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Abstract: Non-local charges [1, 2] are studied in the general setting of 

local quantum field theory. It is shown, that these charges can be represented 

as polynomials in the incoming respectively outgoing fields with coefficients (kernels) 

which are subject to specific constraints. For the restricted class of models of 

a scalar, massive, self interacting particle in· four dimensions, a more detailed 

analysis shows that all non-local charges of the generic type (genus 2) are 

products of generators of the Poincare group. This analysis, which is based 

on the macroscopic causality properties of the S-matrix, seems to indicate that 

less trivial examples of non-local charges can only exist in two dimensions. 

---- --~- ..... -- _._ 
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1. Introduction 

We present in this article a systematic investigation of non-local charges in 

the general setting of local quantum field theory, It was argued in [2] that a 

few basic properties of field-theoretic models, such as locality, covariance and 

the existence of non-trivial scattering should be sufficient to determine these 

charges explici tely (similar to the case of the standard charges, cf. [3-5j ) , 

Our present results are only another step towards a solution of this problem. But 

they reveal the strong constraints imposed on non-local charges by the fundamental 

principles of quantum field theory. 

The prototypes of non-local charges have been discovered in the quantum non-linear 

C5-model in two dimensions [1] • They can formally be represented by 

Q~b. I J dx j d~ crx -y! j;orx>i:'ryJ - z j d, j;'rx> 
' 

( 1. 1) 

··'<'---

where j;b, Q,b,.J, ... ,n are the Noether currents corresponding to the O(n} symmetry 

of the model, and Z. is a renormalization constant. The operators Q"b are 

distinguished by the fact that they commute with the Hamiltonian, i.e, they are 

constants of motion. 

As this example illustrates, the non-local charges are typically obtained by 

multiple integration of expressions involving products of local fields, As a 

consequence, they have properties which are not shared by the standard charges. 

One can show, for example, that Gt~b does not commute with the S-matrix, In fact, 

the restrictions arising from the existence of Gt~b essentially fix the S-matrix 

of the ~-model [1]. In view of this result it is an important question whether 

non-local charges can also exist in physical space-time, 

In a general analysis of non-local charges one is. at the very beginning, faced 

with the problem of giving a proper definition of these quantities, As a matter 

of fact, in the concrete example given above one must go through a detailed 

analysis of the short-distance behaviour of the currents j;b in order to see 

that the charges C2"b are well defined [1] , Therefore it seems hopeless to base 

a general analysis of non-local charges on an explicit representation of these 

quantities in terms of local fields, such as in (1.1). 
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It has therefore ?een proposed in [2] to characterize the non-local charges by 

a few general properties which can be extracted from the known examples, We 

recall these .properties in Sec • 2. We will then discuss (Sec • 3) how the non­

local charges act on collision states. Our main result in this context, which 

was already quoted in (2] , says that these charges can always be expanded in 

terms of a finite number of asymptotic creation and annihilation operators, The 

remaining problem is then to determine the form of the kernels in this expansion. 

Since there exists an abundance of non~local charges in free field theories we 

will concentrate in this part of our analysis on theories with non~trivial scattering. 

In order to avoid complications arising in the presence of internal symmetries 

we consider only models of a single, scalar self interacting particle. Moreover, 

we restrict our attention to the simplest non~trivial types of non~local charges 

(the charges of genus 1 and 2 according to the terminology of Sec • 2). We will 

show in Sects; 4and 5 that, in four space~time dimensions, the only charges of 

genus 1 are the generators P"' and M~'-~ of the Poincare transformations, and that 

the charges of genus 2 are bilinear in these operators. Similar results hold also 

in two dimensions if there is non~trivial multi particle scattering and particle~ 

production in the model (cf. the Conclusions). 

Although we have studiedonly a very restricted class of models, our results seem 

to indicate that non-local charges are polynomials in the generators of the space­

time and internal symmetries also in general. As will become clear, the obstruction 

to more interesting examples are the clustering properties of the 8-matrix. It is 

only in two dimensions, where these clustering properties need not hold, that 

non-local charges of the type found in the ~-model can exist. 

2, Assumptions and Notations 

We are dealing with the Wightman theory of a single massive, scalar particle 

subject to the standard assumptions, such as locality, covariance and relativistic 

spectrum condition. In particular, we assume that the mass shell of the particle 

is isolated from the rest of the spectrum, and that there is a Wightman field 

till, f'' ::S(IR'I connecting the vacuum S"a and the single 

The collision states can then be constructed in the usual manner 

particle 

(cf. for 

states. 

example [6]1, 

and we assume that they form a dense set of vectors in the physical Hilbert space 

(asymptotic completeness). 
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Let us now turn to the characterization of the non-local charges G. {cf, [2] ). 

These charges are in general unbounded operators; the information about their 

domain which is needed here is contained in our first postulate. 

( 1) Q. is a closed, hermitian operator whose domain :J.)(Q) contains the Wightman 

domain ~o , i.e. the set of vectors which are generated from the vacuum 52 
by applying polynomials in the Wightman fields. 

In view of the difficulties arising in the explicit construction of non~local 

charges (cf. the remarks in the Introduction) one might wish to consider also 

situations in which Gt is only defined in the sense of sesquilinear forms on 

g)o >< '])<> But then it is unclear whether there exists an unambiguous extension 

of Q to the collision states. 

