EDGE-CONNECTIVITY AND TREE-STRUCTURE IN FINITE AND INFINITE GRAPHS

CHRISTIAN ELBRACHT, JAN KURKOFKA, AND MAXIMILIAN TEEGEN

Abstract

We show that every graph admits a canonical tree-like decomposition into its k-edge-connected pieces for all $k \in \mathbb{N} \cup\{\infty\}$ simultaneously.

1. Introduction

Finding a tree-like decomposition of any finite graph into its ' k-vertex-connected pieces', for just one given $k \in \mathbb{N}$ or all $k \in \mathbb{N}$ at once, has been a longstanding quest in graph theory until recently, when it was solved completely by Diestel, Hundertmark and Lemanczyk [16]. One of the complications was that there are many competing notions of what a ' k-vertex-connected piece' of a graph should be. Instead of providing a dozen independent solutions for the dozen different notions of ' k-vertex-connected pieces' that are in use, the ultimate solution deals with all these notions at once. Related results can be found in [2-7,11-24, 26, 29, 31].

If we consider edge-connectivity instead of vertex-connectivity, however, there does exist a single notion of ' k-edge-connected pieces' that undeniably is the most natural one. Let $k \in \mathbb{N} \cup\{\infty\}$ and let G be any connected graph, possibly infinite. We say that two vertices u, v are $<k$-inseparable in G if they cannot be separated in G by fewer than k edges. This defines an equivalence relation on the vertex set of G. Its equivalence classes are the ' k-edge-connected pieces' of G, its k-edge-blocks. A set of vertices of G is an $e d g e-b l o c k$ if it is a k-edge-block for some k. Note that two edge-blocks are either disjoint or one contains the other. In this paper we find a canonical tree-like decomposition of any connected graph, finite or infinite, into its k-edge-blocks-for all $k \in \mathbb{N} \cup\{\infty\}$ simultaneously. To state our result, we only need a few intuitive definitions.

An edge set $F \subseteq E(G)$ distinguishes two edge-blocks of G, not necessarily k-edge-blocks for the same k, if they are included in distinct components of $G-F$. An edge set F distinguishes two edge-blocks efficiently if it does so with least possible size. Note that if F distinguishes two edge-blocks efficiently, then F must be a bond, a cut with connected sides. A set B of bonds distinguishes some set of edge-blocks of G efficiently if every two disjoint edge-blocks in this set are distinguished efficiently by a bond in B. Two cuts F_{1}, F_{2} of G are nested if F_{1} has a side V_{1} and F_{2} has a side V_{2} such that $V_{1} \subseteq V_{2}$. Note that this is symmetric. The fundamental cuts of a spanning tree, for example, are (pairwise) nested. Our main result reads as follows:

Theorem 1. Every connected graph G has a nested set of bonds that efficiently distinguishes all the edgeblocks of G.

The nested sets $N=N(G)$ that we construct, one for every G, have two strong additional properties:

- They are canonical in that they are invariant under isomorphisms: if $\phi: G \rightarrow G^{\prime}$ is a graphisomorphism, then $\phi(N(G))=N(\phi(G))$.
- For every $k \in \mathbb{N}$, the subset $N_{k} \subseteq N$ formed by the bonds of size less than k is equal to the set of fundamental cuts of a tree-cut decomposition of G that decomposes G into its k-edge-blocks.

Tree-cut decompositions are decompositions of graphs similar to tree-decompositions but based on edgecuts rather than vertex-separators. They have been introduced by Wollan [32], and they are more general than the 'tree-partitions' introduced by Seese [30] and by Halin [27]; see Section 4.

[^0]The second additional property above is best possible in the sense that N_{k} cannot be replaced with N : there exists a graph G (see Example 4.4) that has no nested set of cuts which, on the one hand, distinguishes all the edge-blocks of G efficiently, and on the other hand, is the set of fundamental cuts of some tree-cut decomposition. (This is because the 'tree-structure' defined by a nested set of cuts may have limit points, and hence not be representable by a graph-theoretical tree.)

This paper is organised as follows. In Section 2 we introduce the tools and terminology that we need. In Section 3 we prove our main result, Theorem 1, and we show that we obtain a canonical set N. In Section 4 we relate each N_{k} to a tree-cut decomposition. In Section 5 we remark a fact about ∞-edge-blocks.

2. Tools and terminology

We use the graph-theoretic notation of Diestel's book [9]. Throughout this paper, $G=(V, E)$ denotes any connected graph, finite or infinite. The following lemma is well known [9, Exercise 8.12]; we provide a proof for the reader's convenience.

Lemma 2.1. Every edge of a graph lies in only finitely many bonds of size k of that graph, for any $k \in \mathbb{N}$.
Proof. Let e be any edge of a graph G, and suppose for a contradiction that e lies in infinitely many distinct bonds B_{0}, B_{1}, \ldots of size k, say. Let F be an inclusionwise maximal set of edges of G such that F is included in B_{n} for infinitely many n (all n, without loss of generality). Then $|F|<k$ because the bonds are distinct, and any bond $B_{n} \supsetneq F$ gives rise to a path P in $G-F$ that links the endvertices of e. Now all the infinitely many bonds B_{n} must contain an edge of the finite path P. But by the choice of F, each edge of P lies in only finitely many B_{n}, a contradiction.

Corollary 2.2. Let G be any connected graph, $k \in \mathbb{N}$, and let F_{0}, F_{1}, \ldots be infinitely many distinct bonds of G of size at most k such that each bond F_{n} has a side A_{n} with $A_{n} \subsetneq A_{m}$ for all $n<m$. Then $\bigcup_{n \in \mathbb{N}} A_{n}=V$.

