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1.  Introduction

If the transfer matrix T of a classlical statistical mechanics is positive and
has no zero eigenvalue,one can asscclate to this theory a quantum theory where
the Hamiltonian H is defined by H = - 1nT. The positivity of T is implied by
the reflection positivity of the statistical mechanics; euclidean lattice gauge
theories have this property for the standard actions /1, 2/. The absence of
zero eigenvalues of T in the thermodynamic limit, however, is an apparently hard

problem which remained unsolved over several years /3/.

In striking contrast to the difficulties which complicate a direct proof, the
solution becomes simple if one formulates the problem in terms of the algebra of
observables of the quantum theory. This is possible for finite gauge groups and

has first been carried out in /4/. The argument is the following one.

The local transfer matrices Ta implement {non * -) automorphisms of the algebra

of local cbservables (X s

(1.1}

FAY
L= TAT

A A
In a theory with finite range interactions these automorphisms converge to a
(non * -} automorphism e of X which may be interpreted as time translation

Ly one unit in imaginary direction.
A ground state &, is defined to be 2 state with
) W, = W,

@) 0 = w, (A%, (A) £ w, (A’A)  Ae O t.2)

3 .

Limits of local ground states fulfil these conditions. In the GNS-representation
7 of O with cyelic vector 2 inducing >, one can define the transfer matrix T

by

T n(AQ = re (A)Q2 Ae A

2}

From (1.2), T is a positive contraction with T §1= €2 . Since o is an
automorphism of QU and €2 is eyelic for (A , the range of T i3 dense in the



representation space Jen » hence T cannot have a zero sigenvalue. The Inverse

of T is densely defined and is given by the formuls

T2 (AQ = Jrof::1(A)Q L Ae (O ] (1.4)

The inverse of o , i.e. the translation in negative euclidesn time, has no
simple counterpart in the statistical mechanies, This might explain why this

argument has been overlocked befere {as far as I know).

In the case of a continuous gauge group essentially the same arguﬁlent applies,

but the unboundedness of the inverses of the local transfer matrices causes some
problems. I treat this case in Section 2, In Section 3 the equivalence of the
algebraic approach with the statistical mechanical approach is shown. In parti-
cular it is proven that as a consequence of the DLR equations for the Cibtbs state
of the statistical mechanics the ground state ¢, of the quantum system is locally

normal.

2. The Inverse of the Transfer Matrix

Consider the hypercubic lattice Z , @ 22 and a compact group G, the gauge
. d . .

group. For each box A in 2%, B(A) denotes the set of positively oriented

tonds and P{A ] the set of positively oriented plaguettes in f_\ . The set of

leoecal configurations is

G, = T Gb (2.1}
beB{A)

where for each be BIA) G, is a copy of G, and

'Je,_\ = ;Cz(GA) , t2.2)

the space of square integrable functions on Gp with respect to normalized Haar
measure, 1s the Hilbert space of loecal state vectors. The algebra of local ob-

servables in i\ is defined to be the algebra of 211 bounded operators in JGA :

oA = BA) . (2.3)

Ir A, < /_\2 3 0(({_\,) can be identified with a subalgebra of O(({_\,) Using

these identifications one can introduce the algebra of all local observables by

{2.h)

o= U o)
A

The dynamics of the system is characterized by local transfer matrices -f;\E. 01(/_\)
2 - .
which stem from an euclidean action. As operator on L (GA)JT;\ has the following

integral kernel

R(a)%'}z m{% z: [W(D%(P))i‘ K{ggr(P))] + : X(%(L)sf(g)-q)}
- peP(A) be B(A)

where agtp) denotes an element in the conjugacy class of the product of g{b)
for the bonds b in the boundary of p and where r iz a real continuous invariant

function on G of positive type.

TA iz a positive operator of Hilbert-Schmidt class. Tt has no zero eigenvalue if
and only if in the expansion of ex as & linear combination of simple characters
each character ocecurs with a positive weight. This condition is satisfied e,g. if
X iz a positive multiple of the character of a selfconjugate faithful represen-

tation of G /5/.

