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Abstract: Non-local charges [1, 2] are studied in the general setting of

local quantum field theory. It is shown, that these charges can be represented

as polynﬁmials in the incoming respectively outgoing fields with coefficients (kernels)
which are subject ‘o specific constraints. For the restricted class of models of

a scalar, massive, self interacting particle in four dimensions, a more detailed
analysis shows that all non-local charges of the generie type {genus 2) are

products of generators of the Poincaré greoup. This analysis, which is based

on the macroscopic causality properties of the S-matrix, seems to indicate that

less trivial examples of non-local charges can only exist in two dimensions.
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1. Introduction

We present im this article a systematic investigation of non-local charges in
the general setting of local quantum field theory. It was argued in [2] that =
few basic properties of field-theoretic models, such as locality, covariance and
the existence of non-trivial scattering should be sufficient to determine these
charges explicitely {(similar to the case of the standard charges, cf. [3—ﬂ Y.
Our present results are only another step towards a solutien of this problem. But
they reveal the strong constraints imposed on non-local charges by the fundamental

principles of quantum field theory.

The prototypes of non-loeal charges have been discovered in the quantum non-linear

G-model in two dimensions [1] . They can formally be represented by

b . . . .
Q=) [defay etemppjzomisg ~ Z [axjion | e

where i:b’ a,b=4,...,n are the Noether currents corresponding to the 0{n} symmetry
of the model, snd Z is a renormalization constant. The operators Elnbare
distinguished by the fact that they commute with the Hamiltonian, i.e. they are

constants of motion.

As this example illustrates, the non-local charges are typicelly obtained by
multiple integration of expressions involving products of Iocal fields., As a
consequence, they have properties which are not shared by the standard charges.
One can show, for example, that Cldb does not commute with the S-matrix. In fact,
the restrictions arising from the existence of Qr essentially fix the S-matrix
of the 6G-model [1]. In view of this result it is an important question whether

non-local charges can alsoexist in physical space-time,

In a general analysis of non-local charges one is, at the very beginning, faced
with the problem of giving a proper definition of these quantities, As a matter
of faet, in the concrete example given above one must go through a detajiled
analysis of the short-distance behaviour of the currents i:b in order to see
that the charges Clﬂb are well defined ﬁ]. Therefore it seems hopeless tco base
a general analysis of non-local charges on an explicit representation of these

quantities in terms of loeal fields, such as in (1.1},



It has therefore 'peen proposed in [2] to characterize the non-local charges by

a few general properties which can be extracted from the known examples. We

recall these.Aprcperties in Sec . 2. We will then discuss (Sec . 3) how the non-
local charges act on collision states. Cur main result in this context, which

was already quoted in [2], says that these charges can always be expanded in

terms of a finite number of asymptotic creation and annihilation operators. The
remeining problem is then to determine the form of the  kernels in this expansion.

Since there exists an abundance of non-local charges in free Tield theories we

will concentrate in this part of cur analysis on theories with non-trivial scattering.

In order to avolid complicabtions arising in the presence of internal symmetries
we consider only models of a single, scalar self interacting particle. Moreover,

we restrict our attention to the simplest non-triviel types of non-local charges
{the charges of genus 1 and 2 according to the terminology of Sec . 2). We will
show in Sects: 4 and 5 that, in four space-time dimensions, the only charges of
genus 1 are the genersators P* ana M*" of the Poincar® transformabtions, and that
the charges of genus 2 are bilinear in these operators., $imilar results hold also
in two dimensions if there is non-trivisl multi particle scattering and particle-

production in the model {cf. the Conclusions).

Although we have studiedonly a very restricted class of medels, cur results seem

to indicate that non-local charges are polynomials in the generators of the space-
time and internal symmetries also in general. As will become clear, the obstruction
to more interesting examples are the clustering properties of the S-matrix. It is
only in two dimensions, where these clustering properties need not hold, that

non~local charges of the type Tound in the & -model can exist.

2, Assumptions and Notations

We are desling with the Wightman theory of a single massive, scalar particle
subject to the standard assumptions, such as locality, covariance and relativistic
spectrum condition. In particulsr, we assume that the mass shell of the particle
is isolated from the rest of the spectrum, and that there is a Wightman field

0§, fe S{RY connecting the vacuum §2 and the single particle states,

The collision states can then be constructed in the usual manner (ef. for example [61),

and we assume that they form a dense set of vectors in the physical Hilbert space

{asymptotic completeness).

Let us now turn to the characterization of the non-local charges @A (erf, [2] ).
These charges are in general unbounded operators; the informaticn about their

domain which is needed here is contained in our Tirst postulate.

{1) @ is a closed, hermitian operator whose domain (@) contains the Wightman
domain D, , i.e. the set of vectors which are generated from the vacuum 52

by applying polynomials in the Wightman fields.

In view of the difficulties arising in the explicit construction of non-local

charges (cf. the remsrks in the Introducticn) one might wish to consider also

situations in which (A is only defined in the sense of sesquilinear forms on
D, % T, . But then it is unclear whether there exists an unambiguous extension

of (A to the ccllision states.
Cur second assumption imposes certain continuity properties on (@ .

