arXiv:2012.07651v1 [math.CO] 14 Dec 2020

EDGE-CONNECTIVITY AND TREE-STRUCTURE IN FINITE AND INFINITE GRAPHS

CHRISTIAN ELBRACHT, JAN KURKOFKA, AND MAXIMILIAN TEEGEN

ABSTRACT. We show that every graph admits a canonical tree-like decomposition into its k-edge-connected pieces for all $k \in \mathbb{N} \cup \{\infty\}$ simultaneously.

1. INTRODUCTION

Finding a tree-like decomposition of any finite graph into its 'k-vertex-connected pieces', for just one given $k \in \mathbb{N}$ or all $k \in \mathbb{N}$ at once, has been a longstanding quest in graph theory until recently, when it was solved completely by Diestel, Hundertmark and Lemanczyk [16]. One of the complications was that there are many competing notions of what a 'k-vertex-connected piece' of a graph should be. Instead of providing a dozen independent solutions for the dozen different notions of 'k-vertex-connected pieces' that are in use, the ultimate solution deals with all these notions at once. Related results can be found in [2–7, 11–24, 26, 29, 31].

If we consider edge-connectivity instead of vertex-connectivity, however, there does exist a single notion of 'k-edge-connected pieces' that undeniably is the most natural one. Let $k \in \mathbb{N} \cup \{\infty\}$ and let G be any connected graph, possibly infinite. We say that two vertices u, v are $\langle k\text{-inseparable}$ in G if they cannot be separated in G by fewer than k edges. This defines an equivalence relation on the vertex set of G. Its equivalence classes are the 'k-edge-connected pieces' of G, its k-edge-blocks. A set of vertices of G is an edge-block if it is a k-edge-block for some k. Note that two edge-blocks are either disjoint or one contains the other. In this paper we find a canonical tree-like decomposition of any connected graph, finite or infinite, into its k-edge-blocks—for all $k \in \mathbb{N} \cup \{\infty\}$ simultaneously. To state our result, we only need a few intuitive definitions.

An edge set $F \subseteq E(G)$ distinguishes two edge-blocks of G, not necessarily k-edge-blocks for the same k, if they are included in distinct components of G-F. An edge set F distinguishes two edge-blocks efficiently if it does so with least possible size. Note that if F distinguishes two edge-blocks efficiently, then F must be a bond, a cut with connected sides. A set B of bonds distinguishes some set of edge-blocks of G efficiently if every two disjoint edge-blocks in this set are distinguished efficiently by a bond in B. Two cuts F_1, F_2 of G are nested if F_1 has a side V_1 and F_2 has a side V_2 such that $V_1 \subseteq V_2$. Note that this is symmetric. The fundamental cuts of a spanning tree, for example, are (pairwise) nested. Our main result reads as follows:

Theorem 1. Every connected graph G has a nested set of bonds that efficiently distinguishes all the edgeblocks of G.

The nested sets N = N(G) that we construct, one for every G, have two strong additional properties:

- They are canonical in that they are invariant under isomorphisms: if $\phi: G \to G'$ is a graphisomorphism, then $\phi(N(G)) = N(\phi(G))$.
- For every $k \in \mathbb{N}$, the subset $N_k \subseteq N$ formed by the bonds of size less than k is equal to the set of fundamental cuts of a tree-cut decomposition of G that decomposes G into its k-edge-blocks.

Tree-cut decompositions are decompositions of graphs similar to tree-decompositions but based on edgecuts rather than vertex-separators. They have been introduced by Wollan [32], and they are more general than the 'tree-partitions' introduced by Seese [30] and by Halin [27]; see Section 4.

²⁰²⁰ Mathematics Subject Classification. 05C40, 05C05, 05C69, 05C70, 05C83, 05C63.

Key words and phrases. edge-connected; tree; edge-block; inseparable; distinguish efficiently; infinite.

The second additional property above is best possible in the sense that N_k cannot be replaced with N: there exists a graph G (see Example 4.4) that has no nested set of cuts which, on the one hand, distinguishes all the edge-blocks of G efficiently, and on the other hand, is the set of fundamental cuts of some tree-cut decomposition. (This is because the 'tree-structure' defined by a nested set of cuts may have limit points, and hence not be representable by a graph-theoretical tree.)

This paper is organised as follows. In Section 2 we introduce the tools and terminology that we need. In Section 3 we prove our main result, Theorem 1, and we show that we obtain a canonical set N. In Section 4 we relate each N_k to a tree-cut decomposition. In Section 5 we remark a fact about ∞ -edge-blocks.

2. Tools and terminology

We use the graph-theoretic notation of Diestel's book [9]. Throughout this paper, G = (V, E) denotes any connected graph, finite or infinite. The following lemma is well known [9, Exercise 8.12]; we provide a proof for the reader's convenience.

Lemma 2.1. Every edge of a graph lies in only finitely many bonds of size k of that graph, for any $k \in \mathbb{N}$.

Proof. Let e be any edge of a graph G, and suppose for a contradiction that e lies in infinitely many distinct bonds B_0, B_1, \ldots of size k, say. Let F be an inclusionwise maximal set of edges of G such that F is included in B_n for infinitely many n (all n, without loss of generality). Then |F| < k because the bonds are distinct, and any bond $B_n \supseteq F$ gives rise to a path P in G - F that links the endvertices of e. Now all the infinitely many bonds B_n must contain an edge of the finite path P. But by the choice of F, each edge of P lies in only finitely many B_n , a contradiction.

