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Abstract: 

The coefficients in Symanzik's improved lattice action for (pure) SU(2) and 

SU(3) gauge theories are determined to one-loop order by requiring the absence 

of leading scaling violations in a set of on-shell quantities, which arise in a 

world where 2 dimensions are compactified in a twisted manner. 

• Heisenberg foundation fellow 
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1. Following Symanzik's analysis of scalar lattice field theories [1] , it has 

been suggested [2] that the leading ultra-violet cutoff effects in lattice gauge 

theories can be removed by adding a few next-to-nearest neighbour terms to Wilson's 

action {3] (for an introduction to the improvement programme see Ref. [4)) . For 

SU(N) lattice gauge fields U(x,~) (~ = 0,1,2,3} living on a four-dimensional 

hypercubic lattice with sites x and spacing "a", the improved action reads [2, 5] 

(1) s lll] 2 

%~ 

3 

r. 
i=o 

c, (~;J r. 
'eE ~i 

a/:(t'), 

where g denotes the bare coupling constant and the~. 's are sets of closed 
0 l 

elementary loops ~ on the lattice as described by Fig. 1. Furthermore, the 

weight ~ ( 't') is defined by 

(21 ll('e) = 'Re Td 1- U.('Cl], 

U('e) being the ordered product of the link variables U(x,IJ) along ~ . Finally, 

the coefficients c. (g2) satisfy the normalization condition 
l 0 

2 2 2 2 
(3) c

0
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0
) + Sc1(g

0
) + Sc2 (g
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) + 16c3 (g
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and are to be chosen such as to cancel 0(a2) scaling violation terms. 

In this note we describe a method to determine the coefficients c. (g2) in weak 
l 0 

coupling perturbation theory and present the results of a one-loop calculation. 

As explained in Ref. [5), a host of conceptua_l and practical problems can be 

avoided by requiring the removal of O(a 2) scaling violations from on-shell 

quantities only. Furthermore, in that case one can prove that one of the terms 

in the improved action is redundant, i.e. one is free to choose 
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0, 

for example. In view of these simplifying features, the scope of improvement 

is restricted to on-shell quantities here too and the convention (4) is adopted. 

In perturbation theory 1~e have 

(5) ci (g~) c~o) + 9 2c~1) + O(glt) 
l 0 l 0 ' 

where cia) can be calculated from tree amplitudes and c~l) from one-loop diagrams. 

At both levels, one combination of the coefficients has already been determined 

by evaluating the heavy quark potential at physical distances and requiring the 

absence of O(a2) scaling violation terms [2,61. To obtain a second relation, one 

is probably forced to consider an on-shell quantity, which is proportional to the 

3- or 4-point vertex function such as the (connected) 4-quark potential. Because 

of the many diagrams contributing at one-loop order, this particular quantity does, 

however, not seem to be a favourable case. Gluon scattering matrix elements are 

simpler in this respect, but in the absence of an infrared cutoff it is a delicate 

matter to define the S-matrix properly beyond the tree level. Lacking a really con-

vincing choice for the second quantity to be calculated, we were led to consider 

the exotic world to which we nmv turn. 

2. The basic idea of our approach is to look for a situation, where gluons are 

massive and appear as asymptotic states. Scattering amplitudes can then be defined 

unambiguously so that a wealth of relatively simple on-shell quantities become 

available for the calculat:!.on of til~ coefiicient3 ci 
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By a mechanism familiar from Kaluza-Klein theories, gluons become massive 

when 2 of the 4 space-time dimensions are compactified in a twisted way. Thus, 

we assume the lattice has a finite extent L *) in the x1- and x2-direction 

with twisted periodic boundary conditions for the gauge field [7] : 

(6) U(x+ Lv, f<l ~ D.v 
-1 

U(x,f<lD.v (v=1,2) 

( Y unit vector in the positive Y -direction). The twist matrices .O.v are 

constant, gauge field independent elements of SU(N), which satisfy the algebra 

(7) .Q1 D.2 ' e 
2.'it 
N .[22 .[21 . 

It is well-known (e.g. {8,9]) that eq. (7) fixes the .D.v's up to unitary trans-

formations. Furthermore, they are irreducible, i.e. any matrix which commutes 

with 11
1 

and S2 2 is proportional to the unit matrix. Using these properties it 

is easy to show that the only zero action fields are pure gauge configurations: 

(Sa) 

(Bb) 

U(x.~) f\(x)/\(x + ap)-l 
' 

/\(x+ Lv l -1 
.Qv /\(xl .Qv 

1\ (x) E SU(N), 

(y 1' 2). 

