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One of the general features of field-theoretic models is the appearance of
local, conserved currents resulting from internal or space-time symmetries.
ON NOETHERS THEOREM IN QUANTUM FIELD THEORY Within the setting of classical Lagrangian field theory this fact is well un-
derstood, and Noethers theorem even provides for each continuous symmetry of a
Lagrangian an explicit formula for the corresponding current. In the Lagran-
gian approach to quantum field theory, the general understanding of the rela-

Detlev Buchnolz") , tion between symmetries and currents is, however, less satisfactory. It can
Sergio Dopticher, Roberto Longoz) happen, for example, that symmetries of a classical Lagrangian disappear at the
quantum level due to the effects of renormalization (cf. for example 3;Sect.11.5 ).
Therefore it is unciear how to base a proper quantum version of Noethers theorem

on this formalism.

Abstract: Extending the construction of local generators of symmetries in It is the aim of the present article to discuss a different approach to a
L1,2] to space-time and supersymmetries, we establish a weak form of Noethers quantum Noether theorem. In this approach we consider as symmetries of a quantum
theorem in quantum field theory. We also comment on the physical significance field theory the set of global space-time or gauge-transformations acting on the
of the "split property", underlying our analysis, and discuss some Tocal physical Hilbert space. So, roughly speaking, we restrict our attention to
aspects of superselection rules following from our results. "visible® symmetries of the solutions of the equations of motian which manifest

themselves e.g. through the presence of supersetection rules. The problem of
constructing the corresponding currents can then be discussed in the general
{"axiomatic") setting of quantum field theory. It consists essentially of two
parts: first, one must determine to each global symmetry of a quantum field
theory a set of local generators. Note that in the presence of Noether currents
such generators can be obtained by integrating the (reqularized) current den-
sities over finite volumes of space; so the soluticn of this partial problem may
be regarded as a weak form of Noethers theorem. The second step consists then in
the reconstruction of the currents from these Tocal generators (integrated den-
sities].

This program has been initiated in [1] where the existence of local charge
operators in theories with a global abelian symmetry group was established un-
der very general conditions. An extension of this analysis to theories with a
1) 1. Institut flir Theoretische Physik, Universitit Hamburg, non-abelian global symmetry has been carried out in [2], providing a rigorous
2000 Hamburg 50, Federal Republic of Germany variant of local current algebras.
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In the present paper we generalize these results to arbitrary symmetries,
including space-time and super-symmetries. The proof that local generators of



these symmetries exist thus completes the first step towards a quantum Noether
theorem. The difficult second step, i.e. the reconstruction of currents, how-
ever, requires further investigations and is not touched upen in this article.

The setting used for cur analysis is standardl}: we assume that the physi-
cal states are described by vectors in some Hilbert space % and that the fields
underlying the theory generate an irreducibie set of local field algebras Fo)
ondl which are assigned to the bounded regions {J of Minkowski space. It is
convenient here to assume that these algebras are von Neumann algebras. Thus
each F(0) may be regarded as a set of bounded operators built out of fields
with localization centers in (). Since it is obvious how to express the cova-
riance properties and spacelixe {anti-) commutation relations of fields in
terms of the algebras Fb), we refrain from listing these properties here.

Let us consider now the cases where the thegry has an unbroken internal
symmetry. In the present setting this means that there exists some group E}(the
global gauge group) which is represented on % by unitary operators LK%), 3 e>
transforming the vacuum Qe into itself,

U(g{)Q =&, (1.1}
and leaving the Tocalization of fields unchanrged,
U(gﬁ F0) U(g)’t Feo), (1.2)

Space-time symmetries of a theory, such as the translations or the Lorentz-
transformations act in a similar manner, the only difference being that on the
right hand side of relation (1.2) the region ) has to be replaced by the
transformed region @% according to the geometrical action of the group element
g- Supersymmetries, however, require a slightly different treatment as will be
discussed below.

The structure described so far is famitiar from many field-theoretic
examples. But it is note-worthy that it can also be derived from first prin-
ciples. The only input needed is the spacelike commutativity of local observab-
Tes and the assumption that the physical states under consideration are well-
localized excitations of a vacuum state. Under these circumstances the follow-
ing results have been established in a series of papers [5—8].

1) For a detailed exposition see the introduction of [4].

