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Abstract: It is shown that the familiar connection between spin and 

statistics holds for massive particles carrying a non-localizable 

charge. 

In .Memoriam Prof. Vladimir :Jurko Glaser 

1. 

1. Introduction 

Since its first formulation more than forty years ago, the 

spin-statistics theorem [ 1 ] has undergone a number of refinements 

which have largely clarified its physical foundations, cf. [ 2] and 

the references quoted there. A conceptually very satisfactory deriva­

tion has been given in [ 3]. There it was shown that particles car­

rying a localizable charge, such as baryon number or strangeness, 

can only be (para-) bosons or fermions. Other statistics are ex­

cluded by the principle of locality of observables. Moreover, it 

was found that there exist local field operators (with normal space­

like commutation relations [ 4]) which generate the. particle states 

from the vacuum. Using the methods developed in [ 5] it was then 

possible to establish the familiar relation 

(-1)2s sign A I 1.11 

between the spin s and the statistics parameter A of these particles. 

It is a remarkable fact that these results can be derived from 

first principles without any a priori information on non-observable 

quantities, such as charge-carrying fields. The assumption that the 

particles carry a localizable charge is, however, crucial. This re­

quirement restricts the range of application of these results to the 

cases which were already covered by the classical arguments. 



2. 

It is the aim of the present note to extend the spin-statistics 

theorem to particles carrying a non-localizable charge {e.g. a glo­

bal gauge charge or a topological charge). In order to avoid un­

settled infrared problems
1

) we will restrict our attention to theories 

with a completely massive particle spectrum. It is then reasonable 

to assume that the single particle states are described by vectors 

in the subspace of some irreducible representation of the Poincare 

group or its covering group, respectively, and that the mass hyper­

boloid of each particle is separated by a mass gar from the rest 

of the energy-momentum spectrum in its super-selection sector. 

Using the latter assumption and the spac elike commutativity 

of observables it was shown in [ 7] that single particle states are 

local or string-like excitations of a vacuum state. A string-like 

localization is exactly what one expects from a particle carrying a 

gauge charge or a topological charge; in view of the results in 

[ 7] this is, on the other hand, the worst possible dislocalization. 

We mention as an aside that charged states with such localization 

properties have recently been constructed in a Z2 lattice gauge 

theory with matter fields ( 8]. 

The string-like localization of particles established in [ 7] 

still allows one to determine the statistics of these particles and 

iJ Note that the fundamental problem of defining the spin and sta­
tistics of infra particles is still open, cf. [ 6] and the refer­
ences quoted there. 

3. 

to construct collision states with the appropriate symmetry proper­

ties. As in the case of localizable charges only (para-) Bose- or 

F'ermi statistics can occur [ 7]; the so called infinite statistics, 

which was left open as a possibility in [ 3], has been excluded in 

[ 9 ]. So both the left hand and the right hand side of relation ( 1.1) 

are" intrinsically defined for massive particles carrying a non-

localizable charge. Hence what remains to be done is to establish 

the equality sign in this relation. 

This task is facilitated by recent developments in [ 4] which 

make possible a translation of the results in [ 7 J into a field-theo­

retic setting. For later reference we state the properties which are 

relevant to our analysis. 

States: The physical states of interest are represented by vectors 

,in some Hilbert space H. On H there exists a continuous, unitary 

representation 

(a,A) + U(a,A) I 1.21 

of the Poincare group P l• or its covering group Pi, and the trans­

lations U(a):=U(a,l) fulfil the relativistic spectrum condition (posi­

tivity of the energy). The (unique) vacuum state is represented by 

a vector n which is invariant under Poincare transformations U(a,A ), 

and to each particle type 

which the unitaries U{a, A) 

there corresponds a subspace K c H on 

' act as an irreducible representation of 



pt with mass m and spin s 
+ ' ' 

4. 

Fields: For each particle of type t there exists a family of linear 

spaces F 
1 

( S) of (bounded) operators on H which are labeled by the 

spacelike cones
2

) scR~. The operators ljl E F ($),called fields, 
' 

have the following commutation and covariance properties 

i) If S 1 and S 
2 

are space like separated and if "(! 1 E F ( S 1 ), 

' 
V2 E F

1 
(S 2 l, then 

lj!~ • "411 sign A V1 .lj!; , ( 1.31 

where A
1 

is the statistics parameter of the particle in question. 

