_. HES ELE KTRONEN-.SYNCHROTﬁON | D E SY |

DESYE5-024
March 1985

IMPROVED CONTINUUM LIMIT LATTICE ACTION FOR QCD

WITH WILSON FERMIONS

by

B. Sheikholeslami, R, Wohlert

1T, Instiful §. Theoretfische Physik, Universildt Hamburg

ISSN 0418-9833

NOTKESTRASSE 85 - 2 HAMBURG 52



DESY behalt sich aile Rechte fiir den Fall der Schutzrechtserteilung und fiir die wirtschaftliche
Verwertung der in diesem Bericht enthaltenen Informationen vaor,

DESY reserves all rights for commercial use of information included in this report, especially in
case of filing application for or grant of patents.

Ta be sure that your preprints are promptly included in the
HIGH ENERGY PHYS!ICS INDEX ,
send them to the following address { if possible by air mail ) :

DESY
Bibliothek
Notkestrasse 85
2 Hamburg 52
Germany




DESY 85-0Z4
March 1985

1SSN 0418-9833
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ABSTRAGT. Two possible ways of extending Symanzik’s improvement programme to
lattice fermions namely improvement to first and second order in the lattice spacing ‘a’
are discussed. The corresponding lattice actions for fermions are consirncted and tree
level improvement conditions are derived by considering classicel improvement. The
concept of on shell improvement is generalized to the lattice fermions studied here and
the free parameters are determined for Ofa) and O(a?) on skell improved actions to
all orders of perturbation theory. No evidence is found that the complicated structure
of the O{a?) on shell improved action especially the arising fermion contact terms
can be removed beyond tree level. The effect of terms in the action that explicitly
break chiral symmetry and therefore remove the phenomenon of species dogbling are
investigated by considering the energy momentum relations of the arising tree level
improved actions. Our main result is that the O(a) improved action is a slightly
modified Wilson fermion action which can still be written with only nearest neighbour
fermion interactions. :

*Supported by Deutsche Forschingsgemeinschaft
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1. INTRODUCTION

Much effort has been spent in applying Symanzik's improvement programme [1] to lat-
tice actions of various models. Originally developed by Symanrik in the framework of the
@1 -Theory [2] this procedure to systematically construct a lattice action with improved con-
tinuum limit approach has been applied to the non linear #-Model in 2 dimensions {3,4], the
Gross-Neveu Model [5,6], pure Yang Mills Theory [7-10] and full QCD [11-13].

For the ®*-Theory Symanzik was able to prove the consistency of the improvement
programme to all orders of perturbation theory. To this end he demanded improvement of all
(off shell) Green's functions. For lattice gauge theory this procedure is complicated because
gauge dependent terins have to be added to the action. A way of circumventing this problem
is by demanding only the improvement of on mass-ehell quantities. This concept has been
recently introduced by Liischer and Weisz [14] in the context of pure Yang Mills Theory. The
parameters in the action that are free i.e. do not enter in speciral quantities are determined
(to all orders of perturbation theory) by consiructing & spectrum conserving transformation
of the action, The remaining constants have to be fixed order by order in perturbation theory
by considering a suitable set of spectral quantities.

In this paper we adopt this concept of on shell improvement to Wilson lattice fermions,
Previous work on the subject of improved lattice actions for fermions has been done by Eguchi
and Kawamoto [11], Wetzel [12] and Hamber and Wu [13]. While these authors make a rather
heuristic ansatz for the structure of their improved fermion action we present a somewhat
more systematic approach. Improvement for iattice fermions can be considered on two levels.
The first one is only to demand the cancellation of lattice artifacts to first order in the lattice
spacing ‘a’ which will be called Oa) improvement in the following. To this end it sufflces
to use the standard one plaquette Wilson action for the Yang Mills part of the Lagrangian,
Furthermore the fermion part of the action has to be determined only up to operators of
dimension five resulting in a fairly simple on skell improved action. The second step ie.
O(az) improvement needs an improved action for the gluon part and additional operators of
dimension six in the fermion part of the action including fermion contact terms.

In seciion 2 of this paper we set the stage for our investigations by constructing the most
general lattice action for fermions including all possible operators up to dimension five and
six respectively.

Classical improvement conditions are derived in section 3.

In section 4 we construct the isospectral transformation of the action and determine the free
parameters of O(a) and O(a?) on shell improved lattice actions for fermions to all orders of
perturbation theory.

Section 5 deals with the question of chirality breaking terms and species doubling by invesii-
gating the energy momentum relations of suitable O(a) and O(a?) on shell improved actions.
Throughout section 2-5 we give a separate discussion of O(a) and O(a?) improvement and
compare the results for both concepts at the end of each section.

In section B improvement beyond tree level is discussed and the results of a numerical cal-
culation of the fermion contributions to the gluon self-energy are presented. Resulis for the
second order term cbtained by Ukawa and Yang {15} are confirmed and comparison with the
data for the gluon sector is made.

A discussion of our results is given in section 7.

1



2. GENERAL FORM OF IMPROVED AQTIONS FOR WILSON FERMIONS

As Symanzik'’s improvement programme requires the introduction of higher dimensional
terms into the action we construct lattice actions for Wilson fermions including {up to total
derivatives} all possible gauge invariant scalar operators of at most dimension five for O{a)
and six for O(a?) improvement that are invariant under discrete rotations, parity and charge
conjugation transformations. To this end we first construct the invariant operators of the
corresponding continuum effective Lagrangians.

Postponing the introduction of flavour symmetry, we introduce Dirac fields ¢(z) and ¢(z)
and the gauge flelds A, (z) which transform under the fundamental and adjoint representa-
tion of the colour group SU(N,) respectively,

We shall use the shorthand notation #(2), ¥(&), Au(z) for the No-row and column matrices
of the fermion flelds with entries ¢;(z), ¢i(z) (Dirac spinors) and the (N, x N,)-Matrix of
the gauge fields with entries A%(2}2; where {* are the generators of the fundamental repre-
sentation of SU(N.). Furthermore we set D, = (18, + i4d,(e)). Accordingly ¥(z)D,¢(z)
will mean the product of the corresponding matrices.