The perturbative expansion of the functional integral can thus be performed 

straightforwardly by substituting 

(9) U(x,") exp g
0

aAI-l(x), 

*) L has physical units with L/a being an integer equal to the number of 

lattice sites in the transverse directions, 
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fixing the gauge and expanding all entries in powers of g
0

. 

For the physical interpretation of the resulting amplitudes, it is useful to go 

to the momentum representation. The Fourier transformation appropriate to the 

boundary conditions (6) reads 

(10) 
A~(xl 

-1 
( L" N) L. 

k.L 

1f/a 

\ do. d", 
- 'ir/a. 2'1\" 2'Jr 

iO-x 
e r, 

i L Q. 
I"'~-' e A~ {~<l, 

where the transverse momentum components k1 ,k2 run over the discrete values 

(11) I« ~ 
" 

2'il" 
LN tl.y, tl.v " J_ ' 

- 1r/a < lev ,;; 7r/a.. 

TheN x N- matrices rk play the rOle of group generators and are defined by*) 

(12) r = It 
.l.1- n, .fl n, 

1 , 

• 1t ( t N 1\+-111 )(tt1 +-tt,_-1) 
e 

The basic property of these matrices is 

(13) 
- 1 

n" r • .o.v 
ikyl r. 

e I. {v=1,2), 

which insures that the Fourier representation (10) respects the boundary con­

ditions (6) (the amplitude A~(k) is complex valued, not a matrix). 

*) The phase factor is added to make r k invariant under shifts of n~ by 

multiples of N. 
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An important observation now is that A~(x) is traceless and that the U(1) 

generator ro therefore does not occur in the Fourier decomposition of 

A~(x). In other words, we have 

(14) A~<kl 0 if n
1 

(mod N) n2 {mod N) 0, 

in particular, there are no modes with kl = D. In the complex energy plane, the 

physical poles of the (free) gluon propagator are given by 

(15) ko 

and since 

(16) k2 
.L 

+. f2 2 2 
- l ~ k~ + k3 + O(a), 

2 2 2 2 
m (n1 + n2) ~ m m 

21t 
LN 

it follows that there is a mass gap, at least to lowest order perturbation theory . 

Moreover, for sufficiently small L (i.e. if m >> 1\MS) asymptotic freedom implies 

a small effective gauge coupling and perturbation theory is therefore expected to 

yield a qualitatively correct and asymptotically precise description of the model 

at all energies, in particular, the mass gap found at lowest order persists for 

a range of couplings. 

If we adopt the Kaluza-Klein point of view that the theory is basically 2-dimen-

sional with 2 extra compact dimensions, the following physical picture results. 

At g0 ~ 0 there is a tower of free particles, which are labelled by the quantum 

numbers n1 and n2 and a spin quantum number s = : 1 to account for the vector 

degrees of freedom of A~(k). The range of the ny's is restricted by eqs. (11), 
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(14) and the masses M(n1 ,n2,s) of these particles are 

(17) M(n1 ,n
2

,s) 
I 2 2 2 

m ~ n1 + n2 + O(a ) . 

Thus, the lowest lying particles (A mesons) have a mass equal to m, the next to 

lowest lying (B mesons) equal to 42m and all other particles have masses M ~ 2m. 

When the gauge coupling is turned on, most of the latter particles must be ex-

pected to become unstable. On the other hand, the A and B mesons remain stable 

for small coupling and their scattering matrix can be computed without difficulty. 

We finally note that although we have fixed the gauge for perturbation theory, the 

particle states described above can be created from the vacuum state by applying 

gauge invariant operators, which are well localized in x
0

, x
3 

and extended in the 

transverse directions (Wilson loops winding around the world, for example). The 

A and B mesons are therefore truly physical excitations whose dynamics could in 

principle be studied by other means such as the Monte Carlo simulation method. 

3. Because there are only two independent coefficients ci, they can be determined 

by requiring the absence of O(a2) scaling violation terms in two selected on-shell 

quantities. As the first of these, we choose the mass *) rnA of an A meson with 

quantum numbers n1 = 0 and n2 = 1. The spin s must also be specified, because the 

degeneracy of particles with different spin only holds if g
0 

= 0 and a = 0. For­

tunately, the two spin states of the A meson can be distinguished by a conserved 

quantum number, namely the parity under a reflection of x
1 

combined with a charge 

conjugation (only this combined operation leaves the boundary conditions invariant). 

*) i.e. the energy (= eigenvalue of the transfer matrix (11]) of a one-particle 

state with momentum k3 = 0. 
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Choosing positive parity, an appropriate interpolating field is simply A1 (k) 

with k = (k0 ,0,m,O) and the state of the A meson is thus completely characterized 

in a way independent of the lattice spacing. 

