Next, to show the second property, we need the following lemma:

Lemma 3.2. If two cut-separations {A1, B1} and {A2, B2} cross, and a third cut-separation {X,Y } is

nested with both {A1, B1} and {A2, B2}, then {X,Y } is nested with {A1 ∩A2, B1 ∪B2} (provided that this

is a cut-separation).

Proof. As {X,Y } is a cut-separation that is nested with {A1, B1} and {A2, B2}, either X or Y is a subset

of B1 or B2, in which case it is immediate that {X,Y } is nested with {A1 ∩ A2, B1 ∪ B2} as desired, or,

one of X and Y is a subset of A1 and one of X and Y is a subset of A2. However, since A1 ∪ A2 6= V (G)

(as {A1, B1} and {A2, B2} cross) it needs to be the case that either X ⊆ A1 ∩ A2 or Y ⊆ A1 ∩ A2, so in

either case {X,Y } is nested with {A1 ∩A2, B1 ∪B2} as desired. �

Using this lemma, we can now show property (ii):

Lemma 3.3. If {A,B} ∈ Ai and {C,D} ∈ Aj cross with |i| < |j|, then Aj contains some corner of {A,B}
and {C,D} that is nested with {A,B}.

Proof. Let us denote the two edge-blocks in j as U and U ′ so that U ⊆ C and U ′ ⊆ D. Since the order

of {A,B} is less than |j|, we may assume without loss of generality that U,U ′ ⊆ A. We claim that either

{A ∩ C,B ∪D} or {A ∩D,B ∪ C} is the desired corner in Aj , and we refer to them as corner candidates.

Both are cut-separations that distinguish U and U ′, and both are nested with {A,B}. Furthermore, by

Lemma 3.2, every cut-separation that is nested with both {A,B} and {C,D} is also nested with both

corner candidates. It remains to show that at least one of the two corner candidates has order at most |j|,
because then it lies in Aj as desired.

Let us assume for a contradiction that both corner candidates have order greater than |j|. Then the two

inequalities

|E(A ∩ C,B ∪D)|+ |E(B ∩D,A ∪ C)| ≤ |E(A,B)|+ |E(C,D)|

|E(A ∩D,B ∪ C)|+ |E(B ∩ C,A ∪D)| ≤ |E(A,B)|+ |E(C,D)|
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imply

|E(B ∩D,A ∪ C)| < |i| and |E(B ∩ C,A ∪D)| < |i|.

Recall that the edge-blocks forming the pair i are k-edge-blocks for some values k greater than |i|. One of

the edge-blocks of the pair i is contained in B, and due to the latter two inequalities, this edge-block must

be contained entirely either in B ∩D or in B ∩C. But then either {B ∩D,A ∪C} or {B ∩C,A ∪D} is a

cut-separation of order less than |i| that distinguishes the two edge-blocks forming the pair i, contradicting

the fact that an order of at least |i| is required for that. �

Finally, to show the third property, we need the following lemma:

Lemma 3.4. Let {A1, B1} and {A2, B2} be crossing cut-separations such that both {A1∩A2, B1∪B2} and

{A1∪A2, B1∩B2} are cut-separations as well. Then every cut-separation that crosses both {A1∩A2, B1∪B2}
and {A1 ∪A2, B1 ∩B2} must also cross both {A1, B1} and {A2, B2}.

Proof. Consider any cut-separation {X,Y } that crosses both {A1 ∩A2, B1 ∪B2} and {A1 ∪A2, B1 ∩B2}.
Since {X,Y } crosses {A1 ∩ A2, B1 ∪ B2}, both X and Y contain a vertex from A1 ∩ A2. Since {X,Y }
crosses {A1 ∪ A2, B1 ∩ B2}, both X and Y contain a vertex from B1 ∩ B2. Hence {X,Y } crosses both

{A1, B1} and {A2, B2}. �

Let us now show property (iii):

Lemma 3.5. If {A,B} ∈ Ai and {C,D} ∈ Aj cross with |i| = |j| = k ∈ N, then either Ai contains

a corner of {A,B} and {C,D} with strictly lower k-crossing number than {A,B}, or else Aj contains a

corner of {A,B} and {C,D} with strictly lower k-crossing number than {C,D}.

Proof. Let us assume without loss of generality that the k-crossing number of {A,B} is less than or equal

to the k-crossing number of {C,D}, and let us denote the edge-blocks in j as U and U ′ so that U ⊆ C and

U ′ ⊆ D. We consider two cases.

