DEUTSCHES ELEKTRONEN-SYNCHROTRON

February 1985

INFLUENCE OF THE TRANSVERSE BEAM SIZES ON THE
ep \rightarrow epf CROSS SECTION AT HERA
by

G.L. Kotkin, S.I. Polityko, V.G. Serbo
Novosibirsk State University, Novasibirsk

DESY behält sich alle Rechte für den Fall der Schutzrechtserteilung und für die wirtschaftliche Verwertung der in diesem Bericht enthaltenen Informationen vor.

DESY reserves all rights for commercial use of information included in this report, especially in case of filing application for or grant of patents.

To be sure that your preprints are promptly included in the HIGH ENERGY PHYSICS INDEX, send them to the following address (if possible by air mail) :

DESY

Bibliothek
Notkestrasse 85
2 Hamburg 52
Germany

INFIJENCE OF THE TRANSVERSE BEAM SIZES ON THE ep \rightarrow epy CROSS SECTION AT HERA
G. I. Kotkin, S.I. Polityko and V. G. Serbo Novosibirsk State University, Novosibirsk, 630090, USSR

ABSTRACP: Luminosity measurement on the HERA accelerator is planned to be carried out by means of the eppepy process. We note that in this process impact parameters occur which are larger than the transverse beam sizes. This leads to a decrease in the number of the observed photons as compared with standard calculations. Our calculations show that the difference is greater than 10% at the photon energy

$$
E_{\gamma}<0.04 E_{e}
$$

1. The accelerator HERA with the colliding ep -beams (which is under construction now) will have electron energy $E_{e}=30 \mathrm{GeV}$, proton energy $E_{\rho}=820 \mathrm{GeV}$ and Iuminosity $L=0.6 \cdot 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ [1]. One of the main parameters of the accelerator, the luminosity, is planned to be measured by detecting the photons of the ep $\rightarrow e p \gamma$ process [2]. The standard quantum electrodynamic calculation [3] of this process corresponding to the diagram of fig. 1 is well known (see eq. (1)).

However, for this accelerator the observed cross section will be smaller than that in eq. (1). For example, the deviation from the standard formula (1) is $\geqslant 10 \%$ for the photon energy $E_{\gamma}<E_{e} / 25$;
certainly, such a difference should be taken into account at the Iuminosity measurement. It is not difficult to understand this phenomenon. The process under consideration can be represented as the Compton scattering of the equivalent photons produced by a proton on an electron. Equivalent photons with the energy ω form a "disk" whose radius is $\rho \sim E_{\rho} / m_{\rho} \omega$ where m_{ρ} is proton mass. For backward Compton scattering the energy of the observed photon E_{γ} corresponds to an equivalent photon energy $\omega \sim\left(m_{e} / \varepsilon_{e}\right)^{2} E_{\gamma} \quad$ which is ten orders of magnitude smaller than E_{γ}. That is why the quantity ρ becomes macroscopically large: $\rho \geqslant 0.1 \mathrm{~cm}$ at $E_{\gamma} \leqslant 0.1 E_{e}$. The standard cross section (1) corresponds to the interaction of the photons of the "disk" with the infinite electron flow. Meanwhile, the electron beam at HERA has finite transverse size $a \sim 10^{-3} \mathrm{~cm}$. Therefore, not all equivalent photons collide with electrons. That leads to the deorease of the number of the observed photons. Below, one calculates the correction to the cross section due to these "mism sing" equivalent photons.

> The discussed effect was found for the first time in the $e^{+} e^{-} \rightarrow e^{+} e^{-} \gamma \quad$ reaction at the VEPP-4 accelerator in Novosibirsk, its magnitude reaches 40% [4]. Coxresponding calculations were performed in refs. [5]. In these papers one considered headon collision only. On the HERA accelerator, however, one plans to collide electron and proton beams at the angle $2 \psi=2 \cdot 10^{-2} \mathrm{rad}$. General formulae (which are suitable for this case as well) wexe obtained in our paper [6]. Below we use formulae (15), (24), (30), (33) from this paper for the considered case of the intersecting ep beams.
2. The well-know cross section of the ep \rightarrow ep γ process (see fig. 1) has the form [3]:

$$
\begin{equation*}
\frac{d \sigma}{d y}=\frac{16 \alpha^{3}}{3 m_{e}^{2}} \frac{1}{y}\left(1-y+\frac{3}{4} y^{2}\right)\left[\ln \frac{4 E_{e} E_{p}(1-y)}{m_{e} m_{\rho} y}-\frac{1}{2}\right], y=\frac{E_{y}}{E_{e}} \tag{1}
\end{equation*}
$$

(The main contribution in this cross section is given by the region of the 4 -momentum transfer range $-q^{2} \leqslant m_{e}^{2}$, therefore, one can calculate this cross section with high accuracy by means of quantum electrodynamics only, neglecting proton stmucture).

