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ABSTRACT. Two possible ways of extending Symanzik's improvement programme to 
lattice fermions namely improvement to first and second order in the lattice spacing 'a' 
are discussed. The corresponding lattice actions for fermions are constructed and tree 
level improvement conditions are derived by considering claBsical improvement. The 
concept of on shell improvement is generalized to the lattice fermions studied here and 
the free parameters are determined for O(a) and O(a2 ) on shell improved actions to 
all orders of perturbation theory. No evidence is found that the complicated structure 
of the O{a2 ) on shell improved action especially the arising fermion contact terms 
can 'be remOVed beyond tree level. The effect of terms in the action that explicitly 
break chiral symmetry and therefore remove the phenomenon of specieB doubling are 
investigated by considering the energy momentum relations of the arising tree level 
improved actions. Our main result is that the O(a) improved action is a slightly 
modified Wilson fermion action which can still be written with only nearest neighbour 
fermion interactions. 

•supported by Deut~clJ.e Forschung!gemeinsclaaft 

1. INTRODUCTION 

Much effort has been spent in applying Symanzik's improvement programme [1[ to lat
tice actions of various models. Originally developed by Symanzik in the framework of the 
()4- Theory [2[ this procedure to systematically construct a lattice action with improved con
tinuum limit approach has been applied to the non linear tr-Model in 2 dimensions 13,4], the 
Gross-Neveu Modelj5,6J, pure Yang Mills Theory J7-IOJ and full QCD jll-13J. 

For the ()4-Theory Symanzik was able to prove the consistency of the improvement 
programme to all orders of perturbation theory. To this end he demanded improvement of all 
(off shell) Green's functions. For lattice gauge theory this procedure is complicated because 
gauge dependent terms have to be added to the action. A way of circumventing this problem 
is by demanding only the improvement of on maBS·Bhell quantities. This concept has been 
recently introduced by Liischer and Weisz [14] in the context of pure Yang Mills Theory. The 
parameters in the action that are free i.e. do not enter in spectral quantities are determined 
(to all orders of perturbation theory) by constructing a spectrum conserving transformation 
of the action. The remaining constants have to be fixed order by order in perturbation theory 
by considering a suitable set of spectral quantities. 
In this paper we adopt this concept of on Bhell improvement to Wilson lattice fermions. 
Previous work on the subject of improved lattice actions for fermions bas been done by Eguchi 
and Kawamoto 111], Wetzell12] and Hamber and Wu 113]. While these authors make a rather 
heuristic ansatz for the structure of their improved fermion action we present a somewhat 
more systematic approach. Improvement for lattice fermions can be considered on two levels. 
The first one is only to demand the cancellation of lattice artifacts to first order in the lattice 
spacing 1a' which will be called O(a) improvement in the following. To this end it suffices 
to use the standard one plaquette Wilson action for the Yang Mills part of the Lagrangian. 
Furthermore the fermion part of the action has to be determined only up to operators of 
dimension five resulting in a fairly simple on 1hell improved action. The second step i.e. 
O(a2 ) improvement needs an improved action for the gluon part and additional operators of 
dimension six in the fermion part of the action including fermion contact terms. 

In section 2 of this paper we set the stage for our investigations by constructing the most 
general lattice action for fermions including all possible operators up to dimension five and 
six respectively. 
Classical improvement conditions are derived in section 3. 
In section 4 we construct the isospectral transformation of the action and determine the free 
parameters of O(a) and O(a2 ) on shell improved lattice actions for fermions to all orders of 
perturbation theory. 
Section 5 deals with the question of chirality breaking terms and species doubling by investi
gating the energy momentum relations of suitable O(a) and O(a2 ) on shell improved actions. 
Throughout section 2-5 we give a separate discussion of O(a) and O(a2 ) improvement and 
compare the results for both concepts at the end of each section. 
In section 6 improvement beyond tree level is discussed and the results of a numerical calM 
culation of the fermion contributions to the gluon selfMenergy are presented. Results for the 
second order term obtained by Uka.wa and Yang j15] are confirmed and comparison with the 
data for the gluon sector is made. 
A discussion of our results is given in section 7. 
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2. GENERAL FORM OF IMPROVED AOTIONS FOR WILSON FERMlONS 

As Symanzik's improvement programme requires the introduction of higher dimensional 
terms into the action we construct lattice actions for Wilson fermions including (up to total 
derivatives) all possible gauge invariant scalar operators of at most dimension live for O(a) 
and six for O(a2 ) improvement that are invariant under discrete rotations, parity and charge 
conjugation transformations. To this end we first construct the invariant operators of the 
corresponding continuum effective Lagrangians. 
Postponing the introduction of flavour symmetry, we introduce Dirac fields 1]/(z) and¢(~) 
and the gauge fields Ap.(~) which transform under the fundamental and adjoint representa
tion of the colour group SU(Na) respectively. 
We shall use the shorthand notation f,b(z), ¢(z), Ap..(z) for the Nc-row and column matrices 
of the fermion ftelds with entries f,i.ii(z), ¢i(z) (Dirac spinors) and the (Nc x Na)-Matrix of 
the gauge fields with entries A~(z)tf; where ta are the generators of the fundamental repre

sentation of SU(N0 ). Furthermore we set D" = (.U.o" + iA"(z)). Accordingly ,P(z)D"¢(z) 
will mean the product of the corresponding matrices. 

2.1. O(a) Improvement. 

Introducing a set of euclidean ')'-matrices "(p with 

b"' 1v} = 26M,.U. 

'It="{!-' 
(2.1.1) 

we look for all operators up to dimension five that are invariant under gauge-, parity- and 
charge conjugation transformations and discrete rotations. They are bilinear operators in the 
fermion fields and have the form t/){z)O~t,b(z). As we look for operators of at most dimension 
five the 0~ can contain Up to two derivatives. If r denotes a member of the 16-dimensional 
space to which our "fl-' belong (we choose "(p,')'~,"f.5"fp..,IL,<tl-' 11 = j-hp,"{11 j as a basis) discrete 
rotational invariance only allows o~·s of the following form: 

no derivatives: 

1 derivative : 

2 derivatives: 

og:;;: r 
0~ =Fp.Dp. 

og = rpvD"w 

(2.1.2) 

~ 

We can always choose all derivativa acting to the right hand side D~-' = D w Terms that 
~ntain left hand side derivatives D ~-' can a~ways be expressed by terms containing only 
D 1-''s plus a total derivative. The operators ¢(z)OftP(z) have to be invariant under parity 
and charge conjugation transformations. 
We consider the effect of P-parity: 

with: 