(2) Given n eiN there exists a Schwartz—norm Il Il on ${R*) such that

IRES SUNEE LRSI E N N E N

for all {,,...f. e 3{R" and some constant C .

Finally,we come to the most important property of non-local charges, which reflects
the fact that they are obtained by integrating products of loesl fields over some
spacelike plane (compare reletion (1.1)). Due to this construction and locality,
all multiple commutators involving a non—local charge (L and sufficiently many
local Tield operators have to vanish if the fields asre localized at different
points of that plane. Moreover, since (& is a constant of motion, these commu-
tators alsc vanish if one replaces (. bty Q(X)=U(x)QU(s¢)", where Ulx} is any
space-time translation. In fact, we will only use these commutation properties

of (A{x} , thereby allowing slsc for charges (. which are not invariant under
translations {as e.gz. the generators of the Poincaré transformations). Hence our

last postulate reads as follows:

(3) There existe & number N such that (in the weak sense on @, xD, )

[[at, #i1], +lhal ] =0




for all translations X and test functions f; =4, N having support
in N+4 disjoint double-cones with compact base in some fixed spacelike
plane. The minimal number N for which this relation holds is called the

genus of @ .

It is c¢lear that this characterization of non-local charges extends to theories
in any number of space-time dimensions with an arbitrary particle spectrum., It
also applies to spincrial (super-) charges. However, there cne must admit in

Postulate (3) commutators as well as anticommutators, depending on the Bose or

Fermi character of the quantities involved.

Charges of genus 0 are clearly multiples of the ldentity. The standard charges,
which are obtained by integrating current densities over all space, are of genus 1
and trivial examples cf non-local charges of arbitrary genus N can be obtained
by taking AN -fold products of charges of genus 1. The non-loesl charges (1.1)

in the & -model provide non-triviel examples of charges of genus 2 in two dimen—

sions,

As we will demonstrate in the subsequent sections, the characteristic properties
of non-local charges summarized in the above postulates contain sufficient in-

formation for their detailed analysis.

3. Action of non-local charges on collision states

In this section we shall show how Postulates (1) to (3) can be used to determine
the action of non-local charges on collision states. We begin by recalling some

basic facts from collision theory.

Given n single-particle wave functions §, & ${R?) one obtains the corresponding
incoming respectively outgoing n-particle collision state by the Haag-Ruelle

construction (6], taking the limits

s-lim ) IR =T, 0 -y

Lt )

Here "ex" stands for "outgoing” or "incoming” and t% for + oo or - oo , respectively.

The funetions f; , e 3(R*) are given in momentum space by
)

Tl = ettlPmoe) g (p)Olpdhipy | (3.2)

where wcr-(flq.ml)?z R Pz‘(Pn)z'Ea ) hh is = smooth Function with support about the
isolated point Pzzml in the mass-spectrum and h{m?=4. Because of technical

reasons we will only work with configurations of wave functions f,,...,f,  which
have compact and mutually disjoint supports. We denote the linear span of the

corresponding collision states and the vacuum $2 by DI* ; this space is dense in
the Fock space HP of all collision states. As is well known, one can introduce
on M. asymptotic creation and annihilation operators CLt,, (£} and  a{f] ,
respectively, satisfying canonical commutation relations. It is our aim to expand

the non-local charges in terms of these operators.

In a first step we shall demonstrate that the non-local charges Q are defined
on D . Although the argument is standard we sketch it here, since similar
methods have to be applied at various points of cur analysis, where the details
will then be cmitted., We mzke use of the fact that the test functions R ft in
the definition (3.1) of the collision states can be approximated by functions ?,‘
which have compact support in configuration space. Namely, let [ be the set of

four velgcities
I3
{4, 5) ; pesuppt}, (3.3)

and let [’ be any open bounded neighbourhood of [° . Then there exist smooth
functions % which are equal to 1 on [ end have support in [ . Setting

folx) = 2 (2) £, (x) (3.4)

-~ A
it is cobvious that {, has support in the region t-[" . Moreover, the difference
between f, and §, tends to 0 as t -—+2*woo. For later reference some relevant

properties of f, and th are listed in the following lemma {cf. for example [6]).

Lemma 3.1, Let f, and f, be defined as above and let Ii-ll, be any Schwartz-
norm on S${R*). If |t{3 1 then

1) -Ft )‘Ft € 3({2") a
[, 0, +H ?t . € ¢C.- |t1h‘ for seme constant ¢, and some n, e N |

-~ -n

H ﬂ"ﬂ ”.( £ C..‘lt[ for 2ll ne|N and certain constants c, .

1)

To simplify notation we omit the index . for a moment.




ii) :\Suppﬁct'ﬁ.

iii) the Cf(ﬁ?}—va.lued functions - ﬂ and t — 1?1 are smooth in the topology
of :'j(R"} , and the properties given in i) and ii} hold snalogously for
1 1 d i 7
the derivatives £ f, and ! f -

dt
Wow given single-particlewave functions f,,..., f, with compact and mutually disjoint
supports,then the correspondingvelocity sets 7,...,[ are disjoint, hence
there exist open neighbourhcods ﬁ',.“, ﬁ‘, of I7,.. N respectively! which are
mutually spacelike separated, Using approximating functions
f‘,t oo e of  {i 4., fay which have support in the sets i seresy t N

as well as the spacelike commutation properties of the field cl: we can prove

Proposition 3.2. @:x is contained in the domain ED(G) of any non-local charge @.