Thus si.gn A = 1 if the particle is a (para-) boson and sign A "' -1 

' ' 
if it is a (para) fermion. 

it) If VEf(S), then 
' 

U(a,A) $ U(a,A )- 1 E F (a+A·S ), 
' 

(1.41 

where a+ A· S is the Poincare-transformed region S. We may assume 

(if necessary, after a regularization) that the operator-valued func-

2) A space like cone S c ill:~ may be visualized as a string which 

fattens. It can be represented in the form 

S=a+ UA.O, 
where a E ill:~ and l~PF.~ is some open double cone whose closure 

lies in the causal complement of the origin. 

Notation: if 5,5 1 ,5 2 are subsets of ffi. ~ and A E R we set A · S = 

= {A•s:SE5} and 5 1±5 2 = {S 1±S 2 :S 1 E51'S 2 E5 2 }. 

5. 

tions (a, A)_,. U(a,A) v U(a, A)- 1 are smooth, i.e. C 

topology. 

in the norm 

iii) Let E(A), ACR~ be the spectral projections of the mass opera-

tor on H. Then we have for each space like cone S 

E((m !IF (SI o c K 
' ' ' 

and there exist non-zero vectors in E({ m } )f (s) o. Moreover, 
' ' 

E( t-.\{m J ) "(! 11 0 
' 

for all 1f,i E F (S ) • 
' 

( 1.51 

(1.61 

iv) 

some open neighbourhood !::. of m 
1 

and 

The vacuum has the Reeh-Schlieder property in the following 

sense: if S 1 , S 2 are arbitrary space like cones, then 

F 
1 

< S1 l n F 
1 

<s z> n, (1.71 

i.e. the fields in a fixed cone generate all states of a given 

charge. Similarly, one has for the "charge-conjugate sector" 

where f (S)* 
' 

f
1 

(S 1 )* G f
1

(S 2 )*n, 

{ lf,l*: VE F (S)J • 
' 

(1.81 

We recall that the existence of the fields V follows from the 

fundamental principle of locality of observables and the assumption 
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that the mass hyperboloid of the states in K is isolated from the 

energy-momentum spectrum of all other states in the same superse­

lection sector [ 4, 7 ] . This result may be regarded as the solution 

of the "one-particle problem" of collision theory ( 10 ]. 

As we shall see, the locality and covariance properties of the 

fields ~ provide enough "analyticity in momentum space" so as to 

establish the connection (1.1) between the spin and statistics of 

particles carrying a non-localizable charge. Thus, as far as the 

kinematical properties are concerned, there is nothing exotic about 

these particles. 

This raises the question of how these particles can be distin­

guished from their localizable counterparts in collision processes. 

What immediately comes to mind is that the analyticity properties 

of the corresponding S-matrix should differ from the one established 

for localizable particles [ 11]. At first sight this possibility does 

not look very attractive, because it deviates from the view that 

the analyticity of the S-matrix agrees with the indications of per­

turbation theory. But on the other hand it is conceivable that a 

less stringent analytic structure of the S-matrix might allow one 

to avoid some no-go theorems, without coming into conflict with the 

principle of locality of observables. {For speculations in this direc­

tion see the conclusions in [ 7]). It would therefore be desirable 

to gather more information about the structure of the S-matrix of 

particles carrying a non-localizable charge. 

7. 

2. The Two Point Function in Momentum Space 

We begin with an investigation of the two point functions of 

the fields .P. It is our aim to establish certain specific analyticity 

properties of these functions in momentum space. 

In order to simplify the subsequent geometrical discussions 

we fix a Lorentz frame and consider a special set of spacelike 

cones. Namely, let d. c R 1 be any open, convex, salient cone in 

the time t = 0 plane of Minkowski space IR ~ and let S = ~" be its 

causal completion. Then S is a spacelike cone {cf. footnote 2) with 

apex at the origin of IR 4 Since we will only consider spacelike 

cones S which are obtained in this way we can identify them with 

their "base" _S_. We will also deal with the dual cone S of _,$_, i.e. 

the set3 ) 

S = {qEIR~ g,_.~>O for all ~E~\{0}} I 2. 1 l 

Note that the dual .cone of a salient cone is open and non-

empty. 

Now let ~ 1 , ~ 2 be cones such that ~ 1 , 2 :=.§2 -~ 1 is salient, 

and let ~iE F (Si) i = 1,2 be fields satisfying the conditions (1.5) 

and (1.6). (We omit the particle index in the following). Then 

we consider the functions on 1R ~ 

3) For a,b E1R 4 we set a·b aobo- a-b and a 2 a·a . 