Corollary 2.2. Let G be any connected graph, $k \in \mathbb{N}$, and let F_0, F_1, \ldots be infinitely many distinct bonds of G of size at most k such that each bond F_n has a side A_n with $A_n \subsetneq A_m$ for all n < m. Then $\bigcup_{n \in \mathbb{N}} A_n = V$.

Proof. If the inclusion is proper, then any $A_0 - (V \setminus \bigcup_n A_n)$ path in G admits an edge that lies in infinitely many F_n , contradicting Lemma 2.1.

2.1. Cuts, bonds and separations. The order of a cut is its size. A cut-separation of a graph G is a bipartition $\{A, B\}$ of the vertex set of G, and it induces the cut E(A, B). Then the order of the cut E(A, B) is also the order of $\{A, B\}$. Recall that in a connected graph, every cut is induced by a unique cut-separation in this way, to which it corresponds. A bond-separation of G is a cut-separation that induces a bond of G, a cut with connected sides. We say that a cut-separation distinguishes two edge-blocks (efficiently) if its corresponding cut does, and we call two cut-separations nested if their corresponding cuts are nested. Thus, two cut-separations $\{A, B\}$ and $\{C, D\}$ are nested if one of the four inclusions $A \subseteq C$, $A \subseteq D, B \subseteq C$ or $B \subseteq D$ holds.

2.2. Key tool. The proof of our main result relies on a result from [20]. To state it, we shall need the following definitions. Let \mathcal{A} be some set and \sim a reflexive and symmetric binary relation on \mathcal{A} . We say that two elements a and b of \mathcal{A} are *nested* if $a \sim b$ and two elements of \mathcal{A} which are not nested *cross*. A subset of \mathcal{A} is called nested if its elements are pairwise nested. In our setting, \mathcal{A} will be the set of all the bond-separations of a connected graph G that efficiently distinguish some edge-blocks of G, and \sim will encode 'being nested' for bond-separations.

Given $a, b \in A$, we call $c \in A$ a *corner* of a and b if every element of A which is nested with both a and b is also nested with c. When $a = \{A, B\}$ and $b = \{C, D\}$ are two bond-separations, then c will usually be one of the following four possible corners: either $\{A \cap C, B \cup D\}$, $\{A \cap D, B \cup C\}$, $\{B \cap D, A \cup C\}$ or $\{B \cap C, A \cup D\}$. These are the four possibilities of how a new cut-separation can be built from $\{A, B\}$ and $\{C, D\}$ using just ' \cup ' and ' \cap '. Note that sometimes an intersection may be empty so some of the four possibilities may not be valid cut-separations; and sometimes a possibility is a cut-separation but not an element of A. We will see in Lemma 3.2 that every possibility that happens to lie in A is already a corner of $\{A, B\}$ and $\{C, D\}$, provided that $\{A, B\}$ and $\{C, D\}$ cross.

Consider a family $(\mathcal{A}_i \mid i \in I)$ of non-empty subsets of \mathcal{A} and some function $|\cdot|: I \to \mathbb{N}$, where I is a possibly infinite index set. We call |i| the *order* of the elements of \mathcal{A}_i . We will consider I to be the collection of all the unordered pairs formed by two disjoint edge-blocks of G, and each \mathcal{A}_i will consist of all the bond-separations of G that efficiently distinguish the two edge-blocks forming the pair i. Then every \mathcal{A}_i will be non-empty because the edge-blocks forming i are disjoint. Our choice for |i| will be the unique natural number that is the order of all the bond-separations in \mathcal{A}_i . Note that each of the two edge-blocks forming i will be a k-edge-block for some k > |i|.

When we wish to prove Theorem 1 without its additional properties, then it suffices to find a subset $N \subseteq \mathcal{A}$ that meets each \mathcal{A}_i and that is nested. One of the main results of [20] states that we can find N if the setup of the sets \mathcal{A}_i and their order function $|\cdot|$ satisfies a number of properties. The result can be applied even when I is infinite, and moreover it ensures that N is 'canonical' for the given setup. To state the properties and the result, we need one more definition.

The k-crossing number of a, for an $a \in \mathcal{A}$ and $k \in \mathbb{N}$, is the number of elements of \mathcal{A} that cross a and lie in some \mathcal{A}_i with |i| = k. Note that in our case, every bond-separation of order k can only possibly lie in sets \mathcal{A}_i with |i| = k. Thus, the k-crossing number of a bond-separation or arbitrary finite order will be the number of efficiently distinguishing bond-separations of order k crossing it.

We say that the family $(A_i \mid i \in I)$ thinly splinters if it satisfies the following three properties:

- (i) For every $i \in I$ all elements of \mathcal{A}_i have finite k-crossing number for all $k \leq |i|$.
- (ii) If $a_i \in \mathcal{A}_i$ and $a_j \in \mathcal{A}_j$ cross with |i| < |j|, then \mathcal{A}_j contains some corner of a_i and a_j that is nested with a_i .
- (iii) If $a_i \in A_i$ and $a_j \in A_j$ cross with $|i| = |j| = k \in \mathbb{N}$, then either A_i contains a corner of a_i and a_j with strictly lower k-crossing number than a_i , or else A_j contains a corner of a_i and a_j with strictly lower k-crossing number than a_j .

The following theorem from [20] will be the key ingredient for our proof of Theorem 1:

Theorem 2.3 ([20, Theorem 1.2]). If $(A_i \mid i \in I)$ thinly splinters with respect to some reflexive symmetric relation \sim on $\mathcal{A} := \bigcup_{i \in I} \mathcal{A}_i$, then there is a set $N = N((\mathcal{A}_i \mid i \in I)) \subseteq \mathcal{A}$ which meets every \mathcal{A}_i and is nested, i.e., $n_1 \sim n_2$ for all $n_1, n_2 \in N$. Moreover, this set N can be chosen invariant under isomorphisms: if ϕ is an isomorphism between (\mathcal{A}, \sim) and (\mathcal{A}', \sim') , then we have $N((\phi(\mathcal{A}_i) \mid i \in I)) = \phi(N((\mathcal{A}_i \mid i \in I)))$.