In the first case, {A,B} distinguishes the two edge-blocks U and U ′. Hence U ⊆ A∩C and U ′ ⊆ B ∩D,

say. Then both {A ∩ C,B ∪D} and {B ∩D,A ∪ C} distinguish the two edge-blocks U and U ′ that form

the pair j, and so they have order at least |j| = k. Furthermore, we have

|E(A ∩ C,B ∪D)|+ |E(B ∩D,A ∪ C)| ≤ |E(A,B)|+ |E(C,D)| = 2k, (1)

so both {A ∩ C,B ∪D} and {B ∩D,A ∪ C} must have order exactly k. In particular, both are contained

in Aj , and they are corners of {A,B} and {C,D} by Lemma 3.2. Next, we assert that the k-crossing

numbers of {A ∩ C,B ∪D} and {B ∩D,A ∪ C} in sum are less than the sum of the k-crossing numbers

of {A,B} and {C,D}. Indeed, all the k-crossing numbers involved are finite by property (i), and the two

cut-separations {A,B} and {C,D} cross which allows us to deduce the desired inequality between the sums

by Lemmas 3.2 and 3.4, as follows:

• by Lemma 3.2, every {X,Y } ∈ A of order k that crosses at least one of {A ∩ C,B ∪ D} and

{B ∩D,A ∪ C} must cross at least one of {A,B} and {C,D}; and

• by Lemma 3.4, every {X,Y } ∈ A of order k that crosses both {A∩C,B ∪D} and {B ∩D,A∪C}
must cross both {A,B} and {C,D}.
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But then the strict inequality between the sums, plus our initial assumption that the k-crossing number

of {A,B} is less than or equal to that of {C,D}, implies that one of {A ∩ C,B ∪D} and {B ∩D,A ∪ C}
must have a k-crossing number less than the one of {C,D}, as desired.

In the second case, {A,B} does not distinguish the two edge-blocks U and U ′. Recall that all the

edge-blocks in the two pairs i and j are `-edge-blocks for some values ` > k. Hence U ∪ U ′ ⊆ A, say. Let

us denote by U ′′ the edge-block in i that is contained in B. Then either U ′′ ⊆ B ∩ C or U ′′ ⊆ B ∩D, say

U ′′ ⊆ B ∩D. In total:

U ⊆ A ∩ C, U ′ ⊆ A ∩D and U ′′ ⊆ B ∩D.

Therefore, {A∩C,B∪D} distinguishes the two edge-blocks U and U ′ forming the pair j which imposes an

order of at least k, and {B∩D,A∪C} distinguishes the two edge-blocks forming the pair i which imposes an

order of at least k as well. Combining these lower bounds with (1) we deduce that both {A∩C,B∪D} and

{B ∩D,A∪C} have order exactly k. In particular, they are contained in Aj and Ai respectively, and they

are corners of {A,B} and {C,D} by Lemma 3.2. Repeating the final argument of the first case, we deduce

from the strict inequality between the sums of the k-crossing numbers that either {A ∩ C,B ∪ D} ∈ Aj
has strictly lower k-crossing number than {C,D}, or else {B ∩D,A∪C} ∈ Ai has strictly lower k-crossing

number than {A,B}, completing the proof. �

We can now prove our main result:

Proof of Theorem 1. Let G be any connected graph. By Lemma 3.1, Lemma 3.3 and Lemma 3.5 we may

apply Theorem 2.3 to the family (Ai | i ∈ I ) defined at the beginning of the section. This results in the

desired nested set N(G) ⊆ A. To see that it is canonical, note that any isomorphism φ : G → G′ induces

an isomorphism between (A,∼) and (A′,∼′), where the latter is defined like the former but with regard

to G′. Thus, by the ‘moreover’ part of Theorem 2.3, we indeed obtain that φ(N(G)) = N(φ(G)). �

4. Nested sets of bonds and tree-cut decompositions

Recall that, given a connected graph G, we denote by N = N(G) the canonical set of nested bonds from

Theorem 1 that efficiently distinguishes all the edge-blocks of G. Furthermore, recall that the subset

Nk ⊆ N is formed by the bonds in N of order less than k. In this section, we show that:

• For every k ∈ N, the subset Nk ⊆ N is equal to the set of fundamental cuts of a tree-cut decom-

position of G that decomposes G into its k-edge-blocks.

To this end, we first introduce the notion of a tree-cut decomposition. Recall that a near-partition of a set

M is a family of pairwise disjoint subsets Mξ ⊆M , possibly empty, such that
⋃
ξMξ = M .