+ 
w•,z(x) (fl ,ljl: U(x) $

1 
fl) 

w~, 2 (x) sign A • (fl, (1
1 

U(-x) "41/ fl} , 

and the commutator function 

ct,z (x) 
+ -

w1, 2 (x) - w1, 2 (x) 

The Fourier transforms of 
± 

WI 1 2 are measures which 

8. 

(2.2) 

(2.3) 

(because 

of the spectrum condition) have support in the forward and back­

ward lightcones V and V , respectively. Bearing in mind the space-
+ -

like commutation relations (1.3) of the fields and the covariance 

properties (1.4) it is clear that C 1, 2 (x) vanishes whenever 

XE (S2-SI)' =_:S.'1,2.' Thus cl~2has support in the region ~1,2+ 

+ V + u V • Next we decompose C 1, 2 into an advanced and retarded 

part, setting 

al, z (x) 8(-xo) . cl,2(x) 

(2.4) 

rl ,z (x) - 8Cxol . cl,z<xl . 

Since supp a 1, 2 C _§ 1 ,:~.. + V and supp r 1 , 2 c ~ 1, 2 + V + it fol-

' ' lows that the Fourier transforms a 1, 2 (p) and r 1 , 2 (p) are boundary 

values (in the sense of distributions) of two functions which are 

l . . 4 ) k . v ;,/ d . v "' anaytlc 1n f = p+tq: qE +nS 112 }an {k = p+tq: qE _n$ 1, 2}, 

4) We reserve the letters p,q for element~ of lR~ and the letter k 
for elements of Q": ~. 

9. 

respectively. 

-m2 )~ t,z (p) 

The 1 
same is true for the amputated functions z-;rCp 2 -

1 "' "' "' and 
2

1f
1

Cp 2 -m 2 )r 1 , 2 (p). Now since a 1 , 2 (p} - r
112

(p) "' 

' c 112(p), these amputated functions coincide in the region 

(p p 2 < 0} U {p ~E 6, p 0 >0} (2.51 

because of the spectrum condition and the fact that the mass hyper­

boloid of the particle is isolated, cf. relations (1.5) and (1.6). So 

the corresponding analytic functions are actually branches of a 

single function h 1, 2 which is analytic in the domain 

( k P + iq: qES 1,2' k 2 1;[R+'-.t.2j}, (2.6) 

where A 2 := {J.l 2 : J.l EA} • This can be proved either by using the 

Jost-Lehmann-Dyson representation [ 12] or by a direct geometric 

method (cf. the remarks below). 

Taking into account that the operator-valued functions 

(x, A) + U(x,A) ~ U(x, A)- 1 are smooth, it can also be shown that 

h 1, 2 (p+iq) has a C boundary value as q + 0. Therefore, if IJj E A, 

one obtains for the Fourier transform of the commutator function 

the representation 

' ct,z (p) hl,2(p) o (p2-m2 ), (2. 71 

and consequently (because of the spectrum condition) 



($
2

9 ,U(x)E( {m}) $
1 
fl) 

(\It n, U(x)E({ ml l"Vi' n) 

ipx 
f d~pe(p 0 ).S(p2 -m 2 )h 1 , 2 (p)e 

10. 

(2.8) 

sign>..•! dqpe(p )6(p 2 -m 2 )h (-p)eipx. 
0 1,2 

We note that the existence of anti particles can be derived 

from this result [7,9]: namely, if the first function in (2.8) is dif-

ferent from 0, the same is true for the second one because of the 

analyticity properties of h 1 , 2 • Hence if the veclor "(! fl has a non-

vanishing component in the single particle space K then the 

charge-conjugate vector "(! 1<n has a nonvanishing component in some 

single particle space K c with the same mass as K. We will see be­

low that the states in l<c have also the same spin as the states in 

K. 

We conclude this discussion of the two point functions with a 

description of the domain of analyticity of h 1 , 2 on the complex 

mass hyperboloid k 2 :: m 2 • According to {2.6) this domain is given 

by 

r 1 , z { k p+iq: k2 ' N m, qES
112

}, (2.9) 

We shall prove that r 1 ) 2 is an open simply connected subset 

of the complex hyperboloid. 