3. Proof of Theorem 1

Let G be any connected graph, possibly infinite, and consider the set \mathcal{A} with the relation \sim of 'being nested', the family $(\mathcal{A}_i \mid i \in I)$ and the function $|\cdot|$, all defined with regard to the efficiently distinguishing bond-separations of G like in Section 2.2. Our aim is to employ Theorem 2.3 to deduce Theorem 1. In order to do that, we first have to verify that $(\mathcal{A}_i \mid i \in I)$ thinly splinters. To this end, we verify all the three properties (i)–(iii) below. The following lemma clearly implies property (i): **Lemma 3.1.** Every finite-order bond-separation of a graph G is crossed by only finitely many bond-separations of G of order at most k, for any given $k \in \mathbb{N}$.

Proof. Our proof starts with an observation. If two bond-separations $\{A, B\}$ and $\{A', B'\}$ cross, then A' contains a vertex from A and a vertex from B. Let $v \in A' \cap A$ and $w \in A' \cap B$. Since G[A'] is connected, there exists a path from v to w in G[A']. This path, and thus G[A'], must contain an edge from A to B. Similarly, G[B'] must contain an edge from A to B.

Now suppose for a contradiction that there are infinitely many bond-separations of order at most a given $k \in \mathbb{N}$, which all cross some finite-order bond-separation $\{A, B\}$. Without loss of generality, all the crossing bond-separations have order k. Using our observation, the pigeon-hole principle and the finite order of $\{A, B\}$, we find two edges $e, f \in E(A, B)$ and infinitely many bond-separations $\{A_0, B_0\}, \{A_1, B_1\}, \ldots$ that all cross $\{A, B\}$ so that $e \in G[A_n]$ and $f \in G[B_n]$ for all $n \in \mathbb{N}$. Let P be a path in G that links an endvertex v of e to an endvertex w of f. Now v is contained in all the A_n and w is contained in all the B_n , thus for every $\{A_n, B_n\}$ there exists an edge of P with one end in A_n and the other in B_n . However, every $\{A_n, B_n\}$ corresponds to a bond of size k of G and, again by the pigeon-hole principle, infinitely many of theses bonds must contain the same edge of P. This contradicts Lemma 2.1.

Next, to show the second property, we need the following lemma:

Lemma 3.2. If two cut-separations $\{A_1, B_1\}$ and $\{A_2, B_2\}$ cross, and a third cut-separation $\{X, Y\}$ is nested with both $\{A_1, B_1\}$ and $\{A_2, B_2\}$, then $\{X, Y\}$ is nested with $\{A_1 \cap A_2, B_1 \cup B_2\}$ (provided that this is a cut-separation).

Proof. As $\{X, Y\}$ is a cut-separation that is nested with $\{A_1, B_1\}$ and $\{A_2, B_2\}$, either X or Y is a subset of B_1 or B_2 , in which case it is immediate that $\{X, Y\}$ is nested with $\{A_1 \cap A_2, B_1 \cup B_2\}$ as desired, or, one of X and Y is a subset of A_1 and one of X and Y is a subset of A_2 . However, since $A_1 \cup A_2 \neq V(G)$ (as $\{A_1, B_1\}$ and $\{A_2, B_2\}$ cross) it needs to be the case that either $X \subseteq A_1 \cap A_2$ or $Y \subseteq A_1 \cap A_2$, so in either case $\{X, Y\}$ is nested with $\{A_1 \cap A_2, B_1 \cup B_2\}$ as desired.

Using this lemma, we can now show property (ii):

Lemma 3.3. If $\{A, B\} \in A_i$ and $\{C, D\} \in A_j$ cross with |i| < |j|, then A_j contains some corner of $\{A, B\}$ and $\{C, D\}$ that is nested with $\{A, B\}$.

Proof. Let us denote the two edge-blocks in j as U and U' so that $U \subseteq C$ and $U' \subseteq D$. Since the order of $\{A, B\}$ is less than |j|, we may assume without loss of generality that $U, U' \subseteq A$. We claim that either $\{A \cap C, B \cup D\}$ or $\{A \cap D, B \cup C\}$ is the desired corner in \mathcal{A}_j , and we refer to them as corner candidates. Both are cut-separations that distinguish U and U', and both are nested with $\{A, B\}$. Furthermore, by Lemma 3.2, every cut-separation that is nested with both $\{A, B\}$ and $\{C, D\}$ is also nested with both corner candidates. It remains to show that at least one of the two corner candidates has order at most |j|, because then it lies in \mathcal{A}_j as desired.

Let us assume for a contradiction that both corner candidates have order greater than |j|. Then the two inequalities

$$|E(A \cap C, B \cup D)| + |E(B \cap D, A \cup C)| \le |E(A, B)| + |E(C, D)|$$
$$|E(A \cap D, B \cup C)| + |E(B \cap C, A \cup D)| \le |E(A, B)| + |E(C, D)|$$

imply

$$|E(B \cap D, A \cup C)| < |i| \quad \text{and} \quad |E(B \cap C, A \cup D)| < |i|$$

Recall that the edge-blocks forming the pair i are k-edge-blocks for some values k greater than |i|. One of the edge-blocks of the pair i is contained in B, and due to the latter two inequalities, this edge-block must be contained entirely either in $B \cap D$ or in $B \cap C$. But then either $\{B \cap D, A \cup C\}$ or $\{B \cap C, A \cup D\}$ is a cut-separation of order less than |i| that distinguishes the two edge-blocks forming the pair i, contradicting the fact that an order of at least |i| is required for that.