Proof. If the inclusion is proper, then any $A_{0}-\left(V \backslash \bigcup_{n} A_{n}\right)$ path in G admits an edge that lies in infinitely many F_{n}, contradicting Lemma 2.1.
2.1. Cuts, bonds and separations. The order of a cut is its size. A cut-separation of a graph G is a bipartition $\{A, B\}$ of the vertex set of G, and it induces the cut $E(A, B)$. Then the order of the cut $E(A, B)$ is also the order of $\{A, B\}$. Recall that in a connected graph, every cut is induced by a unique cut-separation in this way, to which it corresponds. A bond-separation of G is a cut-separation that induces a bond of G, a cut with connected sides. We say that a cut-separation distinguishes two edge-blocks (efficiently) if its corresponding cut does, and we call two cut-separations nested if their corresponding cuts are nested. Thus, two cut-separations $\{A, B\}$ and $\{C, D\}$ are nested if one of the four inclusions $A \subseteq C$, $A \subseteq D, B \subseteq C$ or $B \subseteq D$ holds.
2.2. Key tool. The proof of our main result relies on a result from [20]. To state it, we shall need the following definitions. Let \mathcal{A} be some set and \sim a reflexive and symmetric binary relation on \mathcal{A}. We say that two elements a and b of \mathcal{A} are nested if $a \sim b$ and two elements of \mathcal{A} which are not nested cross. A subset of \mathcal{A} is called nested if its elements are pairwise nested. In our setting, \mathcal{A} will be the set of all the bond-separations of a connected graph G that efficiently distinguish some edge-blocks of G, and \sim will encode 'being nested' for bond-separations.

Given $a, b \in \mathcal{A}$, we call $c \in \mathcal{A}$ a corner of a and b if every element of \mathcal{A} which is nested with both a and b is also nested with c. When $a=\{A, B\}$ and $b=\{C, D\}$ are two bond-separations, then c will usually
be one of the following four possible corners: either $\{A \cap C, B \cup D\},\{A \cap D, B \cup C\},\{B \cap D, A \cup C\}$ or $\{B \cap C, A \cup D\}$. These are the four possibilities of how a new cut-separation can be built from $\{A, B\}$ and $\{C, D\}$ using just ' \cup ' and ' \cap '. Note that sometimes an intersection may be empty so some of the four possibilities may not be valid cut-separations; and sometimes a possibility is a cut-separation but not an element of \mathcal{A}. We will see in Lemma 3.2 that every possibility that happens to lie in \mathcal{A} is already a corner of $\{A, B\}$ and $\{C, D\}$, provided that $\{A, B\}$ and $\{C, D\}$ cross.

Consider a family $\left(\mathcal{A}_{i} \mid i \in I\right)$ of non-empty subsets of \mathcal{A} and some function $|\cdot|: I \rightarrow \mathbb{N}$, where I is a possibly infinite index set. We call $|i|$ the order of the elements of \mathcal{A}_{i}. We will consider I to be the collection of all the unordered pairs formed by two disjoint edge-blocks of G, and each \mathcal{A}_{i} will consist of all the bond-separations of G that efficiently distinguish the two edge-blocks forming the pair i. Then every \mathcal{A}_{i} will be non-empty because the edge-blocks forming i are disjoint. Our choice for $|i|$ will be the unique natural number that is the order of all the bond-separations in \mathcal{A}_{i}. Note that each of the two edge-blocks forming i will be a k-edge-block for some $k>|i|$.

When we wish to prove Theorem 1 without its additional properties, then it suffices to find a subset $N \subseteq \mathcal{A}$ that meets each \mathcal{A}_{i} and that is nested. One of the main results of [20] states that we can find N if the setup of the sets \mathcal{A}_{i} and their order function $|\cdot|$ satisfies a number of properties. The result can be applied even when I is infinite, and moreover it ensures that N is 'canonical' for the given setup. To state the properties and the result, we need one more definition.

The k-crossing number of a, for an $a \in \mathcal{A}$ and $k \in \mathbb{N}$, is the number of elements of \mathcal{A} that cross a and lie in some \mathcal{A}_{i} with $|i|=k$. Note that in our case, every bond-separation of order k can only possibly lie in sets \mathcal{A}_{i} with $|i|=k$. Thus, the k-crossing number of a bond-separation or arbitrary finite order will be the number of efficiently distinguishing bond-separations of order k crossing it.

We say that the family $\left(\mathcal{A}_{i} \mid i \in I\right)$ thinly splinters if it satisfies the following three properties:
(i) For every $i \in I$ all elements of \mathcal{A}_{i} have finite k-crossing number for all $k \leq|i|$.
(ii) If $a_{i} \in \mathcal{A}_{i}$ and $a_{j} \in \mathcal{A}_{j}$ cross with $|i|<|j|$, then \mathcal{A}_{j} contains some corner of a_{i} and a_{j} that is nested with a_{i}.
(iii) If $a_{i} \in \mathcal{A}_{i}$ and $a_{j} \in \mathcal{A}_{j}$ cross with $|i|=|j|=k \in \mathbb{N}$, then either \mathcal{A}_{i} contains a corner of a_{i} and a_{j} with strictly lower k-crossing number than a_{i}, or else \mathcal{A}_{j} contains a corner of a_{i} and a_{j} with strictly lower k-crossing number than a_{j}.
The following theorem from [20] will be the key ingredient for our proof of Theorem 1:
Theorem 2.3 ([20, Theorem 1.2]). If $\left(\mathcal{A}_{i} \mid i \in I\right)$ thinly splinters with respect to some reflexive symmetric relation \sim on $\mathcal{A}:=\bigcup_{i \in I} \mathcal{A}_{i}$, then there is a set $N=N\left(\left(\mathcal{A}_{i} \mid i \in I\right)\right) \subseteq \mathcal{A}$ which meets every \mathcal{A}_{i} and is nested, i.e., $n_{1} \sim n_{2}$ for all $n_{1}, n_{2} \in N$. Moreover, this set N can be chosen invariant under isomorphisms: if ϕ is an isomorphism between (\mathcal{A}, \sim) and $\left(\mathcal{A}^{\prime}, \sim^{\prime}\right)$, then we have $N\left(\left(\phi\left(\mathcal{A}_{i}\right) \mid i \in I\right)\right)=\phi\left(N\left(\left(\mathcal{A}_{i} \mid i \in I\right)\right)\right)$.