Choosing proper coordinates, we may assume that the vectors 

q = (q 0 ,q 1 ,0,0), q 1 > 0 are elements of .S 1 , 2 • Then we consider the 

Lorentz transformations A
6

, a E R acting on k = {k0 ,k 1 ,k 2
, k 3

) ac-

11. 

cording to 

A ·k 
' 

(cos a·k 0 +i sin a·k1
, cos a·kl +i sin a •k0 ,k 2 ,k 3

), {2.10) 

If p EH+, where 

H± { p : p 2 m 2 ,±p
0

>0} (2.11) 

are the positive and negative shells of the mass hyperboloid, re-

soectively, it follows immediately from (2.10) that "a· p E f 1 , 2 if 

0 < a < rr; moreover, 1\__· p E H . Conversely, if k' "' p' + iq' E r 1, 2 and 

q' {q' 0 ,q' 1 ,0,0), q' 1 > 0 one finds by a straightforward calcula-

tion a unique p E H + and '. 0 < a < 11 such that A 
' p 

= k'. 

Changing the direction of q = (qo,ql ,0,0), q I > 0 by rotations 

one obtains ln this way a complete description of r 1 , 2 • ln particular 

one obtains a contraction of r 1 , 2 onto H + (by letting a decrease to 

0) or onto H (by letting e tend to n), thus f 1 ,
2 

is simply con­

nected. We note that this description of r 1 , 2 allows a simple direct 

proof of the asserted analyticity of h
112

• 
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3. Single Particle Wave Functions 

In the next step of our analysis we examine the wave func-

tions of the single particle states E( { m}) "41 Q in momentum space. 

\'[e begin with some notation. 
- ---

We denote by Lt and L +(It) the covering groups of the con-

nected real and complex Lorentz groups, respectively. As usual, the 

group L (([} 
+ 

is identified with SL(Z,It) x SL(2,il:) and Lt with its 
+ 

subgroup consisting of the elements II :=(A,Al e SL(2,1l:) x SL(2,([). If 

p e :R 4 we set 

R ' p 0
•G 0 +£·.£.and p po. ao - £·£_, 

where a o is the 2 x 2 unit matrix and a. 
-- ' 

matrices. For .!:!:={A,B) EL+(«:) we define!·P 

T 
C~J.'= A )0 8 . 

' Since P · "£ = p 2 o 0 this implies 

___.. 
(A_p) 

T -1 "" -1 
B p A • 

i 

by 

(3.1) 

1,2,3 are the Pauli 

(3.2) 

(3.3) 

According to our assumptions the vectors E( { m}) 1jl n are ele­

ments of the given subspace K c H on which the unit aries U(a,A) 

act as an irreducible representation of Pl with mass m and spin 

s. We may therefore identify K with the Hilbert space V (H+,s} of 

13. 

<r:Zs+l_valued functions ; { ¢ } on H which are equipped 
aa=-s, ... s + 

with the scalar product 

{ <jl I' <jl 2) 

a, 6 

- 5 ' J d 4pe(p,l .S(p l_m 2) ¢1a (p)V aB(p) 4lzs(p). (3.3) 

Here p 5 
is a well known representation of GL(Z,«:) which satisfies 

V5 CM*) v'CMl*, V 5 (MT) = V 5 (M)T 

for ME GL(2,[.). Setting 

Vs( ~) :=Vs(A) if ! (A,B), 

the irreducible representation U1 of P! on V (H+,s) is given by 

(U 1 (a, A) ¢)a(p) 

' 
eipa.ps (A)¢ (A~'p). 

"' ' 

(3.4) 

(3.5) 

(3.6) 

The identification of K with 1 2 (H+,s) is established by a 

unitary V, mapping K onto V (H+,s), such that 

VU(a, A) I" K U
1 
(a, A)V. (3.7) 

In order to simplify notation we write 

(VE({m)}"(! n}a(p} =:("(!n)a(p} " -s, ... s . (3.8) 
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In view of the fact that the field operators "(! transform 

smoothly under Poincare transformations, it is clear that the wave 

functions ("(!O)a(p) are 

analytically to certain 

Smooth on H . It is our aim to extend them 
+ 

specific domains of the complex mass hyper-

boloid. 

To this end we choose field operators >!Ia a= -s, ... s such that 

for all Lorentz transformations A in some neighbourhood of the iden­

tity lE Lt 
+ 

UIO,A).B UIO,A)-'EFIS). 