Finally, to show the third property, we need the following lemma:

Lemma 3.4. Let $\{A_1, B_1\}$ and $\{A_2, B_2\}$ be crossing cut-separations such that both $\{A_1 \cap A_2, B_1 \cup B_2\}$ and $\{A_1 \cup A_2, B_1 \cap B_2\}$ are cut-separations as well. Then every cut-separation that crosses both $\{A_1 \cap A_2, B_1 \cup B_2\}$ and $\{A_1 \cup A_2, B_1 \cap B_2\}$ must also cross both $\{A_1, B_1\}$ and $\{A_2, B_2\}$.

Proof. Consider any cut-separation $\{X, Y\}$ that crosses both $\{A_1 \cap A_2, B_1 \cup B_2\}$ and $\{A_1 \cup A_2, B_1 \cap B_2\}$. Since $\{X, Y\}$ crosses $\{A_1 \cap A_2, B_1 \cup B_2\}$, both X and Y contain a vertex from $A_1 \cap A_2$. Since $\{X, Y\}$ crosses $\{A_1 \cup A_2, B_1 \cap B_2\}$, both X and Y contain a vertex from $B_1 \cap B_2$. Hence $\{X, Y\}$ crosses both $\{A_1, B_1\}$ and $\{A_2, B_2\}$.

Let us now show property (iii):

Lemma 3.5. If $\{A, B\} \in A_i$ and $\{C, D\} \in A_j$ cross with $|i| = |j| = k \in \mathbb{N}$, then either A_i contains a corner of $\{A, B\}$ and $\{C, D\}$ with strictly lower k-crossing number than $\{A, B\}$, or else A_j contains a corner of $\{A, B\}$ and $\{C, D\}$ with strictly lower k-crossing number than $\{C, D\}$.

Proof. Let us assume without loss of generality that the k-crossing number of $\{A, B\}$ is less than or equal to the k-crossing number of $\{C, D\}$, and let us denote the edge-blocks in j as U and U' so that $U \subseteq C$ and $U' \subseteq D$. We consider two cases.

In the first case, $\{A, B\}$ distinguishes the two edge-blocks U and U'. Hence $U \subseteq A \cap C$ and $U' \subseteq B \cap D$, say. Then both $\{A \cap C, B \cup D\}$ and $\{B \cap D, A \cup C\}$ distinguish the two edge-blocks U and U' that form the pair j, and so they have order at least |j| = k. Furthermore, we have

$$|E(A \cap C, B \cup D)| + |E(B \cap D, A \cup C)| \le |E(A, B)| + |E(C, D)| = 2k,$$
(1)

so both $\{A \cap C, B \cup D\}$ and $\{B \cap D, A \cup C\}$ must have order exactly k. In particular, both are contained in \mathcal{A}_j , and they are corners of $\{A, B\}$ and $\{C, D\}$ by Lemma 3.2. Next, we assert that the k-crossing numbers of $\{A \cap C, B \cup D\}$ and $\{B \cap D, A \cup C\}$ in sum are less than the sum of the k-crossing numbers of $\{A, B\}$ and $\{C, D\}$. Indeed, all the k-crossing numbers involved are finite by property (i), and the two cut-separations $\{A, B\}$ and $\{C, D\}$ cross which allows us to deduce the desired inequality between the sums by Lemmas 3.2 and 3.4, as follows:

- by Lemma 3.2, every $\{X, Y\} \in \mathcal{A}$ of order k that crosses at least one of $\{A \cap C, B \cup D\}$ and $\{B \cap D, A \cup C\}$ must cross at least one of $\{A, B\}$ and $\{C, D\}$; and
- by Lemma 3.4, every $\{X, Y\} \in \mathcal{A}$ of order k that crosses both $\{A \cap C, B \cup D\}$ and $\{B \cap D, A \cup C\}$ must cross both $\{A, B\}$ and $\{C, D\}$.

But then the strict inequality between the sums, plus our initial assumption that the k-crossing number of $\{A, B\}$ is less than or equal to that of $\{C, D\}$, implies that one of $\{A \cap C, B \cup D\}$ and $\{B \cap D, A \cup C\}$ must have a k-crossing number less than the one of $\{C, D\}$, as desired.

In the second case, $\{A, B\}$ does not distinguish the two edge-blocks U and U'. Recall that all the edge-blocks in the two pairs i and j are ℓ -edge-blocks for some values $\ell > k$. Hence $U \cup U' \subseteq A$, say. Let us denote by U'' the edge-block in i that is contained in B. Then either $U'' \subseteq B \cap C$ or $U'' \subseteq B \cap D$, say $U'' \subseteq B \cap D$. In total:

$$U \subseteq A \cap C, \ U' \subseteq A \cap D \text{ and } U'' \subseteq B \cap D.$$

Therefore, $\{A \cap C, B \cup D\}$ distinguishes the two edge-blocks U and U' forming the pair j which imposes an order of at least k, and $\{B \cap D, A \cup C\}$ distinguishes the two edge-blocks forming the pair i which imposes an order of at least k as well. Combining these lower bounds with (1) we deduce that both $\{A \cap C, B \cup D\}$ and $\{B \cap D, A \cup C\}$ have order exactly k. In particular, they are contained in \mathcal{A}_j and \mathcal{A}_i respectively, and they are corners of $\{A, B\}$ and $\{C, D\}$ by Lemma 3.2. Repeating the final argument of the first case, we deduce from the strict inequality between the sums of the k-crossing numbers that either $\{A \cap C, B \cup D\} \in \mathcal{A}_j$ has strictly lower k-crossing number than $\{C, D\}$, or else $\{B \cap D, A \cup C\} \in \mathcal{A}_i$ has strictly lower k-crossing number than $\{C, D\}$, or else $\{B \cap D, A \cup C\} \in \mathcal{A}_i$ has strictly lower k-crossing number than $\{A, B\}$, completing the proof.

