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Abstract: The nl!llber of numerical operations necessary for a Monte 

Carlo simulation with very light fennions (like u- and d-quarks in 

quantum chromodynamics} is estimated within the iterative hopping expan

sion method. 
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The main difficulty for a fully realistic Monte Carlo simulation of a quan

tum gauge field theory with light fermions is the inclusion of the effects of 

virtual quark loops into the updating procedure. The reason of the difficulty 

is, that the effective interaction induced by the light fermion loops is inhe

rently non-local on the gauge field configuration. 

Approaching very small dynamical fermion masses, like the physical u- and 

d-quark masses in QCD, the non-locality of the effective action on the gauge 

field sets in rather suddenly. In QCD, the unambiguous sign of a light quark 

mass is the smallness of the pion- to ,-meson mass ratio Stt3iTI)i'm,. (Something 

like x, has to be preferred for the characterization of light quark masses, 

because it is rather difficult to give a renormalization group invariant meaning 

directly to the quark mass parameters used in the numerical calculations.) The 

physical value of let is about D. 18. In the only existing calculation of QCD 

spectrum with light dynamical quarks on a reasonably large (actually 8~) lattice 

[lJ, the value of rJtq is in the range of 0.8- 0.5, i.e. still rather far away 

from the desirable region. The calculations in Ref. [1] took already a rather 

large amount of computer time: about 300 CPU hours on a CYBER 205 supercomputer. 

Therefore, one has to ask, whether it is at present conceivable at all that a 

reliable QCD spectrum calculation with the required very light dynamical quarks 

can be done in the near futute, using existing or foreseeable computing possi

bilities. I want to stress that, in my opinion, the main difficulty is presum

ably not the lattice size (8~ seems enough for the first studies), but the 

smallness of the physical quark mass. For very light quarks, the non-locality 

of the effective action causes severe convergence problems for all known algo

rithms. 

The Monte Carlo simulation in Ref. [1] is based on the iterative hopping 

expansion (IHE} algorithm [2]. In the present letter the computational require

ments of a QCD spectrum calculation with very light (i. e. physical) dynamical 

quarks will be estimated within the IHE framework. For similar estimates and 

discussions of other presently available algorithms see a recent paper by D. 

Weingarten [3). First the IHE algorithm will be shortly recapitulated. Then the 

number of numerical operations necessary for a Monte Carlo simulation will be 

given for a range of lattice sizes and maximum orders in the hopping parameter 

expansion. Finally, the results of some studies on the existing 8~ configura

tions from Ref. [1] will be summarized, and possible future improvements of the 

algorithm will be discussed. 
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In the present paper always Wilson lattice-fermions [4] will 

In this case the hopping parameter (K) expansion of the change of 
action AS~ can be written like,~] 

be considered. 

the effective 

AS~ = ~ ~~ -,:;:Di 
"'# ~=~ } 
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Here-&,. denotes the Dirac-matrix,61A(.x1f) is the change of the gauge 

in the Metropolis updating procedure ( 1<= point index,f-= direction 

unit vector in direction/) and M(U) is the "hopping matrix" 

link-variable 

" index,/"'" 
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The summation over~ goes over positive and negative directions. 

The basic ingredients in the expansion (2) are matrix elements of the powers 
~ 

of the hopping matrix .(flM(UXi) with some initial (I i)) and final (<fl) vectors. 

These can be calculated on a given gauge field configuration by a point-by-point 
iteration ~]. (For more details on different aspects of the hopping parameter 
expansion method see also ~].) Denoting initial and final colour indices, re
spectively, by c1.. and c4-, the corresponding Dirac spin indices by si and sf and 
the final point index by xf, the iterative equation can be written like 

cr.~.+~ (cf,,.,{,c,:,":>,:,><"f.)= (4) 

=L L.. (A-ir\ .._,'\A(x,t); c cp.trc,~,c,,¢,,-"~'"rl. r- c,... ~ 1-
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It is important that1due to the nearest neighbour structure of the hopping ma
trix1the number of points where the iteration {4) has to be performed is limit
ed by the fixed initial and final points and by the maximum order of the hopp
ing expansion. This is illustrated by Fig. 1 in the generic case, where the ini
tial point is i and the final point is f. 