Moreover, we assume that the (2s+l) x (2s+ll matrix 

• lp),= I• O) lp) 
a6 6 a 

a,S,-s, ... s 

is invertible in a neighbourhood of some point 

field operators exist follows from relation 

10) 
p E 

I LSI 

H • 
+ 

and 

13.9) 

13.10) 

(That such 

the Reeh-

Schlieder property ( 1. 7) of n). Similarly, we choose Held opera-

tors •• ' 
B= -s, ... s,localized (in the sense of relation (3.9)) in 

the opposite cone -S, such that the matrix 'f' (p) is also in-

vertible at p (D). Then we consider the matrix-val:Sed function 

, ' 
J'lpl*V lp)Jip). 13.11) 

It follows from the results of the previous section that this 

function can be analytically continued to the domain 

15. 

r { k p+iq k2= m2,1E-$} 13.12) 

and it has C boundary values on H+ and H , respectively. It is 

an immediate consequence of 

vertible at almost all points 

this 
IO) 

p 

fact that 'f(p) and 'f'(p) are in­

of H + (with the possible exception 

of some closed set of measure zero). 

The information about the analytic properties of the products 

(3.11) is sufficient to equip the wave functions '¥ with the struc­

ture of a (trivial) analytic vector bundle over r , i.e. the wave 

functions are analytic apart from some possibly non-analytic, but 

universal factor. Using also the transformation properties (3.6) un­

der Lorentz transformations it will become clear that the wave func-

tions themselves can be analytically continued to r. To verify this 

it is convenient [ 5] to consider the functions 

and 

•I A) Vs(/1). 'f(A-lp(O)), A EL+ 
+ 

,. (constructed analogously from 'f '), respectively; 

is kept fixed in the following. Note that 

¢t (/1) 

"' 
IO) IO) 

IU(O,A). UIO,A)-'o) lp )=''A lp ), 
6 a aS 

13.13) 

IO) 
P E H 

+ 

13.14) 

so for A sufficiently close to 1 these functions are the "intrinsic 

wave functions'' of operators in F ( S), and similarly for ¢t ', 

Taking into account that for liE L t 
+ 
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V
5

(A)* 0
5

(-Pl V
5
(A);; V 5 (A~) (3.15) 

(cf. relation (3.2.)), we obtain the crucial relation 

<!l'(A)*V5 (p(O))<t>(AA
0

)oo'!''(t,- 1p(O))*V 5 (;;-;to))'l' (A~ 1 p(O)h:H (A). (3.16) 
· !to Ao 

This relation tells us that for A" sufficiently close to 1 the 

left-hand side of (3.16) can be analytically continued in A to 

L(p(O)) (0) 
{~ EL+(It): E 1 P E r} (3.17) 

with c"' boundary values on Lt and Lt, respectively. Moreover, this 
+ + 

expression is smooth in A,, and the derivatives have the same ana-

lyticity properties in A as H (A). 
A, 

With this input 
(0) . 

main L(p ) : let t 

such that ~ 1 (0) E Lt 

we can continue oil( A} analytically to the do­

+ A 
1 

(t) 0 < t < 1 be any smooth path in L (11:) 
- - (o) + 

and A 1 (t) eL(p ) for t > 0. We assume tempo-

rarily that the determinant of H (A) does not vanish along the 
- A, 

chosen path if A
0 

E Lt is sufficiently close to 1. Then we have for 

A E Lt in a small neighbourhood of the initial point .!:_
1
(0) 

oll(AA
0
)- 1 ·oll(A) HA (A)- 1 ·H

1
(A), 

• 
(3.18) 

hence oil( AA
0
)-

1
• oil( A) can be analytically continued along this path. 

We can therefore use (3.18) to define a flat connection (parallel 

transport) on the GL(2s+l,ll:)-valued functions ::: which are analytic 

17. 

in a neighbourhood of At (t) and have C<» boundary values on Lt. 
- + 

Namely, denoting the elements of the Lie-algebra of Lt by a,b we 
+ 

obtain a covariant derivative of these functions by setting, first 

for AELt close to ~~0), 

(. E) (A) 
a 

d sa s.a 
ds""[::(Ae )+E(A)•oZ>(A e t 1<1l(A)]i

5
,

0 
• 

rt follows from the very definition of this derivative that 

v a 'V b - 17b "'a - . 
[a,b I 0 • 

(3.19) 

(3.20) 

i.e., the curvature is zero. We can now extend the action of V to 
a 

the functions ::: in a neighbourhood of the chosen path by analytic 

continuation from (3.19), and it is obvious that the relation (3.20) 

remains valid. Since the Lie-algebra of Lt "'{(A,i\}:AE SL(2,<I:}} coin-
-- + 

cides with the Lie-algebra of L +(<C)"' SL(2,<I:)" SL(2,<I:) (as a complex 

Lie-group) it follows that v a defines a flat connection on the func­

tions :::, as claimed. 