3. Proof of Theorem 1

Let G be any connected graph, possibly infinite, and consider the set \mathcal{A} with the relation \sim of 'being nested', the family $\left(\mathcal{A}_{i} \mid i \in I\right)$ and the function $|\cdot|$, all defined with regard to the efficiently distinguishing bond-separations of G like in Section 2.2. Our aim is to employ Theorem 2.3 to deduce Theorem 1. In order to do that, we first have to verify that $\left(\mathcal{A}_{i} \mid i \in I\right)$ thinly splinters. To this end, we verify all the three properties (i)-(iii) below. The following lemma clearly implies property (i):

Lemma 3.1. Every finite-order bond-separation of a graph G is crossed by only finitely many bond-separations of G of order at most k, for any given $k \in \mathbb{N}$.

Proof. Our proof starts with an observation. If two bond-separations $\{A, B\}$ and $\left\{A^{\prime}, B^{\prime}\right\}$ cross, then A^{\prime} contains a vertex from A and a vertex from B. Let $v \in A^{\prime} \cap A$ and $w \in A^{\prime} \cap B$. Since $G\left[A^{\prime}\right]$ is connected, there exists a path from v to w in $G\left[A^{\prime}\right]$. This path, and thus $G\left[A^{\prime}\right]$, must contain an edge from A to B. Similarly, $G\left[B^{\prime}\right]$ must contain an edge from A to B.

Now suppose for a contradiction that there are infinitely many bond-separations of order at most a given $k \in \mathbb{N}$, which all cross some finite-order bond-separation $\{A, B\}$. Without loss of generality, all the crossing bond-separations have order k. Using our observation, the pigeon-hole principle and the finite order of $\{A, B\}$, we find two edges $e, f \in E(A, B)$ and infinitely many bond-separations $\left\{A_{0}, B_{0}\right\},\left\{A_{1}, B_{1}\right\}, \ldots$ that all cross $\{A, B\}$ so that $e \in G\left[A_{n}\right]$ and $f \in G\left[B_{n}\right]$ for all $n \in \mathbb{N}$. Let P be a path in G that links an endvertex v of e to an endvertex w of f. Now v is contained in all the A_{n} and w is contained in all the B_{n}, thus for every $\left\{A_{n}, B_{n}\right\}$ there exists an edge of P with one end in A_{n} and the other in B_{n}. However, every $\left\{A_{n}, B_{n}\right\}$ corresponds to a bond of size k of G and, again by the pigeon-hole principle, infinitely many of theses bonds must contain the same edge of P. This contradicts Lemma 2.1.

Next, to show the second property, we need the following lemma:
Lemma 3.2. If two cut-separations $\left\{A_{1}, B_{1}\right\}$ and $\left\{A_{2}, B_{2}\right\}$ cross, and a third cut-separation $\{X, Y\}$ is nested with both $\left\{A_{1}, B_{1}\right\}$ and $\left\{A_{2}, B_{2}\right\}$, then $\{X, Y\}$ is nested with $\left\{A_{1} \cap A_{2}, B_{1} \cup B_{2}\right\}$ (provided that this is a cut-separation).

Proof. As $\{X, Y\}$ is a cut-separation that is nested with $\left\{A_{1}, B_{1}\right\}$ and $\left\{A_{2}, B_{2}\right\}$, either X or Y is a subset of B_{1} or B_{2}, in which case it is immediate that $\{X, Y\}$ is nested with $\left\{A_{1} \cap A_{2}, B_{1} \cup B_{2}\right\}$ as desired, or, one of X and Y is a subset of A_{1} and one of X and Y is a subset of A_{2}. However, since $A_{1} \cup A_{2} \neq V(G)$ (as $\left\{A_{1}, B_{1}\right\}$ and $\left\{A_{2}, B_{2}\right\}$ cross) it needs to be the case that either $X \subseteq A_{1} \cap A_{2}$ or $Y \subseteq A_{1} \cap A_{2}$, so in either case $\{X, Y\}$ is nested with $\left\{A_{1} \cap A_{2}, B_{1} \cup B_{2}\right\}$ as desired.

Using this lemma, we can now show property (ii):
Lemma 3.3. If $\{A, B\} \in \mathcal{A}_{i}$ and $\{C, D\} \in \mathcal{A}_{j}$ cross with $|i|<|j|$, then \mathcal{A}_{j} contains some corner of $\{A, B\}$ and $\{C, D\}$ that is nested with $\{A, B\}$.

Proof. Let us denote the two edge-blocks in j as U and U^{\prime} so that $U \subseteq C$ and $U^{\prime} \subseteq D$. Since the order of $\{A, B\}$ is less than $|j|$, we may assume without loss of generality that $U, U^{\prime} \subseteq A$. We claim that either $\{A \cap C, B \cup D\}$ or $\{A \cap D, B \cup C\}$ is the desired corner in \mathcal{A}_{j}, and we refer to them as corner candidates. Both are cut-separations that distinguish U and U^{\prime}, and both are nested with $\{A, B\}$. Furthermore, by Lemma 3.2 , every cut-separation that is nested with both $\{A, B\}$ and $\{C, D\}$ is also nested with both corner candidates. It remains to show that at least one of the two corner candidates has order at most $|j|$, because then it lies in \mathcal{A}_{j} as desired.

Let us assume for a contradiction that both corner candidates have order greater than $|j|$. Then the two inequalities

$$
\begin{aligned}
& |E(A \cap C, B \cup D)|+|E(B \cap D, A \cup C)| \leq|E(A, B)|+|E(C, D)| \\
& |E(A \cap D, B \cup C)|+|E(B \cap C, A \cup D)| \leq|E(A, B)|+|E(C, D)|
\end{aligned}
$$

imply

$$
|E(B \cap D, A \cup C)|<|i| \quad \text { and } \quad|E(B \cap C, A \cup D)|<|i|
$$

Recall that the edge-blocks forming the pair i are k-edge-blocks for some values k greater than $|i|$. One of the edge-blocks of the pair i is contained in B, and due to the latter two inequalities, this edge-block must be contained entirely either in $B \cap D$ or in $B \cap C$. But then either $\{B \cap D, A \cup C\}$ or $\{B \cap C, A \cup D\}$ is a cut-separation of order less than $|i|$ that distinguishes the two edge-blocks forming the pair i, contradicting the fact that an order of at least $|i|$ is required for that.

