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Abstract: A transparent condition restricting KW 

transformations of correlation functions is used to 

establish the behavior of QFT functions. The arising 

proportionality factors are calculated for large clas

ses of trans formations and corre 1 a ti ons. Gauge-in

variant block transformations for matter fields are 

introduced, too. KW invariant functions are constructed 

which are suited for the QFT limit and allow firm con

clusions about the parameters of the theory. 
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The fact that masses in nonperturbative quantum field theory (QFT) arise 

from a singularity in the parameter space of the regularized theory suggests 

the treatment by Kadanoff-Wilson (KW) transformations1. Because the definition 

of a QFT as a limit of a regularized theory basically involves particular cor

relation functions, the transformation properties of these functions are impor

tant. This so far has not received appropriate attention. 

Since gauge theories are the ones describing particle physics, their con

sideration is of prime interest. The lattice regularization2 to be used in the 

nonperturbative case has the additional advantage of allowing a strictly gauge

invariant formulation. Gauge invariant KW transformations of the blocking type 

have first been proposed by Swendsen3. 

In the present letter a transparent condition expressing the restrictions 

for transformations of correlation functions is given and used to investigate 

the behavior of the particular functions which enter the definition of QFT. The 

arising proportionality factors turn out to be straightforwardly calculable, 

which is done for the main types of correlations and a large class of transfor

mations. In this context gauge-invariant transformations are introduced for 

matter fields, too. On the basis of these results next KW invariant functions 

are constructed which at the same time are suited for the QFT limit. Their pro

perties allow, after specifying a fixed point structure, to derive firm conclu

sions about nature and handling of the parameters of the theory. 

The general form of the transformations to be used is 

eS(U,g, ?.) 

J 
.-,... (U U) 5(U,3,:x,) 
J'lA.. J e ( 1) 

u 
The given action is denoted by S(U,g,l) and the one after a transformation re

ducing the degrees of freedom by a factor )d by S(U,g,A). U stands for all oc

curring fields andf for the integrations over them. g = (gr, ... , Qe) are the 
v . 

parameters prescribed for A= 1. In order to have 

J es(i!,"',:n IT(Ci,"A) = J es(U,_1,J.") O'(U,"!.,) 
( 2) 

v u 
according to (1) the condition 
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f CJ (Q 11) ];,JU,LI) = L'(U,J.l 
if 

( 3) 

must be satisfied. For CJ(JJ1)= (}(U,A,)::: 1 (3) corresponds to the usual re
quirement of keeping the partition function fixed. For general (J (3) means a se
vere restriction on the transformations of correlation functions. In order that 
(2) is defined at all, one must choose O"(U1 ~~) out of the image set of (3). 

The lattice correlation functions are of form G(n,g) with n = (n
1 , ••• , n,..), 

where nr are integer variables. The relation of the n1 to physical lengths Xs 
is n1(v) = int ( v Xg/b) where b is the length unit and v the continuous number
ing of the sequence which is to define the QFT limit for v....,.oo. To be able to 

I stv.g, l!o; (. ' VJ If s(v,s·" . transfonn G(n(v),g) = e & 11 <v; e one has to f1nd a way for 
u " satisfying (3). In the case of a decimation transformation (for which in Fig. 1 

only the straight connection contributes) and ~(vJ/A integer it is straightfor
ward to use cniJJ;.):;:::;. za-G-(n(v)/?.,0) (the proportionality factor z is discussed 
below) which gives (J(U, 1) :::= o-c..(n(vJ,U). If Vl(v}h. is not integer the obvious 
modification is to put u(U,))=Zuo-("M'l,U} which leads to CT(U,I)3'Ci,(ncuJ,V), 
where the equivalence sign~ denotes asymptotic equality for largeV. For age
nera 1 b 1 ock trans formation, again s ta rti ng from fJ ( iJ 1 ':\)-= Z C'G-(.,(vh),U}, ()(U1 I) 
obtained from (3) in general consists of many contributions, the locations in 
which are distributed around those of the decimation case. Since the respective 
fluctuations are governed by), (which is finite) while the mean extensions de
pend on V (which is very large) one arrives at CJ(U1 1) ~ C'G-(n(V) ,U) as before. 
Thus one obtains 

f S(U)3·~) ~ I;· G-(n(vl,g l~Z e uc;.(n(V,i 1 U! _ 
u v 

for the transformed functions. 