Proof: Since (A is closed and the vectors P cH-Fh,t)S?, are elements

of D@} we must only verify that the vectors Q. (. ,)--- c%‘:({m\ﬂ, converge
strongly as T —1" To this end we apply the femiliar trick and take the derivative of
these vectors with respect to 1 That this may be done follows from the smooth-
ness of the functions 1 — f,,and the continuity properties of @ given in Postu-

late (2). Taking inte account that ‘HL{ #’(‘F:,e)ﬁ‘o we get

% Q) FiRIR

<57 et [k, #ina] -

ddkelgn

FEGRI

and using Postulate (2] as well as the above lemma it is cleer that we can replace
- -
the test functions %.-t{“?" and {, . in the commutators by a‘i-t f.,, and f . , respecti-
~
vely, the difference being rapidly decreasing in |t] . Yet since the functicns %Eﬁ),

-~

and f., have support in the spacelike separated regions ‘bﬁ and t-[],all

commutators {‘?{%}ﬁ,.) s ‘-‘;’f@l,{] 1 are eqial to 0, So we get the bound

”%—t G'{:Pff‘-t) *(ﬂ.,t)ﬁlﬁ < ¢ {t[-j

for any je N . The desired result then follows by integration. .

Let us remark that the matrix elements of

(E o ea), @ F () (3.5)

regarded as linesr functionals on the test functions §«>---,§m) 'F”__,){“ are
3
{restrictions of) distributions in 3§ fR'ﬂ"‘”‘)) 2), We rall these distributions

kernels and dencte them by 3)

ax

w .6
Tqongm | Qlpesony p (3.6)

For the expansion of the non-loecal charges in terms of asymptotic creation and

annihilation operators it is more convenient to work with the truncated kernels

&x

<1d,...,ih[g1f,,..,fh>" (3.7)

= T

which are given by the recursive relaticn

=<‘1'>“"‘1""ialfn--~1fn>u

(3.8)
= = . . 2x * ax
2. R g Alpis B 7 s s Q| P 0By,
1.3 = .
Here the sum extends over all ordered subsets I =(i,,... u)g{1,-...m) and
J={j,o0nge) € (M, w) as well as I = & and J-Qj , where we

adopt the convention that @ labels the vacuum. It is & simple consequence of
the above proposition that one can represent & in terms of asymptotic creation

and annihilation operators according to

e A dij A d-3 w. dsj.’g . rl; "
Q= ol |4z il b v
myheg {3.9)

*

(g @lg) L g 9m Ol ppe 3 Gl ()

. . - - L
in the sense of sesquilinesr forms on Dy »x ﬂ): .

2)

To verify this one has to evaluate the dependence of the functions {, and f,

on the underlying single-particle wave functions {f , see for example [T}

3) Note that these kernels are unambigucusly defined only for non—coinciding

momenta q,,...,9m and p.,...,p, » respectively. We will therefore restrict

our attention to such configurations.




Up to this point we did not make use of the characteristic properties of non-local
charges, given in Postulate (3). Using this input, we will now establish certain

"specific suppert properties of the corresponding truncated kernels (3.7).

Proposition 3.3. Let Q, be a non-local charge of genus N . Then

‘Z(}fl“']%’"‘&lij"')gn?:( = 0.

in the sense of distributions on the (open) set of configurations {a” see e Gy
Pas - .,ph} consisting of more than N different momenta, If, in particular

m>N or nx N , then the truncated kernels vanish identically.

Proof: Let -F,‘ yeee s Fﬂ and Qyuyeee ,gmbe two sets of smooth single-particle wave
functions with compact and {for each set separately) mutually disjoint supports.

It is actually sufficient here to consider funetions whose supports are contained
in small balls such that the support of any function -F-a i=1,...;n has a non—-trivial
intersection with the support of at most one of the functions e 4 iee,m.
Using relation {3.9} and the fact that the operators ¢>( F{:) and 4)(39* converge
ror t—=1% %o asymptotic creation and annihilation operators, respectively, it
follows by an argument as in the proof of the preceding proposition that the re-

gularized truneated kernels can be represented in the form
0’2%4)"‘)3"1\ Q—t 'F‘n---l {"n>:f=
2lim NS )[[Q, ) Cb(r'«,t)] y )ét){?n,tﬂ) AP{%‘(,JE}* l T Jd)(%m,t"*] Sl)-)

t—

in an obvious notation. Moreover, one can permute on the right-hand side of this
equation the testfunctions Fl‘.,t i=4,...,,n ,respectively %},’c p= A, . e,m
without changing the limit. Now in oder to prove the statement we must show that
this limit is zero if there are N+{ functions amongst F4 vers fms G411 Qm
with mutually disjoint supports; without restriction of generality we may assume
that {4,._.,-[5,,,31,..,)3'“*1“” (it ne N are these functions. Accor—
ding to Lemmas 3.1 we can spproximate the corresponding testfunctions F4,é ) -
. o~ ~ . . L
by functions -F{’t yoee s Guedent naving support in M+1 aisjoint double cones
with compact base in the spacelike plane ¥, =t , £ & R3 . It then follows from
Postulate {3) that the above multiple commutator vanishes in the limit of asymptotic
times t . If h or m are larger than N , thenthe same ergument shows that the
regularized truncated keirnels vanish for any possible choice of the single-particle

wvave functions 161:"':{:" and 34,,..,3'“, respectively. .