2.1. O(a) Improvement.

Iniroducing a set of euclidean ~-matrices v, with

{711: '7:1} = 26»11][

{2.1.1)
'.f; =Tn

we look for all operators up to dimension five that are invariant under gauge-, parity- and
charge conjugation transformations and discrete rotations. They are bilinear operators in the
fermion fields and have the form ${z)0%¢(z). As we look for operators of at most dimension
five the O? can contain ip to two derivatives. If I' denotes a member of the 16-dimensional
space to which our 7, belong (we choose 1y, ¥s, ¥a¥p: L, 0 = £[7, 0] a8 a basis) discrete
rotational invariance only allows Ol's of the following form:

no derivatives: 0 =
1 derivative: O} =T,D, {2.1.2)
2 derivatives: ot =r,.n,

We can always choose all derivativg_ acting to the right hand side D, = b7 u- Terms that
Egnta.in left hand side derivatives D, can always be expressed by terms containing only
D ,’s plus a total derivative. The operators §{z}Of(z) have to be invariant under parity
and charge conjugation transformations.

We consider the effect of P-parity:

v(z) — 9'(z} = S(P}¥(Pa)
¢(z) — 9'(z) = 9(Pr)5(P)" {2.1.3)
Dy — D:L = (P Dy

with:
S(P) = 4, = S(P)~!

2.1.4
P = Pt = (=15, (2.1.4)
[ [ e

Invariance of $(x)08y¥(e) entails 4, 'y, = I', i.e. I' = I. For §(z)0%¢(z) invariance means
Y lpyr = —(=1)% Iy, yielding I}, = 7,.

If we demand linear independence among operators of the same dimension we derive the
following set! of I's for the O¥:

0} r =1
0f: I, = (2.1.5)
0} : Ty =6 —doy,, Ny =iy,

One can check that charge conjugation

¥(x) — CPH(z)
¥(z) — ¢'(2)C
CHLC™t = —1,, cl=-C

doesn’t give any more restrictions on the O

To incorporate an additional flavour symmetry with symmetey group SU (N} and generators
B4 we have to alter our shorthand notation in obvious manner. As we shall assume flavour
symmetry to be conserved the form of the operators bilinear in the fermion flelds is not
changed. We finally obtain the following set of independent invariant operators of dimension
smaller than six (Fy, = [Dy, D,]):

dim 3: Qo (2) = (=) (2)
dim 4 Oy(z2) = §{z)Py(z)
dim 5: Os(2) = 9(=)(D* ~ ‘;;J#VFFV)‘p(Z) (2.1.6)

Oslz) = £ ble)op Fuut(2)

To put these operators on the Iattice we define the following covariant lattice derivatives:

Dt () = %[U”(:a)w(x + i) - $(=)]
DYt y(z) = :—;[;i){z) — Utz - #)(= ~ )]

Dfylz) = %[DL"‘"“ + D (=) (2.1.7)
(D2 9(e) = 205 - D u()

Aly(z) =) (D}) (=)

where U,{z) denotes the link operator, ‘a’ is the lattice spacing and j is a-times the unit
vector in the u-th direction.

!The reason for this particular choice will become clear later.
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We then choose the following representations OF of the operators O; on the lattice:
O (2) = ${=)1u Dy ¥(2)
O; (2) = V';(z)(AL = 53 Puu (2))9(2) (2.1.8)
O;("’) = 'Q%f'f;(‘“]f’wPM(-”‘)“"(x)

where Py, (z) is the operator*:

1 N .

Pz} = I(U#(“)Uu(“‘ + F‘)Ul{z + )Ut(z)
~U}(z = 0)UL(2 = fi — D)0, (2 — ft ~ D)l — ) (2.19)

+U, (U (2 ~ o+ 2YU (2 — @)Up(z - )

~Uu(2YUL(z + &t — D)0 (2 = #)U. (= ~ &)}

We can now write down the action suitable for O(a) improvement
4 3 .
sPr=-% 30 Y gléim 0@ (g2 ma)Ok () (2.1.10}
% zall =0
lattice sifes

The coefficients b;(g3, ma} are regular at go==0 and have to be determined order by crder
in perturbation theory, Reality of the action furthermore reguires the coefficients b; of the
action (2.1.10) to be real

2.2. O(a®) Improvement.

For O(a?) improvement we have to extend our considerations of section 2.1. to operators
of dimension six. Then bilinear operators of the form Of = Iy, D, D, D, have ko be con-
sidered. As a new feature also quartic fermion operators of the form (¥(z)O%y(z))? appear,
where

0f=I, Of=I, Of=Iw (2.21)

The invariance considerations of section 2.1. now yield:
Og C 0 Tuwp =8l Tave = Tubuss  Tpwp = Yoo
Tuvp = 208up =~ Tpbup = Voduw

Fypvp = TN e )

(2.2.2)
Og H r = .“., r = g
O‘i : r = Y Fu =Y5Tu
0l: I =ow

1%We have chosen this combination of plaquette operators with maximal symmetry as a lattice representation
of Fy. (2) for convenience.