To lowest order, rnA is easily calculated by determining the location of the pole 

of the propagator of A1 (k) in the complex energy plane (see Refs. ~,10] for more 

details). The result is 

(18) m~) m {1- a2m2 Ccl0
) 

(o) 1 4 } 
c2 + 12) + 0 (a ) ' 

where eq. (3) was used to eliminate c
0 

in favour of c1 and c2 . Improvement thus 

requires 

(19) 
(o) 

c1 
c(o) 

2 
1 
12 

a relation, 1~hich has been derived before from the heavy quark potential [2]. 

The second quantity which we have chosen for the calculation of the coefficients 

ci derives from the scattering amplitude T for the process 

(20) A(0,1) 'A(0,-1)--> 4(1,0) 'A(-1,0) 

(A(n1
,n2) denotes an A meson with quantum numbers n

1
, n2 and positive parity as 

explained above). This transmutation of A mesons can happen either via a point 

interaction or by exchanging a B meson. In the centre of mass system, T is a func­

tion of the momentum ~k 3 of the incoming mesons. B exchange then gives rise to a 
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pole of T in the complex k3 plane with a residue, which may be identified with 

the square of a phenomenological coupling constant ?l . Being proportional to the 

3-point vertex function, ~ is a much simpler quantity than the full scattering 

amplitude and we have therefore decided to calculate A to obtain a second re-

lation for the coefficients c .. 
l 

The precise definition of A is as follows. Let r3(k,j..J;p,\J ;q,w) denote the 

full propagator amputated 3-point function of A~, ZA(k) and z8(k) the residues 

of the poles of the A and B meson propagators, and 

(21) j(i<, p,ql & TY \ r, [ rr, r9JJ 

the U(N) structure constants. Then, ?l is defined through 

(22) 
% .. l 

{2.A(\<)lA(p)Z1l(qJ1 r_ 
J=1 

ej r,(k,1; p,2; q,j) A. f(i<,p,ql, 

where e1 = - e
2 

= 1 is the polarization of the exchanged B meson and all momenta 

k,p,q are on rnass shell. Explicitly, 

(23a) 

(23b) 

(23c) 

k 

p 

q 

(iEA(ir),O,m,ir), 

(-iEA(ir) ,m,O,ir), 

(0, -m, -m, -2ir), 

with EA(k3) being the energy of an (even parity) A meson with momentum k3 and r 

the solution of E8(-2ir) = 0. Without proof we note that the complex point (23) 

is far away from the singularities of r3 and ~ is thus completely well-defined. 
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At the tree level of perturbation theory, the calculation of A just amounts 

to the evaluation of the 3-point vertex functions of Ref. (6] for the momentum 

configuration (23) and one finds 

(24) A = A(O) + 3 A.'" + 0 ( 5 ) 
~0 ~0 ~0 ' 

(25) 
A(o) = - 8m{ 1- f o.'m2 [9(<0

'- c;o> + ~ )+ 2.C~01 ] + O(a"lJ. 

Taking into account eq. (19), improvement of A thus implies 

c(o) 
2 

0 so that altogether we have 

(26) 
(o) 5 (o) 1 c(o)= 0 

co = 3 c1 = 12 2 . 

While these numbers have been known for some time, our calculation is the first 

one to demonstrate that they follow from the requirement of on-shell improvement 

alone [5]. 

4. At one-loop order there is a total number of about 20 diagrams contributing to 

rnA and A . For each diagram the O(a2) term must be isolated and the coefficients 

eli) are then adjusted such as to cancel these terms in mil) and A(i). Except for 

a few momentum integrals, most steps in this calculation could be done analytically, 

but because of the complexity of the tree level improved propagator and vertices [6] 

this would be an extremely tedious way to proceed. We therefore decided to follow 

a different strategy, which relies more heavily on the use of a computer and which 

has proved to be efficient and reliable. Here, the method is only sketched in a few 

words, the details of the basic techniques employed being postponed to a separate 

publication (10] . 
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Apart from the diagrams involving c~l) (which are tree graphs and can be done 
l 

analytically), the diagrams to be calculated essentially depend on Nand L/a 

only. Thus, the contributions to (say) m~1 ) can be calculated numerically on 

a computer for fixed N and a range of L/a, the total O(a2) piece (excluding 

c~l) terms) being extracted after that by comparing the result with the expected 
l 

asymptotic form *} 

(27) 
(<) I 

mA m ~ 
a~o 

2 ,._ 
a.+ (am) a

1 
+ (am) [a2 

+ b
2 

.€tt (am)] + ... 

