
MONOPOLE-FERMION AND DYON-FERMION BOUND STATES (V). 

WEAKLY BOUND STATES FOR THE MONOPOLE-FERMION SYSTEM 

by 

P. Osland 

Veu~Qhe~ E£eRtkonen-S~nchkotkon VESY, HambUkg 

and 

Gokdon MQKa~ Lab., Hakvakd Univek~it~, Cambkidge 

Ch.L. Schultz and T.T. Wu 

Gakdon McKa~ Lab., Hakvakd Univek~it~, Cambkidge 

ISSN 0418-9833 

NOTKESTRASSE 85 2 HAMBURG 52 



DESY behiilt sich aile Rechte fur den Fall der Schutzrechtserteilung und fur die wirtschaftliche 
Verwertung der in diesem Bericht enthaltenen lnformationen vor. 

DESY reserves all rights for commercial use of information included in this report, especially in 
case of filing application for or grant of patents. 

To be sure that your preprints are promptly included in the 
HIGH ENERGY PHYSICS INDEX, 

send them to the following address ( if possible by air mail ) : 

DESY 
Bibliothek 
Notkestrasse 85 
2 Hamburg 52 
Germany 



DESY 85-015 
February 1985 ISSN 0418-9~33 

MONOPOLE-FERMION AND DYON-FERMION BOUND STATES 

(V). WEAKLY BOUND STATES FOR THE MONOPOLE-FERMION SYSTEM 

Per Osland* 

Deut.sches Elektronen-Synchrotron DESY, 

D-2000 Hamburg 52, Germany, and 

Gordon McKay Laboratory, Harvard University, 

Cambridge, Massachusetts 02138, U.S.A. 

and 

Cherie L. Schultz*•t and Tai Tsun Wu* 

Gordon McKay Laboratory, Harvard University, 

Cambridge, Massachusetts 02138, U.S.A. 

ABSTRACT 

We present explicit, approximate, remarkably precise results for the Kazama-Yang 

hamiltonian, which describes a Dirac monopole interacting with a spin-! fermion that has 

an extra magnetic moment. The results are valid for bound states of angular momentum 

j ~ Zlegl + t, where the radial wave functions are determined by four coupled differential 

equations. These equations have been solved analytically for M-E C:: M, which is a limit 

of considerable practical interest. Binding energies and wave functions are given. 
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1. Introduction 

An analysis of the monopole-fermion states of higher angular momenta is very com

plicated because one has to study four coupled differential equations. One way to attack 

this problem is through a Sturm-Liouville angle analysis as shown by Yang [lJ; another is 

through asymptotic series expansions as discussed in paper I [2], where accurate numerical 

results were obtained for binding energies and wave functions, using a method that is valid 

for arbitrary parameters. 

The monopole-fermion spectrum has bound states of zero energy [3] for all nonzero 

values of ~t, the extra magnetic moment. Such states, for which the binding energy is equal 

to the fermion mass, exist for all angular momenta if K. > 0, and for all except the lowest 

angular momentum if 1r. < 0. Also, if l~el is not too small, additional states will exist. Most 

of these states will be very loosely bound. Unless Zleg~el is fairly large, all excited states 

are in fact very loosely bound. 

The present paper deals with that limit of weak binding, where explicit expressions for 

the binding energies can be obtained. These explicit results turn out to be highly accurate. 

The hamiltonian we study is [3J 

H = ii · (il- ZeA) + {JM -~<q{jii · r/(2Mr8), (1.1) 

i.e., we study an infinitely heavy Dirac monopole of magnetic charge g interacting with a 

fermion that has an extra magnetic moment lt. In (1.1), M denOtes the fermion mass, and 

q = Zeg = Z(±!, ±1, ±~, ... ), (1.2) 

with Ze the electric charge of the fermion. 

Such loosely bound monopole-fermion states have been studied previously [3]-[5] for 

the case of lowest angular momentum, j = lql - i. That case is much simpler than the 

present one, since there are then only two coupled ordinary differential equations. 
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2. Radial equations 

For the bound-state eigensections, we make the following decomposition* (3] 

[ 

h1(r)e! 1J + J._h2(rJe!
2
l ] I "• Jqj ,. 

.P(f)=- , 
r .K. (2) q (I) -•r;;) [hs(r)€;;. + rqrh,(r)€;;.] 