Introduction of a conserved fAavour symmetry with generators 4 only affects the four
fermion interactions. After making use of the Fierz identities and completeness relations
we end up with twice as many contact terms and eventually find sll invariant operators of
dimension six:

bilinear operators:
Ou(2) = ${z)7.Dp(z)
05(2) = ¥(z) D* P (=)
Og(z) = Piz) P D*¢(z)
Oq(2) = $(2)1u[ Do, Fo[(2)
Oa(2) = () B 9(z)
contaci terms:
Ou(x) = (P(=)t*y(=))* O1o(x) = ($(2)p4 ¢ ¥(2))*
Ou(z) = (P(=)rst*(2))* Oa(z) = ($(2) 1584 1°9(2))?
Ors(2) = ($(2)7,t" ¥ ())* Ow(z) = (Pl2}rupt*¢(2))?
Ous(2) = (=) 17t $(2))’  Orolz) = (Blz)rsmud e*y(2))
Ourle) = (P(2)ant®9(2))*  Ousle) = (P(z)anprt*d(z))?
For the lattice representations of these sixdimensional cperators we choose:
0 (#) = $(2) 1D (D) ¥(z)
Of (#) = $(=)1u A" DLy (x)
0§ (2) = #(2)n. D} A () (2.2.4)
Of(2) = 15(:‘)’1';&[1)5’ [Dﬁs DEHV”[“)
OF {2} = $(2)1u77,D ) DL D (=)

As an extension of (2.1.10) we find the action suitable for O(a?) improvement:

(2.2.3)

at 18 . Leg)—
Si? == 3, el OiEp(gl, ma)Of (z) (225)
f !att?c:trgites 1=0

Reality of the action now requires

by (g2, ma) = bg (g, ma)

2.2.6
bi(g), ma) real  {#£5,6 (2.2.6)

2.3. Summary.

Comparing the actions {2.1.10) and (2.2.5) we find that the task of also removing the
0(a?) lattice artifacts leads to a much more complicated action. Next to nearest neighbour
interactions have to be added and fermion contact terms appear both features which yield
considerable difficulties for numerical calculations. If no drastic simplification of (2.2.5) can
be achieved via the introduction of suitable improvement conditions this action will be of
little use for practical purposes.



3. CLASSICAL IMPROVEMENT

A suitable way to impose tree level improvement conditions is the concept of classical
improvement. It demands the vanishing of all corrections to the leading term ~({mP (2} (z) +
P(2) D9 (z)) in the small ‘3’ expansion of the lattice action to the desired order {i.e. Ofa) or
O(a?) }. As the classical action generates the tree level vertex funciions these should then be
improved too to order O(a) or O(a?) respectively.

To obtain the classical expansions of the operators OF (z) in (2.1.10) and (2.2.5) we note
that these expansions always start with the corresponding continuum operator Oyz) plus
corrections of classical dimension two higher.

To verify this we start with the expansion of our lattice derivative Dﬁ. Choosing a gauge
with A,(#}=0 V& it is easy to see that

Dy#(#) = (Dy + $-D§ + 0(a* )1 (2) (3.1)

Furthermore:
(D2) () = (D3 + 95D% + O(e*))¥(2) (3.2)
Pyy(2) = a*Fu(z) + Ola*) (3.9)

As only operators of dimension 3-6 appear in our actions (2.1.10) and {2.2.5} the only term
whose expansion can give rise to combinations with a higher dimensional operator of the
action is Of (z) and we find:

Of = ¥(2)va(Dy + 5D}, + O(a*)}u(2) (34)

3.1. O{a) Improvement.
Clagsical improvement therefore entails for O(a) improvement:
bo(0, ma) = ma
by (0, ma) =1 (3.1.1)
b2(0,0) = 83(0,0) =0
This yields the clagsical improved lattice action:
4
s =2 5 (mOk(e) + OF(z)) (3.1.2)
g 2 alf
tatiice sites
8.2, O(a?) Improvement.
O(a?) classical improvement requires:
bo(0, ma) = ma
b,(0,ma) =1
b3 (0, ma) = bs(0,ma) =0 {3.2.1)
b, (0, ma) + 5,(0,0) = 0
B(0,0)=0 5<i<I8

This yields the O(a?) elas#ical improved action:

501 = -—g; 3. (mOf(z)+0%f(z) - %Of(ﬂ:}) (3.2.2)
f

z afl
{attice ailes

3.3, Summary. At least to lowest order in perturbation theory s drastic simplification
of the O(a?) improved action occurs. The price to pay for also removing the O{a?) lattice
artifacts is the introduction of one additional operator containing next to nearest neighbour
fermion interactions. We note that both actions (3.1.2) and (3.2.2) conserve chiral symmetry
for bare mass zero and therefore show the phenomencon of species doudling. In particular
(3.1.2) is nothing but the so called nasfve lattice fermion action. One way to avoid species
doubling would be to add to the action irrelevant operators {i.e. of dimension seven) that
break chiral symmetry. This has been done by Eguchi and Kawamoto and Wetzel for their
tree level O{a®) improved action. As e¢lassical improvement is consistent with tree level on
shell improvement but on shell improvement is meant to impose minimal improvement con-
ditions we hope to be able to break chiral symmetry by an operator of dimension five.

4. SPECTRUM CONSERVING TRANSFORMATION OF ON SHELL IMPROVED ACTIONS

We first want to give a more detailed description of the concept of on shell improvement
developed by Liischer and Weisz in ref, [14]. Following Symanzik’s approach of a perturbative
construction of an improved action, suitable improvement conditions have to be imposed. For
the $*-Theory Symanzik was able to prove that improvement of all Green’s functions could
be achieved. In the case of the mon linear ¢-Model the situation turned out to be more
complicated but Symanzik eventually showed that improvement of all Green's functions is
possible for a modified field operator. In the case of lattice gange theory it has been up to
now not been proven that all Green's functions can be improved. To this end it would be
necessary to add gauge dependent terms o the action at intermediate states of the calculation
and up to now no procedure has been given how the gauge invariant physical quantities
can be eventually extracted. Liischer and Weisz therefore proposed to introduce a minimal
improvement scheme by demanding improvement only for low lying (with momenta small
compared to the cutoff) energy states i.e. on shell quantities. This allows to keep gauge
invariance manifest at all stages of the calculation but even for this case the existence of
an on shell improved action has not yet been proven but will nevertheless be assumed.
Given one on shell improved action other on shell improved actions can be obtained by
a local covariant transformation of the fields. Up to corrections of at least O[a?) for O(a)
improvement and O{a*) for Ofa?) improvement this will amount to a shift in a certain sei
of coefficients of the original action. The maximal number of coefficients that can thus be
varied independently by our transformation is the number of free parameters in the sense
of on shell improvement, Their values can be chosen zero or apy other value which may
be convenient for specific calculations. As has been pointed out by Liischer and Weisz this
argument applies to all orders of perturbation theory.