We can now prove our main result:

Proof of Theorem 1. Let G be any connected graph. By Lemma 3.1, Lemma 3.3 and Lemma 3.5 we may apply Theorem 2.3 to the family $(\mathcal{A}_i \mid i \in I)$ defined at the beginning of the section. This results in the desired nested set $N(G) \subseteq \mathcal{A}$. To see that it is canonical, note that any isomorphism $\phi: G \to G'$ induces an isomorphism between (\mathcal{A}, \sim) and (\mathcal{A}', \sim') , where the latter is defined like the former but with regard to G'. Thus, by the 'moreover' part of Theorem 2.3, we indeed obtain that $\phi(N(G)) = N(\phi(G))$.

4. Nested sets of bonds and tree-cut decompositions

Recall that, given a connected graph G, we denote by N = N(G) the canonical set of nested bonds from Theorem 1 that efficiently distinguishes all the edge-blocks of G. Furthermore, recall that the subset $N_k \subseteq N$ is formed by the bonds in N of order less than k. In this section, we show that:

• For every $k \in \mathbb{N}$, the subset $N_k \subseteq N$ is equal to the set of fundamental cuts of a tree-cut decomposition of G that decomposes G into its k-edge-blocks.

To this end, we first introduce the notion of a tree-cut decomposition. Recall that a *near-partition* of a set M is a family of pairwise disjoint subsets $M_{\xi} \subseteq M$, possibly empty, such that $\bigcup_{\xi} M_{\xi} = M$.

Let G be a graph, T a tree, and let $\mathcal{X} = (X_t)_{t \in T}$ be a family of vertex sets $X_t \subseteq V(G)$ indexed by the nodes t of T. The pair (T, \mathcal{X}) is called a *tree-cut decomposition* of G if \mathcal{X} is a near-partition of V(G). The vertex sets X_t are the *parts* or *bags* of the tree-cut decomposition (T, \mathcal{X}) and we say that (T, \mathcal{X}) decomposes the graph G into its non-empty parts. In this paper, we require the nodes with non-empty parts to be *dense* in T in that every edge of T lies on a path in T that links up two nodes with non-empty parts.

If (T, \mathcal{X}) is a tree-cut decomposition, then every edge t_1t_2 of its decomposition tree T induces a cut $E(\bigcup_{t \in T_1} X_t, \bigcup_{t \in T_2} X_t)$ of G where T_1 and T_2 are the two components of $T - t_1t_2$ with $t_1 \in T_1$ and $t_2 \in T_2$. Here, the nodes with non-empty parts densely lying in T ensures that both unions are non-empty, which is required of the sides of a cut. We call these induced cuts the fundamental cuts of the tree-cut

decomposition (T, \mathcal{X}) . Note that unlike the fundamental cuts of a spanning tree, the fundamental cuts of a tree-cut decomposition need not be bonds.

It is important that parts of a tree-cut decomposition are allowed to be empty, as the following example demonstrates.

Example 4.1. Let the graph G arise from the disjoint union of three copies G_1, G_2 and G_3 of K^4 by selecting one vertex $v_i \in G_i$ for all $i \in [3]$ and adding all edges $v_i v_j$ $(i \neq j \in [3])$. Then the 3-edge-blocks of G are the three vertex sets $V(G_1), V(G_2)$ and $V(G_3)$. Since N(G) is canonical, we have $N_3(G) = \{F_1, F_2, F_3\}$ where $F_i := \{v_i v_j \mid j \neq i\}$. However, we cannot find a tree-cut decomposition (T, \mathcal{X}) of G such that, on the one hand, T is a tree on three nodes t_1, t_2, t_3 and $X_{t_i} = V(G_i)$ for all $i \in [3]$, and on the other hand, the fundamental cuts of (T, \mathcal{X}) are precisely the bonds in $N_3(G)$: the decomposition tree T would then be a path of length two, and hence would induce two fundamental cuts, but $N_3(G)$ consists of three bonds.

To relate N_k to a tree-cut decomposition, we will use a theorem by Gollin and Kneip. In order to state their theorem, we need to introduce separation systems and S-trees first.

4.1. Separation systems and S-trees. Separation systems and S-trees are two fundamental tools in graph minor theory. In this section we briefly introduce the definitions from [8-10] that we need.

A separation of a set V is an unordered pair $\{A, B\}$ such that $A \cup B = V$. The ordered pairs (A, B) and (B, A) are its orientations. Then the oriented separations of V are the orientations of its separations. The map that sends every oriented separation (A, B) to its inverse (B, A) is an involution that reverses the partial ordering

$$(A,B) \leq (C,D) \iff A \subseteq C \text{ and } B \supseteq D$$

since $(A, B) \leq (C, D)$ is equivalent to $(D, C) \leq (B, A)$.