We now want to prove that under this condition also the glecbal transfer matrix
has no zero eigenvalue. For this purpose we try to define the imaginary time

. - -1 . . . .
translation o . Since TA 15 not bounded in general we have to find a suitable

domain of definition for o; .

First we introduce the {non * -) automorphism of Ol implemented by the multipli-

cation part of TA :

1 i (%
BAY = &im 25 T 4 ipep@” 3 (2.6)

ATZ

Due to the compactness of the gauge group and the continuity of I r;(A) exists
for all Ae U .



The convolution part of Tl\ is also invertible, but the inverse is not bounded

in general, Let

e - ¥ g a'g (2.7)
be the expansion of CT as & linear combination of simple characters. Let R “:a)

denote the operator of convolution by TE (%(L)) on SCA for bEB(_f_\) Then the
convolution part Cp of Ty is -

¢, = T (= ¢ P(by) (2.8)
A beB(A) ¥ R

with the (in general)} unbounded inverse

-1 -1
c = T (Z ¢, P (b)) (2.9)
Y iemiay t E R -

Let
a (N = U PP (2.10)
f = P -
where P runs over the set of projections on the finite dimensional subrepresen—
tations of the left regular representation of GA on A and let
a, = U a,{(A) . (2.11)
£ R

For each bond b we define an automorphism rb on a'r by

-1
(A) = 1~ c_c_, PULYAP, (& (2.12)
LA T A S
It AE a_{(i\) and 54 B(ﬁ) : rL acts trivially on A. Therefore
the limlt
A = e T (A (2.13)

Ar2Z% beR(A)

exists for all A€ a“ , and * is a (non * -} automorphism of Ol{

-1
Now we can define the imaginary time translation o, for all Ae $(M£)=ﬂ (a;)
by

%, (A) = Ry@3 (A) : (2.14)
Then for each A€ 9)(0(1-) and for ﬂ sufficiently large we have the relation

“i(A)_E\ = TQ A , (2.15)

and o(i(A) is uniquely fixed by (2.15).

ﬁ(u:‘-) is a subalgebra of @& with the following density property: for each /_\
there exists some A,> /_\ such that OU{A) is contained in the w*-closure of

i)(qi) n (é,) . considered as a subalgebra of the von Neumann algebra OU(A.},

The inverse o, of &; has domain 9(0(_,:)2 (s’(ot:) and is defined by
-1 4 -1
o (A = 2 (A , (2.16)

9(0(_‘:) has the same density property as 9(0&5) .

*
A ground state of QU with respect to of; is defined to be a locally normal( )
state <3 on O yith

) v x; (A) = w, (A)

() 05 W (A%« (A) £ w_ (A*A) (2.17)

for a1l Ae B . Let @, be a ground state and (1, 9€, V)  the

corresponding GNS-representation which is characterized by the relstion

(2.18)
(Q,x(A Q) = o, (A) | Ae O,

3

{*)

We recall that a state @ on Ol is locally normsl if for every A there
exists some density matrix qA in JE’A with e QAA=(.0(A) for all AeOl(/_\).



Then the transfer matrix T is defined as an operator in & by

TrAQ = xe; (AL Ae Dy (2.19)

The density property of .‘Z)(oq) together with the local normality of w, implies
that Q(u‘-)Q is dense in ¥ , hence T is densely defined. From (2.15) T is =

positive contraction.

That T cannot have an eigenvalue zero is now obvious from the fact that its

inverse 5

T 'RAQ = 7o (AQ | Ac Do) | (2.20)

is densely defined.

3.__Equivalence with the Statistical Mechanical Approach

The euclidean lattice gauge theory corresponding to the quantum system which was
introduced in Section 2 is defined on the hypercubic lsttice & a1 with action

S = }:P:: ‘,T( Qq(p)) . Buclidean fields are continuous functions f of finitely
many bond varistles g{b). Let <> denote a Gibbs state of the system. This means
that < - » satisfies the DLR equations /6, 7/

<f> = < wm, (11> (3.1)

for all euclidean fields f and all finite sets of bonds L. Here mL(f') denctes

the function

-1 s x(3gp)
= t ] FL
"'L(m(%) Zng) &1 dg (b {eg') e PEPL lg’(U: %(L),LQL(B'E)

*
where @ L is the set of plaguettes which contain bends of L in their boundary

and where ZL(g) is fixed by the condition

mL(1)t3) = 1 . (3.3}

If f depends only on varisbles g{b) with b€l then
Mg |W)L(£)(%)| £ conof fdglf(%)l ) (3.h)
%

1 . L .
hence < - ? can be uniquely extended to £~ functions of finitely many variables.
Note that due to (3.1} < -» 1is autometically invariant under gauge transformations

(Absence of speontaneous breakdown of gauge symmetry {(ecf. /8/)).