Let G be a graph, T a tree, and let X = (Xt)t∈T be a family of vertex sets Xt ⊆ V (G) indexed by the

nodes t of T . The pair (T,X ) is called a tree-cut decomposition of G if X is a near-partition of V (G). The

vertex sets Xt are the parts or bags of the tree-cut decomposition (T,X ) and we say that (T,X ) decomposes

the graph G into its non-empty parts. In this paper, we require the nodes with non-empty parts to be

dense in T in that every edge of T lies on a path in T that links up two nodes with non-empty parts.

If (T,X ) is a tree-cut decomposition, then every edge t1t2 of its decomposition tree T induces a cut

E(
⋃
t∈T1

Xt ,
⋃
t∈T2

Xt ) of G where T1 and T2 are the two components of T − t1t2 with t1 ∈ T1 and

t2 ∈ T2. Here, the nodes with non-empty parts densely lying in T ensures that both unions are non-empty,

which is required of the sides of a cut. We call these induced cuts the fundamental cuts of the tree-cut
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decomposition (T,X ). Note that unlike the fundamental cuts of a spanning tree, the fundamental cuts of

a tree-cut decomposition need not be bonds.

It is important that parts of a tree-cut decomposition are allowed to be empty, as the following example

demonstrates.

Example 4.1. Let the graph G arise from the disjoint union of three copies G1, G2 and G3 of K4 by

selecting one vertex vi ∈ Gi for all i ∈ [3] and adding all edges vivj (i 6= j ∈ [3]). Then the 3-edge-blocks of G

are the three vertex sets V (G1), V (G2) and V (G3). Since N(G) is canonical, we have N3(G) = {F1, F2, F3 }
where Fi := { vivj | j 6= i }. However, we cannot find a tree-cut decomposition (T,X ) of G such that, on

the one hand, T is a tree on three nodes t1, t2, t3 and Xti = V (Gi) for all i ∈ [3], and on the other hand,

the fundamental cuts of (T,X ) are precisely the bonds in N3(G): the decomposition tree T would then be

a path of length two, and hence would induce two fundamental cuts, but N3(G) consists of three bonds.

To relate Nk to a tree-cut decomposition, we will use a theorem by Gollin and Kneip. In order to state

their theorem, we need to introduce separation systems and S-trees first.

4.1. Separation systems and S-trees. Separation systems and S-trees are two fundamental tools in

graph minor theory. In this section we briefly introduce the definitions from [8–10] that we need.

A separation of a set V is an unordered pair {A,B} such that A ∪ B = V . The ordered pairs (A,B)

and (B,A) are its orientations. Then the oriented separations of V are the orientations of its separations.

The map that sends every oriented separation (A,B) to its inverse (B,A) is an involution that reverses

the partial ordering

(A,B) ≤ (C,D) :⇔ A ⊆ C and B ⊇ D

since (A,B) ≤ (C,D) is equivalent to (D,C) ≤ (B,A).

More generally, a separation system is a triple (S,≤, ∗) where (S,≤) is a partially ordered set and
∗ : S → S is an order-reversing involution. We refer to the elements of S as oriented separations. If an

oriented separation is denoted by s, then we denote its inverse s∗ as s, and vice versa. That ∗ is order-

reversing means r ≤ s ⇔ r ≥ s for all r, s ∈ S.

A separation is an unordered pair of the form {s, s}, and then denoted by s. Its elements s and s are the

orientations of s. The set of all separations {s, s} ⊆ S is denoted by S. When a separation is introduced

as s without specifying its elements first, we use s and s (arbitrarily) to refer to these elements.

Separations of sets, and their orientations, are an instance of this abstract setup if we identify {A,B}
with { (A,B) , (B,A) }. Hence the cut-separations of a graph define a separation system. Here is another

example: The set E(T ) := { (x, y) | xy ∈ E(T ) } of all orientations (x, y) of the edges xy = {x, y} of a tree

T forms a separation system with the involution (x, y) 7→ (y, x) and the natural partial ordering on E(T )

in which (x, y) < (u, v) if and only if xy 6= uv and the unique {x, y}–{u, v} path in T is x̊yT ův = yTu.