¢(•)- ~'(•) = S(P)¢(Pz) 

,P(z)- ~'(•) = ,P(Pz)S(P)-1 

Dp -- D~ = (P-1 )1-'IIDII 

S(P) = ry, = S(P)-' 

PJ.'v = P~.~-,} = -(-1)011 •0j.w 
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(2.1.3) 

(2.1.4) 

Invariance of 1}J(~)Ogl,b(z) entails "frFir = r, i.e. r = .t. For !}i(z)O~¢(z) invariance means 
1rFp.ir = -(-1) 6P~rp. yielding r~ = "fw 
If we demand linear independence among operators of the same dimension we derive the 
following set 1 of Ps for the 0~: 

oi: r = .u. 

ot : 
og : 

r~ = "~-' 

rpv = 6pv- i<tpv, 

One can check that charge conjugation 

rpll = i<tJ.III 

¢(•)- c¢'(•) 

,P(z)- ¢'(•)0 

c1~c-l = -"~~-'• c- 1 = -c 

doesn't give any more restrictions on the or. 

(2.1.5) 

To incorporate an additional flavour symmetry with symmetry group SU(N1) and generators 
tJA we have to alter our shorthand notation in obvious manner. As we shall assume flavour 
symmetry to be conserved the form of the operators bilinear in the fermion fields is not 
changed. We llnally obtain the following set of independent invariant operators of dimension 
smaller than six (FJ.'v = [Dp, D 11 j): 

dim 3: 

dim 4: 

dim 5: 

Oo(z) = .P(•)¢(•) 
OI(z) = ¢(•)1/i¢(z) 

0 2 (z) = ,P(z)(D'- ~""'F"v)¢(•) 

0 8 (•) = ~,P(z)<r",F"v•P(z) 

(2.1.6) 

To put these operators on the lattice we define the following covariant lattice derivatives: 

D~''h'¢(•) = !.[u"(•)¢(• + M- ~(•)] a 

D~f'~(•) = !.[¢(•)- UJ(•- Jl)~(z- il)j 
a 

D~~(•) = i[D~''" +D~I'j¢(•) (2.1.1) 

(D')L¢(•) = !.[n•igh<- D''f'j¢(z) 
~-' a J.l J.l 

~L¢(z) =I: (D~)L¢(z) 
" 

where Up(z) denotes the link operator, 'a' is the lattice spacing and j). is a-times the unit 
vector in the p-th direction. 

1The reason for thls particular choice will become clear later. 
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We then choose the following representations Of of the operators 0 1 on the lattice: 

Of(z) = ,P(z)1"D~,P(z) 
Of(z) = ,P(z)(<l.L- ,!,u""P"v(z)),P(z) 

Of(z) = ;;(-.,P(z)u""P"v(z),P(z) 

where PJ.'v(z) is the operator1 : 

P"v(>) = ~(u"(z}Uv(z + il)UJ(z + v)Ut(z) 

-Ut(z- v)UJ(z- p- v)U.(z- p- D}U"(z- v) 

+Uv(z)UJ(z- fj + v)UJ(z- p)U" (z- il) 

-U"(z}Ut(z + il- D)UJ(z- v)Uv(z- v)) 

We can now write down the action suitable for O(a) improvement 

5F1 a4 
L ::;--

05 
' E L:a(dim of(x)-4)bi(gJ,ma)Of(z) 

a all i=O 
lattict sites 

(2.1.8) 

(2.1.9) 

(2.1.10) 

The coefficients b 1 (g~, ma) are regular at Qo::;:O and have to be determined order by order 
in perturbation theory. Reality of the action furthermore requires the coefficients bi of the 
action (2.1.10) to be real. 

2.2. O(a2
) Improvement. 

For O(a2 ) improvement we have to extend our considerations of section 2.1. to operators 
of dimension six. Then bilinear operators of the form 0~ = rJ.wpDp.DvDp have to be COD· 

sidered. As a new feature also quartic fermion operators of the form (¢(x)OlW(z))2 appear, 
where 

og =r, O! =rll, o~ =rll, 

The invariance considerations of section 2.1. now yield: 

o' . 
~ . 

O' . 0 . 

Oi: 

O' . 2 • 

rlliiP = 5ji,6p.p"f~J.• rll"P = '11J.6"P• 

rJJVP = 2"tv61J.p- '11-i-{jllp- "tp{jJ-111 

rJ.IIIP = "fp."tv"tp 

r = ll, r = "ts 

r = "tp.. r" ="!r-'11-i-

rp.v = ql-'11 

(2.2.1) 

r/J.IIP = "fpbJJII 

(2.2.2) 

1 We have chosen this combination of plaquette operatol'li with maximal symmetry as a lattice representation 
of Fpv(:J) for convenience. 
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Introduction of a conserved 8avour symmetry with generators pA only affects the four 
fermion interactions. After making use of the Fierz identities and completeness relations 
we end up with twice as many contact terms and eventually find all invariant operators of 
dimension six: 

bilinear operators: 

0 4 (z) = t}i(zh"D!.P(z) 

0 5 (z) = t}i(z)D'I/I.P(z) 

0 6 (z) = ,P(z)I/ID'.P(z) 

07(z) = t}i(zh"[Dv, F"v].P(z) 

o,(z) = ,P(z)I/I'.P(z) 

contact terms: 

o,(z) = (,P(z)t".P(z))' 

Ou(•) =; (t}i(z)13 t"¢(z)) 2 

0 18 (•) = (t}i(z)1"t",P(z))2 

Ot,(•) = (t}i(zhn"t",P(z))' 

017(z) = (,P(z)u"vt",P(z))' 

010(z) = (li'(z)~At".P(z))' 

012(z) = (t}i(zh,pAt",P(z))' 

Ou(z) = (,P(z)1"pAt".P(•))' 

Ot,(z) = (t}i(zh'~"pAt",P(z))' 

Ots(z) = (,P(z)u""pAt"I'J(z))' 

For the lattice representations of these sixdimensional operators we choose: 

Of(z) = t}i(z)1"D~(D!)L¢(z) 

o.f(z) = t}i(z)1"<l.L Df;.p(z) 

o.f(z) = t}i(zh"D~<l.L¢(•) 
Of(z) = ,P(zh"[Dt, [D~, Dtl]¢(z) 

Of(z) = t}i(zh.~.~,D~Dt D{;.P(z) 

As an extension of (2.1.10) we find the action suitable for O(a2 ) improvement: 