A construction of a Kilbert space anda positive transfer matrix is possible if the

Gibbs state € « 7 istranslaticon invariant in the o-direction and fulfils reflection
1.

positivity at the hyperplanes x° = 0 and x° = 5 in the temporel gauge (see e.g. /9/).

Thiz condition cen be described in the following way.

Let F dencte the set of euclidean fields which are inveriant under gauge trans-—
formations at points not contained in the {x® = 0)-hyperplane. These functions

are fixed vy their restrictions to the set q’t of configurations g satisfying the
temporal gauge condition g{b) = 1 for all bonds b pointing in the o-direction. In
the following we shall identify the functions in F with their restriction tog.t.

By T, we denote translation in ?by n steps in o-directlon ,

(T iy = fa3,0 | 3¢ §, (3.5)
with g (b) = glb + n(1, 0)), and by G the operation

(0f) (g = H;’-J » 9€ G, (3.6)
with gs(b)s 3(0('»)) , where V denotes the reflection through the (x° = O}-

hyperplane.

Let ’E_c F be the set of fields which depend only on bond variables g(b) with
b in the half space x° 2 0. Then the condition of reflection positivity at hyper-
planes (x° = 0} and (x° = %), respectively, reads

)y <{(B8f)f> =z o
€ <ef)r,f> 2 o (3.7}

for all _rc ’;: .



fa)

We recall that the physical Hilbert space & is the completion of ’}- w , equiped
with the scalar product “-\-tx [+ )= <{(Oh}[ > vwhere N= {.fe ?- <(e.f).r>=0}

and that the transfer matrix 'I' is the positive gontraction in Ie with
N
Tig+X) = ¢, §+ & : (3.8)

{See e.g. /3/).

We now want to show that < - ?» ' defines a ground state 3, of the quantum system
{o q‘) of Sect»lon 2 such that there is a unitary operator U from the GNS-Hilbert
space ¥ onto 3’8 such that

) UT = T U :
¢ unif)= 0 | (3.9)

s . L) (y .
~ for all miltiplication cperators f where .C )(3) = f( %“’), %u 3t € Z . denotes
the restriction of g onto the set of bonds in the {x° = i)-hyperplane, identified

vith 2% , and f") acts by multiplication on ?:/f (note that .rm,kc N o)

Let A€ Q(A) . We associate to A two functione E, AeT.

E.(A)tg) = & (AT )( 0y / m “
+ % 51"2‘ ﬂ % 3 Y )
N (3.10)
’ o =1 (e
E.(A) (g} = A‘&;“Z"( Tf_\ A) g~ )8 )/7;1(3 9

-1

Due to the finite range of interactions the limits exist and sre reached already
for a finite 51. Since T is & Hilbert-Schmidt operator in 3?,\ with continuous
integral kernel, E (A and E {A&) are z -functions. For & multiplication operator
f one has the relations

(e}

EfA) = §7E, (W (3.11)
E(Af)= E_(A) §*
We now set
w, (A) = < EL(A)> (3.12)

[A]

properties we use the following lemma,

o 18 a locally normal linear functional on R, For the investigation of its

Lemma: Let A ,Bg QR{A) , and let L be the set of bonds in {e} = A
Then

) OE, (A) = E_(AY)

o) m (B (A) = w, CE_(A))

@iy m LE (AB)) = m, (E_(A)E,(B))
vy E tx;(A)) = T, E_(A)

Proof: Let A(_g‘) %.) and B(g.,g.) denote the integral kernels of A and B,

respectively, considered as operators on 29 . We use the abbreviations

Ma ) = ST (a0}
(3.) wr{%Pd,,B(mr 9

Nig, 9.0 = cep | T x (q.tk) %:(k)_1)}
be BIA)