<;(C",3"A) e . 
(4) 

To calculate the ~factor for gauge fields along a loop, the class of gauge
invariant KW transformations shown for one step in FiQ. 1 is used, which have p; 
contributions of weight~~ and thin by a factor r,; per step. After s steps one 
then has A= rs. In the calculation of o·{U,1) according to (3), for v>>?. after 
each step the blocking fluctuations can be smoothed to the decimation mean such 
that a sequence of lengths L,rL;~·-;rsL in lattice units occurs. By the j-th 
step from one contribution of length rj-lL then contributions are generated the 

- j-rL weighted number of which can be SU!ll11ed by the multinomial theorem to give t" 
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where y=~P~Pi. Thus s\a_;ting from crcO>)=Z.(()G-(n(li/~).i}Jone arrives at 
(}(!)} 1) ~ Zt_ t(!~r~ .. tr JL aG-(n(VJ,U) from which one gets 

- c(~-l)l 
Z:e = e (sJ 

( . . ("" £ ) where c::- (,'{)/(r--1} and l = tl'lr r b , 'f. being the physical perimeter. 

As an example of the inclusion of matter fields the factoriy occurrin~ for 
the gauge-invariant combinationr;:y,..U('~Jy., is calculated. For the gauge fields 
along the path P,'"' again the transformations of Fig. 1 are used, while for the 
matter fields the gauge-invariant class shown in Fig. 2 is introduced, which has 
p7 contributions of weight ~T. Similarly as before one now obtains 

-7.b -c(?.-JlL 
Zr =?. e (6) 

where ~::: tn i"t;(, r- and t1=~frp~, with t. now being the path length. 

Choosing :f*- 1 and '{'If.; I , which makes (5) and (6) nontrivial, corresponds 
to the introduction of the factor the tuning of which is subtle in linear block
ing4 and for which there may be more freedom in the nonlinear case5. Also pa
rallels to wave-function renonnalization of perturbative QFT are obvious. In 
particular, (5) is close to the factor obtained there6 for smooth loops with 
d = 4 and Pauli-Villars type regularization. The corner divergences there, how
ever, have no counterpart here. 

In order that the transformed form (4) becomes attractive for QFT one has 
to get rid of the Z factors without loosing K\~ invariance and without giving up 
the possibility to vary)/ and "X"'~'. This is achieved by forming combinations (in 
particular ratios) of the functions of type (4) such that all Z factors cancel 
out, which gives functions of the form 

P(n(VJig) ~ J(n(*)lj,'A), (7) 

Since the Z factors can be calculated as indicated, the remarkable result at this 
point is that all the functions of type (7) can readily be constructed. 

It is to be noted here that Creutz ratios 7, formed to escape perimeter di
vergences, according to (5) are under the combinations admitted in (7). Further-
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more, all ratios from which in perturbative QFT wave-function renormalization 

cancels out, are candidates. The class of this type which is of the form 

l'(xw )x.,)/(Pl'-1 l '1 1~(, 1 ))f'- actually gives all S-matrix elements, 
J f 1 I I} ~~1 ..., 

physical masses and physical coupling strengths. In the present nonperturbative 

and gauge-invariant framework the combinations of direct physical interest ar~ 

a subclass of (7). 

For the QFT limit an appropriate fixed point of the KW transformations is 
needed. To describe it a representation by auxiliary parameters c, (e. g. coef

ficients of some expansion of~ or of e 5
, or functions of such coefficients) is 

used for which one has S(U13,·;1,) ~ ~(U1 c.cs,).)), where c-= (cr,'-1 1·· ·) and where 

~(5, l) is prescribed. One then transforms to relevant, irrelevant and marginal 

parameters, which gives .:;(U,S,A)-=_<;'(U,[CJ,~l) with J::.(f,,J-1.,··~). Marginal is 

understood here as substantially marginal 8 , i. e. beyond the linear approxima

tion (the occurrence of marginal parameters obviously implies that one has a ma

nifold9 of fixed points rather than a single point). It will be sufficient to 

have this representation in a domain of which the considered fixed point is an 
interior point. 