• 18 

s[2 =-a2 L: La(dim of(x)-4)b,(gJ, ma)Of(x) 
Oo x all i=O 

lattice sites 

Reality of the action now requires 

b,(,fo,ma) =lis(g~,ma) 

hi (g~, ma) real i" 5,6 

2.3. Summary. 

(2.2.3) 

(2.2.4) 

(2.2.5) 

(2.2.6) 

Comparing the actions (2.1.10) and (2.2.5) we find that the task of also removing the 
O(a2

) lattice artifacts leads to a much more complicated action. Next to nearest neighbour 
interactions have to be added and fermion contact terms appear both features which yield 
considerable difficulties for numerical calculations. If no drastic simplification of (2.2.5) can 
be achieved via the introduction of suitable improvement conditions this action will be of 
little use for practical purposes. · 
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3. CLASSICAL IMPROVEMENT 

A suitable way to impose tree level improvement conditions is the concept of classical 
improvement. It demands the vanishing of all corrections to the leading term -(mtli{ ;f)rj~(z) + 
tli(z),QJ¢(;:e)) in the small 'a' expansion of the lattice action to the desired order (i.e. O(a) or 
O(a2

) ). As the classical action generates the tree level vertex functions these should then be 
improved too to order O(a) or O{a2 ) respectively. 
To obtain the classical expansions of the operators Of(:e) in (2.1.10) and (2.2.5) we note 
that these expansions always start with the corresponding continuum operator 0 1(:e) plus 
correetions of classical dimension two higher. 
To verify this we start with the expansion of our lattice derivative D~. Choosing a gauge 
with A~(z)=O Va: it is easy to see that 

Furthermore: 

D~I/J(z) = (Dp + fD! + O(a'))I/J(z) 

(D!)LI/J(z) = (D! + hD! + O(a'))I/J(z) 

Ppv(z) = a2 Fpv(z) + O(a') 

(3.1) 

(3.2) 

(3.3) 

As only operators of dimension 3-6 appear in our actions (2.1.l0) and (2.2.5) the only term 
whose expansion can give rise to combinations with a higher dimensional operator of the 
action is Of(:e) and we find: 

of= .Ji(•h"(D" + fD! + O(a'M(•) 

3.1. O(a) Improvement. 

ClaBBical improvement therefore entails for O(a} improvement: 

b0 (0, ma) =rna 

b,(O, ma) =I 

b,(o,o) = b,(o,o) = o 

This yields the claBBical improved lattice action: 

sen - a~ 
-- g~ I: (mO~(z) + Of(z)) 

3.2. O(a2 ) Improvement. 

a aU 
lattice 8ites 

O(a2 ) claBBical improvement requires: 

b0 (0, ma) = ma 

b,(o, ma) =I 

b2 (0,ma) =b3 (0,ma) =0 

~bt(O, rna)+ b, (0, 0) = 0 
b,(O,O)=O 5:o;i:o;l8 
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(3-') 

(3.1.1) 

(3.1.2) 

(3.2.1) 

This yields the O(a2 ) classical improved action: 

SCI'J _ a~ 
-- g~ I: 

;: all 
lattice 8itu 

a' 
(mO~(z) + Of(•)- 60f(z)) (3.2.2) 

3.3. Summary. At least to lowest order in perturbation theory a drastic simplification 
of the O(a2

) improved action occurs. The price to pay for also removing the O{a2 ) lattice 
artifacts is the introduction of one additional operator containing next to nearest neighbour 
fermion interactions. We note that both actions (3.1.2) and (3.2.2) conserve chiralsymmetry 
for bare mass zero and therefore show the phenomenon of species doubling. In particular 
(3.1.2) is nothing but the so called naive lattice fermion action. One way to avoid species 
doubling would be to add to the action irrelevant operators (i.e. of dimension seven) that 
break chiral symmetry. This has been done by Eguchi and Kawamoto and Wetzel for their 
tree level O(a2

) improved action. As classical improvement is consistent with tree level on 
shell improvement but on shell improvement is meant to impose minimal improvement con
ditions we hope to be able to break chiral symmetry by an operator of dimension five. 

4. SPECTRUM CONSERVING TRANSFORMATION OF ON SHELL IMPROVED ACTIONS 

We first want to give a more detailed description of the concept of on shell improvement 
developed by Liischer and Weisz in ref. [14j. Following Symanzik's approach of a perturbative 
construction of an improved action, suitable improvement conditions have to be imposed. For 
the -~~-Theory Symanzik was able to prove that improvement of all Green's functions could 
be achieved. In the case of the non linear u-Model the situation turned out to be more 
complicated but Symanzik eventually showed that improvement of all Green's functions is 
possible for a modified field operator. In the case of lattice gauge theory it has been up to 
now not been proven that all Green's functions can be improved. To this end it would be 
necessary to add gauge dependent terms to the action at intermediate states of the calculation 
and up to now no procedure ha.s been given how the gauge invariant physical quantities 
can be eventually extracted. Liischer and Weisz therefore proposed to introduce a minimal 
improvement scheme by demanding improvement only for low lying (with momenta small 
compared to the cutoff) energy states i.e. on shell quantities. This allows to keep gauge 
invariance manifest at all stages of the calculation but even for this case the existence of 
an on shell improved action has not yet been proven but will nevertheless be assumed. 
Given one on shell improved action other on Bhell improved actions can be obtained by 
a local covariant transformation of the fields. Up to corrections of at least O(a2 ) for O(a) 
improvement and O(a3 ) for O(a2 ) improvement this will amount to a shift in a certain set 
of coefficients of the original action. The maximal number of coefficients that can thus be 
varied independently by our transformation is the number of free parameters in the sense 
of on shell improvement. Their values can be chosen zero or any other value which may 
be convenient for specific calculations. As has been pointed out by LUscher and Weisz this 
argument applies to all orders of perturbation theory. 