(2.1) 

where i ~ jq] + !· and e);! and e;;: are eigensections of j
2 

and Jz, with eigenvalues 

i(i + 1) and iz· Using lemma 1 of ref. [6], and changing the radial scale, 

r = [<q[pf(2M), 

the eigenvalue equation 

H.P(r) = E.P(r) 

leads to the following set of four coupled radial equations, 

( d ") I --- h 1 +(A+B)h3 + --,h4 =0, dp p p 

( d ") I dp + P h2 + P' h3 + (A+ B)h, = 0, 

I (d ") (A- B)h.+ P2 h,+ dp + P ha = 0, 

I (d ") -h1 +(A- B)h2 + -- - h, = O. 
p 2 dp p 

In these equations, we have used the abbreviations [6] 

I'= [(J" + w- q'J'i', 
A= !•Jq[, 

B= !•JqJ!· 

(2.2) 

(2.3) 

(2.4a) 

(2.4b) 

(2.4c) 

(2.4d) 

(2.5) 

(2.6a) 

(2.6b) 

* The present notation ia that of paper I [2], which is slightly different from that of refs. 

[1[, [3J and [6[. 
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The boundary conditions imposed on hi are [3] 

lim h;(p) = lim h;(p) = 0, 
p-+0 p-+00 

i = 1,2,3,4. (2. 7) 

In the limit of weak binding, 

(M-E)/M<I, (2.8) 

the radial equations (2.4) can be solved approximately as follows, at least when 

A= 0(1), (2.9) 

which will be assumed throughout this paper. In both of the two cases 

P < [A- Bj-1/2 (2.10) 
and 

p> [A+Bj-1/2, (2.11) 

(2.4) can be approximated by equations that can be solved exactly. Clearly, when the 

condition (2.8) is fulfilled, these two regions (2.10) [the interior region[ and (2.11) [the 

exterior region] overlap. Furthermore, when (2.0) holds, the exact solutions found in the 

two regions can be matched to determine the binding energy. 

It turns out that the exterior region (2.11) is much easier to treat than the interior 

region (2.10}. They are studied in sects. 3 and 4. 

3. Exterior-region wave functions 

In the exterior region, 

P > JA + Bj-112, (3.1) 

the terms p-2h 4 and p-2h 3 may be neglected in eqs. (2.4a) and (2.4b). The equations to 

be solved are thus 

( .!!._- ~) h 1 + 2Ah3 = 0, 
dp p 

( .!!._ + ~) h 2 + 2Ah, = 0, 
dp p 
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(3.2a) 

(3.2b) 



( 
d ~") 1 dp +P h,+(A-B)h 1 + P'h,=O, 

( 
d ~") 1 dp- p h4 + p2 h 1 +(A-B)h2 =0. 

We combine these to yield two coupled second-order equations for h 1 a.nd h2: 

[ _!_ (~ _1:,) (~+!:)-(A- B)] h2 - 2_h 1 = 0, 
u • p • p ~ 

[ _!_ (~ + !:) (~- !:) -(A- B)] h1 - 2_h, = 0. 
2Adppdpp p2 

With 

D = p 2 [:;, -2A(A- B)], 
the equations can be written as 

[D -1'(1' + 1)[h3 - 2Ah1 = o, 

[D -1'(1' -1)[h 1 - 2Ah 2 = o. 

Eliminating here h 1 or h:h we find that the differential operator factorizes, 

with 

(D- "+HD- "-)h, = o, 

(D- "+HD- "-)h, = o, 

li± =I''± (I''+ 4A')'i'. 

(3.2c) 

(3.2d) 

(3.3a) 

(3.3b) 

(3.4) 

(3.5a) 

(3.5b) 

(3.6) 

(3.7) 

We shall work with· h 1 • Clearly, h 1 can be expressed in terms of the two solutions 

h{+l a.nd h{-l which satisfy 

(D- "+)h(+l = o, 

(D- li_)h(-l = o. 

Consider the first of these equations, {3.8a), 

--2A(A-B)- "+ h(+)=O. [ 
d' '] 

dp2 p2 1 
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(3.8a) 

(3.8b) 

(3.9) 

The differential operator is a Bessel operator, and the solution hi+ l that vanishes asp --+ oo 

can be expressed in terms of a modified Bessel function. We thus find 

where 

h(-l = p1i'K._( V2A(A- B) p), 

h(+l = p112Kv+( V2A(A- B) p), 

V± =I!+ 1'2 ±(I''+ 4A 2
)

1i2['i'. 

(3.10) 

(3.11) 

The general solution h 1 that satisfies the boundary condition {2.7) asp-+ oo is 

h, = p112 [N-Kv_( V2A(A- B) p) + N+Kv+( y'2A(A B) P)], (3.12a) 

where N _ and N + are two constants to be determined by the matching with the interior 

region, and by the normalization. 

