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Abstract: We report results for e e = two Jets up to order a_% in
the quark-gluon coupling using a jet resolution criterion

depending on the jet mass.
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Over the past few years much experimental /1/ and theoretiral /2/ work has been
done on the role that Of dsa) corrections play in the description of e’e” anni-
hilation into hadrons. Next-to-leading order calculations exist for the total
eross section /3/, the thrust and Sterman-Weinberg three-jet distridbutions /4/,
shape parameter distributions /5/ and the energy-energy correlation function /6/.
0(0(52) terms contribute to four parton final states from tree diagrams, to three
parton final states through one loop, and to two parton final states through two

icops.

Tne contribution of higher order terms to two parton final states to the annihi-
lation cross section 1s inffared and collinear divergent. These virtual infrared
and collinear divergencies are cancelled by divergencies that arise from soft and
collinear partons in contributions from three and four particles in the final
state . Such contributions are obtained by integrating the three and four parton
terms over small phase space regions which include the infrared singularities.
For defining this region one needs parameters to describe the boundary of the
region inside which two partons are considered to be irresolv&bie, i.e. being

one jet, Therefore any higher order cross section for the production of a fixed
number of jets depends on these boundary parameters in a characteristic manner

wnich reflects the underlying dynamics, i.e. QCD.

In the case of two jets these are the only varisbles on which the cross section
depends. How this comes about was first demonstrated by Sterman and Weinberg /7/
who calculated the two-jet cross sectlon in order Cfs with ( &, 8)-cuts. With
their nmethod two partons were considered irresclvable if either parton has energy
less than EV.T—"/Z. or the angle between the two partons is less than g . The second'
method for defining irresolvavle partons is based on an inveriant mass constraint.
The two partons 1 and j are sald to be irresolvable if their invariant mass
squared (pi+pj)2 is less than yq?. So far the two-jet cross section has been
calculated only up to O(O(s), either with the Sterman-Weinberg cuts { & ,6‘) 1/

or with the invariant mass cut y /2/. Knowledge of the two-jet cross section up

Lo O(lﬂsz) is useful for several reasons. First 1t can be used to determine the
coupling constant Ns;or the scale parameter A by comparing the cut dependence
with experimental two-jet cross sections obtained from a cluster analysis /8/

of e'e” annihilation data. Second it can be used to check the integrated three-jet
and four-jet cross sections in order to see whether they sum up with the two—jet
cross section to the well-known O(usf) correction of G:Ot /3/. Third it might
nelp to resolve some problems encountered in the energy-energy correlation function

in the nearly back-to-back limit /g/.



In this letter we report the C(SE correction t¢ the two-jet cross section

G;—*et {y) for the invariant mass constraint yg?. Due to the limited space
o

we will not present any details of the caleculation which will ke given in a

iong write-up /10/.

The corresponding 2-, 3- and L-psrton diagrams are shown in fig. la,b,c. Individually,

the locp-corrected two-parton and three-parton diagrams are infrared and collinear
singular. These singularities are supposed to cancel if the 3-parton and L-parton
contributions are integrated over the two-jet region with one or two of the

emitted giuons {or quarks] being soft and/or coliinear.

The caclulation of (Té {y) proceeds as follows. All the diagrams are calculated

-Jjet
in n dimensions. The infrared and ultraviclet singularities then appear as poles

in &= {L-n)}/2. We do the renormslization in the M8 scheme, All calculations are
performed in the Feynman gauge of massles QCD and in the one-photon approximation.

Alsc all correlations with the incoming beam have been integrated out.