We have to find a spectrum conserving transformation of the fermion and gauge fields 
and study its effects on a full QCD on Bhell improved lattice action: 

SL = srM +Sf (4.1) 
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where s[M denotes the pure Yang Mills part of the action and s[ is the fermion action. 
For O(a) improvement SlM can be chosen the standard one plaquette action and Sf has 
the form {2.1.10). For O(a2 ) improvement SJM is the improved Yang Mills action given in 
ref.ll4l and S[ is given by (2.2.5). 
Under the spectrum conserving transformation we will have: 

SL ----+ Sl = srM' + S[' (4.2) 

In ref. [14] the part ofthe transformation giving rise to Sl M' is discussed. We must therefore 

only study the part resulting in s['. 
As the classical expansion of all lattice operators in the fermion part of the action start with 
their continuum analogue it is sufficient to consider the follOwing transformations: 

Tt: A"--> A" +a'(~ L;(Dv,F"v] + •'ih"t/1) (4.3) 
v . 

where ¢'1"1/J = (iPnl'tfjVli)ta transforms as AI' under SU(Nc) and 

{ 
t/J--> t/J + a< 1l/!.P + a•,,v•.p + a',,J/!'t/1 

T2: +- -
if;--+ iP+aE~if,Jf; +a2E~,Pi5 2 +a2 c~t}}Jf; 2 

( 4.4) 

This is the most general local covariant transformation of the fields up to O(a2
). How does 

the action (4.1) transform under this substitution of the fields? 
We are only interested in the lowest order contributions (in Oo) to the transformed coefficients 
because for them the infinitesimal transformations can be integrated up yielding the redun
dant parameters of the on •hell improved action to lowest order. Given an on shell improved 
action which is improved to order gg1 the same argument also provides the redundant coef
ficients to this order of perturbation theory. We simply have to choose the infinitesimal 
parameters e~ proportional to gg1 and the lowest order part of our transformation will pro
duce another g~ 1 on 1hell improved action with shifted b1 (o~ 1 ,ma)'s. The bi's that thus can 
be varied to lowest order are therefore redundant to all orders of perturbation theory. To 
lowest order in g0 we have the normalisation b!{O,ma)=l and b0 (0,ma);ma which for the 
coefficients of the transformed action b'(O, ma) can be imposed by a rescaling of the fields 
and the mass. 
As shown in Appendix A there is no contribution to s{ to first order in the infinitesimal 
parameters Ei that is due to the transformation of the measure. 

4.1. O(a) Improvement. 

To this order only the fermion part of the Lagrangian is affected so we only have to deal 
with the O(a) part of (4.4) (i.e. the E1 1 t:~ parts). For Oo=O we find: 

(o:os[)l _ = -a' 
9o-O 

L [(••- •\lbo(O,ma)Of(z) 
:t ail 

lattice BitetJ 

+a(E,- •\)bl(O,ma)Of(•) + O(a'J] 

Reality of the transformed action demands t:1 - t:i real. 
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(4.1.1) 

After performing the rescaling to first order in e and separating higher order terms in a 
we end up with: 

(o:os[JI,,~o = -a' L: 
:z ail 

lattice BitetJ 

[a(•1 - •\)0~(•) + O(a') J ( 4.1.2) 

For O(a) on shell improvement we thus flnd the parameter b2 (g~, 0) to be redundant. This is 
why we made the particular choice for the operators 0~ in (2.1.5). We may therefore use the 
operator Of(x) with an arbitrary coefficient to avoid the phenomenon of species doubling. 
This is not in contradiction to the on shell improvement condition that low lying states should 
not be affected because the low lying energy states that are altered by the lifting of species 
doubling are at the edges of the Brillouin zone outside the range where improvement should 
be effective. This will be further discussed in the next chapter. The remaining coefficient 
b3 (~, 0) which is not affected by the transformation has to be calculated perturbatively by 
considering suitable spectral quantities. As classical improvement is consistent with on shell 
tree level improvement we have b3 (0,0)=0. 

4.2. O(a2 ) Improvement. 

Now T1 and T2 contribute to s['. We find: 

(0:o"S[)I _0 = -a• ··- l: 
:zan 

!atticl! situ 

[(<,- •\)bo(O, ma)Of(•) 

+a((•1 - •\)b,(O,ma) + (•2 + ,; + '' + •~)b0 (0, ma)}O~(•) 

+a(<, + <;)bo(O, ma)Of(z) 

+a'(•1b8 (0, ma) + ,;b1 (0, ma ))Of{z) 

-a' (•\bs(O, ma) - ,,b, (0, ma ))Of (•) 

+a' ((•1 - •D(b,(O, ma)- b,(O, mal)+ (•s + <~)b1 (0, ma)}Of(•) + O(a') J 

Furthermore: 

(ggt5TtS[)[90~0 = -a-i l: 
:taU 

lattice tJites 

a' [~of(•) + •'Of,(•) + O(a'J] 

Whereas the Yang Mills part of the action transforms as: 

sl,M--+ srM'- a: L a2{t:IO~(z)+O(a2)] 
Oo :z afl 

lattice tJftetJ 

( 4.2.1) 

(4.2.2) 

(4.2.3) 

Collecting all terms, considering. only the oo=O parts of the coefficients and rescaling the 
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fields as above yields: 

(tfo6S[lf,,=o 
= -a' I: [a{(,, -ED - ma((,, - E\)b,(O, 0) - (<, + ,; + '' + E;}) }Of(z) 

~ali 
tattice 11ites -ma'((<1 -,\)b,(o,o)- (<, +<;)}Of(•) 

+a' (<Ib,(O, o) + ,;)of(•) 

-a'(,; b, (0, o) - ,,)of( •) 

+a'(~+ ,•)of(•) 

a'((<. -<j)(b,(O,ma) -b8(0,ma)) + ('• +<~))Of(•) 

+•','of, (•)+O(a')] 

f:2 + t~ 
reality of the transformed action demands: 

,, - ,; ) 
.t.3 ; 1103 real 

,. 

(U-4) 

( 4.2.5) 

The parameter t: performs the isospectral transformation in the Yang Mills part of the action. 
It has been used by Liischer and Weisz to consider the coefficient c3 of the pure Yang Mills 
improved action as a free parameter in the sense of on shell improvement. They proposed 
to set it to zero to all orders of perturbation theory. If we want this to persist only b7+b13 
can be varied independently i.e. either br Qt b13 can be chosen as a free parameter besides 
b2 ,b5 ,b6 ,b8 • We note that the parameter b3 can be kept unchanged by suitably rescaling 
the mass parameter. A possible choice for an on ahell O(a2 ) improved action would be 
to use the parameter b:1 as in the case of O(a) improvement to break chiral symmetry and 
to set bs,b6,bs,bu to zero to all orders of perturbation theory. All other coefficients in 
particular those of the remaining contact terms have to be fixed by considering a suitable set 
of spectral quantities. To tree level however classical improvement sets them to zero. We 
have confirmed that this as expected also holds for O(a2 ) on shell tree level improvement by 
considering scattering amplitudes in the way proposed by Wetzel [12J. 