The other radial wave functions can be determined from the differential equatioiLS 

(3.2). We find 

h,= 2~p1i'{N-[I'-(1' 2 +4A2) 112JKv_(y'2A(A B)p) 

+ N+[l' +(I''+ 4A3) 1i 3[Kv+( y'2A(A B) p)}, (3.12b) 

ha= 2~p- 1i'{(1'-i)[N_Kv_(y'2A(A B)p)+N+Kv+(y'2A(A B)p)] 

-[2A(A-B)['I3p(N_K:_(y'2A(A B)p)+N+K:+(y'2A(A B)p)]}, (3.12c) 

h4 =- 4~2 p- 1/3 ((I'+ ~){N_[I'- (I''+ 4A,') 113JK._( y'2A(A B) p) 

+ N+[l' +(I'' HA') 1i'JKv+( y'2A(A B) p)} 

+ [2A(A- B)['/3p{N-[1'- (I'' HA2) 112JK~_( y'2A(A B) p) 

+ N+[l' +(I'' +4A2
) 

112JK:+ ( y'2A(A B) p) )] , 
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where primes denote differentiation with respect to the argument. 

4. Interior-region wave functions 

In the interior region, 

p <.[A- B[-'i', (4.1) 

the terms (A- B)h1 and (A- B)h2 may be neglected in eqs. (2.4c) and (2.4d). It is 

furthermore convenient to introduce the variable 

1 
x= -. 

p 

Equations (2.4) then reduce to 

( 
d ~') 2A - + - h 1 - -h 3 - h4 = 0, dx x x2 

(.!_ - !:.) h,- h,- 2A h, = 0 
dx x x2 ' 

h, = (.!_ - !:.) h,, 
dx x 

ht= (~+;)h .. 
These can be combined to give two coupled second-order equations, 

[(
d p)' l 2A - + - - 1 h,- -h, = 0, dx x x2 

[( 
d ~')' l 2A dx-; -lhs-x2 h4 =0. 

Eliminating also h3 , we obtain a fourth-order ordinary differential equation for h4 , 

{ 
d' d3 d2 d x'-+4x3 - -2x2(x2+p2 -1}- -4x3 -dx" dz3 dx2 dx 

+ x'- 2(p- 1) 2z2 + [p2(p2 -1)- 4A2J }h, = 0. 
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(4.2) 

(4.3a) 

(4.3b) 

(4.3c) 

(4.3d) 

(4.4a) 

(4.4b) 

(4.5) 

This is the equation we have to solve, subject to the boundary condition, 

h,.-o as x-+ oo (or p-+ 0). (4.6) 

It turns out that the solution to (4.5) can be expressed as a Fourier-Bessel transform 

of a solution to a second-order equation. We find that we can rearrange (4.5) so that 

a factor of x 2 can be cancelled, enabling us to write the equation in terms of a Bessel 

operator and quadratic powers of x. The method has previously been used in studying the 

Corben-Schwinger problem [7] of the scattering of a charged vector meson [8). Appendix A 

of ref. [8) also contains discussions of some of the more subtle points of the Fourier-Bessel 

transform. 

Let 

f = x-lf2h,., ( 4.7) 

then the substitution into (4.5} gives the differential equation for f: 

{ [(x ~)'- ({ + p 2
) ]'- (p2 +4A2

) 

- 2x[(x :J-{ + (p -1) 2]x+x'}f = 0. (4.8) 

The point here is that x (d/ dx) appears only in the form of a square. It is therefore natural 

to introduce the Bessel operator 

d 2 ld v 2 

T =-+----" dx2 xdx x2' 

where the constant 11 is chosen so that the constant term in (4.8) is cancelled: 

[v2
- ({ +p2)j 2

- (p 2 +4A 2) =0. 

Therefore, 

112 = {- + P2 ± (p2 + 4A2)1/2. 

Comparing with (3.11), we see that 

11 = ±v_ or v = ±v+. 
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(4.9) 

(4.10) 

(4.11) 

(4.12) 



It will turn out that all four values of v are needed, and that 

v:. < 0 

when bound states exist. 

Since 

2xT11 x = Tvx2 + x 2 Tv- 2, 

eq. (4.8) can be written in the form 

{Tvx 2 Tv -[x2 + 2tt 2 - 2(v 2 - })J Tv- T 11 x 2 + x 2 

- 2(1' 2 - 21' + v 2
- ~)}/ = 0. 