Given the structure of the algebra of all local observables ane can recon-
struct the Hilbert space &€ of physical states, the algebrasiﬁf@) of charge-
carrying fields, the global gauge group G and its representation LJ(%), ge G.
Moreover, the algebra generated by the local obserbables in a region & is re-
presented on ¥ by the algebraCﬂ[O) of all gauge-invariant elements of&qﬁ),

i, e,

oue = Fo) n L, (1.3)

{Here LV denotes the set of bounded operators ongﬁ commuting with all gauge-
transfonnationsij[g],ge G .} It should be noticed that the local field alge-
bras F{) are generated by Bose- or Fermi-type operators (with normal commuta-
tion relations at spacelike distances), even if there exist super-selection
sectors in the theory obeying para-statistics. The latter (intrinsic) property
vould reveal itself in the non-abelianness of the gauge-group. Hehce, summing
up, the global symmetries of a theory are fixed by the algebraic structure of
the observables and can be determined without any reference to local currents.

These model-independent results show that the present setting covers all
theories with localizable charges, such as baryon-number of strangeness in pure
quantum chromodynamics. Gauge charges (such as the electric charge in quantum
electrodynamics) or quantum-topelogical charges (as discussed in [ 9]}, however,
do not fit inte our setting since the corresponding charge carrying fialds are
nacessarily non-local. In view of the latter fact one actually may have doubts
that such non-localizable charges are always related to local currents acting
on the physical Hilbert spacegﬁ We therefore leave aside these cases for the
time being, but we will return to them at the end of our paper in a discussion
of some local aspects of superselection rules,

Let us now turn to our main objective: given any global (internal or

space-time} symmetry transformation UC%) and any bounded region O, we want to
exhibit Tocal unitary operatorsz)tk(%) which induce the same action oniytw) as

‘J(%], i. e,
UA(%ﬁ F U/\(gr'1 = U(%) F U(g)_4 for  Fe Flo), (1.4)

2) The significance of the index A will be explained below.



Our Tccal operators iJhL%) will actually form a representation of the glebal
symmetry group which is covariant in the following sense: if e. g. fois a glo-
bal gauge-transformation, then

Uth) UA(%)U(M'{: U thg b, (1.5)

By virtue of this covariance property and relation (1.3)1JA[%3 is a local obh-
servable whenever % commutes with the global gauge group.

Guided by the example of an internal symmetry transformation Lkg}, which
is the exponential of a local current density integrated over all space, ohe
might expect that one can always find such unitaries Ll( Y in 3%33), whenever
the regionia is slightly larger than 4] 3}. Yet there are models fitting into
aur general setting (a simple one being the theory of a charged generalized
free field) in which no such operators exist for bounded regions@ﬁ [10]. Fortu-
nately, these physically awkward models can be ruled out by a general and phy-
sically significant condition which will be discussed in the foliowing section,

2. Local Preparation of States and the 5plit Property

We say that a quantum field theory has the §Rﬁit-property if for any
bounded region ) there is another bounded region (151 and a type I factor4)J\r
such that

Ty « N < Fb), (2.1

Since the physical significance of this condition is not immediately obvious
we give some explanations.

FAS
3) The region (0 has to be larger than {) since integrals over current dengities
require a regularization which enlarges the Tocalization. Of course, 4]
depends aiso on % if LH%) is a space-time. symmetry transformation.

We recall that a von Neumann algebra N is called a factor if its center is
trivial, 1. e. if N n N'=C-4 . As usual, N’ defiofes the set of all
bounded operators on 4 commuting withdf. A type 1 factor N is & factor which
contains some minimal projectionE+ O 3 it ¥s isomorphic to the algebra of
all bounded operators on a fixed Hilbert space {cf. for example {14]).

4)

At the tevel of models the split-property has been established for the
free, scalar field [11] (see also [12]} and hence for interacting theories
which are locally Fock, such as thefp(¢lllnode1s. These results were extended
to arbitrary spins as well as to the Yukawa model in two dimensions in [13].

On the other hand it is known that certain artificial models do not have the
split property. Examples are the generalized free field with continuous Kdllen-
Lehmann measure or theories with infinite particle multipletis [10]‘

The common feature of  these counterexamples is the fact that they de-
scribe systems with a tremendous number of local degrees of freedom. (As a con-
sequence, there are for example no reasonable temperature states in these mo-
dels.] This clue of a relation between the split property and the number of lo-
cal degrees of freedom has been confirmed in {15]. Taking as a measure the
energy level-density of Tocalized states in a theory, it has been shown that
the split-property holds if the level-density does not grow too fast with the
energy. Roughly speaking, the particle spectrum has to be such that the "parti-
tion function” Z:e’ﬁnk exists for alt >0 .(The sum is to be taken over all
particle types counted according to their multiplicity; m,; are the particle-
masses.) It seems that this condition is satisfied in most models of physical
interest.