4.S. Summary. The considerations of this chapter have been decisive on the question 
what improvement concept should be pursued to higher orders of perturbation theory. For 
O(a2 ) improvement at most one of the disturbing fermion contact terms can be removed. 
Beyond tree level we are stuck with far too many operators whose coefficients would have 
to be determined by perturbative calculations. For O(a) improvement the situation however 
looks favourable. We can use the redundant operator of to break chiral symmetry and only 
the coefficient b3 {g~, 0) has to be determined perturbatively. For numerical simulations this 
means a modification of the Wilson fermion action by one additional term. According to our 
opinion this is the improvement programme that should be pursued for QCD. From removing 
the first order lattice artifacts in on shell quantities already considerable improvement might 
occur. 
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5. BREAKING OF CHIRAL SYMMETRY AND ENERGY-MOMENTUM RELATIONS 

In this chapter we try to get a better understanding of the effect of apecier doubling and 
its amendment by the introduction of chirality breaking terms into the Lagtangian which was 
first proposed by Wilson [16]. Throughout this section we deal with fermions of zero bare 
mass. 

6.1. O(a) Improvement. 

For zero bare mass the O(a) claBBical improved fermion action: 

sell a
4 

F =--gg I: Of(z) 
~all 

fattice sites 

(5.1.1) 

has chira.l symmetry and according to the no-go-theorem of Nielsen and Ninomiya [11J shows 
the phenomenon of ;pecier doubling. To cope with this problem of additional zeroes of the 
energy-momentum relation at the edges of the Brillouin zone Wilson has proposed to add an 
extra term of higher classical dimension to the action thus explicitly breaking chiral symmetry. 
For the case of the naive fermion lattice action which coincides with (5.1.1) Wilson chose an 
operator of dimension five giving: 

SW a4 
F =--gg 

(with Oi;,(z) = Of(•) + Oj'(z)). 

I: [of(•)- "2•ot(•)J 
:li aU 

lattice sites 

(5.1.2) 

The concept of on shell improvement as developed in the last chapter however allows to 
break chiral symmetry by an operator of dimension five i.e. O~(z) without violating the 
O(a) improvement of spectral quantities. We therefore choose as an O(a) tree level on shell 
improved action: 

sosi a
4 

F =--gg I: 
:li aU 

l~tttice situ 

[of(•)- "; o~(•)] 

Both actions (5.1.2) and (5.1.3) yield the same inverse propagator: 

Si'(p) = .!_ I:(h.sin(p.a) +2Asin2 (p"a)) 
a 2 

" 

(5.1.3) 

(5.1.4) 

To get a better understanding of the relevance of the parameter >. in (5.1.4) we consider the 
emerging energy states. For improved actions these considerations have been first made by 
LUscher [18J for a free scalar field. 
The one particle energy states are related to the poles of the time Fourier transformed prop
agator. They are given by Ei = -In Zi where Zi are the poles inside the unit circle. For the 
O(a) on rhell improved action (and the Wilson action which yields the same propagator) 
this investigation can be performed analytically. Here we give a qualitative discussion of 
the arising phenomena which for the O(a) improved action is shown in fig. 1 where the real 
parts of the resulting 11energy states'1 are depicted (for unit lattice spacing). The momentum 
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configurations chosen there are made for better comparison of the O(a} and O(a2} on shell 
improved actions. A more detailed survey of the used formulae is given in Appendix B. 

The main effect arising is the appearance of 11unphysical" energy states besides the 
'~physical" ones which approximate the continuum energy-momentum relation E2 (R)=I! 2 

(I! =(P1 1 P2 1 Ps)). The values of the parameter .\ should then be chosen in a way to keep these 
unwanted effects sufficiently far away from the low energy- low momentum regime we are 
interested in. For the energy- momentum relation of the "physical". energy states we obtain 
a small n expansion giving: 

2 • 

E2 (~) = ~·- ~ ((R'J' + LP)) 
i=l 

8 2 
3 

2 
3 

+a'(45(~'J' + 9~' LP) + 45 LPJ) 
i=l 1=1 

·[A'((')' ~ ')' 289 ( 'l' 28 .~ ' +a 64 ~ + L,.,P; - 2835 ~ + 4052 L,.,P; 
f=l i=l 

34 22
3

473
3

] -135(~) ?;P;- 945 ?;P~ +0(a8
) 

(5.1.5) 

For .\=0 there are two energy states one real and one complex whose real parts coincide. As 
only the real part of the energy is depicted in our figures just one curve is shown (fig. la). 
As a consequence of the chiralsynunetry of the lagrangian there are additional zeroes of the 
energy at J2=11'(v11 ~,v3 ), vi=0,::1:1. In the case of.\ #0 the "unphysical" second energy 
state has the small n expansion: 

E(~)=!.in(~+1)+". A2 +1~ 2 
a A-1 4 A 

_ a• [!.A'- A'+ 7A
2 +I( ')'_!_A- 2 ~ •] 

8 8 ~' ~ 3 ~ L,.,P, 
j=l 

(5.1.6) 

We see that for .\ <1 this solution is complex but its real part is shifted away to values way 
above the 11physical11 energy values as .\ approaches 1 (fig. 1b,c). For .\ =1 this solution 
becomes infinite corresponding to a pole of the propagator at zero (fig. 1d) while for .\ >1 
E(I!) is real and for .\ >1 again tends towards the physical energy- momentum relation 
(fig. le,f). The value of .\=1 appears as the "natural" choice because the unphysical energy 
state is completely removed but also choices for .\ between .6 and 1.6 appear reasonable. 

5.2. O(a2 ) Improvement. 

Also for the O(a2 ) claBBical improved ·fermion action: 

• stj.l2=_a2 I: 
go t: all 

a' [of(•)- 6 of(•Jl (5.2.1) 

iattille 11ite8 
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chiral symmetry has to be broken. Following the same line of argument as in 5.1. we choose 
an O(a2 ) tree level on Bhell improved action as: 

5082 a4 
F =-~ 

g~ 

yielding the inverse propagator: 

I: 
t: all 

lattille 8itetJ 

' (Of(z)- A'aOf(z)- a
6 

Of(z)j 

Si 1 (p) = ~ L(h"sin(p"al(l+ ~sin2 (P;"l) HA'sin2 (P;"J) 

" 

(5.2.2) 

(5.2.3) 

However other choices for tree level on Bhell improved actions are possible. The parameter 
~ could be set to zero and chirality breaking can be performed by an irreleuant operator of 
dimension seven. This is exactly what Eguchi and Kawamoto [11] and Wetzel [12] do for their 
tree level O(a2 ) improved actions. For the chirality breaking term they take a judiciously 
chosen combination of the two lattice representations of the second derivative namely Dfr DB 
and (D~)L so that in the classical expansion of this operator the leading terms (of dimension 
five) cancel. 
This action yields the inverse propagator: 

Si 1 (p) = 2K ~ L::(h"sin(p"al{1 + ~sin2 (p;al) + 
8
; sin'(P;"l) 

" 
where we have used the same notation a.s Eguchi and Kawamoto. 