Finally, to show the third property, we need the following lemma:
Lemma 3.4. Let $\left\{A_{1}, B_{1}\right\}$ and $\left\{A_{2}, B_{2}\right\}$ be crossing cut-separations such that both $\left\{A_{1} \cap A_{2}, B_{1} \cup B_{2}\right\}$ and $\left\{A_{1} \cup A_{2}, B_{1} \cap B_{2}\right\}$ are cut-separations as well. Then every cut-separation that crosses both $\left\{A_{1} \cap A_{2}, B_{1} \cup B_{2}\right\}$ and $\left\{A_{1} \cup A_{2}, B_{1} \cap B_{2}\right\}$ must also cross both $\left\{A_{1}, B_{1}\right\}$ and $\left\{A_{2}, B_{2}\right\}$.

Proof. Consider any cut-separation $\{X, Y\}$ that crosses both $\left\{A_{1} \cap A_{2}, B_{1} \cup B_{2}\right\}$ and $\left\{A_{1} \cup A_{2}, B_{1} \cap B_{2}\right\}$. Since $\{X, Y\}$ crosses $\left\{A_{1} \cap A_{2}, B_{1} \cup B_{2}\right\}$, both X and Y contain a vertex from $A_{1} \cap A_{2}$. Since $\{X, Y\}$ crosses $\left\{A_{1} \cup A_{2}, B_{1} \cap B_{2}\right\}$, both X and Y contain a vertex from $B_{1} \cap B_{2}$. Hence $\{X, Y\}$ crosses both $\left\{A_{1}, B_{1}\right\}$ and $\left\{A_{2}, B_{2}\right\}$.

Let us now show property (iii):
Lemma 3.5. If $\{A, B\} \in \mathcal{A}_{i}$ and $\{C, D\} \in \mathcal{A}_{j}$ cross with $|i|=|j|=k \in \mathbb{N}$, then either \mathcal{A}_{i} contains a corner of $\{A, B\}$ and $\{C, D\}$ with strictly lower k-crossing number than $\{A, B\}$, or else \mathcal{A}_{j} contains a corner of $\{A, B\}$ and $\{C, D\}$ with strictly lower k-crossing number than $\{C, D\}$.

Proof. Let us assume without loss of generality that the k-crossing number of $\{A, B\}$ is less than or equal to the k-crossing number of $\{C, D\}$, and let us denote the edge-blocks in j as U and U^{\prime} so that $U \subseteq C$ and $U^{\prime} \subseteq D$. We consider two cases.

In the first case, $\{A, B\}$ distinguishes the two edge-blocks U and U^{\prime}. Hence $U \subseteq A \cap C$ and $U^{\prime} \subseteq B \cap D$, say. Then both $\{A \cap C, B \cup D\}$ and $\{B \cap D, A \cup C\}$ distinguish the two edge-blocks U and U^{\prime} that form the pair j, and so they have order at least $|j|=k$. Furthermore, we have

$$
\begin{equation*}
|E(A \cap C, B \cup D)|+|E(B \cap D, A \cup C)| \leq|E(A, B)|+|E(C, D)|=2 k \tag{1}
\end{equation*}
$$

so both $\{A \cap C, B \cup D\}$ and $\{B \cap D, A \cup C\}$ must have order exactly k. In particular, both are contained in \mathcal{A}_{j}, and they are corners of $\{A, B\}$ and $\{C, D\}$ by Lemma 3.2. Next, we assert that the k-crossing numbers of $\{A \cap C, B \cup D\}$ and $\{B \cap D, A \cup C\}$ in sum are less than the sum of the k-crossing numbers of $\{A, B\}$ and $\{C, D\}$. Indeed, all the k-crossing numbers involved are finite by property (i), and the two cut-separations $\{A, B\}$ and $\{C, D\}$ cross which allows us to deduce the desired inequality between the sums by Lemmas 3.2 and 3.4, as follows:

- by Lemma 3.2, every $\{X, Y\} \in \mathcal{A}$ of order k that crosses at least one of $\{A \cap C, B \cup D\}$ and $\{B \cap D, A \cup C\}$ must cross at least one of $\{A, B\}$ and $\{C, D\}$; and
- by Lemma 3.4, every $\{X, Y\} \in \mathcal{A}$ of order k that crosses both $\{A \cap C, B \cup D\}$ and $\{B \cap D, A \cup C\}$ must cross both $\{A, B\}$ and $\{C, D\}$.

But then the strict inequality between the sums, plus our initial assumption that the k-crossing number of $\{A, B\}$ is less than or equal to that of $\{C, D\}$, implies that one of $\{A \cap C, B \cup D\}$ and $\{B \cap D, A \cup C\}$ must have a k-crossing number less than the one of $\{C, D\}$, as desired.