As we shall demanstrate now, the split-property can also be grounded on
the basic experimental fact that it is possible to fix locally certain specific
physical situations (e.g. the vacuum) irrespective of the given initia! condi-
tions of the world. At this point the following remark is in order: if the
split inclusion (2.1) holds far the fields it is an easy consequence of (1.3)
that an analogous relation holds for the observables, i, e. that

QoY <« M c OB (2.2)

for some type I factorkN([I]. It has recently been shown that also the converse
is true: the split-inclusion (2.2} for the observables implies the correspond-
ing relation (2.1) for the fiels [16]. In view of this result we can restrict
our attention to the algebra CK==%£CI£@)of alt local observables and argue in
terms of quantities which have a direct physical meaning.

According to the basic principles of guantum theory any physical state
corresponds to a positive 1inear functional ¥ over the aIgebraCX, giving the



expectation values of observables in this states). Performing a yés—no experi=
ment (corresponding to a selfadjoint projection EEOL) one can prepare from ¢
a new state ?’E by rejecting all events where the result of measuring E in @ is
zero. This reduced state (PE is given by

9.(A) - f%)— o Ae O,

provided the probability (PfE) of finding the value 1 for the observable £ in
the state P is different from 0. A projection b is called a pure_ (ideal) fil-
ter if for every state ¥ with P(E)# O one obtains H%:cg » where is a fixed
state which is independent from . It is easy to see thatw must be a pure

(2.3)

state of O(, so by measuring a pure fitter one can produce ensembles with maxi-
mal information.

Pure filters are familiar from systems with a finite number of degrees of
freedom. In quantum field theory, however, a pure filter cannot be a (local)
observable, because it affects in a sharp way all states at arbitrarily large
spacelike distances. On the other hand one never attempts to measure pure fil-
ters. In practice one is content with the possibility of fixing states within
Timited space-time regions. It is an important empirical fact that this can be
achieved with an experimental set-up where only the parameters of the states
in question enter. Phrased differently: by suitable monitoring experiments one
can establish a definite state within a given region, irrespective of the un-
knowh and complicated details of the rest of the world. So, locally, such ex-
periments have the same effect as a pure filter.

Translating these facts into the setting of quantum field theory one is
ted to introduce the concept of a local filter for a given state: a projection
Fe(lis called a Tocal filter forcw in the region O if a1l reduced states (PE
coincide with( on the algebra OL(0), 1. e.

P (A) = w(A), Aec OU® (2.4)

for any state ¥ of M with PEV+D . The empirical situation just described then

. 5) Thinking of T as an operator algebra on the Hilbert space?& containing all
superselection sectors, the states of inter%t here are of the form G"(A):F-Jo.A
A e OUL, where )O is some density matrix ond.
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suggests that all physically reasonable theories have to admit such local fil-
ters.We shall demonstrate now that this condition, which expresses a principle
of experimental definiteness, implies the split property.

Proposition: A Jocal quantum field theory has the split-property if and
only if it admits Tocal filters for all bounded space-time regions 0.

Proof: If a theory has the split-property, then there exists for any
bounded region® a type I factor Mc O such that M0)c M , cf. relation {2.2).
Bearing in mind that the minimal projections £e A have (relative toJ.(} the
same algebraic properties as a one-dimensioral projection on a Hilbert space
it is clear that

EAE = wlA)E for Ae OLLO), (2.5)

where (2 is some state depending onE. One then obtains relation (2.4) by taking
the expectation value of this equation in an arbitrary state ¥, So the minimal
projections in M act as Tocal filters in the region{}. In fact, in theories

with the split-property such filters exists for all locally normal states () of

a.

Conversely, assume that there exists a local filter £ e OL for some state
¢ in the region (. Since the physical states ¥ separate the elements of (¥ it
follows from (2.4) that relation (2.5) holds for the projectionl.. Let& be the
von Neumann algebra generated by () andE . since . is a local operator it is
clear that (X(B)c R ¢ AB)for some bounded region®. Moreover, relation (2.5)
implies that

EERE=C-E, (2.6)

which means thatE is a minimal projection ink. Thus the aroof of the split-
property is complete ifR is a factor. Turning therefore to the cases where &
has a center, let ( he the central support of E, (1. e. the smallest projection
in the center of& containing E }. It then follows from (2.6) that the reduced
von Neumann algebra X-C isa type I factor on C-'% and, by construction,

QUG C ¢ &-C<e OUD)Y. (2.7)