T 3Nf1—n)t

Tt is an immediate consequence of this Proposition that the expansion (3.9) of
in terms of incoming as well as outgoing fields terminates at & finite sum. Using
the preceding results we now can give more explicit representations of the kernels

of charges L of genus 1 and 2.

Genus j: If @ is a charge of genus 1 it is completely determined on r by the

kernels

<aleley | <wialeyy | <{gialiny and <qlalpx,

involving only the vacuum and single-particle states {cf. relation 3.9 and Pro-
position 3.3). It thus follows that  commutes with the S-matrix {weakly on

.'D‘,exx D ). Since @ is a hermitian operator and since 52 is in the domein of G
it is clear that <RIGINRY> is a real number and that <R|Q[py = m
is a square-integrable funetion with respect to ‘i—lg . The remaining
distribution <q |@|pJ, vanishes if 1# p(ef. Prop;sition 3.3). Moreover,
taking into account that this distribution is the kernel of an operator which

contains in 1ts domain the one-particle subspace of i):x we find that

4y

<alaipy, =Z Aun (3137 8 (q-p) (3.10)

k]
naz0

where Apw &re locally square-integrable functions. From the hermitieity of G
there follow further obvious proye'rties of these functions, which we do not

need to give here.

Genus 2: Similarly to the case considered above one can see that a charge of

genus 2 is determined on NI° by the kernels

<elaly , <glalfy | Kaagdaigy ,  <qlaled, |

b e ex
<€_‘!4>i:|Q1_F>T 3 <°l_1:3:lo~.lf1,P:>.T
and their complex conjugates.
Besides the obvious properties of these kernels which follow from the fact that

D is in the domain of (A we have further information from Proposition 3.3

on the last twe kernels. Namely,
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M
<gsalalp) = Z[C‘:(?’%’)Q;lg(‘y‘f) + (21931)} o 3

M
Leoplalenpd= 1) [BW*"(‘?>1’)3€§’5(3ﬂfﬂ)3;'.""5(?-@) W?“"Pﬂs (3.12)

Lia R 3 AT )

ex
where B {4,9.) = B | 9uy9e) because of the symmetry properties

of two-particle states,

In the case of a free field theory every operator (@ of the above form is of
finite genus, simply because free fields have c-number commutation relations. So
the general results obtained so far are ina certain sense optimal. Yet, if there is
non~trivial scattering in the model much more can be said. This will be examplified

in the case of charges of genus | and 2 in the subsequent secticns.

i We use the notation (m) for any multiindex of the form [i,,...,w.) with
'*—sc=‘1,1 .3 - The symbol g , where 4 is a vector,stands for a.. s,
=)™ ab. .. atm . The followiang summation convention is used for symmetric
tensors of rank m @ af'™ 'T:M, =Z ag-cay T .

[

L. Charges of Genus 1

In this section we study charges & or genus 1 in interacting theories. Assuming
that there is non-trivial elastic scattering and particle production we will
arrive at the result that the set of these charges consists of the generators

of the Poincaré transformations (Proposition 4.1).

From Sec .. 3 we already know the general form of () on ﬁ):x . We want to show

now that @ cannot change the asymptotic particle number, i.e. that

<¢iaiy =0 . (1.1)

Recalling the fact that @ commutes with the S-matrix, it is clear that the vectors
Wa, MYQYI(£) , where “F(f) is any single-particle state and [e, Al any

Poincaré transformation, describe states which do not scatter. Now, if the com-

ponent of any one of these vectors in the two-—particle subspace of R;x would be

different from zero, we would obtain, by varying f and (Q,A) , a total set

of two-particle collisicn states which do not scatter. Since this would be in

contradiction to our assumptions, relation (4.1) follows.

In order to obtain more information about <q:|Q1;_>>T we apply (L to collision states
having a large spatial separation from the origin. On these states the terms

with the highest number of derivatives in the representation (3.10) of <3‘.|G|f>r
give the dominant contributions. This faet will simplify the analysis of the
corresponding coefficients A . More specifically, let 9., 9, 80d f, , f be

smooth functions with compact and mutually disjoint supports and let

Junlg)= €42 g (q) k=1,2 (4.2)

L]

where AP0 and a is a unit vector. The functions ﬂ)k k=1,2 are defined

3
analogously. Then

. 1 aul Ln
Lim L (\P (9052900 ) , AT (,cf,uﬂ‘*))

A=t

= (,\}m(% 73}) ) '\-I/L"(QL(M'A(N f«,ﬂ)) + ('\I,wf( gngil. ,.fan({” Q_(M!Awlﬂ})