(5.2.4) 

As in the case of the O(a) improved action we study the emerging energy states. In 
this case the poles of the propagator have to be determined numerically (see Appendix B for 
details). As for the action used by Eguchi and Kawamoto with propagator (5.2.4) qualitatively 
the same effects arise as for the O(a~) on shell improved action (5.2.2) we shall only discuss 
the latter. The real parts of the resulting energy states are depicted in fig. 2. The "physical'' 
energy state now has the small 12 -expansion 

. ' 
E'(R) = ~· + ~5 ((~')'- LP:l 

j=l 

[ 
1 ' A'

2 
' l +a' 126 ((~')' + ?;p1J + W ((~')' +?; p))' + O(a'J 

(5.2.5) 

We note that the O(a•)-co:rrections in (5.2.5) vanish along the axis. This is why we have 
chosen for our figures a momentum configuration with p1 =p2 #p3 =:0 in order to give a realistic 
picture of the small 12 behaviour of the physical energy states. 
We moreover note that after a suitable rescaling of the parameter r (namely r= ~..\') the small 
~a' behaviour of the "physical" energy state arising from the poles of the propagator (5.2.3) 
of the action given by Eguchi and Kawamoto coincides up to O(a.6 ) with that of the O(a2 ) 

on thell improved action (5.2.2). 
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In addition to the 11physical" energy state now three 11unphysical" energy states appear. 
For A'=O one of these uunphysical" states is complex with its real part being smaller than 
the physical energy value (fig. 2a). It has the smalln. -expansion: 

2 - 9 2 2 216 2 2 4 7857 2 3 3 6 6 ( 
. 

[Re(E(y))j -259 -a 3125(11 ) +a 390625(11 ) -125f,;P;) +O(a) (5.2.6) 

For..\' ~0 the real part of this state is shifted away from the physical energy values so that 
the physical energy state eventually becomes the lowest lying energy state (fig. 2b,c,d). At 
the same time as for the O(a) on 1hell improved action the additonal zeroes in the energy
momentum relations for .n #0 disappear. On the other haild another uunphysical" state is 
shifted down they-axis as ..\1 grows so no ''natural" choice of..\' arises (fig. 2e,f). Values of 
..\' between 1 and 1.4 would however keep these unwanted effects sufficiently far away from 
the low energy-low momentum regime we are interested in. 

5.3. Summary. 

We have found that the concept of on 1hell improvement allows for a consistent intro
duction of the chirality breaking ternls needed to avoid the phenomenon of species doubling. 
For the tree level on shell O(a) and O(a2 ) improved actions we have found that this addi
tional terms can also be used to keep unwanted "unphysical" energy states away from the 
low energy-low momentum regime where improvement is supposed to work. For the O(a) 
on shell improved action this leads to the natural choice of ..\=1 which does away with the 
"unphysical" energy states. For the O{a2 ) improved action this can1t be accomplished but a 
reasonable range for the parameter ..\' can nevertheless be given. 

6. IMPROVEMENT BEYOND TREE LEVEL 

According to Symanzik's programme the coefficients of the improved action have a per
turbative expansion (in the case of QCD they are power series in the loop counting param
eter uo) and are to be determined by perturbative calculations. The concept of on Bhell 
improvement simplifies the situation as only those coefficients have to be calculated that are 
not found to be free parameters by means of the isospectral transformation of the action. 

Calculations of improvement coefficients to one loop order have already been performed 
for the non linear u-Model 14], the Gross-Neveu Model 16], for pure Yang Mills Theory IS! 
and QCD [11[. 
For pure Yang Mills Theory a complete treatment following the concept of on •hell improve
ment will be given by Liischer and Weisz [19]. 
In the one loop calculation for QCD by Eguchi and Kawamoto the corrections to the fermion 
propagator were calculated. Since they obtain contributions from the operators Of{x) + 
Of(•), Of(•) but also a small one from Of(•) and Ot(•) which would have to be cancelled 
by special choices of the coefficients of these opera~ors we would suspect that this quantity 
contains also off 1hell parts because according to our investigations no contribution involving 
the operators Of(x) and Ok(z) should occur when spectral quantities are considered. 

Here we only present a calculation of the fermion contributions to the gluon self-energy 
thus extending the work of ref. [8] to the fermion sector to get an idea of its quantitative 
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effects. 
This calculation was performed using the tree level improved action given by Eguehi and 
Kawamoto. As we wanted to confirm previous numerical results by Ukawa and Yang I15J for 
the part quadratic in the gluon momentum we used this O(a2 ) on. shell tree level improved 
action rather than the one given by (5.2.2). 

We write the fermionic part of the gluon self-energy TIM as (N1: number of flavours): 

rr;, = N1 [ (- ~ (~~)' lnk 2 + a1 )k' +a2 ~::)!+(a.+ a4 ln k2 )(k2
)' + O(k6

)] (6.1) 
p 

On shell improvement demands the absence of LP k: ln k2 terms in (6.1) which we indeed 
find to be satisfied. Moreover also the coefficient a4 is zero for this claSBical improved Wilson 
action. This is the same for the classical improved Yang Mills part of the action but is not 
a. consequence of on shell improvement. This ha.s been pointed out by Liischer and Weisz in 
ref.IUJ. Their argument also holds for the fermionic contribution to the gluon self-energy. On 
shell improvement only demands improvement of the static potential V(L). For the fourier 
transformed static potential V{k) this only means the absence of LP k! In k2 /(k2 ) 2 terms 
because only they are the origin of a 2 ln L/ L3 contributions to V(L) whereas terms like In k2 

only give rise to a2 JL 3 terms in V(L). Considering the contribution of (6.1) to the static 
potential 

V(k)' = (rr;,v~,Ji..=o 

1 [ ( 1 ) t:::-1 k: ( ) '] 1 ::::::: (~ 2 ) 2 1 + 2 C1 + 12 l£ 2 - 2 C2 + C:J !£ ndd 