The observed cross section is equal to

$$
\begin{equation*}
d \sigma_{o b s}=d \sigma^{2}-d \sigma_{c o r} \tag{2}
\end{equation*}
$$

where the correction $d \sigma_{\text {cor }}$ is expressed in terms of the Compton cross section $d \sigma_{C}$ and the number of the "missing" equivalent photons $d n$:

$$
\begin{equation*}
d \sigma_{\text {COH }}=d \sigma_{C}(\omega) \cdot d n(\omega) \tag{3}
\end{equation*}
$$

$\frac{d \sigma_{c}}{d y}=\frac{2 \pi \alpha^{2}}{m_{e}^{2} x}\left[\frac{1}{1-y}+1-y-\frac{4 y}{x(1-y)}+\frac{4 y^{2}}{x^{2}\left(1-y^{2}\right)^{2}}\right], x=\frac{4 \omega E_{e}}{m_{e}^{2}} \geqslant \frac{y}{1-y} ;$ (4)

$$
\begin{equation*}
d n(\omega)=\frac{\alpha}{\pi} \frac{d \omega}{\omega} G(\omega) \tag{5}
\end{equation*}
$$

The function $G \quad$ is defined by the density of the electron $n_{e}(\vec{r}, t)$ and proton $n_{p}(\vec{r}, t)$ beams. He choose z-axis along the axis of the proton beam and x-axis - in the plane of the intersecting beams. In this case
$G=\int \frac{d^{2} \vec{\rho}}{2 \pi \rho} \frac{\partial g(\rho, \varphi)}{\partial \rho} u^{2}\left[K_{0}(u) K_{2}(u)-K_{1}^{2}(u)\right]$
where $\vec{\rho}=\left(\rho_{x}, \rho_{y}, 0\right)=\rho(\cos \varphi, \sin \varphi, 0), u=\rho m_{\rho} \omega / E_{\rho}, \quad K_{n}(u)$
the Macdonald function and

$$
\begin{equation*}
g(\vec{\rho})=1-\left[\int n_{p}(\vec{x}, t) n_{e}(\vec{r}+\vec{\rho}, t) d^{3} \vec{r} d t / \int n_{p}(\vec{r}, t) n_{e}(\vec{r}, t) d^{3} \vec{x} d t\right] . \tag{7}
\end{equation*}
$$

3. It is usually assumed that the beam density has a Gaussian distribution. In this case we have the following densities for the beams intersecting at a small angle 2%

$$
\begin{align*}
n_{p}(\vec{z}, t) & =\frac{N_{p}}{(2 \pi)^{3 / 2} \sigma_{p x} \sigma_{p y} \sigma_{p z}} \exp \left\{-\frac{x^{2}}{2 \sigma_{p x}^{2}}-\frac{y^{2}}{2 \sigma_{p y}^{2}}-\frac{\left(z^{2}-t\right)^{2}}{2 \sigma_{p z}^{2}}\right\}, \\
n_{e}(\vec{x}, t) & =\frac{N_{e}}{(2 \pi)^{3 / 2} \sigma_{e x} \sigma_{e y} \sigma_{e z}} \exp \left\{-\frac{x^{\prime 2}}{2 \sigma_{e x}^{2}}-\frac{y^{2}}{2 \sigma_{e y}^{2}}-\frac{\left(z^{\prime}+t\right)^{2}}{2 \sigma_{e z}^{2}}\right\}, \tag{8}\\
x^{\prime} & =x-2 \psi z^{2}, \quad z^{\prime}=z+2 \psi x .
\end{align*}
$$

The beam parameters are given in table 1 taken from ref.[1]. Substituting eq. (8) into eq. (7) and neglecting

Table 1

	$\sigma_{x}, \mathrm{~mm}$	$\sigma_{y}, \mathrm{~mm}$	$\sigma_{z}, \mathrm{~mm}$
p	0.12	0.027	95
e	0.22	0.013	9.3

the terms of order of $\left(\sigma_{e x} / \sigma_{e z}\right)^{2} \sim 5 \cdot 10^{-4}$ one obtains

$$
\begin{align*}
g(\vec{\rho}) & =1-\exp \left\{-\frac{\rho_{x}^{2}}{2 a_{x}^{2}}-\frac{\rho_{y}^{2}}{2 a_{y}^{2}}\right\} ; \quad a_{x}^{2}=\sigma_{e_{x}}^{2}+\sigma_{p_{x}}^{2}+\psi^{2}\left(\sigma_{e_{z}}^{2}+\sigma_{p_{z}}^{2}\right) ; \tag{9}\\
a_{y}^{2} & =\sigma_{e y}^{2}+\sigma_{p_{y}}^{2} .
\end{align*}
$$

One can see from eq. (9) that further calculations for the intersecting beams differ from those for the head-on collisions by the a_{x} value only.