Our second assumption imposes certain continuity properties on G.. • 

(2) Given n E fN there exists a Schwartz~norm If·/!"" on j(JR~) such that 

II llt(f,) t(f")5G/I ~ c ·llf.ll. 111"11. 

for all f, )·•·) f .. e ::5(R4) and some constant C 

Finally,we come to the most important property of non-local charges, which reflects 

the fact that they are obtained by integrating products of local fields over some 

spacelike plane (compare relation (1.1)), Due to this construction and locality, 

all multiple commutators involving a non-local charge GL and sufficiently many 

local field operators have to vanish if the fields are localized at different 

points of that plane. Moreover, since Gl is a constant of motion, these commu­

tators also vanish if one replaces G. by G..(l<)"'-U(.:.:)Q..U(l<r\ where U(x) is any 

space-time translation. In fact, we will only use these commutation properties 

of Q.(x) , thereby allowing also for charges Q. which are not invariant under 

translations (as e.g. the generators of the Poincare transformations). Hence our 

last postulate reads as follows: 

(3) There exists a number N such that (in the weak sense on ~" x1J.,) 

[ [Cll,),'/'if,)j, t(f • .,)j:O 
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for all translations x and test ftmctions f., , ~~1~ .. ,N-H having support 

in N + 1 disjoint double-cones with compact base in some fixed spacelike 

plane. The minimal number N for which this relation holds is called the 

genus of Q . 

It is clear that this characterization of non-local charges extends to theories 

in any number of space-time dimensions with an arbitrary particle spectrum. It 

also applies to spinorial (super-) charges. However, there one must admit in 

Postulate (3) commutators as well as anticommutators, depending on the Bose or 

Fermi character of the quantities involved. 

Charges of genus 0 are clearly multiples of the identity. The standard charges, 

which are obtained by integrating current densities over all space, are of genus 

and trivial examples of non-local charges of arbitrary genus fV can be obtained 

by taking AJ-fold products of charges of genus 1. The non-local charges (1.1) 

in the G-model provide non-trivial examples of charges of genus 2 in two dimen-

sions. 

As we will demonstrate in the subsequent sections, the characteristic properties 

of non-local charges summarized in the above postulates contain sufficient in­

formation for their detailed analysis. 

3. Action of non-local charges on collision states 

In this section we shall show how Postulates (1) to (3) can be used to determine 

the action of non-local charges on collision states. We begin by recalling some 

basic facts from collision theory. 

Given n single-particle wave functions fc c 'j {IR 3) one obtains the corresponding 

incoming respectively outgoing n -particle collision state by the Haag-Ruelle 

construction [6] , taking the limits 

s-Lcm 
t-t''" 

t(f,,,)· t(L,,)S2 ~ 'f'"(f,, ,L) I 3.1 l 

Here "ex" stands for "outgoing" or 11 incoming" and te>\ for+ oo or- oa, respectively. 

The functions fr..,t e 'j(!R~J are given in momentum space by 

fc,t(p) ~ ect(p·-w,J f,(p)8(p·Jh(p') (3.2) 
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where w~ ... (f""+m 2)%, p2~(poy-E~ ; h is a smooth function with support about the 

isolated point p2
"" m.:~ in the mass-spectrum and h(Wl 2)=>1· Because of technical 

reasons we will only work with configurations of wave fUnctions f. , .. , f., which 

have compact and mutually disjoint supports. We denote the linear span of the 

corresponding collision states and the vacuum Jl. by JJ:" this space is dense in 

the Fock space J<:~ of all collision states. As is well known, one can introduce 

on J.t:' asymptotic creation and annihilation operators 0:.~,.(t) and ct,.(fl 
respectively, satisfying canonical commutation relations. It is our aim to expand 

the non-local charges in terms of these operators. 

In a first step we shall demonstrate that the non-local charges C2 are defined 

on J)~ Although the argument is standard we sketch it here, since similar 

methods have to be applied at various points of our analysis, where the details 

will then be omitted. We make use of the fact that the test functions 1) ft in 

the definition (3.1) of the collision states can be approximated by functions ft 
which have compact support in configuration space. Namely, let r be the set of 

four velocities 

r { ( 1 L 
'w! f ' ; uppf } , 

and let f' be any open bounded neighbourhood of r . Then there exist smooth 

functions 'X which are equal to 1 on r and have support in f' , Setting 

r, (x) < x(';-)f.(x) 

(3.3) 

(3.4) 

it is obvious that ft has support in the region t · r . Moreover, the difference 

between ft and ft tends to 0 as t -~oo. For later reference some relevant 

properties of ft and ft are listed in the following lemma ( cf. for example (6]). 

Lemma 3.1. Let ft and ft be defined as above and let 1/·ll... be any Schwartz­

norm on .J(!R~J. If ltl1-1 then 

i) 
ft ) ft ' j (n<') ' 

Iff, II.+ llf,ll. <c. ltl"" for some constant C.,.. and some n.,. E fN l 

II f, -f, II, c c,·l tl." .for all 1'1 E JN and certain constants Cn • 

1
) To simplify notation we omit the index l. for a moment. 
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ii) ;5Ufp ft c t·f 

iii) the J(IRt)-valued functions t- f, and t -- ft are smooth in the topology 

of j(Rt) , and the properties given in i) and ii) hold analogously for 

the derivatives -;h ft and .!!.. f. 
dt • 

Now given single-particle wave functions {., . .. , fn with compact and mutually disjoint 

supports,then the corresponding·velocity sets r,, ... ,r.; are disjoint, hence 

there exist open neighbourhoods F;, ... , f.:. of [, .. , ~ , respectively, which are 

mutually spacelike separated, Using approximating functions 

f.,t ) ... ) f~,• of f,,t 1 ... , fn,~ which have support in the sets t · f: , ... , t · r: 
as well as the spacelike commutation properties of the field + we can prove 

Proposition 3.2. X>:" is contained in the domain J)(Q.) of any non-local charge Q. 