We have to find a spectrum counserving transformation of the fermion and gauge flelds
and study its effects on a full QCD on shell improved lattice action:

5. =S8y™ +sf (4.1)
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where S¥M denotes the pure Yang Mills part of the action and 57 is the fermion action.
For O(a) improvement SY™ can be chosen the standard one plaquette action and Sf has
the form (2.1.10). For O{a?} improvement S} ™ is the improved Yang Mills action given in
ref. [14] and Sf is given by (2.2.5).

Under the spectrum conserving transformation we will have:

Sy — S = S¥M' 4 gF (4.2)

In tef. [14] the part of the transformation giving rise to S " is discussed. We must therefore
ouly study the part resalting in Sf’.

As the classical expansion of all lattice operators in the fermion part of the aciion start with
their continuum analogue it is sufficient to consider the following transformations:

Ty: Ay — Ay + “2(% YoADu Fu] 4 €'du9) {4.3)
" .
where §7, = (¥;7,45;9;)t* transforms as 4, under SU(N,) and

¥ — ¢ +ae Py + aea D + ales Py

Tg: —
G G+adfD +a’h gD +a PP ?

(4.4)

This is the most general local covariant transformation of the flelds up to O(a?). How does
the action (4.1) transform under this substitution of the fields?

We are only interested in the lowest order contributions (in g¢) to the transformed coefficients
because for them the infinitesimal transformations can be integrated up yielding the redun-
dant parameters of the on shell improved action to lowest order. Given an on shell improved
action which is improved to order ggf the same argunment also provides the redundant coef-
ficients to this order of perturbation theory. We simply have to choose the infinitesimal
parameters €. proportional to g2 and the lowest order part of our transformation will pro-
duce another g&' on shell improved action with shifted by(g3, ma)'s. The b;’s that thus can
be varied to lowest order are therefore redundant to all orders of perturbation theory. To
lowest order in gy we have the normalisation by (0, ma)=1 and by (0, ma)=ma which for the
coefficients of the transformed action b'(0, ma) ¢an be imposed by a rescaling of the fields
and the mass.

As shown in Appendix A there is no contribution to Sf' to flest order in the infinitesimal
parameters ¢; that is due to the transformation of the measure.

4.1. O(a) Improvement.

To this order only the fermion part of ihe Lagrangian is affected 3o we only have to deal
with the O{a) part of (4.4) (i.e. the ey, €} parts). For go=0 we find:

@05, o= -0 3 [t =€ )be(0,ma)0f (2)
lattfod Bites ' {41.1)
+afes — €)1 (0,ma)0 (2} + O(a?)]

Reality of the transformed action demands ¢; — ¢} real.
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After performing the rescaling to first order in ¢ and separatiug higher order terms in a
we end up with:

(@35m0 = —0* Y, [aler — 4)0F(2) + O(67)] (4.1.2)

z all
tattice siten

For O{a) on sheli improvement we thus find the parameter ba{gZ, 0} to be redundant. This is
why we made the particular choice for the operators O} in {2.1.5). We may therefore use the
operator Of (z) with an arbitrary coefficient to avoid the phenomenon of species doubling.
This is not in contradiction to the on shell improvement condition that low lying states should
not be affected because the low lying energy states that are altered by the lifting of species
doubling are at the edges of the Brillouin zone outside the range where improvement should
be effective. This will be further discussed in the next chapter. The remaining coefficient
bs(g¢,0) which is not affected by the transformation has to be caleulaied perturbatively by
considering suitable spectral quantities. As cleseical improvement is consistent with on shell
tree level improvement we have b5(0,0)=0.

4.2. O(a?) Improvement.

Now T, and T, contribute o Sf'. We find:

(@0eaSE)]mg = —a* Y [(e1 = )b (0, ma)OE(2)
z olf
tattice sites
+a({er ~ €] )by (0, ma) + (€2 + € + €5 + €5)5o{0, ma)) OF (=)
+alea + €3)b (0, ma) 05 () (4.2.1)
+a?(e1bs (0, ma) + €41 (0, ma))OE (z)
~a?{e}bs (0, ma) — egby (0, ma))OF ()
+6? (&1 — €}) (b2 (0, ma) — b3 (0, ma)) + (€5 + €5)b1 (0, ma)) OF (2) + O(a’)]

Furthermore:
. :
(6261:SE)], o= =0 3 o [EO-‘,L{::) +¢'0fy(2) + 0(a?)] (4.2.2)
tatt?cgljites
Whereas the Yang Mills part of the action transforms as:

. 4
SYM ., g¥M _ %g‘ Y &0t +0la)] (4.2.3)
latt;:‘c:igitcs

Collecting all terms, considering only the go=0 parts of the coefficients and rescaling the
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fields as above yields:

(@651 ;0=0
= —at 3" {aflc - &) —maf(er = ba(0,0) — e + & +es + b)) JOK(2)
—ma?((ex ~ €,)65(0,0) (e +€4))O¥(2)
+6% (€185 (0,0) + €5)OF (2)
—a? (€, 550, 0) = €2)OF (2)

+a”(§- +¢)0kz)

(4.2.4)

a*((e1 ~ €4)(b2(0, ma) ~ bs(0, ma)} + (es + €s))0f (=)

+ale' 0L, (m)+O(as)]

€ — E'l
€ + €

reality of the transformed action demands: € +e€y }real (4.2.5)
B 3

éi

The parameter ¢ performs the jsospeciral transformation in the Yang Mills part of the action.
It has been used by Liischer and Weisz to consider the coeficient ¢y of the pure Yang Mills
improved action as a free parameter in the sense of on shell improvement. They proposed
to set it to zero to all orders of perturbation theory. If we want this to persist only by+bys
can be varied independently i.e. either by of b3 can be chosen as a free parameter besides
by, bs, b, bs. We note that the parameter by can be kept unchanged by suitably rescaling
the mass parameter. A possible choice for an on shell O{a?) improved action would be
to use the parameter by as in the case of O(a} improvement to break chiral symmetry and
to set bg,bg, bs, b5 to zero to all orders of perturbation theory. All other coefficients in
particular those of the remaining contact terms have to be fixed by considering a suitable set
of spectral quantities. To tree level however classical improvement sets them to zero. We
have confirmed that this as expected also holds for O(a?) en skell tree level improvement by
considering scatiering amplitudes in the way proposed by Wetzel [12].