(6.2) 

where k=kk,
1
=0 , Ddd is the improved gluon propagator, one immediately verifies that only 

potential L:P k! In k2 terms in (6.1) yield a2 In L/ L3 contributions to V(L) a.s long a.s the tree 
level improvement condition c1 =- f2 for the Yang Mills part of the action holds. 
To extract values for the coefficients ai in (6.1) we evaluated the gluon self-energy contri
butions depicted in fig. 3 numerically to high precision. We first considered a configuration 
with only one component of the gluon momentum non vanishing for lattice momenta ranging 
between .01 and .1. By repeating this calculation taking two components of the gluon mo
mentum nonzero and fitting a behaviour of the form (6.1) to the data we were then able to 
seperate (k2 ) 2 and LP k! contributions especially verifying the absence of LP k~ In k2 terms. 
We did this for the three values of r=.5, 1 and 1.5 also chosen by Ukawa and Yang in I15J for 
their computations. We found the following results: 

( .0387351 (2) r = .5 

al = .027022~(3) r = 1 

.02~781§ (1) r = 1.5 

(6.3) 

( - .00211!(17) r = .5 

a, = - .0008§ (5) r = 1 

. - .000~3 (1~) r = 1.5 

(6.4) 
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[ 

- .00051 {9) 

a,= - .0008Q. (•) 

- .0017! (9) 

r = .5 

r = 1 

r = 1.5 

a•:::::; 0 r = .5,1, 1.5 

(6.5) 

(6.6) 

To compare our results (6.3) with those by Ukawa and Yang given in ref. [15] for their 
coefficients 

AF 
CF = 2bo In Improv~a 

Awitson 

1 (11 2 ) bo = -- -N- -N, 
(b)' 3 3 

(N =number of colours) 

we note the relation: 

( 
12 101) 

CF = N 1 a1 +{b)' (3(7E -In h)- g)+ 2e (6.7) 

Here "'E denotes Euler's constant "fE=.571215664 ... and the constants l have been calculated 
by Kawai, Nakayama and Seo ]20]. 
For the values of r chosen here they are: 

so we obtain: 

{ 

- .02384 
e = .oo31o1 

.01293 

r = .5 
r=l 
r = 1.5 

{ 

.01153 (.0115:1(2)) 
CF = Nt .01329 (.0133Q.(2)) 

.01596 (.0159§.(2)) 

r = .5 
r = 1 
r = 1.5 

(6.8) 

(6.9) 

the values in brackets are those given in ref. !15]. The number of digits quoted for our results 
are limited by the accuracy of the constants .C{r) in ref. [20]. 

If we insert these results into the revised data for the Yang Mills sector [SJ (where N N 1a2 

(N=number of colours) and NN,a3 would have to be subtracted from the right hand side 
of Eqs. (4.34) and (4.33} of ref. !SJ respectively) we find that the contributions from both 
sectors are of the same order of magnitude. 

7. CONCLUSIONS 

The concept of on rhell improvement has been found to be useful not only in the context 
of pure Yang Mills Theory but also for full QCD with Wilson fennions. It reduces the number 
of coefficients in the improved action whose perturbative expansions have to be calculated. 
Moreover it allows a somewhat "natural" incorporation of chirality breaking terms into the 
Lagrangian needed to avoid the problem of species doubling. 
Although the construction of an on shell improved action removing in additon to the O(a) 
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also the O(a2 ) lattice artifacts in spectral quantities can be performed-we do not see any 
possibility to exclude the arising fermion contact terms beyond tree level. 
It should therefore be favourable to constrain improvement to O(a) on shell improvement. 
Then the fermion part of the action is drastically simplified. The result is a slightly modified 
Wilson fermion action which still can be formulated with only nearest neighbour fermion 

interactions: 

SO( a.) impro11ed a
4 

L = --gg L: 
x a!l 

lattice sites 

2~ { 2[m(mR,g~, a)a- d],P(z)¢(•) 

+ L: .Pl•)[(1 + 7.JU.(•)¢(• +ill+ (1- 7.JUJ(•- il)¢(•- ill] 

" 
-~c(gi) L: ,P(z)u.vP"v(•)V>(•)} 

"'" 
c(gi) = 1 + O(gi) 

1 
m(mn,O,a) = mR(1- 2mRa + O(a')) 

(7.1) 

(7.2) 

(7.3) 

Here Pp 11 (x) is the operator given in {2.1.9) but any other lattice representation of Fp11 (x) 
can be chosen for convenience. The mass parameter is a function of the renormalized quark 
mass mR, the bare coupling g0 and the lattice spacing 'a'. The new constant c(u8) has been 
introduced for 2{b2 (g5)- b,(g5))=1- 2b,(gi) 
For the Yang Mills part of the action the standard one plaquette Wilson action can be 
used. This action should therefore be the improved action for lattice QCD most suitable 
for numerical calculations. Moreover the O(a) chirality breaking term is one of the most 
disturbing lattice artifacts and its absence can be expected to produce considerably improved 
behaviour of the lattice simulation. 

The discussion of the spectrum gives hints for a suitable choice of the parameters of the 
chirality breaking terms in the tree level improved actions. Besides the well known additional 
zeroes in the energy momentum relation at the edges of the Brillouin zone for lattice fermion 
Lagrangians with chiral symmetry we also observed low lying even complex energy states 
which have to be shifted away from the physical states by "finetuning" the parameters of 
the chirality breaking terms. For the O(a) on shell tree improved action this leads to the 
11natural" choice of .\=1. This corresponds to the value of). originally chosen by Wilson. 
For the O(a2 ) on shell tree level improved action no natural choice of the parameter .\1 exists 
however values of .\1 between 1 and 1.4 appear reasonable. 
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APPENDIX A 

Here we study the contributions to the action arising from the variation of the measure 
under the fermion part of the transformation T1 in (4.3) and the transformations T~ in (4.4). 

In a concise notation the action on the lattice has the form: 

SL = L [¢h,(U)H Tr f,(U)] 
:1: ali 

lattice site~J 

(A.!) 