Proof: Since Q is closed and the vectors tlr ..• l ···<PI f.,.) Sl. are elements 

of W( G.) we must only verify that the vectors Q tlf,,,) · · · tlf.,,) SG converge 

strongly as t -t": To this end we apply the familiar trick and take the derivative of 

these vectors with respect to t That this may be done follows from the smooth-

ness of the functions t- ft,t and the continuity properties of Q given in Postu­

late (2). Taking into account that 4, ..h.( f. )Sl""O we get 
11 t T .,t 

IIi. Gt(f,,,) ·t(f,,,)5GI[ 

<.L IIG.tlf,,,) ·[ tlhf,,,), tlf,,,J] tlf, •• )SG II 
1'k<l,,., 

and using Postulate (2) as well as the above lemma it is clear that we can replace 

the test functions ~ -f\.,t. and f~,t in the commutators by . ' n f~,t and 

vely, the 

and ft,t 

f~,t , respecti­
d ' 
dt f~,• difference being rapidly decreasing in ltl . Yet since the functions 

have support in the spacelike separated regions t·~ and t -~,all 
commutators ['flit f,,,), t l(,l J are equal to 0 • So we get the bound 

II h <Hif, .• ) tlf.,,)SG II ,;; C,j · I t 1-; 

for any j e IN . The desired result then follow·s by integration, I 

Let us remark that the matrix elements of 

( .. .,];.'" ) 't (~., ·1-)) Q j (f, .,f.) I 3. 5) 

- 7 -

regarded as linear functionals on the test functions S' l .. ) ~ ... ) f. 
1 
.. , L are 

(restrictions of) distributions in j 1 (IR 3 {""~"1) 2 ), We call these distributions 

kernels and denote them by 3 ) 

" I ~· <1 .. ''\'Ill f'' ·'f"/ · 
I 3.6) 

For the expansion of the non-local charges in terms of asymptotic creation and 

annihilation operators it is more convenient to work with the truncated kernels 

ex ~X 

<~,, ·9.-\G.Ip.,. ?-.;.; 
- - - - '1' 

13. 7) 

which are given by the recursive relation 

<:1,, ·1-IG.IE" · ·f-j' 

=I: 
I 3.8) 

I,J 

.. I -<' <1'·' · '1'• ll)f•··· · · 'fi, /r :r I .. . ""' 1~ ... ). . ) '1" ... £\.,) ... ) f•~ 'j 

Here the sum extends over all ordered subsets I "' l ~~, ... ) ~ ... J ~ ( 1, . . ~) and 

J ~ (j., ... ' j,) "' ( 1, ... ' "') as well as I-p' and J·¢ where we 

adopt the convention that ¢ labels the vacuum. It is a simple consequence of 

the above proposition that one can represent Gl in terms of asymptotic creation 

and annihilation operators according to 

0.= ~ ~;·\· ···J~ Lm. n. 2 w\, l w,_.., 
.... , ,., • 0 - -

J "''· 2 "'!• f_.!L, 
1 u).f• 

I 3.9) 

• • ~ 1"'1 ..::: ·Q"I1·l···Q"'(1-l '-1'> .. ,1- '-'- !•,····!·/-r Q~(.f,) a,. l.f.) 

in the sense of sesquilinear forms on ~=" x a:>;"', 

2
} To verify this one has to evaluate the dependence of the functions ft and ft 

on the underlying single-particle wave functions f , see for example [7}. 

3 ) N k · 1 a · · ·a· ate that these ernels are unamblguous y ef1ned only for non-co1nc1 1ng 

momenta ~, 1 ... 1 1.., and .f~, ... , l'" , respectively. We will therefore restrict 

our attention to such configurations. 
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Up to this point we did not make use of the characteristic properties of non-local 

charges, given in Postulate (3). Using this input, we will now establish certain 

specific support properties of the corresponding truncated kernels (3.7). 

Proposition 3. 3. Let Q be a non-local charge of genus N . Then 

't ~,, .. ,.,.IQI P<," "'p")"' < 0 
- - - - 'T' 

in the sense of distributions o.n the (open) set of configurations ( q. 1 1 •• , 1 q.m 
1 

p
1 1 ••• 1 P1>} consisting of more than N different momenta, If, in par"ticular -

-m > N ;-r Vl > N , then the truncated kernels vanish identically. 

Proof: Let f1 1 ••• 1 f,., and ~ ~, ..• , ~m be two sets of smooth single-particle wave 

functions with compact and (for each set separately) mutually disjoint supports. 

It is actually sufficient here to consider functions whose supports are contained 

in small balls such that the support of any function f~ (.,1
1 
... 

1
n has a non-trivial 

intersection with the support of at most one of the functions ~ J j , ~, ... 1 m. 

Using relation (3.9) and the fact that the operators cP(ft) and cpcgt{converge 

for 1:- i:.e>i to asymptotic creation and annihilation operators, respectively, it 

follows by an argument as in the proof of the preceding proposition that the re­

gularized truncated kernels can be represented in the form 

"' "' (~<'""">~~~ Q\ t<>"""' f")T" 

•lcm Hl""(QJ··lC1,<\oCf,,,l1,-"",cpCf",tll, cP(~,,tl'l,·"· ,cpc~,/12) 
t-te>i 

in an obvious notation, Moreover, one can permute on the right-hand side of this 

equation the testfunctions L,t ~=1, ... ,~ ,respectively ~~,t j=- ~ 1 ••• ,1-n 

without changing the limit. Now in oder to prove the statement we must show that 

this limit is zero if there are N+1 functions amongst f1 , ... , fYJ, ~ 11 •.• , :}m 

with mutually disjoint supports; without restriction of generality we may assume 

that f 1 , . , fYJ 1 ~ 1 , . • 1 J. N H _., ( if n < N ) are these functions. Accor-

ding to Lemma 3.1 we can approximate the corresponding testfunctions L i: , ... , Q N 1_ t 
,.._. 1 d t n 1 

by functions f1,t 1 ••• , ~N'"1 _n1 t having support in N+1 disjoint double cones 

with compact base in the spacelike plane X
0 

·'" t: , !'f € fR 3 . It then follows from 

Postulate (3) that the above multiple commutator vanishes in the limit of asymptotic 

times t . If h or m are larger than N , thenthe same argument shows that the 

regularized truncated kernels vanish for any possible choice of the single-particle 

wave functions f1 , ... ,f
11 

and ~ 11 ... ,~m' respectively. I 
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It is an immediate consequence of this Proposition that the expansion (3.9) of 

in terms of incoming as well as outgoing fields terminates at a finite sum. Using 

the preceding results we now can give more explicit representations of the kernels 

of charges CL of genus 1 and 2. 