Now according to well-known theorems any flat connection on 

a simply connected domain is completely integrable (i.e. a "pure 

gauge") [ 13]. This means that 4l(A) can be analytically continued 

along !:_ 
1 

(t). We recall that this continuation is obtained as the 

solution of the system of differential equations 

(. E) (A) 0 (3.21) 
a -



with the boundary value <!I(A) on Lt 
+ 

18. 

Suppose now that the determinant of H.1 (A ) has zeroes along 

the path A
1 

(t). Then we choose some A
0

E Lt in an arbitrarily small - + 
neighbourhood of 1 such that the determinant of Hi (A· A 

0
) does not 

vanish along !;_
1 

(t) (this is always possible), The continuation of 

t(A) is now achieved by making use of the indentity 

t(A) = <11(1\·AJ ·H4..(A·A
0
)-'•H -l(A·Ao) 

A' 
(3.22) 

for A E Lt closeto~(o).Each factor on the right hand side of this 

equation can be continued along !!._
1 (t), (the first one according 

to the previous discussions). So 41 can be analytically continued 

along any path in. L(p(O)) starting at Lt. But L(p(O)) is a simply 
+ 

connected subset of L +(<C) since r is simply connected, so by apply-

ing the monodromy theorem we find that w can be analytically con-

. d I IOl l 1 · h h. · · tmue to L p . t 1s easy to see t at t ts cont1nuatlon has 

smooth boundary values on L-t. 
+ 

We can return hoW to our original problem, the analytic con­

tinuation of the wave functions 't'(p). For AEL+ we have 
+ 

(0) 
'i'(A-1 •p) 

and since 
s . 

v " 

Vs(A-l)·W(A), 

an analytic representation of 

hand side of this equation can be continued to L 

13.23) 

L (<I:) the rig:ht­
+(0) 

(p ). Moreover, 

19. 

this continuation depends only on A- 1 ·p(O) which shows that '¥(p), 

p E H + can be analytically continued to r. Taking into account that 

<ll has smooth boundary values on L-1-- it also follows that the con-
+ 

tinuation of 't' has smooth boundary values on H . 

This concludes our discussion of the analytic properties of 

the single particle wave functions (t (I) 
0 

(p). We remark that these 

results hold also if the Poincare transformations act on the single 

particle space K like a finite direct sum of irreducible revresenta-

tions. 



20. 

4. The Spin of Antiparticles 

We now interrupt our analysis for a brief digression to the 

question of how the spins of particles and antiparticles are related. 

As we already pointed out it follows from the results of Sec. 2 that 

the space 

Kc Ellm!IFIS)* o 14.1 I 

is non-trivial. We will show now that the Poincare transformations 

U(a,A) act on Kc as an irreducible representation of Pt with mass 

m and spin s. Thus the spins of particles and antiparticles are 

equal also in the presence of non-localizable charges. 

We begin by noting that the space Kc is stable under the ac­

tion of the unitaries U(a,A) as a consequence of the Reeh-Schlieder 

property (1.8). So Kc can be decomposed into irreducible subspaces 

of definite spin. In order to see that in this decomposition only 

the spin s appears we proceed as follows: let P 
v 

genera tors of U (a) and U ( 0, A) , respectively, and let 

w" f ~IJ\.IPO p 
v 

M 

" 

and M be the 
po 

14.2) 

be the Pauli-Lubanski operator. As is well-known, the operator 

W • W 11 commutes with all Poincare transformations, and 

" 

W·W 11 ~ K=- m 2 ·s(s+l)·l • 

" 

21. 

14.31 

Using this fact we will exhibit certain specific field operators 

creating states from the vacuum which are orthogonal to all states 

with spin s and mass m: if v E F (S} we define 

li ll(lj!) t ""'[P [M ,v]] 
E v' pa 

14.41 

Since v is smooth with respect to Poincare transfomations this 

expression is well defined, and oll(ljl) Ef Csl. Setting 

•, 0 (o 11 (.j~)) + m 2 ·s(s+ll· .jl 

" 
14.51 

and using_ relations (1.5), (4.3) as well as the invariance of !l un-

der Poincare transformations we obtain 

E( {m}) .jl fl = 0 . 