This holds when vis given by (4.12). 

Since Tv is a Bessel operator, we have 

TvZv(zy) = -y2Zv(zy), 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

with Zv a cylindrical Bessel function of order ±v. Because (4.15) is linear in x 2 , after a 

Fourier-Bessel transform we are left with a differential equation that is linear in the Bessel 

operator, i.e., of second order. 

We make the Ansatz 

/(z) = Ia dyZv(zy)g(y), 

where C is a contour to be specified. Then (4.15) is satisfied provided g satisfies 

with 

{ 
d2 1 d 2 d 112 1 tt 2 - 11 2 + 1 

-dz-' +; dz - -1---z dz- 4-.-, - -.(-1---z-) - '-;;:2;:(1---z)"'" 

J£2 -2tt+v2- 1} 
- 2z(1-z)' g=O, 

z = -y2, 
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(4.17) 

(4.18) 

(4.19) 

and with the contour C chosen such that boundary terms vanish. After appropriate factors 

are extracted, we recognize (4.18) to be the hypergeometric equation. The final solution is 

/(z) = fc dyy1+vzv(zy)(1 + y 2)P u( -y 2), ( 4.20) 

where u(z) is a solution of the hypergeometric equation. We shall be using the following 

solutions [9]: 

u 1(z) = F(a,b;c;z), 

u2(z) = F(a, b; a+ b + 1- c; 1- z), 

u6 (z) = z 1-cF(a + 1- c,b + 1- c;2- c;z), 

u 6(z) = (1-z)c-c&-bF(c- a,c- b;c+ 1-a- 6;1-z), (4.21) 

where F is the hypergeometric function. Of these four u's, of course, only two can be 

linearly independent. In (4.20) and (4.21), 

p=p.-1 or p=-p., ( 4.22) 

and 

a}- 1 
6 

- 1 + p + 2 (v ± o), 

c= 1 +v. (4.23) 

Here, 11 and 1/ are used generically, 

11 2 = vi and o 2 = 11_:, (4.24a) 
or 

11
2 = 11_: and 0 2 = v~, (4.24b) 

whereas v+ and v_ refer to the specific: values defined in (3.11). 

The fourth-order differential equation (4.5) has four linearly independent solutions. 

It is readily seen from the leading terms in (4.5) that, a.part from powers, two of those are 

10 



exponentially small, whereas two are exponentially large, as x --+ oo. There are thus two 

linearly independent solutions h4 that satisfy the boundary condition (4.6). 

-It is clear that a large number of different solutions f(x) can be written down. First 

of all, we may choose different Bessel functions, and different hypergeometric functions. 

Further, we have two choices for p, four choices for (v,v), and finally, there are several 

possible contours. In appendix A we give a survey of these different solutions, some of 

which can be related using identities of the Bessel or hypergeometric functions. It turns 

out that this set contains all the four linearly independent solutions. 

Two convenient bases for the functions that vanish as x --+ oo are (1(1), J{5)) and 

u<•>.t<•>), where 

tU>(x) = [ dyy"H£1>(xy)(1 + u')-•u1(-u'), fo, {4.25) 

and u; is one of the functions (4.21). (These are referred to as solutions of Class I in 

appendix A, and denoted by ff>(x) there.) The contour C 1 is shown in fig. 1. The 

combination of the contour C1 and the Hankel function H£1>(zy) makes all boundary terms 

vanishi fW(x) thus satisfies the differential equation. Further, as shown in appendix B, 

these solutions are weB-behaved (i.e., decreasing) for :a: --+ oo, e.g., 

t<2>(x)} ( 2 )'
12

• _ {r{1-~J)(2/z)-•+ 1 
,... - sm(,..p)e • 

t<•>(x) ·-~ ""' r(11)(2/•)• 
{4.26) 

In order to match the interior-region wave function with the exterior-region wave 

function of sect. 3, we need to understand both the large-:&: and small-z behaviour of 

our solutions. In appendix C we present convergent series expansions that satisfy the 

differential equation (4.15), and in appendix D we relate those series to the functions 

(4.25) that are well-behaved at large •· 

For the purpose of determining binding energies, we have chosen to work with the 

bBBis f( 1)(z) and f(6)(z), Wh06e behaviours for small values of x are given by eqs. (E.5) 

and (E.6), respectively. Thus, in the interior region, 

h, = x 112JN.t<1>(x) + N,f<'>(z)J, 
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{4.27) 

where N 1 and N 5 are two constants to be determined from the matching with the exterior 

region and the normalization. The other radial wave functions can be determined from 

the differential equations (4.3). With the abbreviation 

F(x) = Nd(1l(x) + N6 fl'>(x), (4.28) 

the interior-region wave functions can be written as 

h1 = .,-112](1' + !)F(x) + xF '(x)J, (4.29a) 

h, = 2~ .,-l/'{i-(1'- !) 2{1' + !J +(I'- ~)x 2JF(x) 