Now given any 1sometryw mappmgf}f onto C- A , 1. e, W W 1 andww £, one
can map R C onto a type 1 factor =WRCW on#. 1t is an important conse-
quence of the Reeh-Schiieder theorem and the fact that Cel®)n O[(@) that
one can find such an isometry W in OLL@ Ya Oﬂ@), provided the closure of the
region O, ( (resp. fO) is contained in the interior of & (resp. @ y {17]. Replac-
ing & and (’J in (2.7) by the sTightly smaller and larger regions @ and (9 and
multiplying the resulting relation from the left and r1ght be W and\/\f, respec-
tively, one thus arrives at the inclusion OO e Me Ol(@) where J(is some
type I factor. Hence if there exist local filters for all bounded regmns(’) it
follows from the results in [16] quoted above that the theory has the split-
property QED.

It is an easy consequence of the split inclusion (2.1) and relation {2.5)
that the reduced states ¥ , where Fe J is any minimal projection, are product
states on FO)- T(HY . Actually, there exist product states with certain spe-
cific properties which are substantial for the subsequent analysis [2,10]:
given any vector$? in ¥ which is cylcic and separating for the algebra

W nFG)we can-take here the vacuum [2]) one can find a vector QAQHC such
that

i) Q/\ induces a product state on g(@)-?(@)’given by
(R, FF'Q)= (QFQ(D,FQ) (2.8)
for FeF(0)and Fle FOY .

f
i) 52 is cyclic for the von Neumann algebra @UQ SC((Q &)

111)9, is an e]ement of the natural cone 7) Phc’}ﬂ associated w1th§2 and

FoYn F ((’))
The vector Q/\is completely fixed by these properties, so it only depends on
the triple
~
A= (Fey, Floy, 5. (2.9)

&) The symbol 3?,4\/ ﬂ,?_ denotes the von Neumann algebra generated by &4 andfp,l.

7) For a short account of the theory of cones see the Appendix of [10],
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Moreover, the assignement /\r’«*Q.Ais covariant in the following sense [2,10]:
if a triple

A
p, = (Flo), Fo,), Q,) (2.10)
is isomorphic tol\, i. e. if there exists some unitary Uo on & such that

(U, Floy U1, U s U7 U R) (2.11)

then the corresponding vectors Q/\ and Qhare related by
a

QAD U Q. (2.12)
Note that in the case of a global gauge transformation U0 one obtains /\o= /\
{¢f. relations (1.1) and (1.2))and thereforeQ Q This implies, according
to relation (2.12}, thatQA is invariant under the action of U

1t may be noticed that the existance of product state vectors@ as in

equation (2. 8) expresses a strong form of statistical independence between the
regions O and (O , which is actually eguivalent to the split-property [11]

3. Local Generators of Symmetries and the Universal Localizing Map

Assuming that the split inclusion (2.1) holds for the fields we now intro-
duce a mapping Y4 of the aigebra BE) of a1l bounded operators onto a natural ]
type I factor.N‘A associated with the triple A= (F(0), 35((9) ). This universal
localizing map LP will prove to be a convenient tool for the passage from the
global symmetmes to the corresponding local generators.

LetQ be the natural choice of the product state vector forf\ . First, we
define an 1sometryW of gf, ontogﬂ(ﬁ'}ﬂ setting
W, FFQ, =FReF (3.1)
. 7 N
for Fe ‘3:((9] and Fe Floy . Thatw/\ is an isometry as a consequence of

(2.8); the assertions on 1ts domain and range follow from the fact t‘natga and
52 are cyclic for 31(9)\/?{@) and FLOY, FOY, respectively.) It is an 1mme-
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diate consequence of this definition that for F, F'as above

W,\'FF'=F®F'-M. (3.3)
Now we set

LD =W (Te W, for Te B(0) (3.4)
which fixes the universal localizing map®) {) of B(%) onto the type 1 factor

Ny = b (30)), (3.5)
It follows from (3.3) that

L[)A(F) = F  for Fe FlO), (3.5)

~
and taking into account that Blt)ed c (1o F6))as well as the fact that
FoY=-F(H) it is also clear that

G(Tye FBY for Te B, (3.7)
So, in particular, we obtain the inclusion

Florye Ny ¢ FLo). (3.8)

Next, Tet us determine the transformation properties of djf\ if one proceeds from
A to any isomorphic triple /\o: from the transformation law (2.12) for the pro-
duct state vectors and the definition (3.1) of the unitariesw\, WA it follows
that ¢

WAO' Uy, = Uyel, - W, | (3.9)

where Uo is the unitary establishing the isomophism between/\ and/\o. If one
makes use of this relation in the equation (3.4) defining Li)A one obtains

8) J)A is actually an isomorphism.
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bUr T U= U7 DY, o Te B, (3.10)

giving the transformation law for the universal lgcalizing maps. Recalling
that f\o= Aif Uo is a global gauge transformation it follows in particular
from (3.10) that ‘-PA commutes with the gauge transformations.