In the second case, $\{A, B\}$ does not distinguish the two edge-blocks U and U^{\prime}. Recall that all the edge-blocks in the two pairs i and j are ℓ-edge-blocks for some values $\ell>k$. Hence $U \cup U^{\prime} \subseteq A$, say. Let us denote by $U^{\prime \prime}$ the edge-block in i that is contained in B. Then either $U^{\prime \prime} \subseteq B \cap C$ or $U^{\prime \prime} \subseteq B \cap D$, say $U^{\prime \prime} \subseteq B \cap D$. In total:

$$
U \subseteq A \cap C, \quad U^{\prime} \subseteq A \cap D \text { and } U^{\prime \prime} \subseteq B \cap D
$$

Therefore, $\{A \cap C, B \cup D\}$ distinguishes the two edge-blocks U and U^{\prime} forming the pair j which imposes an order of at least k, and $\{B \cap D, A \cup C\}$ distinguishes the two edge-blocks forming the pair i which imposes an order of at least k as well. Combining these lower bounds with (1) we deduce that both $\{A \cap C, B \cup D\}$ and $\{B \cap D, A \cup C\}$ have order exactly k. In particular, they are contained in \mathcal{A}_{j} and \mathcal{A}_{i} respectively, and they are corners of $\{A, B\}$ and $\{C, D\}$ by Lemma 3.2. Repeating the final argument of the first case, we deduce from the strict inequality between the sums of the k-crossing numbers that either $\{A \cap C, B \cup D\} \in \mathcal{A}_{j}$ has strictly lower k-crossing number than $\{C, D\}$, or else $\{B \cap D, A \cup C\} \in \mathcal{A}_{i}$ has strictly lower k-crossing number than $\{A, B\}$, completing the proof.

We can now prove our main result:
Proof of Theorem 1. Let G be any connected graph. By Lemma 3.1, Lemma 3.3 and Lemma 3.5 we may apply Theorem 2.3 to the family $\left(\mathcal{A}_{i} \mid i \in I\right)$ defined at the beginning of the section. This results in the desired nested set $N(G) \subseteq \mathcal{A}$. To see that it is canonical, note that any isomorphism $\phi: G \rightarrow G^{\prime}$ induces an isomorphism between (\mathcal{A}, \sim) and $\left(\mathcal{A}^{\prime}, \sim^{\prime}\right)$, where the latter is defined like the former but with regard to G^{\prime}. Thus, by the 'moreover' part of Theorem 2.3, we indeed obtain that $\phi(N(G))=N(\phi(G))$.

4. Nested sets of bonds and tree-cut decompositions

Recall that, given a connected graph G, we denote by $N=N(G)$ the canonical set of nested bonds from Theorem 1 that efficiently distinguishes all the edge-blocks of G. Furthermore, recall that the subset $N_{k} \subseteq N$ is formed by the bonds in N of order less than k. In this section, we show that:

- For every $k \in \mathbb{N}$, the subset $N_{k} \subseteq N$ is equal to the set of fundamental cuts of a tree-cut decomposition of G that decomposes G into its k-edge-blocks.

To this end, we first introduce the notion of a tree-cut decomposition. Recall that a near-partition of a set M is a family of pairwise disjoint subsets $M_{\xi} \subseteq M$, possibly empty, such that $\bigcup_{\xi} M_{\xi}=M$.

Let G be a graph, T a tree, and let $\mathcal{X}=\left(X_{t}\right)_{t \in T}$ be a family of vertex sets $X_{t} \subseteq V(G)$ indexed by the nodes t of T. The pair (T, \mathcal{X}) is called a tree-cut decomposition of G if \mathcal{X} is a near-partition of $V(G)$. The vertex sets X_{t} are the parts or bags of the tree-cut decomposition (T, \mathcal{X}) and we say that (T, \mathcal{X}) decomposes the graph G into its non-empty parts. In this paper, we require the nodes with non-empty parts to be dense in T in that every edge of T lies on a path in T that links up two nodes with non-empty parts.

If (T, \mathcal{X}) is a tree-cut decomposition, then every edge $t_{1} t_{2}$ of its decomposition tree T induces a cut $E\left(\bigcup_{t \in T_{1}} X_{t}, \bigcup_{t \in T_{2}} X_{t}\right)$ of G where T_{1} and T_{2} are the two components of $T-t_{1} t_{2}$ with $t_{1} \in T_{1}$ and $t_{2} \in T_{2}$. Here, the nodes with non-empty parts densely lying in T ensures that both unions are non-empty, which is required of the sides of a cut. We call these induced cuts the fundamental cuts of the tree-cut
decomposition (T, \mathcal{X}). Note that unlike the fundamental cuts of a spanning tree, the fundamental cuts of a tree-cut decomposition need not be bonds.

It is important that parts of a tree-cut decomposition are allowed to be empty, as the following example demonstrates.

Example 4.1. Let the graph G arise from the disjoint union of three copies G_{1}, G_{2} and G_{3} of K^{4} by selecting one vertex $v_{i} \in G_{i}$ for all $i \in[3]$ and adding all edges $v_{i} v_{j}(i \neq j \in[3])$. Then the 3-edge-blocks of G are the three vertex sets $V\left(G_{1}\right), V\left(G_{2}\right)$ and $V\left(G_{3}\right)$. Since $N(G)$ is canonical, we have $N_{3}(G)=\left\{F_{1}, F_{2}, F_{3}\right\}$ where $F_{i}:=\left\{v_{i} v_{j} \mid j \neq i\right\}$. However, we cannot find a tree-cut decomposition (T, \mathcal{X}) of G such that, on the one hand, T is a tree on three nodes t_{1}, t_{2}, t_{3} and $X_{t_{i}}=V\left(G_{i}\right)$ for all $i \in[3]$, and on the other hand, the fundamental cuts of (T, \mathcal{X}) are precisely the bonds in $N_{3}(G)$: the decomposition tree T would then be a path of length two, and hence would induce two fundamental cuts, but $N_{3}(G)$ consists of three bonds.

To relate N_{k} to a tree-cut decomposition, we will use a theorem by Gollin and Kneip. In order to state their theorem, we need to introduce separation systems and S-trees first.
4.1. Separation systems and \boldsymbol{S}-trees. Separation systems and S-trees are two fundamental tools in graph minor theory. In this section we briefly introduce the definitions from [8-10] that we need.