"

and a similar relation holds if "in" and "out" are interchanged. Therefore, using

the hermiticity of (A and the fact that o is arbitrary we srrive at the reslation

('\{Iaut(g‘“%“} 5 %L“(A(M)ﬂ){z}) + ('\I’Mt('ﬂ'\aﬂx)’ \1/“-"‘(1,:1 ~.A(M! 'Fz))
(4.3)

out | % i ow — i
:(\f (A‘“|‘3"a‘)>\}’ (F"{‘)) + (‘% {(‘g‘nA(M)'ﬁz),\f (‘F«,{:)) .
Hence /\(M) satisfies the functional equation

A(M)[f‘) + A{M)(fﬂ) = A(Mj(i") + A(M;{i‘) (h'h)

whenever 9 #412 » AP and (34,3’2,5 ’Pz) belongs to the support of
m%i"?} | e ,'_’x>1h . We note that in order to make the step fram (L.3) to

(4.4) rigorous one must actuslly regularize A, by averaging Am,(a'ig} over the

Lorentz transformations A . The resulting function, for which relation {(4.h)

sti11 holds, is then smooth in P

It is well known that the only solutions of (h.4) are (apart from constants) linear
combinations of energy and momentum. The weakest condition under which this result
has been derived is the assumption that relation (4.L4) holds in all Leorentz-systems
for at least one non-trivial elastic two-particle scattering configuration [8] .
Becguse of the Lorentz—invariance of the S—matrix, this condition is given, when-
ever there is non-trivial elastic two-particle scattering in the model, 1i,e.

scattering in some non-forward direction.

Arguing now as in [3] {cf. also the proof of Propositicn 5.4) one can show that
Auy=0 if M7y 2 and that the remaining terms in (3.10) are proportional o the
kernels of the generators of the Poincar transformations. We remark that a term
of the form 5((14,;) cannot appear in {3.10) because it would correspond Lo the

kernel of the p‘ar‘ticle number operator, which does not commute with the S-matrix

since there is particle production [9]. 80 we arrive at

Proposition h.1. Let G be a non-local charge of genus 1 in a theory with non—
trivial elastic two-particle scattering. Then
M v
Q: - +3(MP +.,£.)A,MF on i):x)

where &, o are real numbers.

E) r\-)"‘/‘v
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5. Charges of Genus 2

We turn now to the more interesting charges { of genus 2, where the

anaiysis is much more complicated, We proceed as follows. In a first step

we decompose Q. into a sum of operators with definite energy-momentum transfer.
Then, using the non-triviality of the S-matrix and its clustering properties, we
will find that charge operators with non-zero energy-momentum transfer do not
exist {Lemma 5.7, 5.2 and 5.3). With this information at hand we shall finally
show that non-local charges of genus 2 can only be polynomials of second degree

in the generators of the Poincaré transformations (Proposition 5.4).

Sc let (1 be any non-local charge of genus 2 and let K & S(R') be any real-

valued smooth function. Then the expression
Q) = [da % (0) Ula) Q U}

is a well-defined hermitian cperator on &, , and it is straightforward to show
that its operator closure, which we also denote by Q%) , 1s &gain a non-local

charge of genus 2. Its kernels are

(Z‘TFJI ")z(q‘f- S SR N ex<1”‘”&%]0\‘21’“)&5:( 5.1)

k]

where we set q}:w}i , Pi=wy  for =tam =1 m % denotes the

g

Fourier transform of X .

Now we choose ¥ in a particular way. Namely we assume that SZ. has compact support

and satisfies one of the following conditions:
"y’ &
() supp X @ {4eR" 5 s<qiobe g}

(2) Suppi < {CLEIRQ ', m‘+g<qf}

{3) supp;c c{ieﬂy; %2<m‘—ﬁ}\{o}
(5) suppX = { qeR" ; |q|<e}

where q_1={3’°§2— 3" R I,q,izz(uf)zﬂr q* and 0<¢ <"-‘,;_”: . Since the sets in (1-4) form

an open covering of RY , it is clear that by varying ¥ in Q(%)one can rediscover
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G on D). Moreover, recalling the general form of & on Do (ef. Sec . 3},

it is easy to check, thab only the following kernels of @ (%) (and their complex

conjugates) can be different from zerc if 7 satisfies one of the conditions (1-k).

s <glalgy , Cqoa Qx>

@3 Ly, qlat) i)y
(3 <qlax)|px

(g <KIQXIRY , <Lqlalxipy, ""‘<q;,5,1|@(x)|f”fz>‘;"

We denote the corresponding operators by {3, , B &, and &, , respectively.
Assuming that there is non-trivial elastic two-particle scattering, we cbtain

the following lemmas,
Lemma 5.1, Q,=0.