In intermediate stages of the caleulation the expressions are quite lengthy. The
final result, however, has a rather compact form, In particular the sum of the

two-parton disgrams with two 1loops {fig. la) has the following form:
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In eq. (3) we have written the contributions of the three SU{3) colour factors
r
separateliy, where CF = h/S, NC = 3 and TR = Nf/g. Q? ! {s the Born cross section
for & & — ag in n dimensicns:
£ -
o At T2-g) oy
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The quarks have charge Qf and are massless. w makes the quark-~gluon coupling

dimensicnless. We notice in eq. (3] that the infrared divergencies produce poles
- -k
in £ up to & . The Cp

. o -n . R
S'n are the normal values of the zets function, S:‘ = A During ccmpleting

=

~term is more singular than the N, - and the TR—term. The

the calculations that gave us the results in egq. (3) we received the work of
Gonsalives /11/ whe also calcuiated the two-loop disgrams. Unfortunately we do not
agree with his final result, only the T —term agrees. We notice that the most
singular terms which are in the CF—term cen be summed into an exponential form.
This has been shown recently up to O(CKS3) alse in ref. 12. The next-to-leading

terms proportional to (%%Nc -‘%TR) can be absorbed into &



In the expression (1] the quark-gluon coupling must be renormalized. This amounts to

replacing C(S(p2) in {1) by the renormalized coupling in the MS—scheme, i.e.

- % R)( Z+y- A#n)__ﬁ)

This is equivalent to adding the following counter term to (1):

O G (S () (F5-5T)
ey

Tne one-loop contributions toe+ei—¥ qqg have been calculated by several groups

Ol () —> s () (’l +

ot -
o;.-jt.t ( ? ?) =

/4, 5/ in connection with the O(CXSE) corrections to differential three-jet cross
sections. For this case the loop integrals were needed only up to constant terms
whereas for our purpcse we need to know them including terms proportional to &
and & ?. The exact vasic loop integrals without & expsnsion have been given in
our earlier work /13/, so that only the trace calculations had to be repeated, The
integration over the infrared/collinear singular regions ¥12€ v and Yoq £y,
where ¥i5 = Qpipj/q? and p,, p, and Py denote q, q and g momentum respectively,

are done as in lowest order /2/. The final result is:
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In (3) there is no contribution proportional to TR‘ Such & term appears through

the qgg counterterm which is
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The formulas (8), (9} and (10) are only approximate in the sense that we neglected

(10}

terms O(y}. For B, and (10) it is rather simple to evaluate them exametly, but for
B2 it would amount to additional effort which is left for iater work. As long as y

is not too large the terms O{y) in the second order term B, should not matter, We

2
nave calculated all non-lesding O{y) terms for BW' But they are not given here,



The integration of the four-parton centribution e+ei—>-qagg and e+e_—9-qiqa over
the two-jet region is rather involved. We have two kinematic configurations de-
pending on whether two partons are collinear with respect to the two other partons,
for exampie the region ¥i3 Ly and Yo £ y or whether two partons are collinear
with one parton as Yy & vy for instance (the momenta of the final state are

q(pl) + i{pg) + g(p3) + g(ph) and analogous for the gggqq final state}. It is

alsc esseniisl o take the exact boundaries due to the Tour-parton kinematics

into account and to evaluate sdditional contributions which gave non-leading O{y)
terms in the 3-jet calculation /L/. The details will be presented in our longer

paper /3i0/. The result for the real contributions to G":ct is:
e
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The :aveical 2-jet cross section is the sum of the contributiens (1), {6}, (7T},

{107 and {:1). In tais sum ail & poles canc~l oand the limit &~ O can be

“aken. This produces our {inal resuit:
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The forrula (12) is correct only up to terms O(y). Terms proporticnal to lhq fu?
huve been avsorped into the running coupling constant O(s(qg). The leading term

in the (& 2} correction is in Z, and is propertional to in y. The y-dependence

of 07 _._. (y) is piovted in fig. 2 for &_ = 0.12 and N, = 5, together with the
ilowest order formula @(°<S); wnich includes all O(y) terms. For y = 0.05 the
two-jet rase o-2~*'et/03 is 0.77 with 0(0(52) terms included and .81 in O(o(s).

Tais is a reduction of 5% compared to the O(C(S} result. Of course, for smaller

boundary values the reduction is increased.