Genus 1: If Q is a charge of genus 1 it is completely determined on :D:"' by the 

kernels 

<QI lli\G) <Sl,lll\p) < 'i I aln> ""d <1\rllf)T 

involving only the vacuum and single-particle states (cf, relation 3.9 and Pro­

position 3.3). It thus follows that Gt commutes with the S-matrix (weakly on 

:v:)( x X);x ) , Since Q is a hermitian operator and since 5'2. is in the domain of G. 

it is clear that <SGIQISG) is ·a real number and that <521Qif) == (piQ.Ig> 
is a square-integrable function with respect to fi . The remaining -

,~, 

distribution <'liG\_p)'l' vanishes if 1-f ~ (cf. Proposition 3.3). Moreover, 

taking into account that this distribution is the kernel of an operator which 

contains in its domain the one-particle subspace of :IJ!JC we find that 

M 

< 'i \Qip\ ~I A,~, l1l ;r' a ln'l 
4) 

(3.10) 

~·o 

where Aw-1 are locally square-integrable functions. From the hermiticity of G.. 

there follow further obvious properties of these functions, which we do not 

need to give here. 

Genus 2: Similarly to the case considered above one can see that a charge of 

genus 2 is determined on ~=x by the kernels 

<SGita\SG) <'!IO.ISl> "<: ~··'!·I 0.\Sl) <'!llllf\' 

'<:'!'•1·1G<It>,. <: '!',~·I o.l£', !'· ;; 
and their complex conjugates. 

Besides the obvious properties of these kernels which follow from the fact that 

~:~ is in the domain of GL we have further information from Proposition 3.3 

on the last two kernels. Namely, 
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'<:~-·~·lalf>. f [c.:,(~, •'!_•) J~~· $ ( 1·-f) 
~-o 

+ ( 1- -1·) J (3.11) 

M [ ~X "" .. X (,._) (W.') 

<:1··1·1o.IH·), = 2.;[ B,~"_.,(1··1·ld1. a(~·-f·l:J 1• a(1.-~.l ""t-'•0 
+ ( 1·- '}·l] ' ( 3.12) 

where s(:~~ ..... , < ~·, ~·l = B~.~~ .... , ( ~., 'l<l because of the symmetry properties 

of two-particle states, 

In the case of a free field theory every operator Q. of the above form is of 

finite genus, simply because free fields have c-number commutation relations. So 

the general results obtained so far are in a certain sense optimal. Yet, if there is 

non-trivial scattering in the model much more can be said. This will be examplified 

in the case of charges of genus 1 and 2 in the subsequent sections. 

4) We use the notation {......,) for any multi index of the form ( i.., ... , ~ ...... ) with 

L~c'"'1~1, 3 • The symbol gl""l , where g. is a vector 1stands for a, •... o.., ... 
= (·1)~ a.'-. .. ,._ 

tensors of rank m 

• The following summation convention 
a.( ..... ) T, "'~ 
- ( ...... ) L._ 

i.., •• < .. ·i. 
a.,, .. a.;. ... T,, .. ~-

is used for symmetric 
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4. Charges of Genus 

In this section we study charges Gt of genus 1 in interacting theories, Assuming 

that there is non-trivial elastic scattering and particle production we will 

arrive at the result that the set of these charges consists of the generators 

of the Poincare transformations (Proposition 4.1). 

From Sec • 3 we already know the general form of Gl on m:x . We want to show 

now that Gl cannot change the asymptotic particle number, i.e. that 

<110.\S/.)=0 ( 4.1) 

Recalling the fact that Gl commutes with the S-matrix, it is clear that the vectors 

U{a.,A)Q."'t{f) , where ""'f(f) is any single-particle state and (a,!\) any 

Poincare transformation, describe states which do not scatter. Now, if the com­

ponent of any one of these vectors in the two-particle subspace of Je;x would be 

different from zero, we would obtain, by varying f and ( o., A) , a total set 

of two-particle collision states which do not scatter. Since this would be in 

contradiction to our assumptions, relation (4.1) follows. 

In order to obtain more information about <'!I Q.l p\ we apply Q. to collision states 

having a large spatial separation from the origin. On these states the terms 

with the highest number of derivatives in the representation ( 3. 10) of < 11 G.. I£' )"1' 
give the dominant contributions. This fact will simplify the analysis of the 

corresponding coefficients A lMl , More specifically, let ~·, ~J~ and f, 1 f. be 

smooth functions with compact and mutually disjoint supports and let 

~·.d'_l) = '""'"'l ~·I'll k = 1, 2} ( 4.2) 

where A) 0 and .9: is a unit vector. The functions f~,l.. ~ k-= 1 , 2 are defined 

analogously. Then 

Lc m 
A -+c<:> 

1 (':!''"' 't'" ) (TAl" ( ~··', ~ .. ,) , Q. If,,,, r,,J 

(""-'"'( ) "'-''"( '"' .\ ("'-'""'! ""'"( '"'A 1) l ~·,~~) 1 _g. A(Mjf .. ,fJ; + 1 ~·~~·), 1 f.,g, (Mlf.t 
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and a similar relation holds if "in" and 11 out" are interchanged, Therefore, using 

the hermiticity of G... and the fact that g. is arbitrary we arrive at the relation 

(1""'(9.,~,), 't'"(A,",f,,f,J) + ('t""'(j.,j,), 't'"(f, ,A,., f.)) 
(4.3) 

( Y"' ( A,MI1"> ~·) , 't'"( f., f,)) + ( t""' ( ~·, A,M, ~.) , Y"( f. JJ) 