Proof: Let us first assume that M%»4 in (3.11) and calculate matrix elements of
QL 5) between suitable one- and two-particle states with large sngular momentum.
{Compare the argument leading to Proposition 4,1.) Due to the M-fold derivatives
in the kernel (3.11) we get for large A the asymptotic expansion

ar (P90, 010)) = (Fg0g0) 1) + 0(4)

where 9. ,f, are defined as in (b.2}, and \1’:; is an incoming two-particle

H

gtate with wave functicn
in vha-
sym I:Q(M] Com (20pa) fip) " Q-E’]

Here "sym" denotes symmetrizationwith respect to the momenta. Now, using the
clustering properties of the S-metrix 6) {see LG]) we obtain from the above ex~

pansion in the limit A —= + oo

5)
6)

Te simplify notation we omit in the proof the index 1.

Hepp's cluster theorem does not only hold for test funetions but for arbitrary
square-integreble wave functions. This follows from the fact that the S-matrix
is a bounded operator and that the translation operstors are uniformly bounded.
We have to use this fact, because non-local charges may transform smooth wave

functions into functions which do not belong to the space of test functions.

- 15 =~

. _‘l__ oul _ d"q, ‘P‘ll%_ in
Lo 2 [ one) QT =[5 [28 5505050 qmCl (1904l
On the other h;and,using {3.11), we have the asymptotic expansion

arm QY™ g, g0, Y = (Yo, T@) + 0(4) ,

where ¥, is & single-particle state with the wave functien

285 som[gtadplyd P2t ] am O3 (g

Hence, by the Riemann-Tebesgue Lemma, we get

. 4 out 43 . Jg y ————— aw
LLL_\::“ [i.,()"‘ (Q-\Ij (3" :‘i:,k) s ‘LIII:'F*D:IA—EF 2_3‘12‘34(?]31{‘1@) 9“" C“,: [34,‘}:){{3:) .

Because of the hermiticity of @, this limit coincides with the limit obtained above.

So we arrive at the conclusion that the coefficients C::\, in (3.11) are independent

of "ex". The same result can be derived for M={ if one takes into account that

the kernel <q|@])&% > 1is independent of "ex". Using the identity

i out n - 4 1 Wh

X S CHENPIIN- I S C AN I (o6 S RPN P8
we obtain in a similar way the following relations:

(i) Iz M4 , then

(.\Puut{'j"%l} ] \I’i'h( Cm) ){1)) = ('\}'"t{ﬁﬂg!) Y ‘\Fmt( c'lmn{*]) \ (5'2)

where

Cumlp) = J% Comtpaa) .F, {9)9,(g

. . . . 3 .
ig a square integrable function with respect o %ﬁ « This result means that
r

the states "'I’ex(cm, , f,) do not scatter, Hence we can proceed along the lines
of the proof of relation (4.1) in Sec . &4 with the result C(M) =0.

{ii) If M=0 , then

('\_},out(g‘)lil) ,.\i,:u\) = ( ?uut(ﬂ'ngz) ‘ ‘\I/:_“t) (5_3)



- 16 -

ex R
where \'I"z is an asymptotic two-particle state with the wave function

Zogm [( <l Q1) + Cop (93} (90, 8) + cuntad] flad

Heére Ce(p) is defined as in (i), and (g, ,,) denotes the scalar product of

the wave functions g, and f, .

Now from the fact that the states \i’;v and Q\I'(ﬂ) do not scather, it Tollows
that "E’E*(c,,, ,{‘4} does not scatter either. Therefore, by a similar argument as

in Sec . & we obtain C=0 and <9il@lfy=0 , which proves the lemma. |

Lemma 5.2. Qz = (.
Procf: Let us consider the operator 7 Aq = L{Q(ai, O.] , where aeR' ana
Qla)=Uia) @ Ula)™ . (Note that this operator is well defined on D be-

cause of the square-integrability of the kernel q.,,q.]@|R> .} If we can
show that A,=0 for all aeR' the statement of the lemma follows, as can be

_ seen as Tollows: the relation 4,=0 implies that

(as ,Uvag) = (a2, Utajan) ,

hence by the spectrum condition and the uniquness of the vacuum we obtain
2
(af , Ulajag) = [(2,a2)f =0

for 211 o &[R* . But this means that AR =0 or, equivalently, that
ex
<@1;‘12\ Qiny =0,

How, using the explicit form of @ , it is easy to see that

3 3
B =<EladR> A [E2 53 alig) <yladpd, velp)

in the sense of sesquilinear forms on D » D, moreover, if <i'AaiE>T=O

then <&} ARD=0 - Therefore, in order to show that A,={ we must only

verify that <qlaulp> vanishes. But this is an immediate consequence of the
= =T .

following facts: first, <qa.lel, is a square-integrable function with respect

7 We omit the index 2 of (}, in the following.

=17 ="

3 . irs
to Lo 4% (because of the square-integrability of X q4.,q.]@Q!8> )

Zug 2
and, second, the support of <gla.lph, is confined to the plane q =p.
The latter statement is a consequence of the subsequent lemma, if one takes inte
account that the cperator A, —~ <QIAJE2>1 nas, atter integration with a function

% of type (3), the same structure as the charges Q‘a . l
Lemma 5.3. Q,=0.