We see that the leading terms in Z, and ZT can also be absorbed into the coupling
constant so that Cis(qz) -)0%(yq2). The first two leading terms in Z, are such
that they are obtained by exponentiating the first twc terms of the O(O(S) result.
This is in agreement with earlier leading-logerithm calculations for the off-chell
quark form factor /1L/ and the two-jet cross section for massless /15/ and massive
quarks /16/. The exponentiuted formula should be applicable for much smaller cut
values down to y = 0.01. The exponentiated form is plotted in fig, 2. For y 2, 0.02
the exponentiated form and the original formula (12) differ only very little. One
*jet(y)/c—o‘ It must be

divided by O‘Eot/G‘; if one wants to compare to experimental two-jct multiplicity

should notice, however, that the curves in fig. 2 show (75

data.

The two-jet cross section (12) or its exponentiated form present & novel possibility
to test the structure of higher order QCD matrix elements. This cross section is

a complicated superposition of two-loop, one~loop and real contributions to twe,
three and four parten final states. After having done a cluster snalysis of the
hadronic final states it should be possible to obtain two-jet multiplicities in

a range of cuts between y = 0.01 and y = 0.1, This way, besides testing the general
structure of (12} {or its exponentiated form) one can obtain C(S(QQ) in & range of
Q% between, say 20 GeV? and 200 GeV? (if dats at the highest PETRA energies are used)
similar to the range of space-like Q? tested in deep inelastic lepton-nuclson
seattering. This is complementary to the O(S(QE) deduced from 3-jet differential

distributicns, where the effective Q? could be somewhat larger.

Unfertunately, so far, a thorough cluster analysis of high energy e’¢” anninilation
data does not exist., The only date available is the two-jet rate at an average CM
energy of 3k GeV reported oy the JADE Collaboration /17/. In their analysis the
two-jet rate is 0.70 (no error given) for y = 0.04. Cur formula (12) yields

cr;—jetf o = 0,69 for CKS((3h)2) = 0.12 whereas the exponentiated formula yields
0.66 for c(;??3h)2) = 0,12 and O(G(S) yields 0.73. These numbers for °<s = 0,12 give
also an  indication what effect the exponentiation and the change of scale in
C(s as compared to eq. {12) has. The C(s jalues obtained this way are scmewhat
smaller thsn other values obtained from e € dsta, But we have to keep in mind
that the JADE two~jet multiplicity has not been corrected for leskage effects

caused by fragmentation,

Actually the two-jet rate as a function of y is ratner sensitively dependent on

/ [ R . : . . . .
O(s Lor /ﬂ MS)' This is shown in fig. 3, wnere we have plotted (75—5et/<7;0t as
function of y using the exponentisted form for various coupling constants

a
C‘S = 0.12, 0.1k, 0,16, 0,18 at q® = 3k GeV which corresponds to 7 < 86, 215, hzo,
710 HeV. We see Lhat a measurement of the two-jet rate withan error less than 10% would
t
5

determine /\§§ quite accurate.y., At this point we must remember that our formula

12) is accurate only up to terms of order y. The calculation of the neglected

terms is under way. At the moment we only know the correction for the TR term in
eg. (12}, For example, for y = 0.05 the Tp-term is increased by 10% if non-leading
terms are included. We expect similar changes for the CF and the Nc—term. Since
the Oiﬂsf) correction is only %% in total for y = 0.05 the O(y) terms should
have only a very .mall effect, We repeat that these O{y) terms were fully taken
into account in the O(ds) contribution for the curves in fig, 3. Needless to say
that our formula can also be applied directly to Z -»two jets and to the O{&X7)

=0, T, =N, and ets—-)ﬂ.

corractions ror 2 ->e+e_ by replacing CF =1, N R ¢

C
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Figure Captions:

Fig. 2:

Fig., 3:

Diagrams with qq in the final state to order o(s? interfering

with lowest order diagram.

Diagrams with qqg in the final state interfering with lowest

order diagram for qqg.

Diagrams with four partons {qqgg and qqaa) in the rinal state.

Two-jet cross section 0'2 as a function of y in units of

Hjet(y)
o, for O(S = 0,12, O(O(S) is exact lowest order result including
all nen-ieading terms in y. Of 0(52) is according to eq., {12) and

"exponentiated” is the curve as described in the text,

i i = L .
O-Z-jet,(y)/o-é,ot for various couplings ds 0.12, 0.1k, 0.16 and
G.18 in the exponentiated form as a funetion of y.
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Fig. la
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