Hence A\M) satisfies the functional equation 

A,.,lf.)+ A,M,If,) ~ A,M,(1.) +A,M,I1·l ( 4.4) 

whenever '}.•"'~=''}_z 
1 

£'• 1-fz and (<J:11 ~,p,,pJ) belongs to the support of 

o~ 1.•, '!.• \ f• , £\~"' We note that in order to make the step from ( 4. 3) to 

(4.4) rigorous one must actually regularize Au-.\ by averaging A!M)(~) over the 

Lorentz transformations J\ . The resulting function, for which relation (4.4) 

still holds, is then smooth in f 

It is well known that the only solutions of (4.4) are (apart from constants) linear 

combinations of energy and momentum. The weakest condition under which this result 

has been derived is the assumption that relation (4.4) holds in all Lorentz-systems 

for at least one non-trivial elastic two-particle scattering configuration [8]. 

Because of the Lorentz-invariance of the S-matrix, this condition is given, when­

ever there is non-trivial elastic two-particle scattering in the model, i.e. 

scattering in some non-forward direction. 

Arguing now as in [3} (cf. also the proof of Proposition 5.4) one can show that 

A11..,1"'0 if M42 and that the remaining terms in (3.10) are proportional to the 

kernels of the generators of the Poincare transformations. We remark that a term 

of the form S('! -f) cannot appear in ( 3.10) because it would correspond to the 

kernel of the particle number operator, which does not commute with the S-matrix 

since there is particle production [9]. So we arrive at 

Proposition 4.1. Let GL be a non-local charge of genus 1 in a theory with non­

trivial elastic two-particle scattering. Then 

Q. ol.. 11. +d-)'< PM. + o()AY M"" = :0"' 

where <><.) d.~'- , at.~"-, are real numbers. 
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5. Charges of Genus 2 

We turn now to the more interesting charges Gt of genus 2, where the 

analysis is much more complicated. We proceed as follows. In a first step 

we decompose GL into a sum of operators with definite energy-momentum transfer. 

Then, using the non-triviality of the S-matrix and its clustering properties, we 

will find that charge operators with non-zero energy-momentum transfer do not 

exist (Lemma 5.1, 5.2 and 5,3), With this information at hand we shall finally 

show that non-local charges of genus 2 can only be polynomials of second degree 

in the generators of the Poincare transformations (Proposition 5.4). 

So let Gt be any non-local charge of genus 2 

valued smooth function, Then the expression 

and let 'f_ E 'j(IR~) be any real-

G(:x:) o JJ.'Q 'XI~\UI~JQUiur' 
is a well-defined hermitian operator on mo ' and it is straightforward to show 

that its operator closure, which we also denote by Q( X:) , is again a non-local 

charge of genus 2. Its kernels are 

2~ ~X I " 
(nr) X(~,+. +~"-p.- ... -p") <i·• •1"\G. f·· •f"l 

where we set qJ~w1;) P~"'wf, fo-r js1, .. ,....., )~~1, .. ,h 

Fourier transform of X • 

I 5.1 I 

'X denotes the 

Now we choose X in a particular way. Namely we assume that ")<. has compact support 

and satisfies one of the following conditions: 

(1) su.pp :X c { '1. < R' t<ct.~<~vYl 2 -t} 

(2) s u.pp X c { '1. e IR' ; ....-.l+£<9_.1} 

I 31 Su.pp X c { t < R' 'l.' < .,,_,} '- {o} 

(4) s Llf'P X c { '1. d<' ltl <t} 

where 9.l=(1,~)1 -q1 ) !<\,l=(q.a)1+q1 and 0<£ < ';'1 
, Since the sets in (1-4) form - -

an open covering of /R~ , it is clear that by varying X in Qlx) one can rediscover 
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G. on SJ;~ . Moreover, recalling the general form of Q on 2) :x ( cf. Sec . 3), 

it is easy to check, that only the following kernels of G.(X) (and their complex 

conjugates) can be different from zero if "'/.. satisfies one of the conditions ( 1-4) · 

11), (<J:i G.(x))SG) '< '! • • 'l•i Q I X)) f),. 

(2)' '<:' ~·, '1.·1 a I xll SG) 

(3)' (1IOIX)if),. 

(4), <011 G.I:X))SG) <'\.IOI:x)).f)T , '<1·•<J,•iG.I:XJ)f.,f·)~ · 

We denote the corresponding operators by Q.. 1 , G..t, G.~ and Q~ , respectively. 

Assuming that there is non-trivial elastic two-particle scattering, we obtain 

the following lemmas. 

Lemma 5.1. Q,=O. 

Proof: Let us first assume that M)1 in (3.11) and calculate matrix elements of 

GL 5 ) between suitable one- and two-particle states with large angular momentum. 

(Compare the argument leading to Proposition 4.1.) Due to the ~-fold derivatives 

in the kernel ( 3. 11 ) we get for large ,l the asymptotic expansion 

~M ('t"\3··~·.•),G.'f(f.J) ~ (Y"'(~.,~ ..• ) ,'t,'.:) + O(J:) 
where 3~.~ ,f~ are defined as in (4,2). and "f":~ .. is an incoming two-particle 
state with wave function 

[ '"'C'"( )f( I ''"P·] S~m Q, (MJ f••f.t f• e ---

Here 11 sym" denotes symmetrization with respect to the momenta. Now, using the 
clustering properties of the S-matrix 6 ) (see [6]) we obtain from the above ex­

pansion in the limit ).. - + oo 

5) TO simplifY notation we omit in the proof the index 1. 

6 ) Hepp's cluster theorem does not only hold for test functions but for arbitrary 

square-integrable wave functions. This follows from the fact that the S-matrix 

is a bounded operator and that the translation operators are uniformly bounded. 

We have to use this fact, because non-local charges may transform smooth wave 

functions into functions which do not belong to the space of test functions. 