With this information at hand we can turn now to the construction of lo-
cal generators of the symmetries. We begin by discussing internal symmetries;
sihce in this case we merely reproduce {in the frame of the universal localiz-
ing maps) the results obtained in [_2,10], we can be very brief.

Internal symmetries: Let Gbe the global gauge group (internal symmetry
group) and let UC%}, g€ G- be the corresponding unitary transformations on b'a
satisfying the conditions (1.1} and (1.2). Setting

Uplg) = ‘H\(Utg)) (3.11)

N
we obtain a new representation of (r by unitary operators in HG), ¢f. relation
(3.4) and (3.7). Since ¥4 acts trivially on Fl0) and since internal symmetry
transformations do not change the localization of fields it follows that for

Fe ¥(0)
Uptg) F U= ¢ (U F g™ = Utg) F Uig) (3.12)

So the local operators UA(%) induce the same action on ?((9) as the global
transformations U{%) .

1f 7 is a Lie group cne can proceed from the local symmetry transforma-
tions U/\( ) to the corresponding infinitesimal generators. As has been dis-
cussed in [2], these generators are the analogue of Tocally integrated current
densities, and they provide a version of Jocal current algebra. Note that the
local symmetry transformations UA(%) also exist in the case of discrete symme-
tries (muitiplicative charges). In this respect the information contained in
relation (3.11) goes beyond Noethers theorem.

It is also worth mentioning that, under fairly general assumptions, the
local symetry transformation UA( ) converge to the global ones if the regions
-
(0 and 1 tend to the whole space L181.
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Space-time symmetries: We now extend this construction of local symmetry
- transformations to space-time symmetries. LetP be a group acting on the space-
time pointsx by | x ,LeP and assume that the theory is symmetric under
P , 1. e. there exists a continuous, unitary representatwn \/(L LE P on %
such that

VL) Q= Q (3.13)
and
VL) Fo) vy’ = FLod . (3.14)

Examples for P are the translations and the Poincare-group (respectively its
covering group), possibly extended by conformal transformations.

As in the case of int;e\rna] symmetries one obtains a representation of .P
by unitary operators in?((ﬂ), setting

INRE ‘JJA(V(L)). , (3.15)

These unitaries induce locally the same action on the fields as the global
transformations V(L). Namely, let (’)o be any region contained in the interior
of & and 1et.p be a neighbourhood of the identity in P such that Lo~f9° c 0
for all L e P . From the fact that { acts trivially on F({)and from refa-
tion (3. 14) it then follows that for L e B and F_ e F(0))

VL) E VL V) F VL™ = VL) F V! (as)
This establishes the locally correct action of the unitaries \{\(L]

Assuming that the global transformations V(L) are gauge-invariant, i. e.
that

U(g)\/(Lh\/(L)U(%) for all ge &, (3.17)

it also holds true that the operators \/ (L) are observable. At this point the
covariance properties of the universal 1ocahzmg map A are essential: from
retation (2.10) it follows that the set U of all gauge invariant operators is

14

mapped into itself by [1[;\ Hence, using the characterization (1.3} of the ob-
servables, one obtains

\/A(L) e Fbyn U = D), (3.18)
as claimed.

These results show that the infinitesimal generators of the local space-
time transformations VA(L) are the analogue of the (0,?}-component of the ener-
gy-momentum tensor etc., integrated over a finite volume. Yet in contradistinc-
tion to these locally integrated densities the generators of VA(L) have the -
same spectrum as their global counterparts. This follows immediately from the
definition (3.15), according to which the representation V(L), Le P is uni-
tarily equivalent to the global representation VL), LeP amplified with in-
finite mueltiplicity,

V(L) = Vibed. _ (3.19)

To give an example: the generators of the translations VA(x) s XE [Rur fulfil the
relativistic spectrum condition {positivity of the energy}; in contrast, the
energy-density integrated over a finite volume cannot be a positive operator in
a relativistic theory hecause of the Reeh-S5chlieder property of the vacuum.
This apparent paradox unravels if one notes that one can add to the integrated
densities operators from St’((ﬁ)'n?(@)without affecting their locally correct
action {in the sense of relation (3.16)). It follows from our results that
there always exist such marginal perturbations which adjust the spectrum of the
local generators to that of the global ones.