An S-tree is a pair (T, α) such that T is a tree and α : E(T )→ S propagates the ordering on E(T ) and

commutes with inversion: that α(e) ≤ α(f ) if e ≤ f ∈ E(T ) and (α(e))∗ = α(e) for all e ∈ E(T ); see

Figure 1. A tree-decomposition (T,V), for example, makes T into an S-tree for the set of separations it

induces [9, §12.5]. Similarly, a tree-cut decomposition (T,X ) makes T into an S-tree for the set of cut-sep-

arations which correspond to its fundamental cuts. For oriented edges (x, y) ∈ E(T ) we will write α(x, y)

instead of α((x, y)).
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362 12. Graph Minors

k-block X of G even defines a consistent orientation of the entire set SkSk

of separations of order < k in G: the orientation {(A,B) ∈

−→

Sk | X ⊆ B}.
A bramble B of order n � k also defines an orientation of Sk: the

set O = {(A,B) ∈

−→

Sk | ∃X ∈ B : X ⊆ B � A}. Unlike in the case of k-
blocks, there need not be any fixed bramble set that lies in every B with
(A,B) ∈ O; indeed the intersection of all these B may be empty. (Exam-
ple?) But O shows the large order of B in another way, in that we cannot
cover B by few sets A with (A,B) ∈ O: since any bramble set meeting A
also meets A ∩ B (because it touches the bramble set in B � A), and
|A∩B| � k− 1, we need at least n/(k− 1) sets A to cover B. The idea
that this is enough not only to reflect but to constitute a kind of highly
connected substructure in G has led to the following concept.

A tangle of order k, or k-tangle, is an orientation of Sk that avoidstangle

T :=
{

{(A1, B1), (A2, B2), (A3, B3)}
∣

∣G[A1]∪G[A2]∪G[A3] = G
}

.

Tangles of unspecified order will be referred to as tangles in G.in G

Note that tangles are consistent, since (A,B) � (C,D) implies that
G[B]∪G[C] ⊇ G[D]∪G[C] = G. Let T ∗ := {σ ∈ T | σ is a star }.T ∗

The set
→

E(T ) of the oriented edges of a tree T is partially ordered
by letting →e �

→

f whenever →e = (e, x, y) and
→

f = (f, u, v) are such that→

e �
→

f

the unique {x, y}–{u, v} path in T starts in y and ends in u.
Given a set S of separations of G, an S-tree is a pair (T, α) suchS-tree

that T is a tree and α:
→

E(T )→
→

S respects the orderings on these sets and
commutes with inversion: that α(→e) � α(

→

f ) if →e �
→

f (Fig. 12.5.2), and
α(←e) = (B,A) whenever α(→e) = (A,B). A tree-decomposition (T,V), for
example, makes T into an S-tree for the set S of separations it induces.

We say that (T, α) is an S-tree over a set F of stars in
→

S if for everyover

node t of T the map α sends the set
→

Ft := { (e, s, t) ∈

→

E(T ) | e = st ∈ T }→

Ft

of its incoming incident edges to an element of F .

A B

→

e

C D

→

f

Fig. 12.5.2. An S-tree with α(→

e) = (A, B) � (C, D) = α(
→

f )

Theorem 12.5.1. (Robertson & Seymour 1991)
tangle

duality

theorem The following assertions are equivalent for all graphs G and integers k > 0 :

(i) G has a tangle of order k;

(ii) Sk has a consistent orientation that avoids T ∗;

(iii) G has no Sk-tree over T ∗.

Figure 1. An S-tree with α(e) = (A,B) ≤ (C,D) = α(f ) [9]

An isomorphism between two separation systems is a bijection between their underlying sets that respects

both their partial orderings and their involutions. We need the following fragment of [25, Theorem 1] by

Gollin and Kneip:

Theorem 4.2. Let G be any connected graph, and let S be any nested separation system formed by oriented

cut-separations of G. Then the following assertions are equivalent:

(i) There exists an S-tree (T, α) such that α : E(T )→ S is an isomorphism between separation systems;

(ii) S contains no chain of order-type ω + 1.

4.2. Nk is a set of fundamental cuts. The following theorem clearly implies that Nk is the set of

fundamental cuts of a tree-cut decomposition of G that decomposes G into its k-edge-blocks:

Theorem 4.3. Let G be any connected graph and k ∈ N. Every nested set of bonds of G of order less

than k is the set of fundamental cuts of some tree-cut decomposition of G.

Proof. Let G be any connected graph, k ∈ N, and let B be any nested set of bonds of G of order less

than k. We write S for the set of bond-separations which correspond to the bonds in B.

First, we wish to use Theorem 4.2 to find an S-tree (T, α) such that α : E(T ) → S is an isomorphism.

For this, it suffices to show that B cannot contain pairwise distinct bonds F0, F1, . . . , Fω such that each

bond Fα has a side Aα with Aα ( Aβ for all α < β ≤ ω. This is immediate from Corollary 2.2.