Lcm 
,l._,.too 
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' I"'·'"' '"'I l) j"',. j•"·--~ c'" l l ("I" r (i.,~•.•),Q l I, = 1 ~!' 20 1"~,(1·1j·l'!.• g'"' ,..,11·•1' f(~ 

On the other hand
1
using (3.11), we have the asymptotic expansion 

(1<i"(Cl.Y"'I 3., 3,,,),'tll,)j=('t,,, ,'fit,))+ O(f) 
where 't..~ is a single-particle state with the wS.ve function 

2 I~ Sjm [~·(1,)1,(1,) e'A~ 1'} <:>'"' c;::; 11··1·1 
Hence, by the Riemann-Lebesgue Lemma, we get 

l . .L ( .v·' "'I l) f•',. f~ -- "' c··' I ) I s.,~_::ooo(U.)M Qr {~,,~,, .. ), l f,. = 2w!, 2wlt'}(1•l~z{~)g! ("'l '}•,'1•f(~t 

Because of the hermiticity of Q , this limit coincides with the limit obtained above. 

So we arrive at the conclusion that the coefficients (~:tin (3.11) are independent 
of "ex", The same result can be derived for M=O if one takes i!'lto account that 

the kernel < ~ l Q !SG) is independent of "ex". Using the identity 

f. ('f'"'(j,j,~,,l, G't'"(f,f, .• J) = f:,. (o:t'''(j, 1, 1,,,), 't'"(f,f,,J) 
we obtain in a similar way the following relations : 

(i) If M>,-1 then 

( .r. .. t "''"( l) ("'"' "'-"' l) 1 {~,d,) 1 1 CC"')Jf1 =:. 1 {~.,~,) 1 I (c.C,...\)f., ' 
(5.2) 

where 

Jd' ----c,.,lf)~ ,.:, c,M)(r,~l f,l1h,l1l 

is a square integrable function with respect to 

the states "f<'.l({c,,..1 , L) do not scatter. Hence 

of the proof of relation ( 4. 1) in Sec . 4 with 

cPp • This result means that , "' 
we can proceed along the lines 

the reSUlt elM) = Q , 

(ii) If M=O , then 

( 't'"'(M,), t;·) ( "'"'( ._,_, ... ) 
1 ~n'h)~It (5.3) 
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~" where r 2 is an asymptotic two-particle state with the wave function 

2sy~ [( (1,1GISG> + C,l'i'>'i'-l}l~,f,) + c,.,('i,Jf.(1,) 

Here c,o1 (e) is defined as in { i), and ( ~3 ~ ft) denotes the scalar product of 

the wave functions ~ 3 and f2 

Now from the fact that the states i';" and Q"t(f.,) do not scatter, it follows 

that 'te~(c,01 , f'.) does not scatter either. Therefore, by a similar argwnent as 

in Sec • 4 we obtain c.\"' 0 and < '}. \ Q \52.)"' 0 • which proves the lemma. I 

Lemma 5.2. Q, ~ 0. 

Proof: Let us consider the operator 7 ) fl<>.."" i. [ Q[<~-)) Q] , where a. e IP.~ and 

Q(a.),Ula.)Q U(a.)- 1 (Note that this operator is well defined on ~!~ be-

cause of the square-integrability of the kernel et'l,'i•l G.IS2.) .) If we can 

show that 6.,_ = 0 for all a. o;. !R" the statement of the lemma follows, as can be 

seen as follows: the relation t:. ... -.. 0 implies that 

( 1151, U(o.)QSG) = (a52, U(-o.)G51) 

hence by the spectrum condition and the uniquness of the vacuum we obtain 

(asz, U(o.J11.52) I (Sl, Q52J\' ~ o 

for all Cl E-IR~ • But this means that Q.)2 =0 or, equivalently, that 

~ 'l.,,q,[ GISG> ~o. 

Nov, using the explicit form of Q , it is easy to see that 

.6~ ~ <52IL1.\Sl.) ~ + j"'' 
~ "'~ 

f;~, a.:.l11 <11LI.\f\ ct.,ltl 

in the sense of sesquilinear forms on .;D:" x :J)""" ~ moreover, if <1i"·if>r~o 

then <.51\ 6.._\ 51)"'- 0 Therefore, in order to show that !':-. ... - 0 we must only 

verify that <1\ ,.-..,_\(>,. vanishes. But this is an immediate consequence of the 

following facts: first, <1: 1 t:,..,_ \ ~),. is a square-integrable function with respect 

7) We omit the index 2 of Q
2 

in the following. 
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to ~ . D (because of the square-integrability of ~z Q., 'l.• ! 0. I fl.) 
l "''!. ~ '"'e ~ 

and, second, the support of < 'l \ f,"- ll>'l' is confined to the plane :l 0:. f. 
The latter statement is a consequence of the subsequent lemma, if one takes into 

account that the operator !J."'- (.Q\6.,!Q).1!_ has, after integration with a fnnction 

'fo of type (3), the same structure as the charges Q 3 . I 

Lemma 5.3. G,= 0. 

A proof of this lemma can be found in the literature {cf. for example (4J). We 

mention as an aside that the existence of elastic two-particle scattering in 

some non-forward direction is sufficient for the derivation of this result. 

Now we can prove the main result of this section, 

Proposition 5.4. Let Q. be a non-local charge of genus 2 in a theory with non­

trivial elastic two-particle scattering,_ Then 

P~ M'" P"P" ( P"M'' "' ~) Q = <>~: ·11 + c<'.,.. + d.,.., + f3,..~ + c~.-.,..~f + M P 

+ o~._..,.rt ( M"'~ M9
t: + f.;·{r. M"'") 

"" 
:JJ"' . , 

where o1. ) ot.,. a~.,.~ ' (J,.,.. ' ot.,...,~ ) d.,..,~t are real numbers. 