We conclude this discussion of space-time symmetries with the remark that,
similar to the case of internal symmetries, one can define the local transfor-
mations (3.15) also in the case of discrete symmetries, e. g. space-inversions.
0f course, the regmns(ﬂ b in the underlying tr1p1e/\ should then be symmetric.

Supersymmetries: Our general discussion alsc applies to theories with su-
persymmetries {see e. g. [19,20]). In a supersynmetric theory there exist Bose
as well as Fermi fields which can be identified with the help of the unitary
Us inducing the sign change on Fermi fields. An arbitrary element F of the lo-
cal field a1gebras?((9) can -thus be decomposed into its Bose and Fermi parts
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E_ and F‘ , respectively, setting

Fo= L(F U FUY. (3.20)

A supersymmetry of the theory is given by a (+)-graded Lie-algebra (i: @+€B @:_

represented ongfyby selfadjoint operatorsg)Q and acting on FeF(h)ina way
which is compatible with the (4)-grading of the fields. Namely,

SU(F) [@U,F] for Ue @,+

n

(3.21)
SU(F):[QU,FJJr{QU,F_} for ue @&,

where | ,] and { R } denote the commutator and anticommutator, respec-
tively. Actually, the expressions (3.21) are not defined for arbitrary ele-
ments F e F{0) since the operators {3, are unbounded. But there should be a
common dense domain %{O)c?{@) so that the operators SU(F), Fedb)are
affiliated toF(0).

The global gauge—group@' induces an action on the etements ue (I which we
denote by g{u}, ge@r . The corresponding transformation law for the generators
Quis given by

Qe = Uig) QU (3.22)

An analogous statement holds for the space-time symmetries P

In complete analogy to the cases discussed beforg\ one obtains a represen-
tation of @Lby selfadjoint operators affiliated to 3:((9), setting

QC = QJA(QU). (3.23)

These operators induce on i‘E(@)the infinitesimal supersymmetry transformations
SU . Moreover,

U GS UCQ)'4= Q%/[\U, , 3eG (3.24)

9) Note that by going to a Majorana representation the supercharges Q become

"real”.
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for any Ue@:. Similar covariance properties of the local generators QS under
Poincaré transformations etc, follow easily. So the universal localizing map
LPA supplies adequate local generators also in the case of supersymmetries.

The present results can be viewed as a step towards the construction of
local currents which are related to global symmetries, Namely we have estab-
lished the analogues of finite volume integrals of the zero-components of such
currents. It is still a major cpen problem how to recover these currents /fran
our local generators. In this context the freedom of choosing the region 9]
arbitrarily close to (& and yet having the split inclusion {2.1) may be expected
to be crucial [1] As a matter of fact, this more restrictive form of the split
property has been established in models [11-13]; it also follows from a slight-
ly strengthened version of the general assumptions in [15], cf, [21],

Our arguments also apply to theories where non-localizable (topological)
charges are present [9]. There the construction of the normal field-algebra [8]
leads to a set of von Neumann algebras FLF) which are associated to spacelike
cones fe !RLJL {"thickened strings"). In the absence}\of massless particles it is
still reasonable to assume that there exist cones ¥5 % such that the analogue
of relation (2.1) holds, i. e.

FLPY e N e FH) (3.25)

for some type [ factor}f[ZZ]. The above analysis then pr;gvides a representa-
tion of the global symmetries by unitary operators in FLPIwhich induce the
correct gction on S:EY)(cf. relation (1.4)). But there is no indication (in the
case of continuous symmetries) that these operators are related to local cur-
rents,

4, Local Aspects of Superselection Rules

We conclude this investigation with a discussion of some local aspects of
superselection rules emerging from our analysis. According to its basic defini-
tion a superselection rule is just a Table of equivalence classes of irreducible
representations of the observable a]gebra@[. In our present setting these repre-
sentations can be obtained by restricting (L to the coherent subspaces (super-
selection sectors) ofge, and the superselection rules (global charges) can be
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jdentified with the elements of the center of O[” A1l these concepts are of a
¢globa) nature involving observations at arbitrarily large distances. In prac-
tice, however, superselection rules are observed within the Timits of a labora-
tory. So there arises the question of how the superselection structure mani-
fests itseif locaily within our theoretical setting.

If the global charges are explicitly given as operators acting ongf, then
an answer can be obtained from [1, 2] as well as from the preceding discussion:
with the aid of the universal localizing map ) one can construct from the
global charges a family of commuting abservables which are localized in @ and
measure the charges contained in®. Yet this result is not completely satisfac-
tory because it relies on an a priori knowledge of the superselection struc-
ture.