A separation of a set V is an unordered pair $\{A, B\}$ such that $A \cup B=V$. The ordered pairs (A, B) and (B, A) are its orientations. Then the oriented separations of V are the orientations of its separations. The map that sends every oriented separation (A, B) to its inverse (B, A) is an involution that reverses the partial ordering

$$
(A, B) \leq(C, D): \Leftrightarrow A \subseteq C \text { and } B \supseteq D
$$

since $(A, B) \leq(C, D)$ is equivalent to $(D, C) \leq(B, A)$.
More generally, a separation system is a triple $\left(\vec{S}, \leq,{ }^{*}\right)$ where (\vec{S}, \leq) is a partially ordered set and ${ }^{*}: \vec{S} \rightarrow \vec{S}$ is an order-reversing involution. We refer to the elements of \vec{S} as oriented separations. If an oriented separation is denoted by \vec{s}, then we denote its inverse \vec{s}^{*} as \overleftarrow{s}, and vice versa. That * is orderreversing means $\vec{r} \leq \vec{s} \Leftrightarrow \overleftarrow{r} \geq \overleftarrow{s}$ for all $\vec{r}, \vec{s} \in \vec{S}$.

A separation is an unordered pair of the form $\{\vec{s}, \stackrel{s}{\}}$, and then denoted by s. Its elements \vec{s} and \overleftarrow{s} are the orientations of s. The set of all separations $\{\vec{s}, \overleftarrow{s}\} \subseteq \vec{S}$ is denoted by S. When a separation is introduced as s without specifying its elements first, we use \vec{s} and \grave{s} (arbitrarily) to refer to these elements.

Separations of sets, and their orientations, are an instance of this abstract setup if we identify $\{A, B\}$ with $\{(A, B),(B, A)\}$. Hence the cut-separations of a graph define a separation system. Here is another example: The set $\vec{E}(T):=\{(x, y) \mid x y \in E(T)\}$ of all orientations (x, y) of the edges $x y=\{x, y\}$ of a tree T forms a separation system with the involution $(x, y) \mapsto(y, x)$ and the natural partial ordering on $\vec{E}(T)$ in which $(x, y)<(u, v)$ if and only if $x y \neq u v$ and the unique $\{x, y\}-\{u, v\}$ path in T is $\dot{x} y T u \stackrel{\circ}{v}=y T u$.

An S-tree is a pair (T, α) such that T is a tree and $\alpha: \vec{E}(T) \rightarrow \vec{S}$ propagates the ordering on $\vec{E}(T)$ and commutes with inversion: that $\alpha(\vec{e}) \leq \alpha(\vec{f})$ if $\vec{e} \leq \vec{f} \in \vec{E}(T)$ and $(\alpha(\overleftarrow{e}))^{*}=\alpha(\vec{e})$ for all $\vec{e} \in \vec{E}(T)$; see Figure 1. A tree-decomposition (T, \mathcal{V}), for example, makes T into an S-tree for the set of separations it induces $[9, \S 12.5]$. Similarly, a tree-cut decomposition (T, \mathcal{X}) makes T into an S-tree for the set of cut-separations which correspond to its fundamental cuts. For oriented edges $(x, y) \in \vec{E}(T)$ we will write $\alpha(x, y)$ instead of $\alpha((x, y))$.

Figure 1. An S-tree with $\alpha(\vec{e})=(A, B) \leq(C, D)=\alpha(\vec{f})[9]$

An isomorphism between two separation systems is a bijection between their underlying sets that respects both their partial orderings and their involutions. We need the following fragment of [25, Theorem 1] by Gollin and Kneip:

Theorem 4.2. Let G be any connected graph, and let \vec{S} be any nested separation system formed by oriented cut-separations of G. Then the following assertions are equivalent:
(i) There exists an S-tree (T, α) such that $\alpha: \vec{E}(T) \rightarrow \vec{S}$ is an isomorphism between separation systems;
(ii) \vec{S} contains no chain of order-type $\omega+1$.
4.2. $\boldsymbol{N}_{\boldsymbol{k}}$ is a set of fundamental cuts. The following theorem clearly implies that N_{k} is the set of fundamental cuts of a tree-cut decomposition of G that decomposes G into its k-edge-blocks:

Theorem 4.3. Let G be any connected graph and $k \in \mathbb{N}$. Every nested set of bonds of G of order less than k is the set of fundamental cuts of some tree-cut decomposition of G.

Proof. Let G be any connected graph, $k \in \mathbb{N}$, and let B be any nested set of bonds of G of order less than k. We write S for the set of bond-separations which correspond to the bonds in B.

First, we wish to use Theorem 4.2 to find an S-tree (T, α) such that $\alpha: \vec{E}(T) \rightarrow \vec{S}$ is an isomorphism. For this, it suffices to show that B cannot contain pairwise distinct bonds $F_{0}, F_{1}, \ldots, F_{\omega}$ such that each bond F_{α} has a side A_{α} with $A_{\alpha} \subsetneq A_{\beta}$ for all $\alpha<\beta \leq \omega$. This is immediate from Corollary 2.2.

Second, we wish to find a tree-cut decomposition (T, \mathcal{X}) whose fundamental cuts are precisely equal to the bonds in B. We define the parts X_{t} of (T, \mathcal{X}) by letting

$$
X_{t}:=\bigcap\{D \mid(C, D)=\alpha(x, t) \text { where } x t \in E(T)\} .
$$

Then clearly the parts X_{t} are pairwise disjoint. To see that $\bigcup_{t} X_{t}$ includes the whole vertex set of G, consider any vertex $v \in V(G)$. We orient each edge $t_{1} t_{2} \in T$ towards the t_{i} with $v \in D$ for $(C, D)=\alpha\left(t_{3-i}, t_{i}\right)$. By Corollary 2.2 we may let t be the last node of a maximal directed path in T; then all the edges of T at t are oriented towards t, and $v \in X_{t}$ follows. Therefore, \mathcal{X} is a near-partition of $V(G)$. It is straightforward to see that B is the set of fundamental cuts of (T, \mathcal{X}).
4.3. \boldsymbol{N} is not a set of fundamental cuts. Finally, we show that there exists a graph G that has no nested set of cuts which, on the one hand, distinguishes all the edge-blocks of G efficiently, and on the other hand, is the set of fundamental cuts of some tree-cut decomposition.