Second, we wish to find a tree-cut decomposition (T,X ) whose fundamental cuts are precisely equal to

the bonds in B. We define the parts Xt of (T,X ) by letting

Xt :=
⋂
{D | (C,D) = α(x, t) where xt ∈ E(T ) }.

Then clearly the partsXt are pairwise disjoint. To see that
⋃
tXt includes the whole vertex set ofG, consider

any vertex v ∈ V (G). We orient each edge t1t2 ∈ T towards the ti with v ∈ D for (C,D) = α(t3−i, ti).

By Corollary 2.2 we may let t be the last node of a maximal directed path in T ; then all the edges of T at t

are oriented towards t, and v ∈ Xt follows. Therefore, X is a near-partition of V (G). It is straightforward

to see that B is the set of fundamental cuts of (T,X ). �

4.3. N is not a set of fundamental cuts. Finally, we show that there exists a graph G that has no

nested set of cuts which, on the one hand, distinguishes all the edge-blocks of G efficiently, and on the

other hand, is the set of fundamental cuts of some tree-cut decomposition.

Example 4.4. This example is a variation of [20, Example 4.9]. Consider the locally finite graph displayed

in Figure 2. This graph G is constructed as follows. For every n ∈ N≥1 we pick a copy of K2n+2

together

with n + 2 additional vertices wn1 , . . . , w
n
n+2. Then we select 2n vertices of the K2n+2

and call them
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K8 K16 K32 K64 K128 K256

K10

Figure 2. The only cut that efficiently distinguishes the two edge-blocks defined by K64

and by K128 is drawn in green.

un1 , . . . , u
n
2n . Furthermore, we select 2n+1 vertices of the K2n+2

, other than the previously chosen uni , and

call them vn1 , . . . , v
n
2n+1 . Now we add all the red edges vni u

n+1
i , all the blue edges wni w

n+1
j , and if n ≥ 2 we

also add the black edge un1w
n
1 . Finally, we disjointly add one copy of K10 and join one vertex v01 of this

K10 to u11 and u12; and we select another vertex w0
1 ∈ K10 distinct from v01 and add all edges w0

1w
1
i . This

completes the construction.

Now the vertex sets of the chosen K2n+2

are (2n+2 − 1)-edge-blocks Bn. The only cut-separation

that efficiently distinguishes Bn and Bn+1 is Fn := {
⋃n
k=1Bn , V r

⋃n
k=1Bn }. Additionally, the vertex

set of the K10 is a 9-edge-block B0. The only cut-separation that efficiently distinguishes B0 and B1

is F0 := {B0, V r B0}. Therefore, N(G) must contain all the cuts corresponding to the cut-separa-

tions Fn (n ∈ N). But the cut-separations Fn define an (ω + 1)-chain

(B1, V rB1) < (B1 ∪B2, V r (B1 ∪B2)) < · · · < (V rB0, B0),

so N(G) cannot be equal to the set of fundamental cuts of a tree cut-decomposition of G by Theorem 4.2.

5. A remark on ∞-edge-blocks

By the second property of our nested set N(G), we find a tree-cut decomposition of any connected graph G

into its k-edge-blocks, one for every k ∈ N. But for k = ∞, such a decomposition does not in general

exist, e.g., consider Example 4.4 with each Kn of the graph replaced by Kℵ0 (or any other infinitely edge-

connected graph). The reason why, however, is not that there are no meaningful tree-cut decompositions

of G into its ∞-edge-blocks, but that we considered only those decompositions whose sets of fundamental

cuts are equal to N(G). If we drop this requirement, then we find tree-cut decompositions of G into its

∞-edge-blocks, meaningful in the sense that all their fundamental cuts are finite. Let us call a graph finitely

separable if any two of its vertices can be separated by finitely many edges. And let us call a spanning

tree, respectively a tree-cut decomposition, finitely separating if all its fundamental cuts are finite. The

following theorem has been introduced in [1] as Theorem 3.9, and it is Theorem 5.1 in [28]:

Theorem 5.1 ( [1] ). Every finitely separable connected graph has a finitely separating spanning tree.
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If G is any connected graph, then the graph G̃ obtained from G by collapsing every ∞-edge-block to a

single vertex is finitely separable and connected. Hence G̃ has a finitely separating spanning tree by the

theorem, and this tree is easily translated to a finitely separating tree-cut decomposition of G, even with

all parts non-empty:

Theorem 5.2 ( [28] ). Every connected graph has a finitely separating tree-cut decomposition into its

∞-edge-blocks. �

This result, phrased in terms of S-trees, is extensively used in [28] to study infinite edge-connectivity.
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