If one does not insist on pinpointing specific observables which measure
the charges in a given region, a conceptually more satisfactory answer can be
given. We shall see that the superselection structure of a theory can be com-
pletely uncovered within bounded space-time regions if one knows the “correct"
local Hamiltonian. In order to simplify this discussion we assume that the un-
derlying theory has the additivity property, i. e. that

GUEY ¢ SLBYY -V OB (a.1)

if Oc Q,U U@n and O, (94, @h are regular regions such as double cones.
Under this assumption,which is reminiscent of the properties of local Wightman
fields, one can determine the superseltection structure even within a fixed,
bounded region.

Let us first consider theories with localizable charges, where we can
make use of the previous results; we will then extend our analysis to theories
with non-localizable charges and long-range forces. Denoting by V() fe R the
global time-translation and by'\/ (£} its Tocal analegue, cf. relation (3.11),
we consider the a1gebraﬁ{ generated by OL{)and the Jocal Hamiltonian ft«(the
generator of V(U ¥, i

&R = OUGYV H, . (4.2)

Taking into account that 4% acts trivially on OL(O) and is normal (weakly con-
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tinuous) on B(H)we obtain
RV VoYW= ¢ LV v ouovet), (4.3)
cer M A Aiem

Now, as a consequence of the relativistic spectrum condition and the additivity
assumption (4.1} the von Neumann algebra generated by the time-translated alge-
bras V(&) OL(.L’)}V(tY1, teR is OU"[23], thus RD‘H\(O{"). On the other hand,
assuming that the total energy H is an observab]elo), i. e. VTt)E Cﬁy, it fol-
Tows that Rc 4%(Cﬂ?l and consequently

7
Ro= o, (4.4)
It
So, in particular, the center ofj{ is isomorphic to the center of ac.

This result means, in physical terms, that by combining measurements of
the local energy and of observations in @ one comes across a certain specific
set of observables (corresponding to the center of k) which are simuttaneously
measurable with all other observables of this kind. From the spectrum of these
specific observables onecan then read off the superselection structure.

We now relax the assumption that the theory describes only lecalizable
charges; so we no longer have at our disposal Tocal charge-carrying fields
which generate the physical states from the vacuum. But it is still reasonable
to assume that there is some Hilbert space3€ of physical states on which the
local chservables are represented by an a]gebra(ﬁ:of bounded operators. More-
over, on 5 there should ex:st a continuous, unitary representation of the
translations Vlac) 3:&”1 which acts covariantly on the observables,

Ve GLLO) Ve = OO+ =), (4.5)

and fulfils the relativistic spectrum condition. Without restriction of genera-
Tity we may require that ka)e Cﬂ? and that the energy-momentum spectrum has a
Lerentz-invariant lower boundary in each superselection sector on?; as a mat-
ter of fact, these assumptions fix V(=) uniquely {cf. [ 24] and the references

quoted there). Note that we do not assume the existence of Lorentz-transfor -

10} By the spectrum condition, such a choice of H is always possible, cf. the
remarks below.
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mations since this would exclude from the outset states carrying an electric
charge [25].

In theories with a countable number of superselection rules one may think
ofgﬁas a direct sum of all possible superselection sectors. In the presence of
massless particles such a construction would, however, lead to a non-separable
Hilbert space, since there exist uncountably many superselection sectors due to
the numerous possibilities of forming infrared clouds. In view of this abun-
dance of sectors a coarser concept is needed, which groups together sectors
differing from one ancther only by the collective effects of infihite]y many
massless particles of zero energy, but which still allows to distinguish
charges which can be attributed to individual particies, as e. g. the electric
charge. Such a concept of charge classes has been proposed 1in [26]. If there
exists a countable number of such classes one obtains a separable physical Hil-
bert spacegg by picking from each class a representative and taking the direct
sum. This construction is clearly ambiguous, but this ambiguity is physically
irrelevant because it merely concerns the infrared behaviour.