Example 4.4. This example is a variation of [20, Example 4.9]. Consider the locally finite graph displayed in Figure 2. This graph G is constructed as follows. For every $n \in \mathbb{N}_{\geq 1}$ we pick a copy of $K^{2^{n+2}}$ together with $n+2$ additional vertices $w_{1}^{n}, \ldots, w_{n+2}^{n}$. Then we select 2^{n} vertices of the $K^{2^{n+2}}$ and call them

Figure 2. The only cut that efficiently distinguishes the two edge-blocks defined by K^{64} and by K^{128} is drawn in green.
$u_{1}^{n}, \ldots, u_{2^{n}}^{n}$. Furthermore, we select 2^{n+1} vertices of the $K^{2^{n+2}}$, other than the previously chosen u_{i}^{n}, and call them $v_{1}^{n}, \ldots, v_{2^{n+1}}^{n}$. Now we add all the red edges $v_{i}^{n} u_{i}^{n+1}$, all the blue edges $w_{i}^{n} w_{j}^{n+1}$, and if $n \geq 2$ we also add the black edge $u_{1}^{n} w_{1}^{n}$. Finally, we disjointly add one copy of K^{10} and join one vertex v_{1}^{0} of this K^{10} to u_{1}^{1} and u_{2}^{1}; and we select another vertex $w_{1}^{0} \in K^{10}$ distinct from v_{1}^{0} and add all edges $w_{1}^{0} w_{i}^{1}$. This completes the construction.

Now the vertex sets of the chosen $K^{2^{n+2}}$ are $\left(2^{n+2}-1\right)$-edge-blocks B_{n}. The only cut-separation that efficiently distinguishes B_{n} and B_{n+1} is $F_{n}:=\left\{\bigcup_{k=1}^{n} B_{n}, V \backslash \bigcup_{k=1}^{n} B_{n}\right\}$. Additionally, the vertex set of the K^{10} is a 9-edge-block B_{0}. The only cut-separation that efficiently distinguishes B_{0} and B_{1} is $F_{0}:=\left\{B_{0}, V \backslash B_{0}\right\}$. Therefore, $N(G)$ must contain all the cuts corresponding to the cut-separations $F_{n}(n \in \mathbb{N})$. But the cut-separations F_{n} define an $(\omega+1)$-chain

$$
\left(B_{1}, V \backslash B_{1}\right)<\left(B_{1} \cup B_{2}, V \backslash\left(B_{1} \cup B_{2}\right)\right)<\cdots<\left(V \backslash B_{0}, B_{0}\right)
$$

so $N(G)$ cannot be equal to the set of fundamental cuts of a tree cut-decomposition of G by Theorem 4.2.

5. A REMARK ON ∞-EDGE-BLOCKS

By the second property of our nested set $N(G)$, we find a tree-cut decomposition of any connected graph G into its k-edge-blocks, one for every $k \in \mathbb{N}$. But for $k=\infty$, such a decomposition does not in general exist, e.g., consider Example 4.4 with each K^{n} of the graph replaced by $K^{\aleph_{0}}$ (or any other infinitely edgeconnected graph). The reason why, however, is not that there are no meaningful tree-cut decompositions of G into its ∞-edge-blocks, but that we considered only those decompositions whose sets of fundamental cuts are equal to $N(G)$. If we drop this requirement, then we find tree-cut decompositions of G into its ∞-edge-blocks, meaningful in the sense that all their fundamental cuts are finite. Let us call a graph finitely separable if any two of its vertices can be separated by finitely many edges. And let us call a spanning tree, respectively a tree-cut decomposition, finitely separating if all its fundamental cuts are finite. The following theorem has been introduced in [1] as Theorem 3.9, and it is Theorem 5.1 in [28]:

Theorem 5.1 ([1]). Every finitely separable connected graph has a finitely separating spanning tree.

If G is any connected graph, then the graph \tilde{G} obtained from G by collapsing every ∞-edge-block to a single vertex is finitely separable and connected. Hence \tilde{G} has a finitely separating spanning tree by the theorem, and this tree is easily translated to a finitely separating tree-cut decomposition of G, even with all parts non-empty:

Theorem 5.2 ([28]). Every connected graph has a finitely separating tree-cut decomposition into its ∞-edge-blocks.

This result, phrased in terms of S-trees, is extensively used in [28] to study infinite edge-connectivity.