For light quark masses the hopping expansion (1 - 2) has to be evaluated 
up to high orders at every link updating. As a consequence, the main computa
tional task is to evaluate the hopping expansion coefficients of AS4f. Every

thing else is negligible, typically only at most at the 10-lf level of the whole 

computation. Therefore, the number of numerical operations necessary for one up
dating sweep is, to a good approximation, given by 

N't= N£.;..1.. N~~t"N~ (5) 

Here N ,tv...l is the number of 1 inks on the 1 a tti ce (note that the i tera ti on has to 
be performed only once, even if more Metropolis hits are done on a single link), 
N~ is the total number of lattice points (x.f:) where Eq. (4) has to be evalu

ated and N.., is the number of operations necessary to calculate <foe+~ once from 

CV.t in Eq. (4). Counting a triadic operation (a+b-c) as a single one, we have 

N-1 = 144 • 112 ~ 1.6 • lO'i real operations. Here the first factor stands for the 
12 initial spin-colour indices times the 12 final spin-colour indices. The number 

of iterated points N~~ depends both on the maximum order of the hopping expan
sion and on the lattice size. A careful counting gives the numbers in Table I for 
some interesting range of orders and lattice sizes. Note that for a fixed maximum 
order and for large lattices Np~tends to a constant independent from the lat
tice size. Therefore, the number of operations Nor" is growing, in this case, only 
linearly with the number of lattice points. If, however, the increase of the lat
tice volume is accompanied by a change of bare parameters in such a way that the 
lattice size is constant in physical units, then the required order in the hopp
ing expansion grows and the number of iterated points N,..~ is roughly propor
tional to the volume. In this limit N~ grows quadratically with the number of 
lattice points in accordance with the arguments in Ref. [3] .The resulting numbers 
of required operations for one sweep are shown in Table II. 

The comparison of the IHE to the algorithm of Weingarten and Petcher [7 ,3] 
seems favourable (for a comparison to other algorithms see [3] ). Takings" lat
tice and n~ = 3 light quark flavours with N(S = 50 Gauss-Seidel iterations, the 

' 
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number of operations for one sweep given in Ref. [3] is r-- 5 • lOf~ This is an 

order of magnitude more than the corresponding number in Table II for 24th order 

hopping expansion. This comparison refers strictly to the updating. The Weingar

ten-Petcher algorithm may have some advantage in the subsequent calculation of 

the quark propagator matrix elements necessary for a spectrum calculation. In 

the case of IHE a complete determination of the quark propagator matrix (from 

every point to every other point) is roughly equivalent to a full sweep. In Ref. 

[3] more emphasis was given to a calculation on 6~ lattice with ni- = 2 light 

flavours. In this case the comparison is somewhat less favourable for IHE, but 

in my opinion at least 8~ is required if light quarks (and light pions) are 

aimed at. Taking no(. = 2 flavours is unacceptable, since the hopping parameter for 

the s-quark is only slightly less than for u- and d-quarks. 

The comparison of different algorithms making different approximations is, 

of course, not entirely straightforward. Even a direct confrontation on small 

lattices is not necessarily conclusive, since the convergence properties can 

sensitively depend on the lattice size. In our case, for instance, it is not 

completely clear whether the 24th order hopping expansion or the 50 Gauss-Seidel 

iterations are more suitable for reaching a convergent result in the case of very 

light quarks. I believe that the chances of 24th order IHE are certainly not 

worse. This is suggested by the comparison of the smallest quark mass values, 

where e. g. meson propagators can be reliably extracted in a quenched calcula

tion from a 24th order hopping series and from quark propagators calculated by 

Gauss-Seidel iteration (see, for instance, Refs. [s, 1]). In addition, as detailed 

studies show (see Refs. [2,il and below), the quark propagator combinations ap

pearing in the expansion of ~S~in Eq. (1) are better convergent than e. g. the 

meson propagators or the individual quark matrix elements themselves. It is an 

advantage of the IHE algorithm that it can be directly applied to the more con

vergent combinations. 