Proof: Summing up the results obtained so far, we see that Q has zero energy-

momentum transfer. Hence the only non-vanishing kernels of Q can be 

<51.1 Gl5l> <~lalt>, '<: 1·, 1• I G. I t" l'.:>; 
Moreover, for the latter two kernels the representations (3.10) an~ (3.12), respec­

tively, are valid, For our subsequent analysis o.f these kernels the following 

identities are_ basic (in the 'limit A-+o-o): 

f. (Y"'Il•,.,'J•,•l, 0. 'f'"lf.,,f.,,J)~ T• (GY"'(l• . .,j •.• ), "t''(f.,,f •. .l) ( 5.4) 

and 

II'\ ('t~"t(.,h~ )~2.~,~1,J, G.'!-~( ,_ :L ( y'"'i 't'"( f ) (5.5) f1,~,f~,..)~,k)/- J..M Q h.{·~~.~1~ 3 ,.~), f•,•1fz,~1 3,1.·). 

Here 

~,,,(1) = e""'•·1 ~,(1) k "'1' 2) l ) 
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where ~~, k~1..l,3 are smooth functions with compact and mutually disjoint 

supports, ~~ , k z 1, 2, 3 are unit vectors, and )- > 0 • The functions f._,A , k ~ 1, 2, 3 

are analogously defined. 

W~ proceed now in the following five steps. (Since the arguments are very similar 

to those given in Lemma 5.1 we can be very brief.) 

i) From (5.4) with 9: 1 .,;:. ~1 we obtain in the limit ).. - + <><> (due to the clustering 

properties of the S-matrix) that B1::H'""'I in relation (3.12) is independent of "ex" 

·ir >'l'l+w.',. M. 

ii) Similarly, we get' from (5.5) with ~ 1 "'9-t "f. Q.- 3 

in the limit .<- + o0 

and (5.4) with 

(Y''I~ .• ~.I, y'"(b,.,~.,f,J,I) + ("t""'ll··l·l, 't'"(r.,b,_,_.,f,)) 

= ( 't""' Cb.~,-·, ~· , 1·1 , 't'" I J,, f, 1) + ( "t'"' I l., b,_,_., :!• I , "t'" r f., f. I) 

if '<'Yl4-w.'~M. Here 

bl\..,)( ..... ') (f) ~j•\ 
t ""~ 

8._,_., ( f, ~) ~·I~ I f, I~) 

Thus, it follows by the arguments of Sec . 4 (cf. relation (4.3)) that 

B l P, 1-) = O..t..,J( ... 'J"'"' p"'"q" + b(..,l( ..... 'lr- p"' + b(..,'J\.., 1y.o .... + c,,..,Jt-'1 
(,...)(""'' - - ~ ... 

if 

and 

m+.,..'"'- M; here a.(_)(..,')"'"~ b(""ll""''',... ' c 1.,..1 ,,_., are constants 

r·=<.J.r ~ 1.-~"W'!. 

iii) Combining (5.4) (~~=~J and (5.7) we conclude that 

(Y"'(~,,~,), "t'"(tl'",f,,l.))+("t'"'ih~·), "f''"(i.,A',.,!,)) 

~ l "t'"' o:;., ~·, l·l , r'"u,. 1,)) + 1 "~''"'Is, x .• ,1. 1 , 't'"i", +. l J , 
where 

1\,",(r) ~ A,",(r)- "'"'""P"r' 

.Q., = £:-! 

15.6) 

I 5. 71 

I 5.81 

and 

CllM\#" 
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::=; L <lt..,\(M'))">' 

..,,.., •• M 

So again we can apply the arguments of Sec 4, giving 

A'"' lrl O..tM\_..>' p""p" + d(/_,)_.. p-"' + e(M) 

where d_lM)J.A 1 e lMI are constants. 

I 5. 91 

If in relation (3.10) and (3.12) M= 0 , then the information on the kernels ob­

tained so far implies that 

Q "' c(. 11 + c(._..... p"" + O(N P"'" p" ~ 
~:~ 

so there is nothing more to prove. (Note that btQHQ1,..."'e,41"'0 due to the presence of 

inelastic scattering [9}.) 

' " [' " iv) If M "4 i we define on :n:~ the operator Q.= t.[ Q., p•] , and similarly Q. = ~ Q 1 p•J 
' . 

if M ~ Z . It is obvious that Q. (Q.) is a hermitian operator with kernels of 

the form (3.10) and (3.12); but now there appear at most M-1 , (M-2) derivatives 

in these expressions. By applying the results of the previous steps to 
~ 

A(M-l) it follows that the corresponding coefficients Ac,... 1), B(...,q,.,..•1and 

have the form given in relations (5.9) and (5.7), respectively. 

' ' Q and Q_ 
~ 

) Bl...,H ..... ') 

v) From the very definition of ~ in the previous step we obtain the following 

equations S): 

~p"Ac,..-1){rJ = E(•l Al1,~HJ(fl 

~p·'f' B~"'"""'l ( E ,<J:.) = ( ....,+ "~) 1.-" El•l B<~ ..... J( .... , ( r ·'!) + (...,' + 1) r· !t' Bl~Jl~, ..... ·J ( r, 'i l 
I 5.101 

if "'+""''"' M-1 M '4 i 

Clearly, analogous equations hold also for 
' 
BI .... )(<,,...'J 

if ""'+""'',.M-2 1 M 'JL 

Al.<H)' AIM-•! and " 8(.,..,)('-'') 

A 

8«,,,(_., 

~:t 
i.,·--1,•1 

81 We use the notation etc,· .. a.,~ T., .. ,qt• .. j, 9:
1
"
1 

'T7<,cJ for contractions. 