Experience shows that eq. (27) provides an accurate fit to the data already for 

small L/a, and to determine a
0 

and a1 to 4 or more significant places, it is 

sufficient to calculate the diagrams for 10-:f L/a .lf 36 (N = 2) and 6.lf L/a ( 30 (N 

A difficulty in our numerical approach is that straightforward programming using 

general purpose integration subroutines yields slow and hence expensive programs. 

3). 

However, using computer made vertex subprograms and an adapted exponentially con­

vergent integration method ~0] , we were able to reduce the total amount of computer 

time needed to 53 hours on an IBM 3081K. Another difficulty is that as we are 

computing just a few numbers, the probability that a programming or compiler 

error will not be detected is sizeable. We have therefore written two independent 

files of programs (one per author) for all diagrams using different integration 

methods and subroutines. In addition, quadratic and linear divergences must cancel 

in the sum of diagrams and the logarithmic divergence of A( 1) must match with the 

Callan-Symanzik p -function, thus providing a global test of our programs. A last 

technical point to be mentioned is that the significance loss in the course of 

*) The existence of an asymptotic expansion of this kind can be shown rigorously 

(cp. (1,10)). 
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the calculation can be substantial, especially in the last step when one extracts 

the O(a
2) terms from the data. The use of 64 bit (and occasionally 128 bit) 

arithmetic is therefore indispensable, along with a careful observation of the 

error propagation in the fit procedure. 

The outcome of the calculation is displayed in Table 1. As expected, our new 

value for the combination cJ1l cJ1) matches perfectly with that obtained pre-

viously from the heavy quark potential [6]. The coefficients c~l) are 
l 

reasonably 

small so that the one-loop correction of c1 , for example, is about 20- 30% of 

the tree level value for g~ around 1 (i.e. in the range where Monte Carlo simula­

tions are usually done). However, this should not lead to the conclusion that 

O(a2} scaling violation terms at one-loop order are small. In eq. (27), for 

example, one finds for N = 2 

(28) ao - 0.0168, a1 - 0.0110, 

so that for the O(a2) term to be less than 10% of the 0(1} term, L/a must be 

greater than 8 (or, equivalently, am~ 0.4). When the same analysis is applied 

to the 8 meson mass, the bound am ( 0.2 is found, thus confirming the expectation 

that the cutoff affects the heavier particles more strongly than the lighter ones. 
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5. In order to make computer simulations a precise tool for the investigation of 

t~e low energy properties of gauge theories, it is necessary to understand the 

structure and magnitude of scaling violations. In particular, it would be 

important to clarify whether indeed the O(a2) effects in ordinary lattice 

gauge theories are organized as suggested by perturbation theory, i.e. such 

that they can be simultaneously removed by improving the action. Future Monte 

Carlo studies of improved lattice gauge theories, using our values for the 

coefficients ci as a first approximation, should help to settle this question. 

In addition, the reduction of scaling violations achieved by improvement may 

turn out to be substantial so that for a given amount of computer time more 

accurate results could be obtained than would be possible with Wilson's action. 

Investigations of O(a2) effects are certainly expensive, not so much because the 

improved action is complicated, but because a set of on-shell quantities must 

be reliably calculated for a range of lattices *). Clearly, supercomputers are 

needed for that as well as improved techniques to extract glueball masses and 

other spectral quantities from the generated ensemble of gauge field 

configurations. 

\.Je finally remark that a twisted world including quarks exists (12) and that 

our methods can therefore be applied to calculate the improved quark action 

[13, 14]. 

*) We remind the reader that our improved act'ion does not imply any improved 

asymptotic scaling behaviour in the sense that the lattice ~-function more 

rapidly approaches its universal two-loop form. 
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c(1) (1) (1) 
lie 111m 

0 c1 c2 

SU(2) 0.1352 -0.01396 -0.00295 0.208387 

SU(3) 0.2370 -0.02521 -0.00441 0,183694 

Table 1 

Table caption 

Table 1: One-loop improvement coefficients as determined in the present 

work. The A-parameter ratio is taken from Ref. (6]. The quoted 

digits are significant with a tolerance of at most one unit in 

the last figure. 

D 

Figure caption 
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(b) 

--

(d) 

FIG.1 

Fig. 1: Elementary loops on the lattice. The set ~0 contains all plaquette 

loops (a), ~ all planar rectangles (b), .f1 all parallelograms (c) 

and ~3 all bent rectangles (d). Loops ~ that differ by orientation 

only are considered equal and are hence counted only once in eq. (1). 