+ J(-1'2 + 21' + ~)x- x8]F'(x) +(I'+ 1Jx2F"(x) + x3F"'(x)}, {4.29b) 

1 
ha = 

2
A x112(](1'2 - ~)- x2]F(x) + {21' + 1)xF '(•) + x2F"(x)}, (4.29c) 

h, = x 112F(z), (4.29d) 

where primes denote differentiation with respect to z, and z = 1fp. 

A summary of the properties of the functions f( 1)(z) and J(5)(z) is given in ap

pendix E. 

6. Matching and eigenvalue condition 

The interior- and exterior~region wave functions given by eqs. (4.29) and (3.12), re

spectively, have to match for 

lA + Bl-112 < p « lA- Bj-1/2. (5.1) 

The approximations that we have made in solving the differential equations are consistent 

in this region of overlap. Therefore, it is sufficient to match one of the four radial functions. 

We shall consider h4 • From eqs. (3.12d) and (4.29d) we then get the condition 
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----'· ...< - ..._ -

p-l/2[Nd(l)(;) +N&/(5)(;)] valid for lzl <:: 1. Therefore, 

=- 4~,p- 1i2 [(1'+ ~){N-Il'- (1''+4A')'i 2]Kv_(y'2A(A B)p) 

+ N+ll' + (1'2 + 4A2)'i2]Kv+( y'2A(A- B) p)} 

+ I2A(A- B)l 1i 2p{N-11'- (1'2 HA2) 1i2JK~_( y'2A(A B) p) 

+ N+ll' +(I'' HA') 1/'jK~.( y'2A(A- B) p)} J. (5.2) 

In the region (5.1) of overlap, the functions appearing in eq. (5.2) can be expanded in 

power series. For p > 1, the functions f( 1)(1/p) and f(5l(l/p) can be expanded as given 

in appendices D and E. We have from (E.5) and (E.6) that 

p 1i 21L.H.S. of (5.2)] 

[( 
1 )"+sin(,.!') "" N1 - --r(-a_)r(-a+) 

p>l 2p 'Jr 

_ (!.)"- sin("a+) r(-a+)r(a_)r(1 + v+)r(-v_) 
2p ,. r(1 I'+ a_)r(l' +a_) 

_ (!.)-"- ein(,.a_) r(-a_)r(a+)f(1 + v+)r(v_)] 
2p ,. f(1 -I'+ a+)r(l' +a+) 

+ N, [(!.)-"+ sin(,.!') r(a+)r(a_) 
. 2p "" 

+(!.)"- sin(,.a_) r(a_)r(-a+)r(1- v+)r(-v_) 
2p ,. f(1-l'- a+)f(l'- a+) 

+(!.)-"- sin("a+) r(a+)r(-a_)f(1- v+)f(v_)] 
2p or f(1 I' a_)f(l' a-) ' 

(5.3) 

where we have made use of the abbreviations [compare eq. (E.l)] 

a±= }(v+ ± v_). (5.4) 

For the modified Bessel functions we have [9] 

K (z) - " [ ( }z)-v - ='(C:"}z"-)"-.] 
v - 2sin(,.v) f(1- v) r(1 + v) ' (5.5) 

13 

1/21 P R.H.S. of (5.2)] "" 
1 

{ y'2A(A-B)p..:
1 

- 4A' N-Il'- (1'
2 

+ 4A
2
)1/21 _,. 2sin(,.v_) 

. [1'+}-v-(ly'2A(A-B) )-v- l'+}+v (ly'2A(A-B) )"-] 
f(1- v_) ' P r(1 + v_) ' P 

+ N II'+ (I''+ 4A2)1i 2J ~ + 2sm("v+) 

. [I'+}- v+ (ly'2A(A- B)pf"•- 1'+} + v+ (ly'2A(A- B)p)"•] }· (5.6) 
r(1- v+) ' r(1 + v+) ' 

Comparing now the coefficients of the four different powers of p, we get equations that 

have the structure, 

p-"'+: N+=WtNh 

pll+: N+=W2N5, 

p-"'-· N_=WaNt+W•N&, 

pll-: N_=W,N1 +W6N,. 