Substituting eq. (8) into eq. (6) one finds the function
$G(\omega)$, see fig. 2. The asymptotic behaviour of this function at

$$
E_{p} / m_{p} \omega a_{y} \gg 1 \quad \text { has the form }
$$

$$
\begin{equation*}
G(\omega)=2 \ln \frac{E_{p}\left(a_{x}+a_{y}\right)}{\sqrt{2} m_{p} \omega a_{x} a_{y}}-1.577 \tag{10}
\end{equation*}
$$

The function $G(\omega)$ goes very rapidly to zero at $\omega \rightarrow \infty$, therefore, integration over ω in the correction $d \sigma_{\text {cor }}$ (3) can be expended up to infinity.

The dependence of relative value of the correction
$\left(d \sigma_{\text {cor }} / d y\right) /(d \sigma / d y)$ on the relative photon energy $y=E_{j} / E_{e} \quad$ is shown in fig. 3. The correction increases rapidly with y decrease.
At $y \ll 1$ one can obtain, using eq. (10), such an expression
${\frac{d \sigma^{\prime}}{d y}}_{\text {cor }}^{\text {as }}=\frac{16 \alpha^{3}}{3 m_{e}^{2}}\left[\left(1-y+\frac{4}{3} y^{2}\right) \ln \frac{2 \sqrt{2} E_{p} E_{e}(1-y)\left(a_{x}+a_{y}\right)}{m_{e}^{2} m_{p} y a_{x} a_{y}}-\right.$

$$
\begin{equation*}
\left.-\frac{13}{12}(1-y)-\frac{3}{2} y^{2}\right] \tag{11}
\end{equation*}
$$

The dependence $d \sigma_{\text {cor }}$ on ψ is weak under the conditions considered.
4. Let us discuss briefly the results obtained. The Iuminosity L of the accelerator is defined by the relation $d \dot{N}=L d \sigma$ where \dot{N} is the number of observed events per time unit for a process with a cross section σ. Let us consider a process with the following properties: 1) it is sufficiently exactly calculable; 2) it has not too small a cross section; 3) it is convenient for recording. Then its measurement allows one to determine the luminosity; in this case no detailed information on the distribution of the beams density in the interaction range, which is hard to measure, is required. The ep $\rightarrow e \rho \gamma$ process
has a large cross section and is convenient for recording. However, the use of this process for the luminosity determination is connected with a number of difficulties, and it should be taken into account in planning future experiments on HERA. Using this process one should determine the luminosity by the relation

$$
\begin{equation*}
d \dot{N}=L d \sigma_{o b s} \tag{12}
\end{equation*}
$$

where cross section $d \sigma_{o b s}$ (2) itself depends on the beams density. Fig. 3 shows that the rofly of the considered effects can be decreased if the energy E_{γ} of the observed photons is increased.

All these circumstances lead to the limitations in the applicability of the ep \rightarrow ep γ process for the luminosity measurements. Therefore, it may be useful to attract attention to the process $e \rho \rightarrow e p e^{+} e^{-} \quad$ which was proposed for the luminosity measurement in ref. [7]. The cross section of this process is large enough ($\approx 6 \mathrm{mbn}$) and it practically does not depend on the beam sizes.

We are grateful to I.F.Ginzburg and P. Söding for useful discussions, and to K.Steffen for having sent us the HERA materials.

REPERENCES

1. Preprint DESY HERA $81 / 10,1981$.
2. Preprint DESY HERA 80/01, 1980.
3. Berestetsky V.B., Liphshits E.M., Piteevsky I. P. Quentum electrodynamics. Moscow, "Nauka", 1980.
4. Blinov A.E., Bondar A.E., Eidelman Yu.I. et al. Phys. Lett. 1982, 113B, 423; Tikhonov Yu.A. Candidate thesis, Novosibirsk, 1982.
5. Bajer V.N., Katkov V.M., Strakhovenko V.M. Yadernaya Fizika, 1982, 36, 163; Burov A.I., Derbenev Ya.S. Preprint INP SO AN SSSR, 81-64, Novosibirsk, 1981.
6. Kotkin G.I., Polityko S.I., Serbo V.G. To be published in Yad.Fiz. 42 (1985) $N^{6} 7$.
7. V.M. Budnev, I.F.Ginzburg, G.V.Meledin, V.G.Serbo. NucI.Phys. 1973, B63, 519.

Fig. 1.

Fig. 2.

Fig. 3.
Relative value of the correction to the $e p \rightarrow e p \gamma$ cross section in dependence on the observed photon energy E_{γ}