In terms of the parameters related to the fixed point, (7) gets the form 

P(ncvl,j) ~ f(n(~), )!S·'l). (8) 

With c(3,1) also the f: are prescribed for A-= 1 . 

venient to use transforms §'' of the g; such that 
In the following it is con

f;(j-c,1) is fixed by f. at l.~ I. 

In order that a reasonable QFT limit exists, the Y dependence entering (8) 

via n(upart from that occurring in ratios ns•/11.?) must be compensated by letting 

g depend on 'V. This means for a change from Y to <XV to require that P(fl(r:><Y),5(tXv)) 

s; P(V!UJ,j(v)~fran which by using (8) and its~ independence it follows that 

J (3(~V)' .x >.) r (jC•>,;\) .. (9) 

Thus the remarkable fact is obtained that the compensation condition can be sepa

rated from the particular functions P. 

~-
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Since the marginal parameters are independent of h, they allow to satisfy 

(9J with 'T independent ofv, ty which the marginal r:<f) themselves become 

constants of the theory. 

In the case of relevant parameters, to be in accordance with (9}, for in

creasing v one must shift r:\5,t"J,1) towards the fixed-point value);". The change 

of :f: vlith Y dictated by (9) then corresponds to what is conventionally expressed 

by a ~ function. One should, however, be aware that the functions of QFT and 

those related to KW transformations differ by definition, as has been emphasized 

by careful authors 10 some time ago. Here, due to the separation of (9) from the 

P, it follows that the bare# function of QFT and the KW function coincide for 

large v. 

For irrelevant parameters, in order to satisfy (9), when J is increased 

f~(5:(J); 1) must be shifted away from the fixed-point value and thus outside the 

domain under consideration (e.g. to infinity or to another fixed point) unless it 
;< 

is set to its fixed-point value ); from the beginning. Therefore, in order to be 

able to perfonn the limit in the considered domain one must put );(§:,1)-=('" , i. 

e. go to the "renonnalized" manifold (RM). That the "renormalized" trajectory is 

related to the definition of QFT has been noticed a long time ago 11 . Here, on the 

basis of (7), it has become possible to derive the precise facts. 

Using (8) the basic quantities of QFT now get the form 

Q = ltm f(ntfl (R(olvl,~l.J') 
v +CV I ) J j ) 

( 10) 

R 
i~dependent of)., with relevant parameters )~ satisfying (9) and marginal ones 

)~ being constants. Since (9) only determines the change for large V, it is not 

suited for fixing a constant. For this purpose one has to go back to the P and 
R 

to require definite limiting values, which to each r~ associates a constant R; of 

the theory with the meaning of an independent mass scale. In detail, for fixing 
c -e. constants Rl and {~one has to select ~quantities Pl and to prescribe physical 

values Q, to thoo 12 , which (provided the P; have suitable invertibility proper

ties) allows to solve the system of equivalence relations J5:::0.,,: with ~-=1, .. ,e 
This determines glv) up to asymptotic equivalences which is sufficient for the 

calculation of physical quantities from (10). 
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The fact that it is a necessity to go to the RM affects some popular views. 

Instead of the usually assumed universality class of actions there is rather an 

equivalence class of pairs each of which consists of a KW transformation and of 

an associated RM action. To go to another pair means a change of representation. 

The chance for improvement 13 then is that in selected ones of these repre

sentations the approach to the limit for some of the~ is faster 14 . 
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Figure Captions 

Fig. 1 

Fig. 2 

Typical contributions to block link from A to B. Links between dots 

correspond to gauge fields on finer lattice. 

Typical blocking contributions for matter field at point A. Cross 

denotes matter field and links between dots gauge fields on finer 

lattice. 
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