4.8. Summary. The considerations of this chapter have been decisive on the question
what improvement concept should be pursued to higher orders of perturbation theory. For
O{a?} improvement at most one of the disturbing fermion contact terms can be removed.
Beyond tree level we are stuck with far too many operators whose coefficients would have
to be determined by perturbative calculations. For Ofa} improvement the situation however
looks favourable. We can use the redundaant operator OF {o break chiral symmetry and only
the coefficient b3(g3,0) has to be determined perturbatively. For numerical simulations this
means a medification of the Wilsor fermion action by one additional term. According to our
opinion this is the improvement programme that should be pursued for QCD. From removing
the first order lattice artifacts in on shell quantities already considerable improvement might
occur,
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5. BREAKING OF CHIRAL SYMMETRY AND ENERGY-MOMENTUM RELATIONS

In this chapter we try to get a better understanding of the effect of species doubling and
its amendment by the introduction of chirality breaking terms into the Lagrangian which was
first proposed by Wilson [18]. Throughout this section we deal with fermions of zero bare
mass.

5.1. O(a) Improvement.

For zero bare mass the Ofa) classical improved fermion action:

4
sgn=-2 Y Oke) (5.1.1)
%o z all
faitice sites

has chiral symmetry and according to the no-go-theorem of Nielsen and Ninomiya [17] shows
the phenromenon of species doubling. To cope with this problem of additional zeroes of the
energy - momentum relation at the edges of the Brillouin zone Wilson has proposed to add an
extra term of higher classical dimension to the action thus explicitly breaking chiral symmetry.
For the case of the nasve fermion lattice action which coincides with [5.1.1) Wilson chose an
operator of dimension five giving:

=2 T [0k - %0k (=] (5.1.9)

x atl
tattice sites

(with Of {z) = OF(2) + OF(=)).
The concept of en shell improvement as developed in the last chapter however allows to
break chiral symmeiry by an operator of dimension five ie. OF(z) without violating the
O(a) improvement of speciral quantities. We therefore choose as an Q(a) tree level on shell
improved action:
081 a! L Ad L 51.3

Spt = —— Z [01 {) - 702 (3)] (5.1.3)
o z all
tattice sites

Both actions (5.1.2) and (5.1.3) yield the same inverse propagator:

S7lp) = 3 Z(:"m sin{p,a) + 2Asin® (P_zﬁ)) (5.1.4)

To get a better understanding of the relevance of the parameter X ic {6.1.4) we consider the
emerging energy states. For improved actions these considerations have been first made by
Liischer [18] for a free scalar field.

The one particle energy states are related to the poles of the time Fourier transformed prop-
agator. They are given by E; = —ln 2; where z; are the poles inside the unit circle. For the
O(a) on shell improved action (and the Wilson action which yields the same propagator)
this investigation can be performed analytically. Here we give a qualitative discussion of
the arising phenomena which for the O(a) improved action is shown in fig. 1 where the real
parts of the resulting “energy states” are depicted (for unit lattice spacing). The momentum
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configurations chosen there are made for better comparison of the O(a) and O(a®) on shell
improved actions. A more detailed survey of the used formulae is given in Appendix B.

The main effect arising is the appearance of “unphysical” energy states besides the
“physical” ones which approximate the continuum energy - momentum relation E? (p)ng
(p={p1,pa, ps)}. The values of the parameter X should then be chosen in a way to keep these
unwanted effects sufficiently far away from the low energy- low momentum regime we are
interested in. For the energy - momentum relation of the “physical” energy states we obtain
a small p expansion giving:

E*(p)=p ——((2 )’+Zp,

=1
8 2, 2
+al (G™ + 5" D pi+ _Epf-)
N o
+a’ [ +Z‘°’ ~ a2+ 405”22”1
F=1
2 &
135(2 ) EP, %,,Zp,] +0(¢”)

=1

For A=0 there are two energy siates one real and one complex whose real parts coincide. As
only the real part of the energy is depicted in our figures just one curve is shown (fig. 1a).
As a consequence of the chiral symmetry of the lagrangian there are additional zeroes of the
energy at p =a (v, 4,5}, #;=0,%1 In the case of XA #0 the “urphysical” second energy
state has the small p expansion:

A+l e A +1
E - = hd 2
(2) I“(A—1)+4 2
124 TAZ 41 1A-24 (6.1.8)
S [ B L A2
8 ) Iy ST o

We see that for A <1 this solution is complex but its real part is shifted away to values way
above the “physical® energy values as X approaches 1 (fig. Ih,c). For A =1 this solution
becomes infinite corresponding te a pole of the propagator at zere (fig. 1d) while for A >1
E(p) is real and for A 1 again tends towards the physical energy- momentum relation
{fig. 1e,f). The value of A=1 appears as the “natural” choice because the unphysical energy
state is completely removed but also choices for A between .6 and 1.6 appear reasonable.