Then for % € qt

- @, Mgy N‘Su %m)
E (A g = T aq.(b) Ag,,q”)-

] .
Big(é) %(oi) N( (s} am) Ia.(ﬁ)zs (Q)L*B@}
=1}
E(A = [ T dg b)Ag” g0 Migo  MNig | g))

beB(A) M™ N 90 !3_(&):3"’(L),Lf8(_¢)

: »
Now (i) follows from the fact that the integral kernel of A is A’(s_,%:)
= A(a‘.)ﬁ.) . (ii) is a special ecase of (iii) (B = 1).

{iii) The mean m has the form

m (B)eg) = IT d%(b)-ﬁ%)f“f( 1) Neg ™" %lm)th”" “)

!
g'lk) = g (h),
b¢ L



- 10 -

Inserting for § E (4B} and E_(AJE {B}, respectively, gives (iii).
{iv) follows from (3.10) and {2.15):

o) (4) o .
E+(0(‘_~(A))(%) E (“t(A)_r/._\“)(%())% ) / —rz\q(%() %( P)

Fl

-4

= (T AYG", 9™ /T3 (4,4

= 7, £ (A)

g.e.d.

Theorem: 3, 1is a ground state of O with respect to oy .

Proof: Using (3.1), (3.7}, {3.12) and the Lemma, we find
W (AYA) = CELATAY) = <E_(ANE, (A= (BE,(ANE(AD 2 0

hence o3, is a state. For A € SQQ‘:) )
w,w (A) = CE, (o, (A = <7, E (A)> = <EL(A) = CE,(A)>= 1, (A),
s0 ¢3, is invariant under ®; .Furthermore

w, (A% (A) = <E, (A% (AN> = <E_(AT)E, & (A)>

= CLOE, (AT, E.(A)» = ((BE, (AN T, E,(A)> = (E,(A1e), T (£, (A)+4))

where the Yth equelity sign follows from the Lemms together with (3.1) for the
set L,= {11 % B{A) since mLT(.['ln)- £w|L1U-\) if f does not depend on variables
glb) with b el4 . Since T is a positive contraction &3, is a ground state,

g.e.d.

We now have the means tc prove {3.9). Let

Uri(AY Q2 = E (A + 4 . (3.13)

- 11 -

We have

3
WU R QIR = IE,(A)+ 4 I = C(OE (AN E, (A)) = KE, (ATAY> =, (A7A)

e (AR

so U is an isometry. Moreover, for a multiplication operator f from (3.171)

Ux(PAYQL = E, (fA)+ N = [E (M) + &
PurmR

I

U x(£) T(A)Q2

i

,
hence we have {3.9) (ii). Finally, for A e Dexp

UT A = U (AR = Ew (A)+ N = 7 EL(AV+ I

tym (E(AN+ N = 7, m (E, (A)+ N = T E (A +N = T(E(A) +A)
TurWQ |

i

[}

thus (3.9) (i) follows from the density of 71'(9(0(,:)){2 in # , Tt remains
by A
to show thet 9€= U , But U3 is invariant under T snd under multiplication
-
with time zero fields and contains (4+4) , thus UIF= .

4, Concluding Remarks

In this paper I treated only the case of a pure gauge theory, It is easy to see
that the same methods work in the case where a bounded Higgs field is coupled to
the gauge theory. For unbounded Higgs fields and for Fermi fields technical com—

plications may occur which have not been investigated so far.

The absence of zero eigenvalues of the transfer matrix is necessary for the
existence of a time evolution of the time zero fields. It does not imply, however,
that there is any trace of Einstein causality for this evolution. This is connected
with the open gquestion whether the norm closure or at least the weak closure of

the guantum algebra of observables is invariant under time evolution. A clarifi-
cation of these points would be wvery important for a direct physical interpretation
of lattice gauge theories before the continuum limit has been performed.
Acknowledgements: It is a pleasure for me to thank Mihail Marcu, Ricardo Schor

and Erhard Seiler for stimulating discussions.
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