' 
14.61 

Now if .jl 'E F (-S) is any field operator it follows from (4.6) 

and the analyticity properties of the two point function established 

in Sec. 2 that 

(.j~* 11, E({mJh'*!l) 

' 
0. 14.71 

Taking also the Reeh-Schlieder property ( 1.8) into account we 

thus arrive at 



0 EUm})~*n 
s 

(W W\-1+ m 2·s(s+ll)E({m})~* n. 

' 

22. 

14.8) 

This shows that the vectors E( { m J )o/ 1' n , ~ E pCsl (and there­

fore all states in /( ) have spin s. 
c 

It remains to verify that in the decomposition of K and /(c 

with respect to the momentum operator P, 

K =I d 4 pe(p 0 )o(p 2 -m 2 )/((p) and /(c= /d~pe(p)li(p 2 -m 2 )/(c{p), 14.9) 

the spaces K(p) and Kc(p'} have for almost all p,p' E H+ the same 

dimension (namely 2s+l). It then follows from the well-known re-

presentation theory of pt that U(a, A) 
+ 

K is an irreducible re­c 
presentation with spin s and mass m. 

Let 'II E F {S) 
a 

o = l, ... ,r and of/' Ef{-S} t = l, ... r bear­
' bitrary field operators. Then we have according to relation (2.8) 

I o n, Ulx)EI! m}) $ 'n) 
a ' 

ipx J d~pe(p)o(p 2 -m 2 )h (p}e 
a, 

14.10) 

C-t''''n,U(x}E({m} Jw*n) 
' a 

where h are analytic 
ac 

signA·! d~pe(p 0 )0(p 2 -m 2 )h (-p)eipx, 

" 
functions on the domain r (cf. 3.12 I 

smooth boundary values on H and H , 
+ -

respectively. 

with 

It i> obvious that h lp) i> just the scalar product of the 
a' 

components of E({m})V a and E({m})"(!'n 
a ' 

in K(p) in the decomposi-

tion (4.9) of K; an analogous statement holds for sign >... h 
ac 

1-p.) 
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and K c(p'). In order to see that K (p) and K c(p') have the same 

dimension it is therefore sufficient to show that the determinant of 

the r x r matrix h (p), cr, t = l, .•. r is different from 0 for almost a' 
all p E H , whenever the determinant of h (-p'} is different from + a' 
0 for some -p' E H , and vice versa. But this is an immediate con-

sequence of the fact that the determinant of h 
ac 

is an analytic 

function on r with smooth boundary values on H+ and H . So, unless 

it is identical to 0, this determinant can only vanish on H {re­
+ 

spectively H ) on closed sets of measure 0. Hence the dimensions 

of K(p) and ~(p') must be equal. 

K 
c 

As in the case of the single particle space K we will identify 

with the Hilbert space of wave functions L 2 (H , s). 
+ 

We denote 

the canonical unitary mapping Kc onto L 2 (H+,s) by Vc and write 

IV EllmJ)o*n) lpklo''n) lp) c a a 
a -s, ... s. I 4.11) 

If v EF {S) these functions have the same analytic properties 

as those established for (1Ji u)u{p) in Sec. 3, and again it is conve­

nient to deal with the matrix-valued functions 

'¥c (p) == (of/ *n) (p) 
u B B ll 

a, 6 -s, ... s. 14.12) 

We will use these matrices in the final step of our argument. 
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S. The Spin-Statistics Theorem 

We are now in a position to establish in the present setting 

the familiar connection between the spin and statistics of particles. 

The proof essentially boils down to showing that there is an anti­

linear relation (related to charge conjugation) between the wave 

functions 

' (p) 
a a (v a") a(p) and 'l'c (p) 

aB 
(v * n) lpl 

B a 

of particles and antiparticles, respectively. 

(5.1) 

More precisely, we will prove that the matrix-valued func­

tions on H 
+ 

'1 ' --
~(p) oV ln;-Rl·V (o,).v(-p), (5.2) 

where the bar denotes complex conjugation, coincide with '¥ c(p) up 

to some phase factor w, Note that we have used here the same sym­

bol for the wave functions (defined on H ) and theii analytic con-
+ 

tinuations to H . This will, however, not cause any confusion since 

p will, in the following, always denote an element of H+, hence 

-p E H _. 