5.2. O(a?) Improvement.

Also for the O(a?) classical improved fermion action:

" a?
sgt =% Y [0F) - ok (s)] (52.)
iattfc:%ﬂea
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chiral symmetry hag to be broken. Following the same line of argument as iz 5.1. we choose
an O(a?) tree level on shell improved action as:

spsi= % Y [0H(s) - a0 (z) - S-0L(a)] (5:22)

z al
latifae siles

yielding the inverse propagator:
_ 1
Srtp) = = Z(wu sin(pua){l + -sm (pz ~£_)) + 4X sin (p,,. )) (5.2.3)
mn

However other choices for tree level on 2hell improved actions arve possible. The parameter
by could be set to zero and chirality breaking can be performed by an irrelevant operator of
dimension seven. This is exactly what Eguchi and Kawamoto {11] and Wetzel [12] do for their
tree level O(a?) improved actions. For the chirality breaking term they take a judiciously
chosen combination of the two lattice representations of the second derivative namely Dﬁ'Dﬁ‘
and (Dﬂ)" so that in the classical expansion of this operator the leading terms (of dimension
five) cancel.

This action yields the inverse propagator:

Sz'(p) = 2K %%: (:'fy,, sin(pua) {1 + gsin’(p;—a)) + 8—:;siiu‘[‘g-’;jti]) (5.2.4)

where we have used the same notation as Eguchi and Kawamoto.

As in the case of the O(a) improved action we study the emerging energy states. In
this case the poles of the propagator have to be determiued numerically (see Appendix B for
details). Asfor the action used by Eguchi and Kawamoto with propagator (5.2.4) qualitatively
the same effects arise as for the O{a?) on shell improved action (5.2.2) we shall cnly discuss
the latter. The real parts of the resulting energy states are depicted in fig. 2. The “physical”
energy state now has the small p-expansion

Ez(ﬂ) ,_2 + 2)3 Zp?
J""l

(5.2.5)
L (e’)‘+2pf + 2 2)’+Zp,) | +0

We note that the O(a*)-corrections in (5.2.5) vanish along the axis. This is why we have
chosen for cur figures a momentum configuration with p;=ps#ps =0 in order to give a realistic
picture of the small p behaviour of the physical energy states.

We moreover note that after a suitable rescaling of the parameter r (namely r=3—)&‘ ) the small
a’ behaviour of the “physical® energy state arising from the poles of the propagator (5.2.3)
of the action given by Eguchi and XKawamoto coincides up to O(a®) with that of the O(a?)
on shell improved action (5.2.2).
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In addition to the “physical” energy state now three “unphysical® energy states appear.
For A'=0 one of these *unphysical” states is complex with its real part being smaller than
the physical energy value (fig. 2a). Tt has the small p - expansion:

[Re(B(2))]” = %2’ a? 321125(2 P+ (asﬁ;{s ) - Ep,) +0(a®) (6.28)

For A’ #0 the real part of this state is shifted away from the physical energy values so that
the physical energy state eveninally becomes the lowest lying energy state (fig. 2b,c,d). At
the same time as for the O(a) on shell improved action the additonal zeroes in the energy-
momentum relations for p 40 disappear. On the other hand another “unphysical” state is
shifted down the y-axis as A' grows so no “natural” choice of A’ arises (Ag. 2e,f). Values of
A" between 1 and 1.4 would however keep these unwanted effects sufficiently far away from
the low energy -low momentum regime we are interested in.

5.3. Summary.

We have found that the concept of on shell improvemeni allows for a consistent intro-
duction of the chirality breaking terms needed to avoid the phenomenon of species donbling.
For the tree level on shell O(a) and O(a?) improved actions we have found that this addi-
tional terms can also be used to keep unwanted “unphysical” energy states away from the
low energy -low momentum regime where improvement is supposed to work. For the Ofa)
on shell improved action this leads to the natural choice of A=} which does away with the
“unphysical” energy states. For the O(a?) improved action this can’t be accomplished but a
reasonable range for the parameter A’ can nevertheless be given.

6. IMPROVEMENT BEYOND TREE LEVEL

According to Symanzik’s programme the coefficients of the improved action have a per-
turbative expansion (in the case of QCD they are power series in the loop counting param-
eter gy) and are to be determined by perturbative caleulations. The concept of on shell
improvement simplifles the situation as only those coefficients have to be calculated that are
not found to be free parameters by means of the isospectral transformation of the action.

Calculations of improvement coefficients to one loop order have already been performed
for the non linear s-Model [4], the Gross-Neveu Model [6], for pure Yang Mills Theory [8]
and QCD [L1].
For pure Yang Mills Theory a complete treatment following the concept of on shell 1mprove-
ment will be given by Liischer and Weisz [19].
In the one loop calculation for QCD by Eguchi and Kawamoto the corrections to the fermion
propagator were calculated. Since they obtain contributions from the operators Of(z) +
Of (), OF (z) but also a small one from OF () and Of (x} which would have to be cancelled
by special choices of the coefficients of these operators we would suspect that this quantity
contains also off shell parts becanse according to our investigaiions no contribution involving
the operators OF () and OF(z) should cccur when spectral quantities are considered.

Here we only present a calculation of the fermion contributions to the glion self-energy

thus extending the work of ref. [8] to the fermion sector to get an idea of its quantitative .
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effects.

This calculation was performed using the tree level improved action given by Eguchi and
Kawamoto. As we wanted to conflrm previous numetical results by Ukawa and Yang [15] for
the part quadratic in the gluon momentum we used this O{a?) o shell iree level improved
action rather than the one given by (5.2.2).

We write the fermionic part of the gluon self-energy Iyq as (V;: number of flavours):

n, = Nf{(—g- ﬁlnk” +a)k® +ag ) kp+ (63 +a k) K + O(F)]  (6.1)

On ghell improvement demands the absence of 3 " k3ink? terms in (6.1) which we indeed
find to be satisfied. Moreover also the coefficient a4 is zero for this elassical improved Wilson
action. This is the same for the clegsical improved Yang Mills part of the action bus is not
a consequence of on shell improvement. This has been pointed out by Liischer and Weisz in
ref. |14]. Their argument also holds for the fermionic contribution to the gluon self-energy. On
shell improvement only demands improvement of the static potential V(L) For the fourier
transformed static potential V{k) this only meaus the absence of 3, k2 1n k% /(k*)? terms
because only they are the origin of a? In L/L? contributions to V(L) whereas terms like In &2
only give rise to a?/L? terms in V(L). Considering the contribution of (6.1) to the static
potential

! (1 D2
VR = (DL,

e (6.2)

[1+2(c1+12) ch ~2(c2+c3)1£2 ded

i
" P

where k=k ]kd:D, Dgyq is the improved gluon propagator, one immediately verifies that only
potential - k% lu k? terms in (6.1) yield 4? In L/L® contributions to V(L) as long as the tree

level improvement condition cl——— for the Yang Mills part of the action holds.