The coefficients W1, ••• , We are given by 

W1 = -BA'II' +(I''+ 4A ') 1/2]-1(1' + } _ v+) _1 sin( or I') ,. 
r(-a )r(-a ) 

· + (1 y'2A(A -B))"+ 
r(v+) • ' 

W2 = -BA'II' +(I''+ 4A') 1/2]-1(1' +} + v+)_1 sin(,.l') ,. 
. r(a+)r(a_) (ly'2A(A- B) )-"• 

r(-v+) • ' 

W3 = BA 'II'- (I''+ 4A ') 1/2]-1(1' + } _ v_) _1 sin("a+) 
" 

r( a+)r(a-)f(l+ v+)r(-v_) ( ly'2A(A B))"-, 
· r(1- I'+ a-)r(l' + a_)r(v-) • 

14 

(5.7a) 

(5.7b) 

(5.7c) 

(5.7d) 

(5.Ba) 

(5.Bb) 

(5.9a) 



I sin(~<>-) W, = -BA'[I'- (1'2 + 4A2)1 2]-1(1' + ~- v_)-1 ~ 

. f(a_)r(-a+)f(1- V+)r(-v_) (lV2A(A _B) r-
f(1-!' "+)r(l' "+)r(v_) ' ' 

(5.9b) 

W, = BA'[I'- (I''+ 4A2)1i 2t 1(1' + ~ + v_)-1 sin(m_) 
~ 

. r(-a_)r(a+)r(l+ v+)r(v_) 1 -•-
f(1 I'+ "+)r(l' + "+)r(-v_) (, v'2A(A- B)) , (5.10a) 

Wo = -BA'[I'- (1'' + 4A')1/2j-1(1' + { + v_)-1 sin(~a+) 
~ 

r(a+)f(-a_)f(1- v+)r(v_) (lV2A(A- B) f"-. 
· f(1-l' a_)f(l' a_)r( v_) ' (5.10b) 

These coefficients have the following symmetry properties, as also follows from the prop

erties of j(1), J(6), and K,, 

w2 = Wt(V+-+ -v+), 

W" = W8(v+--+ -v+), 

w, = w,(v_- -v_), 
W 6 = W 6(v+-+ -v+), 

W6 = W,(v_- -v_). (5.11) 

For the purpose of determining the binding energy, we do not need the constants N 11 

Nrn N_, and N+. Therefore, we eliminate these from eqs. (5.7), and find the following 

condition on the W's: 

W 2(W8 - W,) = W1(W6 - W,). (5.12) 

This is the equation to be solved for the eigenvalue B. 

6. Binding energies 

The binding energies a.re given implicitly by eq. (5.12), which is to be solved for B. 

Inserting for the coefficients W11 ... , W 6 of eqs. (5.8)-(5.10), the equation becomes rather 

involved. It has the following structure, 

·---

X1({V2A(A- B) )-••+•-+X,({V2A(A B)) -••-•

= Xs({V2A(A- B) r•-"-+X,({V2A(A- B) )"•+•-. 
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--·· 

(6.1) 

If we inserted the actual values for X 11 ••• , X 4 , we would see that (6.1) is symmetric under 

"+ +-+ v_. That this has to be the case is also clear from the symmetries of the K 11_ and 

Kv+ in the exterior region and the!±"'- and f±v+ in the interior region [see (C.l) and 

(D.l); an interchange"++-+ v_ would merely interchange them]. 

It was found by Yang [1] that excited states of non-minimal angular momentum only 

exist for 

[A[ > Ao = ~(I''- {). (6.2) 

This condition is equivalent to stating that 

v _ = i{J is imaginary. (6.3) 

On the other hand,"+ is always real, 

"+ > (i +2p2)1/2, (6.4) 

c.f. eq. (3.11). That the condition (6.2) has to be satisfied can also be seen from the present 

analysis: Without the condition (6.3), the radial wave function would not be oscillatory, 

and the eigenvalue B (or the energy) would not be real. 