The action is a polynominal in the quark variables ¢ifc.(z) and ¢iJa.(z} and the gluon fields 
A~(z) where i,f and a indicate Nc colour, N1 flavour and 4 spinor indices. The path integral 
is defined as I D¢D.PDU exp[-Sd¢, .p, Ul] (A.2) 

where 

D¢ = II d,P;,.(z) 
~,f,/,a 

D.P = II #u.(•) (A.3) 
~,i,/,a 

and DU = II dUp(z) 

'·" 
is the invariant Haar-measure on SU(Nc)· 

We first study the transformation T1 . The effect of the gauge part of T1 has been studied 
in ref. j14]. When considering the transformation of the gauge field it is obvious to use the 
properties of the Haar-measure for which the following relation holds 

I dU F(U) =I dU F(U0 U) (A.4) 

where Uo is an arbitrary but fixed group element. We choose U0 = expE'ata where r:'a is an 
infinitesimal real number and theta are the generators of the group SU(Nc)· Then it is easy 
to see that if I dU•(•) exp[¢h, (U0 U•(•)).P + Tr f,(U,U.(z))] 

=I dUp(z) exp[¢h, {U.(z)).P + Tr f, (U.(•))] 

to first order in fM the following relation must hold: 

Q'(¢, .P) = 

I dU.(z) exp[¢h, {U.(•)).P + Tr f,(U.(z))] 

[¢t"U ( )ah,(U.(z)).P+Trt'U ( )of,(U.(z))] 
" • au.(z) " • au.(z) 

=0 
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(A.5) 

(A.6) 

If we now set 
Uo(>) = exp(a','{¢;(•h.tf;~;(z))t') (A.7) 

it is not a priori clear that this argument applies since Grassmann variables are involved and 
U0 (z) is not an element of the group. But when we insert (A.7) into the path integral (A.2) 
we immediately verify that to first order in t 1 we have: 

I d¢(z)d.P(z)dUp(z) exp[¢h, (Uo(•)U.(z)).P + Tr /, {U0 (z)Up(z))] 

=I d¢(z)d,P(z)dUp(z) exp[¢h, {U.(z))li' + Tr f, (Up(z))] (A.B) 

+a''' I d¢(z)d,P(z){¢(•)··M'.P(z))Q'(¢, .P) 

From (A.6) we see that the second term on the right hand side of this equation vanishes. So we 
come to the conclusion that the functional integral (A.2) is invariant under the transformation 
(A.7). 
Now we consider the transformation T2• Using the lattice derivatives given in (2.1.7) we find 
(writing .P(•)=,P,): 

.p, = (Jl + M),¢, 
where the (N9 x N,)-matrix M (with entries M:ry) is given by: 

M, = [a'I1p{U.(z)6r,+M•- U~(y)oc,-M,) 

+a',,(u.(z)oc,+M• + u~(u)'<•-M•- 2o,) 

+•'1•1•'• (u.(z)U,(• + M'<•H+"l•- u.(•)UJ(u)'<•H-•l• 

-UJ(•- iJ)U,(z- W<•-P+P)y + UJ(•- il)UJ(y)o(,-P-•J•)] 
Using detA = exptrlnA we find to first order in the infinitesimal parameters Ei: 

det(ll + M) = 1- BN,NtNsa',, 

(A.9) 

(A.IO) 

(A.ll) 

As Grassmann variables are considered this contributes a factor det(.ll. + M)~1 which however 
only effects the normalisation of the measure and therefore can be neglected. In complete 
analogy we can conclude that the transformation of 'fi( z) doesn't effect the measure to leading 
order. 

APPENDIX B 

In the case of the action (5.1.3) for the O(a) tree level on shell improved fermion action 
the task of finding the poles of the propagator (5.1.4) inside the unit circle can be done 
analytically. 

Denoting (with 'a'=l for convenience): 

' R,(~) =I+ L (I- cos' Pi) 2: I 1! = (pl,P2,P3) 
i=l 

' 
(B.!) 

R2 (~)=1+ 1;(1-cosp1) 2: I 
j=l 
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we have to find the roots of the polynominal 

2 

P(z) = I.;a,(z'+' + z2-') 

v=o 

a0 = .12 
- 1 + 2R,(~) + 2.12 R;(u) 

a 1 = -4.1 2R,(~) 

a2 =A2 -1 

We shall eonstrain ourselves to .\;?: 0 because all formulae depend only on l>•l· 
For ,\2 f:. 1 we find with 

the roots 

.1' 
a(~)= .1' _

1 
R,(u) 

b(~) = ( R,(~).I)' _ Rt(~) 
,\2 - 1 ,\2 - 1 

.,±(p) =a(p)±b(p) 

Zt,2 = c+(p) ± v'c+(~)' -1 

z3,, = c-(2) ± v'c-(p)' -1 

(B.2) 

(B.3) 

(B.4) 

while for A2 =1 the degree of the polynominal in (B.2) is reduced by one order now yielding 
the roots: 

zo(u)=O 
(B.5) 

z1 ,2 (p) = a'(p) ± v'a'(p)' 1 

where 
'( ) _ Rt(P) +R;(~) 

a ll - 2R,(p) 
(B.6) 

For all values of,\ the "physical" energy state is E(R )physical = -In z2 (ll) yielding the small 

Q- expansion (5.1.5). For >.. <0 the "unphysical" energy state is given by -ln zs (R) which is 

complex due to the fact theat zs(R) <0. While for A=l there is no "unphysical" energy state 

it is given by -In z4 (~) for >.. >1 taking real values. For ,\ :;#0 this '1m physical" state has the 

small R-expansion given by {5.1.6). 

In the case of the O(a2 ) tree level on shell improved fermion action (5.2.2) the poles of 

the propagator (5.2.3) can in general only be determined numerically. If we denote by: 

Rt(P) = tsin2 P;(l+ ~sin2 (~))
2 

J=l 

' 
(B.7) 

R,(p) = 2I.;sin2 &. 
i=l 

2 
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the roots of the polynominal 

have to be found. 

' P(z) = La, (z'+' + z'-') 
v=O 

ao = -(216.1 2 (2R~(~) +4R,(~) + 3) + 72Rt(R) + 65) 

a,= 16(54.1'(R2 (n) + 1) + 1) a,= -8(27.12 - 8) 

as= -16 a4 = 1 
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(B.8) 
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FIGURE CAPTIONS 

Fig. 1: Energy- momentum relations for the O(a) tree level on shell improved fermion 
action ( 5.1.3) for values of: 

(a) A= 0 
(b) A =.2 
(c) A =.6 
(d) A= 1 
(e) A= 2 

(I) A= 4 

Fig. 2: Energy- momentum relations for the O{a2 ) tree level on shell improved fermion 
action (5.2.2) for values of: 

(a) A= 0 
(b) A= .2 
(c) A= .6 
(d) A = 1 
(e) A =1.4 
(!) A= 3 

Fig. 3: Diagrams for the fermion contributions to the gluon self-energy. 
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