To extract values for the coeﬂicxents #; in {6.1) we evaluated the gluon self-energy contri-
butions depicted in fig. 3 numerically to high precision. We first considered a configuration
with only one component of the gluon momentum non vanishing for lattice momenta ranging
between .01 and .1. By repesting this calculation taking two components of the gluon mo-
mentum nonzero and fitting a behaviour of the form (6.1) to the data we were then able to
seperate (k?)? and }°_k; contributions especially verifying the absence of 3 o ks lnk® terms.
We did this for the three values of r=.5, 1 and 1.5 also chosen by Ukawa and Yang in [15} for
their computations. We found the following resulis:

0887357 (2) r=2u5
a; = { .02702288(3) r=1 (6.3)
0247818 (1) r=15

—.00284(37) r=25
ag= 4 -.0008 (5) r=1 (6.4)
- .00043{14) r=15
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~ 00057 (8) r=.5
ay=4{ —.00080 (4) r=1 (6.5)

- 00174 (9) r=15

ag=0 r=.5115 (6.6)
To compare onr results (6.3) with those by Ukawa and Yang given in ref. [15] for their
coefficients
Afproved
cp = by In mprave
Wiilson
1 11 2
by = W(?N - EN;) {IN = number of colours}
we note the relation:
1 2 10 1
eF = N; (a]_ -+ W(E(’]'E —In 4‘1) - *‘é") + Eﬁ) (6.7)

Here 45 denotes Euler's constant 7p=.677215664. .. and the constants £ have been calculated
by Kawai, Nakayama and Seo [20].
For the values of r chosen here they are:

-.0238¢ r=J5
£={ 008107 r=1 (6.8)
01203 r=15

50 we obtain:
01153 (.01153(2)) r=.5
cr = N; { 01320 (01330(2)) r=1 (6.9)
01506 (01596(2)) r=15

the values in brackets are those given in ref. [15]. The number of digits quoted for our results
are limited by the accuracy of the constants £(r) in ref. [20}.

If we insert these results into the revised data for the Yang Mills sector (8] (where NNy
(N=number of colours) and NNyas would have to be subtracted from the right hand side
of Eqs. (4.34) and (4.33) of ref. [8] respectively) we find that the contributions from both
sectors are of the same order of magnitude.

7. CONOLUSIONS

The concept of on shell improvement has been found to be useful not cnly in the context
of pure Yang Mills Theory bui also for full QCD with Wilson fermions. It reduces the number
of coefficients in the improved action whose perturbative expansions have to be caleulated.
Moreover it allows a somewhat “natural” incorporation of chirality breaking terms into the
Lagrangian needed to avoid the problem of species doubling.

Although the construction of an on shell improved action removing in additon to the Ofa)
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also the O{a?) lattice artifacts in spectral quantities can be performed we do not see any
possibility to exclude the arising fermion contact terms beyond tree level.

It should therefore be favourable to constrain improvement to O(a) on shell improvement.
Then the fermion part of the action is drastically simplified. The result is a slightly modified
Wilson fermion action which still can be formulated with only nearest neighbour fermion
interactions:

tmprove a{ 1 -
SS(:L) mproved _ _E Z E{ﬁm[mg,gg,a)a —-d]i})(:c)i,b(:t)

za
latltce mites

+ 3 B (1 + 1) Vul2)z + i) + (1 - 1)UL (= - gl - )]
B

~$elad) 5 8eons P 2)902) (1)
elgi) = 1+ 0(g3) (7.2)
m(mg,0,a) = mp(l - %mna + 0(a%)) (7.3)

Here P,.(x) is the operator given in (2.1.9) but any other lattice representation of Fy,{z)
can be chosen for convenience.The mass parameter is a function of the renormalized quark
nass mg, the bare coupling gy and the lattice spacing *a’. The new constant ¢(g?) has been
introduced for 2(by (p3) — bs (g2 ))}=1 — 2bs(g2)

For the Yang Mills part of the action the standard one plaquette Wilson action can be
used. This action should therefore be the improved action for lattice QCD most suitable
for numerical caleulations. Moreover the O(a) chirality breaking term is one of the most
disturbing lattice artifacts and its absence can be expected to produce considerably improved
hehaviour of the lattice simulation.

The discussion of the spectrum gives hints for a suitable choice of the parameters of the
chirality breaking terms in the tree level improved actions, Besides the well known additional
zeroes in the energy momentum relation at the edges of the Brillouin zone for lattice fermion
Lagrangians witk chiral symmetry we also observed low lying ever complex energy states
which have to be shified away from the physical states by “Hnetuning” the parameters of
the chirality breaking terms. For the Ofa) on shell tree improved action this leads to the
“patural” choice of A=1. This corresponds to the value of A originally chosen by Wilson.
For the O(a?) on shell tree level improved action no natural choice of the parameter X exists
however values of A’ between 1 and 1.4 appear reasonable.
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APPENDIX A

Here we study the contributions to the action arising from the variation of the measure
under the fermion part of the transformation T} in (4.3} and the transformations Th in {4.4).