More generally, a separation system is a triple $(\vec{S}, \leq, *)$ where (\vec{S}, \leq) is a partially ordered set and $*: \vec{S} \to \vec{S}$ is an order-reversing involution. We refer to the elements of \vec{S} as oriented separations. If an oriented separation is denoted by \vec{s} , then we denote its inverse \vec{s}^* as \vec{s} , and vice versa. That * is order-reversing means $\vec{r} \leq \vec{s} \Leftrightarrow \vec{r} \geq \vec{s}$ for all $\vec{r}, \vec{s} \in \vec{S}$.

A separation is an unordered pair of the form $\{\vec{s}, \vec{s}\}$, and then denoted by s. Its elements \vec{s} and \vec{s} are the orientations of s. The set of all separations $\{\vec{s}, \vec{s}\} \subseteq \vec{S}$ is denoted by S. When a separation is introduced as s without specifying its elements first, we use \vec{s} and \vec{s} (arbitrarily) to refer to these elements.

Separations of sets, and their orientations, are an instance of this abstract setup if we identify $\{A, B\}$ with $\{(A, B), (B, A)\}$. Hence the cut-separations of a graph define a separation system. Here is another example: The set $\vec{E}(T) := \{(x, y) \mid xy \in E(T)\}$ of all *orientations* (x, y) of the edges $xy = \{x, y\}$ of a tree T forms a separation system with the involution $(x, y) \mapsto (y, x)$ and the natural partial ordering on $\vec{E}(T)$ in which (x, y) < (u, v) if and only if $xy \neq uv$ and the unique $\{x, y\}$ - $\{u, v\}$ path in T is xyTuv = yTu.

An *S*-tree is a pair (T, α) such that *T* is a tree and $\alpha : \vec{E}(T) \to \vec{S}$ propagates the ordering on $\vec{E}(T)$ and commutes with inversion: that $\alpha(\vec{e}) \leq \alpha(\vec{f})$ if $\vec{e} \leq \vec{f} \in \vec{E}(T)$ and $(\alpha(\vec{e}))^* = \alpha(\vec{e})$ for all $\vec{e} \in \vec{E}(T)$; see Figure 1. A tree-decomposition (T, \mathcal{V}) , for example, makes *T* into an *S*-tree for the set of separations it induces [9, §12.5]. Similarly, a tree-cut decomposition (T, \mathcal{X}) makes *T* into an *S*-tree for the set of cut-separations which correspond to its fundamental cuts. For oriented edges $(x, y) \in \vec{E}(T)$ we will write $\alpha(x, y)$ instead of $\alpha((x, y))$.

FIGURE 1. An S-tree with $\alpha(\vec{e}) = (A, B) \leq (C, D) = \alpha(\vec{f})$ [9]

An *isomorphism* between two separation systems is a bijection between their underlying sets that respects both their partial orderings and their involutions. We need the following fragment of [25, Theorem 1] by Gollin and Kneip:

Theorem 4.2. Let G be any connected graph, and let \vec{S} be any nested separation system formed by oriented cut-separations of G. Then the following assertions are equivalent:

- (i) There exists an S-tree (T, α) such that $\alpha: \vec{E}(T) \to \vec{S}$ is an isomorphism between separation systems;
- (ii) \vec{S} contains no chain of order-type $\omega + 1$.

4.2. N_k is a set of fundamental cuts. The following theorem clearly implies that N_k is the set of fundamental cuts of a tree-cut decomposition of G that decomposes G into its k-edge-blocks:

Theorem 4.3. Let G be any connected graph and $k \in \mathbb{N}$. Every nested set of bonds of G of order less than k is the set of fundamental cuts of some tree-cut decomposition of G.

Proof. Let G be any connected graph, $k \in \mathbb{N}$, and let B be any nested set of bonds of G of order less than k. We write S for the set of bond-separations which correspond to the bonds in B.

First, we wish to use Theorem 4.2 to find an S-tree (T, α) such that $\alpha : \vec{E}(T) \to \vec{S}$ is an isomorphism. For this, it suffices to show that B cannot contain pairwise distinct bonds $F_0, F_1, \ldots, F_{\omega}$ such that each bond F_{α} has a side A_{α} with $A_{\alpha} \subsetneq A_{\beta}$ for all $\alpha < \beta \leq \omega$. This is immediate from Corollary 2.2.

Second, we wish to find a tree-cut decomposition (T, \mathcal{X}) whose fundamental cuts are precisely equal to the bonds in B. We define the parts X_t of (T, \mathcal{X}) by letting

$$X_t := \bigcap \{ D \mid (C, D) = \alpha(x, t) \text{ where } xt \in E(T) \}.$$

Then clearly the parts X_t are pairwise disjoint. To see that $\bigcup_t X_t$ includes the whole vertex set of G, consider any vertex $v \in V(G)$. We orient each edge $t_1t_2 \in T$ towards the t_i with $v \in D$ for $(C, D) = \alpha(t_{3-i}, t_i)$. By Corollary 2.2 we may let t be the last node of a maximal directed path in T; then all the edges of T at tare oriented towards t, and $v \in X_t$ follows. Therefore, \mathcal{X} is a near-partition of V(G). It is straightforward to see that B is the set of fundamental cuts of (T, \mathcal{X}) .

4.3. N is not a set of fundamental cuts. Finally, we show that there exists a graph G that has no nested set of cuts which, on the one hand, distinguishes all the edge-blocks of G efficiently, and on the other hand, is the set of fundamental cuts of some tree-cut decomposition.

Example 4.4. This example is a variation of [20, Example 4.9]. Consider the locally finite graph displayed in Figure 2. This graph G is constructed as follows. For every $n \in \mathbb{N}_{\geq 1}$ we pick a copy of $K^{2^{n+2}}$ together with n + 2 additional vertices w_1^n, \ldots, w_{n+2}^n . Then we select 2^n vertices of the $K^{2^{n+2}}$ and call them

FIGURE 2. The only cut that efficiently distinguishes the two edge-blocks defined by K^{64} and by K^{128} is drawn in green.