A proof of this lemma can be found in the literature {cf. for example [L]). We
mention as an aside that the existence of elastic two-particle scattering in

some non-forward direction is sufficient for the derivation of this result,

Now we can prove the main result of this section,

Proposition 5.4. Let @ be a non-locel charge of genus 2 in & theory with non-

trivial elastic two-particle scattering. Then
. o 2w "
Q= «1f%+ P + M 5. PP +d}~~g(P M"“"M”PM)

+ d»»?t (M)-v M?t > MPIMJW) o ;D:x

3

where ol oo, s, Bar , havg s oavgt are real numbers.

Proof: Summing up the results obtained so far, we see that & has zero energy -

momentum transfer. Hence the only non-vanishing kernels of (A can be

<@ialRy o<gleled | Lgowlalpony

Moreover, for the latter two ketrnels the representations (3.10) and (3,12), respec-—
tively, are valld, For our subseguent analysis of these kernels the following

identities are basic (in the limit {-»+e=):

B U 0900, QY 8] = 5 (@Y g0 00) , ¥l 6)) . 00

and

4 aut i wul i B
e (ﬂ:[/ {90 >G> Gan) 1 @ ¥ ({1-*!{2,A>{3,J): %" (Q? (516"51.1"}3,&13\% (fu 24 u-)J.(S ?

Here

Jurly) = ctiovy gula) k=1,2,3

3 %y



where gy , k-1423 are smooth functions with compact and mutually disjoint
supports, 4, , % =1,2,3 are unit vectors,and A0 . The functions f,, , k-1,213

are analogously defined.

We proceed now in the follewing five steps. (Since the arguments are very similar

o those given in Lemma 5.1 we can be very brief.)

i) From {5.4) with a,# 4, we obtain in the limit A — + o= (due to the clustering

properties of the S-matrix) that 8.3”..,.., in relation (3.12) is independent of "ex"

I e = ML

ii} Similarly, we get from (5.5} with a,=g, # o, and (5.4) with a,=a,

in the 1imit £ = +

(Y (5,90, F s f, &) + (1 (5000 5 F 76 b )
{5.6)

= (" i 8,90, ¥ 00000+ (10, B 3) | ¥ 04,,4)

if mwewm =M Here

& -—
blmnw‘l}(f) =JZ-:! B(vn\r'—'l (_F"}) 3(‘}) 'F;('l,)

Thus, it follows by the arguments of Sec . L {cf. relation (4.3)) that

Bh—uu] {E,o!) = q‘('ﬂﬂl(m‘);&v P”‘?; + brm(-«'),\ P"‘L + l’lh‘l(m)}»q,» R (5.7)

. - . :
if m+wm= M ; here Domptany oy Dowitmtisn 5 Cpuy ooy 8T cCORStants

and  poru, Q= wy .

iii) Combining (5.4%) (o, =a,] and (5.7) we conclude that
U™ (3000, Y Ruh, 000 (8 (5003) |, ¥4, A))

= (T s 2) 16 + (F (g0 R , F000,00)

where

A‘LM} (f) = A(M) r\f) T R i PF I

and

O‘(M!M" = 2 A sy ity v

W' = M

So again we can apply the arguments of Sec . h, giving
Aim(f} = Gtws PP+ duwn P° O Cwy s (5.9)

where dw),\ y Eamy are constants.

If in relation (3.10) and (3.12) M=0 , then the information on the kernels ob-

tained so far implies that

Q:o("u-i-o(MPM-Fa(,,PMPV on i):x

3

so there is nothing more to prove. {Note that b, =€4=0 due to the presence of

inelastic scattering [9].)

X s - . ﬂ - P L3
ivy If M3y 41 we define on D" the operator &= L[G.,P’] , and similarly Q=1 [Q,P]
- 2
if M% 2 . It is obvious that @ (&) is & hermitian operator with kernels of
the form (3.710) and (3.72); but now there appear at most M-{ , (M—ZJ derivatives
~ 2
in these expressions. By applying the results of the previous steps to Q and @
-~ -~ A 2
it foliows that the corresponding coefficients A(,,\_”,B(M,lm‘,and A(M,z) , @(MM,}

have the form given in relations (5.9) and (5.7), respectively,

-~
v) From the very definition of G in the previous step we obtain the following

equations 8) H

LPO A(M-i)(f) = fm A‘:1'M-1)[f)

) ~ {5.10)
L Bun (204 = (e )97 20 By (228} + e adpr g By (p59)
b * z T,
if mawi= M-4 0 M 3
A ~ A -

Clearly, analogous equations hold alse for A(,ﬂ) N Am_,] and B....,,.M‘, , BH‘M,N, ,

A

Bc»-)(«,m'; if Wit = M- 3 M 2L

a
We use the notation a'™ T;k‘u ’=.Z TSI E T,A..c.‘,},---j. for contractions.

iy

Here (.. is any symmetric tensor of rank k+| and @ any vector (cf. also

footnote 4).
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The proof is now accomplished by solving these equations, teking into account
the constraints on Awy 5 Bomims R;N N @{MHW\') and im: s ésm)lm‘j
resulting from relations (5.7} and (5.9)., It turns out that Auy = B =0

if wm +wm' = M>2. This means that the number of derivatives appearing in the
kernels (3.70) and (3.12) is less or equal to 2. IT ML 2 then the above
equations do have non-zero solutions, and it is straightforward to show that
the corresponding charge-operators areof the form given in the statement of the

Proposition. [ |

These results have been cbtained by a rather tedious computation. A simpler
solution of this problem would be important for the analysis of non-locsl charges

of higher genus and of theories with several particles.