In a concise notation the action on the lattice has the form:
Sp= Y, [h(U)Y +Tr £o(V)] (A1)
[attizcca:;ifes

The action is a polynominal in the quark variables ¢; 7 {2} and ¥;;o(z) and the ghion fields
A% (=) where i,f and « indicate N, colour, N; Havour and 4 spinor indices. The path integral
is defined as

fD:ﬁDIJJDU exp[~S:|@, 9, U]] (A.2)
where

Dy =[] diisale)

z,4,f,0
D= JI duisale) (A.3)
24,10
and  DU= [[ dtul)
Ty

is the invariant Haar-measure on SU(,).

We first study the transformation 7. The effect of the gange part of T, has been studied
in ref. [14]. When considering the transformation of the gauge field it is obvious to use the
properties of the Haar-measure for which the following relation holds

/ dF() = [ AU F(UU) (A4)

where U is an arbitrary but fixed group element. We choose Ify = exp €™t where ¢'* is an
infinitesimal real number and the #° are the generators of the group SU{N,). Then it is easy
to see that if

de,.(a:) exp (Yhy (UoU,(2)) ¢ + Tr £, (UoUs(2))]

_ {A.5)
= [ 40, (e) xp e (U 2D)9 + Te £, (0)]
to first order in " the following relation must hold;
Q* (. ¢) =
[ 2O CACAD R FACAR))
[mn(z)“——"";éf"(iﬂ—-)”” g+ Teet U‘,(z)——afégi‘fif}) -

=0
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If we now set )
Up(z) = exp(a®e’ (§:(e)vatl; v, {x))1%) (A4.7)
it is not & priori clear that this argument applies since Grasstnann variables are involved and

Us(z) is not an element of the group. But when we insert (A.7) into the path integral (A.2)
we immediately verify that to first order in ¢ we have:

/ d)d(2)dU, (2) exp[Fha (Uo(2)Tu(2)) ¥ + Tr 12 (Uolz)Up (2))]
= [ aB(@)av(2)a0(2) exp b (U(2)) 0 + e 10 2)] (4.8)
+0°¢ [ 4P (a)av(a) (Bla v (2)Q* (5. ¥)

From (A.8) we see that the second term on the right hand side of this equation vanishes. So we
come to the conclusion that the functional integral (A.2) is invariant under the transformation
(A7)
Now we consider the transformation Ta. Using the lattice derivatives given in (2.1.7) we find
(writieg v(z)=v,):

¥z = (1 + M,y 9, {A.9)

where the [V, X N,)-matrix M (with entries M,,) is given by:
M.y = [ae2 10 {Un(2)8(a+ )0 — U0}z

+aea (Uy (2)8(a 401y + UL {)0(a—p)y — 202y)
(A.10)

+az’7u'ﬁ'fﬂ (Uu(z)U,,(z + ﬁ)5(2+b+l>)y - u(z}UJ(y)'s(z+n—b)y

_UJ(Z - U, (z ~ lﬁ)é‘(w—n+0)y + UJ(z - ﬁ)Uz(y)J(s—ﬂ—D)y)]
Using det A = exp trln A we find to first order in the infinitesimal parameters ¢;:
det(ll + M) = 1 - 8N N Nga’c (A.11)

As Grassmann variables are considered this contributes a factor det(1l +M)~! which however
ounly effects the normalisation of the measure and therefore can be neglected. In complete
analogy we can conclude that the transformation of #/(z) doesn’t effect the measure to leading
order.

APPENDIX B

In the case of the action (5.1.8) for the O(a) tree level on ghell improved fermion action
the task of finding the poles of the propagator (5.1.4) inside the uanit circle can be done
analytically.

Denoting (with ‘a’=1 for convenience):

Rifp) =1+ (1-cos’p;} 21  p={p1p2ps)
~ (B.1)
Ra(p) = 1+Z{1—c05p}~) >1

=1
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we have to find the roots of the polynominal

2
= Eap(z2+" +287%)
p=0

do =A% — 1+ 2R:(p) + 227R; () (B.2)
ay = —44\2R2[2)
ag =A% ~1

We shall constrain ourselves to A 2 0 becanse all formulae depend only on |A].
For A% # 1 we find with

ale) = o Fa(2)
o) = (B} ) ®3)

eX(p) = a(p) = b(p)

ng=ct{p)tet(pP -1
23,4 =C_(2)i c"(g)g -

while for A2=1 the degree of the polynominal in (B.2) is reduced by one order now yielding
the roots:

the roots

(B.4)

z(p)=0
(B.5)
a1a(p) = a'(2} £ Va'(p)* -1
where
a’(p) - Rl(ﬂz}R:'{f)g(E) (B.ﬁ)

For all values of X the “physical® energy state is E(p)?5¥***! = —In z;(g) yiclding the small
p- expansion (5.1.5). For A <0 the “unphysical” energy state is given by —In z (p) which is
complex due to the fact theat z3{p) <0. While for A=1 there is no “unphysical” energy state
it is given by —In z4(p) for A >1 taking real values. For A #0 this “unphysical” state has the
small p-expansion given by {5.1.6).

In the case of the O{a?) tree level on shell improved fermion action (5.2.2) the poles of
the propagator (5.2.3) can in general only be determined numerically. If we denote by:

Ry Zsm p,(l-}- 3 sin [pJ )

f=1

M=

Ra(p) =2 sin’ %J—

1

i

2
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the roots of the polynominal

4
= Zau (4 + ')
v=0
—(216A%(2R2 () + 4Ra(p) + 3) + T2R (p) + 65)
o1 = 16(54A%(Re(p) + 1) +1)  ap = —8(27A* - 8)
ay = -18 a4 = 1

have to be found.
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FIGURE CAPTIONS

Fig. 1: Energy- momentum relations for the O(a} iree level on shell improved fermion
action (5.1.3) for values of:

(a) A=0
) rA=2
(c) A==8
(d) A=1
(e} A=2
(/) A=1

Fig. 2: Energy- momentum relations for the O(a?) trec level on shell improved fermion
action (6.2.2) for values of:

fa) A=0
(b)) A=.2
() x=8
(@) A=1
{e) A=14
(£l r=3

Fig. 3 Diagrams for the fertnion contributions to the gluon self-energy.
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