We recall that if one replaces in (5.1) the field-operators 

~B by U(O, A )lj! a U(O, A) -I 

transform according to 

then the corresponding wave functions 

25. 

'V(p) +0 5
(!1)'1'(11-ip), (5.3) 

and similarly for '!'c(p). Taking into account that 

o2, A-1 . a1 AT for A E SL(2,«:) (5.4) 

it follows by analytic continuation from (5.3) that the same law of 

transformation holds also for ~(p) if A E L: is sufficiently close to 

1. 

Now let ~~ ,.2_2 C"R 3 be any two open, convex and salient cones 

such that the cone _S_ 
1

, "' s z - ,s,_ 1 is salient, and let V. E F Cs.) 
,.._ - 1, B 1 

B = -s,, .. s, i = 1,2 be field operators localized in these cones. We 

denote the various (matrix-valued) wave functions associated with 

these fields by '¥., 

' Sec, 2 the function 

c 
'¥ i' and ~ i' respectively. As we have seen in 

HI, 2 (p) '¥2(p)* V s(p) '¥\ (p) (5.5) 

can be analytically continued to 

r'' 
{k: k 2 ' ~ m,lmkES1 , 2 } (5.6) 

with smooth boundary values on H _, and the same is true for the 

individual wave functions '¥ 1 (p) and'¥ 2 (p)* in this expression, cf. 

Sec. J, (Clearly the continuation of the latter function is given by 
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k ... 'f
2
(kl* for k 2 = m 2 and lmk e $

2
}, 

Now according to relation (2.8) we have 

HI, 2(-p) 
. c ... s "' c T s1gn f. .['¥ 1 (p)- V (p)'1'2_(p)] 15. 7) 

which, in view of the above remarks, leads to 

s ' '¥2 {-p)* v (-p) '¥1(-p) c s "' c sigm,•'¥
2

(p}* V (p}'t\(p). 15.81 

Using once more the relation (5.4) and the fact that V
5 (-Pl 

2s s "' (-1) · V (p) we thus arrive at 

n. ~2 (p)* V
5
(p) ~~(p) '1'2c(p)"' V s(p"'l 'f~(p)' 15.91 

where 

n = slgn A·(-1)
2

s . 15.10) 

If we could choose in this argument lj!l 
6 

= 1JI
2 6 

it would im­

mediately follow from the positivity of both the factor of n in (5.9) 

and the right-hand side of this relation that n = 1. But in the pre­

sent setting we must argue differently, We consider the expression 

WI (p) 'f~(p) ~I (p)-l, I 5.11 I 

provided the inverse of ~~ (p) exists. Varying the fields $
1 

within 

' ' 

27. 

F(S 1 ) and keeping v
2 

fixed it is clear from Eq. (5.9) that w
1 

(p) 
' ' does not depend on the specific choice of the fields v

1
, B. So if in 

particular the fields v
1 

E F ( S) are such that the Lorentz trans-

'' 1 formed fields U(O,A)o/ U(O,A)- 1 are still elements of f(s
1
l for 

- l,B 
A E L+ close to 1, it follows from the transformation properties (5.3) + 
of vF and tf that 

w, (p) V
5
(A)w

1
(A-'p) V

5
(A)- 1 • (5.12) 

Choosing A in the little group of p and using the irreduci­

bility of Vs we find that w1 (p) is a multiple of the identity so 

that w 1 (Ap) = w 1 (p), i.e. w1 is locally constant. But p E H+ was 

arbitrary, so w 1 is also globally constant. 

1t remains to show that w 1 does not depend on the cone ~ 
1 • 

To see this notice that w 1 does not change if one replaces :S
1 

by 

a smaller, respectively larger cone, provided these cones are admis­

sible (i.e. open, convex, and salient). So, given any other cone 

.$0 one must only choose an interpolating sequence of admissible 

cones ~~ '~2 •···.§0 = ~0 such that either ~ i+l :> ..si or _si+l c S·· _, 
Since w, does not change if one proceeds from ~i to ~+1 it is then 

clear that it does not depend on the localization cone .$__ 1' 
i.e. 

w, w. So we have, in particular, 

'f~(p) = 

' 
w. ~ i (p) i = 1,2 15.131 
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and inserting this into the relation (5.9) it follows that n lw ll . 

So n can only be 1 and this, finally, proves the spin-statistics 

theorem. 
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