We shall make use of (6.3) and (6.4) to simplify (6.1). Having made the assumption 

that the binding is weak, 

A-B ' = -A- < 1, (6.5) 

we can neglect the two terms proportional to (~.J2A(A- B) t+ in eq. (6.1), and a.re left 

with Ws = W5, or 

(I'+!- v_)-1 sin(~<>+) Uv'2A(A- B) r- r(-a+)r(a-)f(1 + v+)r(-v-) 
" f(1 I'+ a_)r(l' + a_)r(v-) 

=(I'+!+ v_)-1 sin(,.<>-) (lJ2A(A _B))-" r(-a_)r(a+)f(1 + v+)r(v_) 
~ • r(1 ~<+ "+)r(l' + "+)r(-v-) · 

We rewrite this as 

(!v'2A(A-B))'"- = ~<+{-v- "- r(1-~<+<> )r(~<+<>) 
I'+ { + v_ "+ f(1- I'+ "+)r(l' + "+) 

. [r(a+)]' [~]' 
r(a-) r(-v_) 
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(6.6) 

(6.7) 



....,/ 

It is now convenient to make use of eq. (6.3), and define phase angles t/J and ¢ as 

follows: 

Thus, 

e-2it/l = J.L+ i- i{J 
J.L+~+i/3' 

•"' = f(l + i/3) 
'f(l-i/3)' 

[ r(v~) ]·' = •"'· 
r(-v-) . 

(6.8) 

(6.9) 

(6.10) 

The ,above angles t/J and tP ~e. gen~alizations of th~e introduced in. ref. [4J. As JL -+ 0, 
with A positive, they reduce to those given there, since 

{3 = [(1' 2 +4A'J'i' :._1'2 _ !J'i' (6.11) 

in that limit reduces to the familiar (2A ~ ~) 1/2 [4j. 

The remaining factors on the right-hand side of (6.7) can also be written as a phase 

factor. We <;iefine the angle·x, 

"x _ v+ + i/3 [r( tv++ !if3) ]' r(I -~< + i"+- iif3)f(l' + !"+- !if3) ( . ) 
< - "+- i/3 f(!v+- ti/3) f(l I'+ tv++ ti/3)f(l' +tv++ !if3)' 

6
·
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where we have substituted for a+ and a_ according to (5.4) and (6.3). In the limit p. -t 0, * 
X is seen to vanish. 

In terms of P, A, and the arigles defined above, the fractional binding energy may be 

written as 

8 [-2 l <;n = A' exp y(nw- 2¢ + !/>- x) , (6.13) 

for n = 1, 2, ..•. As follows from the definitions of {3, t/J, t/J, and x, if one formally takes 

the limit p. -t 0, one recovers the result valid for the states of minimal. angular momentum. 

* With angular momentum quantized, p.. is also quantized. For JqJ = !, JL = y'j(j + 1), 

and the lowest values are: I" = 0, v'2, .JG, .... 
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With /qj = ~. we show in fig. 2 a plot of the binding energies for the lowest states 

(n = 1, 2, and 3) of angular momentum j = 1, 2, and 3 versus A. For a. few values of A, 

these binding energies are also giv.en in table 1. There we compare them with the exact 

ones, determined by the method of paper I !2]. The agreement is seen to be excellent. 

7. Fine structure 

.·The binding-energy depends. in general in a rather complicated way on the angular 

momentum j. While this dependence is dramatic ·when ]AI ·is dose to· tbe·critical- value 

Ao of (6.2), it becomes much weaker· for ]AI > Ao. -As will be shown 'in sect. 10, the 

assumed range of validity (2.9} can be extended to !AI > 1, provided that we require E to 

be sufficiently small. In that limit of,l~"ge ]AI the energy depends only weakly on j. We 

shall here discuss that limit. 

Let 

In the limit 
I' 
Po< l, 

which for small JqJ corresponds to 

f3o = (2]Aj - !)'/2
• (7.1) 

or j(j +I)- q2 < 2JAJ, (7.2) 

i 2 < 2]Aj, (7.3) 

the variation of the pha.se angles 4>, ¢,and x with 1J. (or j) can be 'determined explicitly 

by expanding in the small quantity JL/ Po. 
We find 

f3=i3o[l- ;;g +O(~;)J. (7.4) 

- I'' (~'') ¢- ¢o- 2f3o mf3o + 0 f3i! , (7.5) 

I' (~'3) 1/>=1/>o--+0-
/Jo /33 ' (7.6) 

X=_£_ (1-1') +0(~'') 
/Jo pg ' (7.7) 
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where ¢ 0 and t/Jo are given as 

4>o = Im logf(1 + iPo), (7.8) 

" 1 1/>o=2-2Po. (7.9) 

Here ¢ 0 corresponds exactly to the p. = 0 case, whereas ¢ 0 differs from the p. = 0 value by 

terms- 0(1/P3). 