References

[1] C. Bürger and J. Kurkofka, Duality theorems for stars and combs III: Undominated combs (2020), available at arXiv:2004.00592. Submitted. $\uparrow 5,5.1$
[2] J. Carmesin, A short proof that every finite graph has a tree-decomposition displaying its tangles, European Journal of Combinatorics 58 (2016), 61-65, DOI 10.1016/j.ejc.2016.04.007, available at arXiv:1511.02734. MR3530620 $\uparrow 1$
[3] J. Carmesin, R. Diestel, M. Hamann and F. Hundertmark, Canonical tree-decompositions of finite graphs I. Existence and algorithms, J. Combin. Theory (Series B) 116 (2016), 1-24, DOI 10.1016/j.jctb.2014.04.001, available at arXiv:1305.4668. MR3425235 $\uparrow 1$
[4] , Canonical tree-decompositions of finite graphs II. Essential parts, J. Combin. Theory (Series B) 118 (2016), 268-283, DOI 10.1016/j.jctb.2014.12.009, available at arXiv:1305.4909. MR3471852 $\uparrow 1$
[5] _, k-Blocks: A Connectivity Invariant for Graphs, SIAM Journal on Discrete Mathematics 28 (2014), no. 4, 18761891, DOI 10.1137/130923646, available at arXiv:1305.4557. $\uparrow 1$
[6] J. Carmesin, R. Diestel, F. Hundertmark and M. Stein, Connectivity and tree structure in finite graphs, Combinatorica 34 (2014), no. 1, 11-46, DOI 10.1007/s00493-014-2898-5, available at arXiv:1105.1611. MR3213840 个1
[7] J. Carmesin, M. Hamann and B. Miraftab, Canonical trees of tree-decompositions (2020), available at arXiv:2002.12030. Submitted. $\uparrow 1$
[8] R. Diestel, Abstract Separation Systems, Order 35 (2018), no. 1, 157-170, DOI 10.1007/s11083-017-9424-5, available at arXiv:1406.3797v6. MR3774512 $\uparrow 4.1$
[9] , Graph Theory, 5th, Springer, 2016. $\uparrow 2,4.1,4.1,1$
[10] _ Tree Sets, Order 35 (2018), no. 1, 171-192, DOI 10.1007/s11083-017-9425-4, available at arXiv:1512.03781. $\uparrow 4.1$
[11] R. Diestel, P. Eberenz and J. Erde, Duality Theorems for Blocks and Tangles in Graphs, SIAM Journal on Discrete Mathematics 31 (2017), 1514-1528, DOI 10.1137/16M1077763, available at arXiv:1605.09139. MR3670715 $\uparrow 1$
[12] R. Diestel, J. Erde and D. Weißauer, Structural submodularity and tangles in abstract separation systems, J. Combin. Theory (Series A) 167 (2019), 155-180, DOI 10.1016/j.jcta.2019.05.001, available at arXiv:1805.01439. MR3950083 $\uparrow 1$
[13] R. Diestel and S. Oum, Tangle-tree duality in abstract separation systems, Advances in Mathematics, posted on 2020, 107470, DOI 10.1016/j.aim.2020.107470, available at arXiv:1701.02509. $\uparrow 1$
[14] R. Diestel and S. Oum, Tangle-Tree Duality: In Graphs, Matroids And Beyond, Combinatorica 39 (2019), 879-910, DOI 10.1007/s00493-019-3798-5, available at arXiv:1701.02651. MR4015355 $\uparrow 1$
[15] R. Diestel and G. Whittle, Tangles and the Mona Lisa (2016), available at arXiv:1603.06652. Submitted. $\uparrow 1$
[16] R. Diestel, F. Hundertmark and S. Lemanczyk, Profiles of separations: in graphs, matroids, and beyond, Combinatorica 39 (2019), no. 1, 37-75, DOI 10.1007/s00493-017-3595-y, available at arXiv:1110.6207. MR3936191 $\uparrow 1$
[17] M. Dunwoody and B. Krön, Vertex Cuts, Journal of Graph Theory 80 (2014), no. 2, 136—171, DOI 10.1002/jgt.21844. MR3385727 $\uparrow 1$
[18] C. Elbracht and J. Kneip, A canonical tree-of-tangles theorem for submodular separation systems (2020), available at arXiv:2009.02091. Submitted. $\uparrow 1$
[19] C. Elbracht, J. Kneip and M. Teegen, Trees of tangles in abstract separation systems (2019), available at arXiv:1909.09030. Submitted. $\uparrow 1$
[20] , Trees of tangles in infinite separation systems (2019), available at arXiv:2005.12122. Submitted. $\uparrow 1,2.2,2.2$, 2.3, 4.4
[21] A.K. Elm and J. Kurkofka, A tree-of-tangles theorem for infinite tangles (2020), available at arXiv:2003.02535. Submitted. $\uparrow 1$
[22] J. Erde, Refining a Tree-Decomposition which Distinguishes Tangles, SIAM Journal on Discrete Mathematics 31 (2017), no. 3, 1529-1551, DOI 10.1137/16M1059539, available at arXiv:1512.02499. $\uparrow 1$
[23] J. Geelen, B. Gerards, N. Robertson and G. Whittle, Obstructions to branch-decomposition of matroids, J. Combin. Theory (Series B) 96 (2006), no. 4, 560-570, DOI 10.1016/j.jctb.2005.11.001. MR2232391 $\uparrow 1$
[24] J. Geelen, B. Gerards and G. Whittle, Tangles, tree-decompositions and grids in matroids, J. Combin. Theory (Series B) 99 (2009), no. 4, 657-667, DOI 10.1016/j.jctb.2007.10.008. $\uparrow 1$
[25] J.P. Gollin and J. Kneip, Representations of Infinite Tree Sets, Order, posted on 2020, DOI 10.1007/s11083-020-09529-0, available at arXiv:1908.10327. $\uparrow 4.1$
[26] M. Grohe, Quasi-4-Connected Components, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016), 2016, pp. 8:1-8:13, DOI 10.4230/LIPIcs.ICALP.2016.8, available at arXiv:1602.04505. $\uparrow 1$
[27] R. Halin, Tree-partitions of infinite graphs, Disc. Math. 97 (1991), no. 1, 203-217, DOI 10.1016/0012-365X(91)90436-6. MR1140802 $\uparrow 1$
[28] J. Kurkofka, Every infinitely edge-connected graph contains the Farey graph or $T_{\aleph_{0}} * t$ as a minor (2020), available at arXiv:2004.06710. Submitted. $\uparrow 5,5.2,5$
[29] N. Robertson and P.D. Seymour, Graph minors. X. Obstructions to tree-decomposition, J. Combin. Theory (Series B) 52 (1991), no. 2, 153-190, DOI 10.1016/0095-8956(91)90061-N. MR1110468 个1
[30] D. Seese, Tree-partite graphs and the complexity of algorithms, Fundamentals of Computation Theory, 1985, pp. 412-421, DOI 10.1007/BFb0028825. $\uparrow 1$
[31] W. Tutte, Graph Theory, Addison-Wesley, 1984. $\uparrow 1$
[32] P. Wollan, The structure of graphs not admitting a fixed immersion, J. Combin. Theory (Series B) 110 (2015), 47-66, DOI 10.1016/j.jctb.2014.07.003. $\uparrow 1$

Universität Hamburg, Department of Mathematics, Bundesstrasse 55 (Geomatikum), 20146 Hamburg, Germany
Email address: \{christian.elbracht, jan.kurkofka, maximilian.teegen\}@uni-hamburg.de

[^0]: 2020 Mathematics Subject Classification. 05C40, 05C05, 05C69, 05C70, 05C83, 05C63.
 Key words and phrases. edge-connected; tree; edge-block; inseparable; distinguish efficiently; infinite.