In order to see, what is the best way to obtain the value of AS~, once the 

hopping expansion coefficients are known, I studied the hopping series on the 8~ 
gauge configurations produced in Ref. [r1 for N~ = 3 degenerate quark flavours at 

the gauge coupling ~:S6jg'L = 5.3 and hopping parameter K = 0.168. On these con

figurations 1"''t'~ is about 0.5, therefore the dynamical quar~ are light (even if 

sti 11 not 1 ight enough). The hopping expansion coefficients of AS=«. were deter

mined on 200 randomly chosen links during a Metropolis updating with 10 hits per 

link and acceptance rate of the proposed changes of about 50 % (per hit). Since 
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the lowest non-vanishing order is t and only even orders occur, the values of 

AS~ were calculated from a lOth order Pad'i::-table. The stability of b.S_:ff ob

tained from the highest (actually 8th to lOth order) Pade-approximants was in

vestigated. It turned out that the Pade-tables are in most cases rather stable 

and hence suitable for the calculation of AS.:ft.. The errors of ~S~ were esti

mated from the standard deviations of the 10 "best" PadE:'s, which are closest to 

each other among the 30 highest order ones considered. This way of determining 

the values from the Pade-table was successfully applied to the meson and baryon 

propagator time-slices in the quenched calculation of Ref. [1]. There the ob

tained hadron masses agreed well with the result of the standard procedure based 

on the pole position. As already mentioned, in the present case the situation 

is even better, since AS.:ff_ is more convergent than the hadron propagators. It 

turned out that in about 80 %of all hits the estimated relative error of AS~ 
was less or equal to 1 %. In 14 ~0 of the cases errors up to 5 % occured, in 4 % 

of the hits errors up to 15 % and in 2 % of the hits up to 50 %. The deviation 

between the average value extracted from the Pade-table and the value given by 

the hopping series itself was, in the first group of hits (with ~ 1 % error) 

only a few percent, in the second group up to 20 % and in the last two groups up 

to ""100 %. Since about 95 %of the total change in the action comes from the 

pure gauge action, the estimated errors of A S~correspond typically to errors 

of the action-change below the 1 permill level. 'the effect of these, relatively 

small, errors on the hadron masses is unclear at present. This question can be 

investigated in the future e. g. by artificially adding a similarly distributed 

noise to the pure gauge action difference in a quenched calculation. 

The investigation of the Pade-tables also showed that in a substantial sub

set of Metropolis hits the high orders are not necessary for a ~1 %accuracy of 

~St If this average accuracy turns out, in the future, to be enough for a good 

hadron mass determination, then the updating can be optimized by monitoring the 

degree of convergence. In case of good convergence the iteration can be broken 

down below 24th order, but in a few critical instances the iteration can be con

tinued up to substantially higher orders than the average maximum order. 

In summary, it seems plausible that the required very light quark mass range 

can be reached by the IHE a1gorithm, provided that the amount of numerical opera

tions given by Table II can be performed. Taking 1000 sweeps on 84 lattice in 

24th order of the hopping expansion requires ,_,J 5 • lO-tS operations. This is 

quite a 1ot, but it is possible to do by computers performing at the GFLOP rate. 
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Table I The total number of points Npoint for different orders and 
lattices in the iteration for A.~ on a single link 

order n" 8" 10" 12" 

12 1625 1989 2081 2093 

14 2666 3668 4032 4124 

16 3879 6039 7059 7423 

18 5168 9056 11354 12374 

20 6464 12581 16997 19313 

22 7760 16438 23926 28480 

24 9056 20467 31955 39971 

Table I! The number of operations N
0
p according to Eq. (5) for one 

sweep, at different orders and on different lattices 

order 6" 8' 10' 12' 

12 1. 4 • 10 I I 5.3 1Qll 1.3 1012 2.8 1012 

14 2.2 lott 9. 7 1011 2.6 1012 5.5 1012 

16 3.2 I ott 1.6 1012 4.6 1Ql2 9.9 101 2 

18 4.3 1011 2.4 101 2 7.3 1012 1.7 101 3 

20 5.4 1Qll 3.3 1012 1.1 1013 2.6 101 3 

22 6.5 1011 4.3 101 2 1.5 1013 3.8 1013 

24 7.6 I ott 5.4 101 2 2.1 1013 5.3 101 3 
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Figure Caption 

Fig. 1 Illustration of the iteration for the calculation of the hopping 
expansion coefficient <f\Mn\i)'. In every step the open points are 

calculated frcxn the fu 11 ones. 
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