Here T 1 ~,q is any synunetric tensor of rank k-tL and~ any vector (cf. also 

footnote 4). 
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the constraints on A !MI , B 1"'1! ....,., 
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solving these equations, taking into account 
/\ A ~ ~ 

A,,..,, ~ Bc""H""''J and A<MI J 8 0 .. ,,)(""''' 

resulting from relations ( 5. 7) and ( 5. 9). It turns out that A!MI 8(..,,(,...,•) =0 

if m +......,'.,. M)2. This means that the number of derivatives appearing in the 

kernels (3.10) and (3.12) is less or equal to 2. If M ~ 2 then the above 

equations do have non-zero solutions, and it is straightforward to show that 

the corresponding charge-operators are of the form given in the statement of the 

Proposition. I 

These results have been obtained by a rather tedious computation, A simpler 

solution of this problem would be important for the analysis of non-local charges 

of higher genus and of theories with several particles. 

6, Conclusions 

From the 11 axiomatic 11 point of view adopted in this paper, the non-local 

charges appear as a quite natural generalization of the standard charges, It is 

another virtue of this general approach that it is based only on a few intrinsic 

properties of non-local charges, thereby avoiding all difficulties arising in an 

explicit construction of these quantities in terms of local fields. 

Although we have confined our attention to a restricted class of models, it is 

clear that many of our arguments carry over to more general situations, For 

example, the analysis in Sec • 3 can be performed in models with an arbitrary 

number of massive particles and in any number of space-time dimensions, Up to 

some minor notational complications, the results are the same. 

Only a little more effort than in Sec • 4 is needed for the analysis of non-local 

charges of genus 1 in models with an arbitrary particle spectrum. Using the 

methods outlined in (4] one finds that the set of these charges consists of the 

generators of space-time and internal symmetries. In the case of spinorial charges 

it follows from the arguments in (1 o] that such charges are generators of super­

symmetries. 

The calculation of non-local charges of higher genus is, however, fairly compli­

cated. As was demonstrated in Sec • 5, an important tool for the analysis of these 
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charges are the clustering properties of the S-matrix. For the class of models 

considered here, it is this property of "macroscopic causality" which admits as 

non-local charges of genus 2 only polynomials of second degree in the generators 

of the Poincare transformations. 

The clustering properties of the S-matrix are also useful in the analysis of non­

local charges of arbitrary genus in models with any number of particles. They 

lead to a set of constraint equations for the kernels of these charges, similar 

to relations (5.2), (5,3), (5.6), (5.8) and (5.10), Unfortunately, we have not 

been able to find the general solution of these equations, Our partial results 

seem to indicate that there cannot exist solutions other than those corresponding 

to polynomials in the generators of space-time, internal and supersymmetries, 

But since we cannot definitely exclude solutions which are more interesting, this 

matter should be settled completely, 

Let us finally comment on the particular situation in two space-time dimensions, 

where the arguments of Sects, 4 and 5 are not sufficient. Here again we restrict 

our attention to models of a single massive particle. 

First, in two dimensions the functional equation 

Alp.) +Alp,) ~A(~,) +AI~·I 

on the two-particle scattering manifold (compare relation (4.4)) does not impose 

any constraints on the function A , because on the scattering manifold P•"' q, 
1 

p.~'j. or f•'"'t• , p~ "'9.1 • But if, for example, 

A(p,) +Alp,) +Alp,)~ Al~·l +AI~.) +AI~,) 

on the three-particle scattering manifold, then one can show that A must be linear 

in energy and momentum. Taking this fact into account one obtains for the charges 

of genus 1 the ·same results as in Sec • 4, provided there is particle production 

and non-trivial three- (or many-) particle scattering in the model, i.e. scattering 

for an open set of momenta on the scattering manifold, (This is for example the 

case in the P ( + ).l -models, ) 

The second pecularity in two dimensions is the lack of clustering properties of 

the S-matrix. So the methods of Sec • 5 cannot be used for the analysis of non­

local charges of genus 2. But there is a more direct appraoch to this problem, 
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If, for example, Q. is a constant of motion it follows from the analysis of 

Sec • 3 that Q_ cannot change the asymptotic particle number. So the only non­

trivial kernels of Glare of the form given in relations (3.10) and (3.12). It 

is obvious then that the ( M + 1 ) -fold commutator of Q with P ..... vanishes. Now, 

in contrast to the situation in four dimensions, there cannot appear any deri­

vatives in the kernels of non-local charges which commute with p~ . Using this 

fact,the general analysis of Gl essentially boils down to the study of the special 

cases, where M ~ 0 in relations ( 3. 10) and ( 3. 12). 

Now, if one evaluates matrix-elements of such a charge Cl between incoming and 

outgoing three-particle collision states, say, one obtains for the kernels of Gl 
a functional equation of the form 

B"\p.,p.) + 8'"\p.,p,) + 8'"\p,p,) = B'"( 1.,'t.l +B"'(<t.,<t•)+ B'"('!··'l·) 

for all momenta on the three-particle scattering manifold, for which non-trivial 

scattering occurs. It follows, that Bo""t= B"" which implies that Q. commutes 

with the S-matrix. If there is only elastic two-particle scattering in the model 

nothing more can be said. But if there occur also three- (or many-) body collisions, 

then one can show that the only solutions of the above equation are polynomials of 

second degree in energy and momentum {cf. relation (5.7)). With this information 

at hand it is easy to show that Q has the form given in Proposition 5.4. 

In models with more than one type of particles the S-matrix elements do not 

simply factor out of the constraint-equations for the kernels of Gt , and conse­

quently the evaluation of these equations is more complicated. As the example 

of the G-model shows, one can in general no longer conclude that non-local 

charges of genus 2 must commute with the 8-matrix, in contrast to the restricted 

class of models considered above. But, it is clear from the discussion of these 

special models that the existence of multi-particle scattering and particle pro­

duction imposes strong constraints on the kernels of non-local charges. Infering 

from these partial results it seems that interesting examples of non-local charges 

can only exist in models where such collision-processes do not occur. 
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