So let us assume thatsgis separable and that the observables have the
split property {2.2}. We want to show then that the structure of the center of
CX.I can stiil be uncovered within bounded space-time regions. We begin by noting
that, as a consequence of the above assumptions, all superselection sectors of
¥ are Tocally equivalent (cf. for example [14, Thm, V.S.I]).Taking the sub-
space gﬁocgﬁ of states carrying the charge-quantum numbers of the vacuum as a
reference point and dencting the restriction of the cbservables he ¥ to gﬁo by

(A= ATE, (4.6)
-~
this equivalence can be expressed as follows: for any bounded region (9 there
exists an isanetrmeappinggg onto Jﬁo such that

WAW™ = (A for Ac OB, (4.7)

Next, using the split property for the observables and taking inte account that
TCO[OOacts irreducibly on ¥ one can construct (in complete analogy to the dis-
(4]

cussion in Sect. 3) a universal localizing map corresponding to the

Ctriple A= (Tto(ﬁ({(')]), m(@u@ﬂ ,Q);qf;’maps B Vinto Tto(a(@)) and acts

trivially on Tto{OL[(o)l

20

)
Now because of relation (4.7} one can lift '*PA to a universal localiz-

ing map Hb/\ acting on \'BGT@), settingll)

Gm WL WTW W TeBU6).  (49)
It is obvious that ‘PA(%(%))C&@)and that qJA[AFA for A e OUO) $o, bear-

ing in mind that V) e 0L, one can still define tocal translations
%(ﬁclﬂlr)ﬂ(\f(xﬂ,xew;ﬁs in the case of localizable charges, it then follows that
the center of the a1gebra{RJ generated by the local Hamilttonian H/\ and C)((@)is
isomorphic to the center of@[". So the superselection structure manifests it-
self Tocally in a clearcut way also in the presence of non-localizable charges.

We emphasize that the knowledge of the correct local Hamiltonian H is
crucial, however. Denoting the restriction of the glebal translations V(:z:) to
the vacuum sector ECO by V[O)(acj ohe can, for example, define on'}f’;another Tocal
representation of the transTations

VALO)(_OC) - W_J!- LI—’;‘\D) (V(DJLI))'W : (4.9)

which also acts correctly on the cbservables in. But the spectrum of Vj\mtx)
coincides with that of the states in the vacuum sector; moreover, the algebra
R generated by CI(H)and the local Hamiltonian H;\mis isomorphic to B(GCO),
so its center is trivial. Hence by using this "wrong" local Hamiltonian one
would not recognize any superselection structure.

The differences between HA
the observable H;‘m measures, in a sense, the energy needed for the preparation
of states in the regiun@ by perturbations of the vacuum. More precisely, if
{A)(;] is a state on R with spectrum{relative to H® y about £ there ex-
ists a unique state W™ of ({ which coincides with @*‘ on ({(G)and has finite

total energy. This state is given by

«© and H/\ can roughly be explained as follows:

WO A = o (WS L AW for Ae 0L, (410)

so 1t belongs to the vacuum sector and, as can easily be seen, has total energy

11) The map Ll’,a‘depends on the choice of the isometry W establishing the equi-

valence (4.7). Yet since this dependence is irrelevant here we do not in-
dicate it explicitely,
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()
E{O). Hence if the state co; describes a charged particle which is localized

in the region) one ascribes to it the total energy of a neutral state consist-
ing of this particle and a compensating charge in the causal complement of 7.
So charged particles are regarded as pieces of extended neutral states, and
consequently one does not see any superselection rules. This point of view is,
however, artificial because it does not take into account that particles are
well-localized concentrations of matter to which one can assign an individual
energy. {Note that this holds also true for particles carrying a nen-localiz-
able charge, cf. [ 91.) Accordingly, the energy ascribed to a state consisting
of several, sufficiently far separated particles in the region {) should be
equal to the sum of the energies of the individual constituents. It is obvious
that F{f‘ does not fuifil this requirement, and because of this lack of addi-
tivity [27] it has to be discarded as observable defining the local energy.

That th1eads to a more reasonable definition of local energy can be made
plausible as follows: letiw be any state ofCﬂ;describing a configuration of
particles whose total energy £ is concentrated in(). Then there exists a state
wA onk, given by

w,\(m = L..)(llJAWJ(R)) for R e Q, (4.11)

which coincides with (o on OL6Y and has, with respect to HA’ spectrum about E£.
Thusl%A assigns to the statecoA an energy which is compatible with the idea of
additivity. A full justification of the interpretation ofl4A as Tocal energy
requires, however, a proof that the operators HA converge to the global Hamil-
tonian H if O tends toﬁzq. It is then necessary to remove the remaining ambi-
guities in the definition offﬂA {cf. footnote 11), 1. e. to select a coherent
set of local Hamiltonians for an increasing net of regions 0. That this is
possible has recently been shown in [18] for theories of localizable charges.
It would be desirable to extend these results to the general case discussed
here.

It is another interesting problem to find a characterization of the Tocal
space-time and symmetry transformations which does not rely on the existence
of the global ones. A better understanding of this point would be important
for an extension of our analysis to theories with spontaneously broken symme-
tries, where the local transformations still ought to exist. We hope to return
to these problems elsewhere.
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