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Abstract 

On a 4-dimensional periodic lattice, we construct an SU(2) gauge field 

configuration which is analogous to the classical instanton. This is shown to 

have topological charge equal to one. We calculate the eigenvalue spectrum of 

the fermion matrix and demonstrate the existence of an approximate zero-mode. 
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In a previous paper [1], some of us carried out a Monte Carlo study of the 

topological charge Q in SU(2) lattice gauge theory using the construction of Q 
given by LUscher [2]. It was found that, on a periodic lattice of volume V, 

the topological susceptibility Xt := <Q2.>/V followed asymptotic scaling, from 

which we concluded that our pr~sent values of (3 (and lattice sizes) are 

relevant for continuum physics. 

In order to understand the structure of the QCD vacuum, it is important to 

find an interpretation of topology and, in particular, to see if it can be 

attributed to the presence of instantons. 

Moreover, it is well known that in the continuum theory with fermions, to 

each instanton. there corresponds one fermion zero-mode [3]. On a finite 

lattice, with staggered fermions, these zero-modes translate into small eigen­

values of the fermion matrix. (These go to zero as V-+oo.} Since small eigen­

values are known to be related to chiral symmetry breaking on the lattice [4], 

it is not inconceivable that instantons may play a rOle in this phenomenon[S]. 

In order to study such connections, one needs a meaningful definition of a 

classical instanton on a periodic lattice (4-torus). At first sight this seems 

difficult. Indeed, if one simply takes the naYve discretized version of the 

insta-nton and, using some damping function (which is one in the interior of 

the lattice}, make the gauge potential vanish at the boundary in accordance 

with periodicity, one obtains Q "' 0 (irrespective of whether the regular or 

singular gauge i-s used). 

An analytic expression which is periodic in the time direction only has 

been given by GUrsey and Tze [6]. It is even possible to make the solution 

periodic in all four directions but, since no closed form exists, it is 

impractical from a numerical point of view. 

In this paper, we propose a lattice definition of the instanton solution 

which we show leads to non-trivial topology (Q "' 1). The essential points of 

the construction are as follows. 

We start from the continuum instanton potential which in the regular and 

singular gauges may be written respectively as 

A~(x) 
i 1 - -

X~+R:l 2(SIJ\' SVSIJ} XV (Ia) 



and 

,...... iR1 1 -
A~{x} ~ x~+R~ z(s~sv 
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S s } Xv 
v IJ x:z. ( lb I 

where s4 = s 4 = 1, sj =- sj = lO""J (j = 1,2,3) and R is the 'size' of the 

instanton. Except at the origin x = 0, the two gauge potentials are related by 

a singular gauge transformation g(x) = xiJsiJ/lXI. 

We then map the real line into the interval (O,L) by means of the 

coordinate transformation x~y where 

3 [( )_, -2J X = L L-y - y . 
~ ~ ~ 

(2) 

We identify L with the length of a 4-dimensional, hypercubic, periodic lattice 

T. (Lis taken to be an even multiple of the lattice spacing). The points \i·~±oo 

where the behaviour of the potential (la) leads to the non-vanishing topo­

logical charge, correspond toy = 0 andy = L. i.e. they are mapped onto the 
~ ~ J 

boundary of the lattice. 

Under the transformation (2), A~(x) and ~(x) are mapped to B~(y) and lf~(y} 
respectively. Except at y?. = L/2 (?. = 1,2,3,4), the transformed gauge 

potentials are also related by a singular gauge transformation g(y). Note that 

whileS (y)~O for y -7> 0 or L (for any/.E:[l,2,3,4}), 8 {y) is singular on the 
~ ~ 

lattice boundary. 

Although ~(y) does have the correct behaviour at the boundary, if we 

simply considered it on the whole lattice, this of course would still lead to 

Q = 0. However; if we interpolate between the two solutions, B!J(y) given on 

some interior domain T. of the lattice and B (y) on an outer domain To, then 
1 ~ 

it is indeed possible to get out of the Q = 0 sector. 

Explicitly, setting the lattice spacing to one, 

T~ = l ~ e T I T - M ~ '-J?. ::£ ~ + M 1 A = 1, 2, 'J, it 5 
. To = l 'jET I 0 5 ~" $ ~- M 

where M € ;?1,2, .. -i-- 1 1 

L 
o.. ~ ~ fv1 5 :J "). ~ L , 

-fo, •~y ::\ ~ /•. 2, "3, 4 S J 
(3) 

If the link (y,y+~) 1 ies completely within Ti, we set 
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u(IJ J ~ FexF [•f '" o/-C~+ (1-<lf )) (4a) 

while if it lies completely within Tu, we set 

~i:J) ~ Pex,- [; 1,' '"'~(~~ (1-tlf)] (4b) 

where P denotes path ordering. For links (y,y+Pl contained in the intersection 

T
1

n To, we have UIJ(y) as well as U'
11

(y) and they are related by the gauge 

transformation g(y). Therefore, we replace UIJ(y) on links completely within T1 
by 

A 

C<r c~ l = 3-' ~) lJ.<:J) 9(~+?) ( 5) 

where 

s (~) i :(j) for ~ E: ~~ ,-. 1 0 

+or ~·T;\lT;~T0 ) 
(6) 

In this way, we achieve that \J
11

(y) = U
11

(y) on 1 inks contained in TinT.., and 

get a well-defined gauge field configuration on the whole lattice. Note that 

Ufl(y) is the unit matrix if (y,y+~) lies on the boundary. For the actual 

calculation the path ordered exponentials in (4a,b) are approximated by 

exp [ iB
11

(y+ ~Pl] and exp (iB'
11

(y+-k}l]. 

We then checked numerically that this configuration does indeed have Q = 1. 

All measurements were carried out for l = 6. Using our program for measuring 

the topological charge [1], we calculated Q for the above configuration for 

various values of the instanton size parameter R (= 0.5, 1.0, 1.5, 2.0). In 

all cases we found Q = 1. 

In addition, we calculated the eigenvalues A i (i = 1, ... 2L4 ) of the 

fermion matrix iM using staggered fermions. These eigenvalues were calculated 

using the Lanczos algorithm [4]. In the continuum, iM corresponds to the 

inverse propagator at zero quark mass . 

In Fig.l, we plot the density of eigenvaluesp(A) for the above instanton 

solution. We clearly observe a small, isolated eigenvalue which we can then 

associate with a zero-mode, as expected form the index theorem [7]. 
The form of the distribution, which consists of five peaks, reflects the fact 

that the instanton introduces a small perturbation into the vacuum. For a 

gauge field cOnfiguration in equilibrium, the distiibution looks completely 

different, namely it extends smoothly to ?..= 0. 

--
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Having constructed a classical instanton on the 4-torus, we are now in a 

position to investigate the topological properties of the vacuum in detail and 
confront these with the usual instanton interpretation. This question will be 
addressed in a forthcoming paper [8]. 
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Figure Caption 

Fig.l. The density of eigenvalues p('J.) of the fermion matrix for a classical 
instanton solution. 
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