 $u_1^n, \ldots, u_{2^n}^n$. Furthermore, we select 2^{n+1} vertices of the $K^{2^{n+2}}$, other than the previously chosen u_i^n , and call them $v_1^n, \ldots, v_{2^{n+1}}^n$. Now we add all the red edges $v_i^n u_i^{n+1}$, all the blue edges $w_i^n w_j^{n+1}$, and if $n \ge 2$ we also add the black edge $u_1^n w_1^n$. Finally, we disjointly add one copy of K^{10} and join one vertex v_1^0 of this K^{10} to u_1^1 and u_2^1 ; and we select another vertex $w_1^0 \in K^{10}$ distinct from v_1^0 and add all edges $w_1^0 w_i^1$. This completes the construction.

Now the vertex sets of the chosen $K^{2^{n+2}}$ are $(2^{n+2}-1)$ -edge-blocks B_n . The only cut-separation that efficiently distinguishes B_n and B_{n+1} is $F_n := \{\bigcup_{k=1}^n B_n, V \setminus \bigcup_{k=1}^n B_n\}$. Additionally, the vertex set of the K^{10} is a 9-edge-block B_0 . The only cut-separation that efficiently distinguishes B_0 and B_1 is $F_0 := \{B_0, V \setminus B_0\}$. Therefore, N(G) must contain all the cuts corresponding to the cut-separations F_n $(n \in \mathbb{N})$. But the cut-separations F_n define an $(\omega + 1)$ -chain

$$(B_1, V \smallsetminus B_1) < (B_1 \cup B_2, V \smallsetminus (B_1 \cup B_2)) < \dots < (V \smallsetminus B_0, B_0),$$

so N(G) cannot be equal to the set of fundamental cuts of a tree cut-decomposition of G by Theorem 4.2.

5. A Remark on ∞ -edge-blocks

By the second property of our nested set N(G), we find a tree-cut decomposition of any connected graph Ginto its k-edge-blocks, one for every $k \in \mathbb{N}$. But for $k = \infty$, such a decomposition does not in general exist, e.g., consider Example 4.4 with each K^n of the graph replaced by K^{\aleph_0} (or any other infinitely edgeconnected graph). The reason why, however, is not that there are no meaningful tree-cut decompositions of G into its ∞ -edge-blocks, but that we considered only those decompositions whose sets of fundamental cuts are equal to N(G). If we drop this requirement, then we find tree-cut decompositions of G into its ∞ -edge-blocks, meaningful in the sense that all their fundamental cuts are finite. Let us call a graph *finitely separable* if any two of its vertices can be separated by finitely many edges. And let us call a spanning tree, respectively a tree-cut decomposition, *finitely separating* if all its fundamental cuts are finite. The following theorem has been introduced in [1] as Theorem 3.9, and it is Theorem 5.1 in [28]:

Theorem 5.1 ([1]). Every finitely separable connected graph has a finitely separating spanning tree.

If G is any connected graph, then the graph \tilde{G} obtained from G by collapsing every ∞ -edge-block to a single vertex is finitely separable and connected. Hence \tilde{G} has a finitely separating spanning tree by the theorem, and this tree is easily translated to a finitely separating tree-cut decomposition of G, even with all parts non-empty:

Theorem 5.2 ([28]). Every connected graph has a finitely separating tree-cut decomposition into its ∞ -edge-blocks.

This result, phrased in terms of S-trees, is extensively used in [28] to study infinite edge-connectivity.