6. Conelusions

From the "axiomatic" point of view adopted in this paper, the non-loecal
charges appear as a quite natural generalizstion of the standard charges. It is
another virtue of this general approach that it i1s based only on a few intrinsic
properties of non-local charges, thereby avoiding all difficulties arising in an

explicit construction of these guantities in terms of loecal fields.

Although we have confined our attention to a restricted class of models, it is
clear that wmany of our arguments carry over to more general situations, For

example, the analysis in See . 3 can be performed in models with an arbitrary
number of massive particles and in any number of space-time dimensions. Up to

some miner notsational complications, the results are the same.

Only a little more effort than in Sec . 4 is needed for the analysis of non-logal
charges of genus 1 in models with an arbitrary particle spectrum. Using the
methods outlined in [h] one finds that the set of these charges consists of the
generators of space—time and internal symmetries. In the case of spinorial charges
it follows from the arguments in [10] that such charges are generators of super-—

symmetries.

The calculation of non-lccal charges of higher genus is, however, fairly compli-

cated. As was demonsirated in Sec . 5, an important tool for the analysis of these
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charges are the clustering properties of the S-matrix. For the class of models
considered here, it is this property of "macroscopic causality” which admits as
non-local charges of genus 2 only polynomials of second degree in the generstors

of the Poinesré transformations.

The clustering properties of the S-matrix are also useful in the analysis of non-
local charges of arbitrary genus in medels with any number of particles. They
lead to a set of constraint equations for the kernels of these charges, similar
to relations (5.2}, (5.3), (5.6}, (5.8) and (5.10). Unfortunately, we have not
been able to find the general solution of these equations, Our partial results
seem to indicate that there cannot exist solutions other than those corresponding
to polynomials in the generators of space-time, internal and supersymmetries,

But since we cannot definitely exclude solutions which are more interesting, this

matter should be settled completely.

Let us finally comment on the particular situation in twe space-time dimensicns,
where the arguments of Sects. I and 5 are not sufficient. Here again we restrict

onr attention to models of a single massive particle.

First, in two dimensions the functional equation
Alp) + Alp) = Alq + Alq.)

on the two-particle scattering menifold (compare relation (4.4)) does not impese
any constraints on the function A , because on the scattering manifold Pr=9q1,

Pa=9- or  pa=is , Pir=qa * But if, for example,

Alpd + Alpd + Alps) = Aladd + Alas) + Algy)

on the three-particle scattering manifold, then one can show that A must be linear
in energy and momentum. Taking this fact into account one obtains for the charges
of genus 1 the -same results as in Sec . ¥, provided there is particle production
and non-trivial three- (or many-) particle scattering in the model, i.e. scattering
for an open set of momenta on the scattering manifold, (This is for example the

case in the P HD)Z -models. )

The second pecularity in two dimensions is the lack of clustering properties of
the S-matrixz. 8o the methods of Sec . 5 cannot be used for the analysis of non-

local charges of genus 2. But there is a more direct appraocch to this problem,



- 22 -

If, for example, Ol is a constant of motion it follows from the analysis of

Sec . 3 that (1 cannot change the asymptotic particle number. So the only non-
trivial kernels of Q are of the form given in relations (3.10) and (3.12). It

is obvious then that the {M+1)-fold commutator of @ with P’ vanishes. Now,

in éontrast to the situation in four dimensions, there cannot appear any deri-
vatives in the kernels of non-local charges which commute with P . Using this
fact ,the general analysis of (l essentially boils down to the study of the special
cases, where M=0 in relations (3.10) and (3.12).

Now, if one evaluates matrix-elements of such a charge (| between incoming and
outgoing three-particle collision states, say, one obtains for the kernels of (L

s functional equation of the form

out out au in i i .
B {p,m) + B (paypa) + B t(p,,P,) =B (‘14-,‘11) +B (qaaqu) + B (‘1»;‘1«)

for all momenita on the three-particle scattering manifold, for which nen-trivial
scattering occurs. It follews, that B2 g™ which implies that @& commutes

with the S-matrix. If there is only elastic two-particle scattering in the model
nething more can be said. But if there occur alsc three- {or many-) body collisions,
then one can show that the only solutions of the above eguation are polynomials of
second degree in energy and momentum {cf. relation (5.7)). With this information

at hand it is easy to show that & has the form given in Proposition 5.4.

In models with more than one type of particles the S-matrix elements do not

simply factor out of the constraint-equations for the kernels of & , and conse-
quently the evaluation of these equations is more complicated. As the example

of the G&-model shows, one can in general no lenger conclude that non-local
charges of genus 2 must commute with the S-matrix, in contrast to the restricted
class of models considered above. But, it is clear from the discussion of these
special models that the exlstence of multi-particle scattering and particle pro—
duction imposes strong constraints on the kernels of non-local charges. Infering
from these partial results it seems that interesting examples of non-local charges

can only exist in models where such collision-processes do not oceur,
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