References

- C. Bürger and J. Kurkofka, Duality theorems for stars and combs III: Undominated combs (2020), available at arXiv:2004.00592. Submitted. ^{↑5}, 5.1
- [2] J. Carmesin, A short proof that every finite graph has a tree-decomposition displaying its tangles, European Journal of Combinatorics 58 (2016), 61–65, DOI 10.1016/j.ejc.2016.04.007, available at arXiv:1511.02734. MR3530620 ↑1
- J. Carmesin, R. Diestel, M. Hamann and F. Hundertmark, Canonical tree-decompositions of finite graphs I. Existence and algorithms, J. Combin. Theory (Series B) 116 (2016), 1–24, DOI 10.1016/j.jctb.2014.04.001, available at arXiv:1305.4668. MR3425235 ↑1
- [4] _____, Canonical tree-decompositions of finite graphs II. Essential parts, J. Combin. Theory (Series B) 118 (2016), 268–283, DOI 10.1016/j.jctb.2014.12.009, available at arXiv:1305.4909. MR3471852 [↑]1
- [5] _____, k-Blocks: A Connectivity Invariant for Graphs, SIAM Journal on Discrete Mathematics 28 (2014), no. 4, 1876-1891, DOI 10.1137/130923646, available at arXiv:1305.4557. [↑]1
- [6] J. Carmesin, R. Diestel, F. Hundertmark and M. Stein, Connectivity and tree structure in finite graphs, Combinatorica 34 (2014), no. 1, 11–46, DOI 10.1007/s00493-014-2898-5, available at arXiv:1105.1611. MR3213840 ↑1
- [7] J. Carmesin, M. Hamann and B. Miraftab, Canonical trees of tree-decompositions (2020), available at arXiv:2002.12030.
 Submitted. ↑1
- [8] R. Diestel, Abstract Separation Systems, Order 35 (2018), no. 1, 157–170, DOI 10.1007/s11083-017-9424-5, available at arXiv:1406.3797v6. MR3774512 ↑4.1
- [9] _____, Graph Theory, 5th, Springer, 2016. ¹2, 4.1, 4.1, 1
- [10] _____, Tree Sets, Order 35 (2018), no. 1, 171–192, DOI 10.1007/s11083-017-9425-4, available at arXiv:1512.03781. ↑4.1
- [11] R. Diestel, P. Eberenz and J. Erde, Duality Theorems for Blocks and Tangles in Graphs, SIAM Journal on Discrete Mathematics 31 (2017), 1514–1528, DOI 10.1137/16M1077763, available at arXiv:1605.09139. MR3670715 ↑1
- [12] R. Diestel, J. Erde and D. Weißauer, Structural submodularity and tangles in abstract separation systems, J. Combin. Theory (Series A) 167 (2019), 155–180, DOI 10.1016/j.jcta.2019.05.001, available at arXiv:1805.01439. MR3950083 [↑]1
- [13] R. Diestel and S. Oum, Tangle-tree duality in abstract separation systems, Advances in Mathematics, posted on 2020, 107470, DOI 10.1016/j.aim.2020.107470, available at arXiv:1701.02509. ↑1
- [14] R. Diestel and S. Oum, Tangle-Tree Duality: In Graphs, Matroids And Beyond, Combinatorica **39** (2019), 879—910, DOI 10.1007/s00493-019-3798-5, available at arXiv:1701.02651. MR4015355 ↑1
- [15] R. Diestel and G. Whittle, Tangles and the Mona Lisa (2016), available at arXiv:1603.06652. Submitted. ↑1
- [16] R. Diestel, F. Hundertmark and S. Lemanczyk, Profiles of separations: in graphs, matroids, and beyond, Combinatorica 39 (2019), no. 1, 37–75, DOI 10.1007/s00493-017-3595-y, available at arXiv:1110.6207. MR3936191 ↑1
- [17] M. Dunwoody and B. Krön, Vertex Cuts, Journal of Graph Theory 80 (2014), no. 2, 136—171, DOI 10.1002/jgt.21844. MR3385727 ↑1
- [18] C. Elbracht and J. Kneip, A canonical tree-of-tangles theorem for submodular separation systems (2020), available at arXiv:2009.02091. Submitted. $\uparrow 1$
- [19] C. Elbracht, J. Kneip and M. Teegen, Trees of tangles in abstract separation systems (2019), available at arXiv:1909.09030.
 Submitted. ↑1
- [20] _____, Trees of tangles in infinite separation systems (2019), available at arXiv:2005.12122. Submitted. \uparrow 1, 2.2, 2.2, 2.3, 4.4

- [21] A.K. Elm and J. Kurkofka, A tree-of-tangles theorem for infinite tangles (2020), available at arXiv:2003.02535. Submitted. $\uparrow 1$
- [22] J. Erde, Refining a Tree-Decomposition which Distinguishes Tangles, SIAM Journal on Discrete Mathematics 31 (2017), no. 3, 1529–1551, DOI 10.1137/16M1059539, available at arXiv:1512.02499. [↑]1
- [23] J. Geelen, B. Gerards, N. Robertson and G. Whittle, Obstructions to branch-decomposition of matroids, J. Combin. Theory (Series B) 96 (2006), no. 4, 560–570, DOI 10.1016/j.jctb.2005.11.001. MR2232391 ↑1
- [24] J. Geelen, B. Gerards and G. Whittle, Tangles, tree-decompositions and grids in matroids, J. Combin. Theory (Series B) 99 (2009), no. 4, 657–667, DOI 10.1016/j.jctb.2007.10.008. [↑]1
- [25] J.P. Gollin and J. Kneip, *Representations of Infinite Tree Sets*, Order, posted on 2020, DOI 10.1007/s11083-020-09529-0, available at arXiv:1908.10327. ↑4.1
- [26] M. Grohe, Quasi-4-Connected Components, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016), 2016, pp. 8:1–8:13, DOI 10.4230/LIPIcs.ICALP.2016.8, available at arXiv:1602.04505. ↑1
- [27] R. Halin, Tree-partitions of infinite graphs, Disc. Math. 97 (1991), no. 1, 203–217, DOI 10.1016/0012-365X(91)90436-6.
 MR1140802 ↑1
- [28] J. Kurkofka, Every infinitely edge-connected graph contains the Farey graph or $T_{\aleph_0} * t$ as a minor (2020), available at arXiv:2004.06710. Submitted. $\uparrow 5, 5.2, 5$
- [29] N. Robertson and P.D. Seymour, Graph minors. X. Obstructions to tree-decomposition, J. Combin. Theory (Series B) 52 (1991), no. 2, 153–190, DOI 10.1016/0095-8956(91)90061-N. MR1110468 ↑1
- [30] D. Seese, Tree-partite graphs and the complexity of algorithms, Fundamentals of Computation Theory, 1985, pp. 412–421, DOI 10.1007/BFb0028825. ↑1
- [31] W. Tutte, Graph Theory, Addison-Wesley, 1984. [↑]1
- [32] P. Wollan, The structure of graphs not admitting a fixed immersion, J. Combin. Theory (Series B) 110 (2015), 47–66, DOI 10.1016/j.jctb.2014.07.003. ↑1

UNIVERSITÄT HAMBURG, DEPARTMENT OF MATHEMATICS, BUNDESSTRASSE 55 (GEOMATIKUM), 20146 HAMBURG, GERMANY *Email address*: {christian.elbracht, jan.kurkofka, maximilian.teegen}@uni-hamburg.de