Consistent with (7.2), we must take Po> 1, and thus find 

" 4>o "'Po(lnPo -1) + 4' 

" 1/>o<>< 2" 

The expression for the binding energy, eq. (6.13), then- factorizes, 

' . Ejn ~En exp{-;gn1r ), 

with En the binding energy for the states of minimal angular momentum, p. = 0 {4j: 

s r-2 l '• = A' exp Lflo (n"- 24>o + 1/>o) . 

(7.10) 

(7.11) 

(7.12) 

For jqj < j < jAI112, the "fine structure" is thus essentially gaussian in the angular 

momentumj. 

The largest value of A considered in table 1 is A = 50 with /Jo ~ 10. In that case, 

the binding energies predicted by (7.11} differ from thoee of (6.13) by 0.1-1.5%. They are 

most accurate for states of low n and low angular momentum. 

8. Normalized eigenaectiona 

The radial wave functions for the external and internal regions are given in sects. 3 

and 4, respectively. The relative normalization constants and the overall normalization 

shall here be determined. 
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We first express all normalization constants in terms of N -· Solving (5.7c} and (5.7d), 

we find 

N, = N_(w,- w,)f(W,w,- w,w,). 

We here use the matching condition, W8 ~ W5, to reduce this to 

N 1 = N_fW,. 

Equations (5.7a) and (5.7b) then give 

N, = N1W,fW2 = N_W,f(W2W3), 

N+ = N,w, = N_w,;w,. 

Using (6.7), .we find 

w-'- (-1)•+> 1 
8 - 4v'2A f(1+v+)I~<'+ 4A'-~<(1' 2 +4A2) 112 J 112 

·Jr(1-~< + iv+ + ~ip)r(~< + h + ~iP)J. 
and hence 

Nt=N_wa1 , 

N, = N_Wi'l' +} +v+ f(-v+) lr(-a+) I' (A' )"+ 
I'+ i- V+ f(v+) f(a+) 8 < ' 

N+ = -N w-1 SA' 1 sin("l') 
- 8 1'+(1'2 +4A2) 1/ 2 1'+ l_ v+--; . 2 

(8.1) 

(8.2) 

(8.3) 

(8.4) 

(8.5) 

(8.6) . 

(8.7) 

. lf(-a+ll' (A' )·"•'' ~'·· ' 8 ' • (8.8) 

For small arguments, one of the exterior-region solutions, Kv.lJ2A(A B)p), be

comes large, ,., ,_-,+12p-"+, but we note that these potentially large terms are multiplied 

by a small coefficient, N+,., t."'+/2 • 

The normalization constant N _ is determined by 

j d3r.pt(r)V>(r) = 1. 
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With [6J 

J dn e\'.lt e\•> = b,., ,,. ,. (8.10) 

and r = pAjM, the decomposition (2.1) then leads to 

A loo M 
0 

dp {hJ + hl +hi+ hl) = 1. (8.11) 

We consider separately the contributions from the interior and exterior regions, 

Al"" lint= M 
0 

dp {h~ +hi+ h~ + h~}int1 (8.12) 

lext= ~ 1: dp{hi+h~+h~+hnext, (8.13) 

with 

Jh1t +I ext= 1. (8.14) 

M a transition point between the interior and the exterior regions we take the geometric 

mean of the boundaries of the range of overlap, 

Po= (A'- B')-11< > 1. (8.15) 

To leading order in the binding energy E, the contribution of the interior region can be 

neglected. This can be seen by noting that 

Hence, 

N, f(')- 0(1), 
N_ 

N, j<•>- 0(<3"•1') < 1. 
N_ 

N:::2Iint- 0 (f""pdp) = O(p~) = O(c 1i 2). 

In contrast, as will be evaluated explicitly, 

N:: 2Iext = O(c 1). 
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(8.16) 

(8.17) 

(8.18) 

For the purpose of determining the normalization, in the exterior region we may drop 

terms "' N+, since N+ "" t"'+I 2N_, and terms with an explicit factor [2A(A- B)jl/2 • 

Among the remaining terms, the h 1- and h2-contributions will dominate, because of an 

extra power of p. To leading order in t, the normalization condition is thus 

A joo 
I ext~ M Po dp {hi+ hnext C:! 1, (8.19) 

or 

~ N"!_ { 4~2 [I'- (1' 2 + 4A
2

)
1i 2 j2 + 1} Loo pdpKl~(\f2A(A- B) p) = 1. (8.20) 

The lower limit may here be replaced by zero, and using (see, for example, eq. 6.576.4 of 

ref. [llj) 

100 

zdzKl~(•) = 1r{J Q n ' 1. I - n\ I (8.21) 

we finally get 

N' = 8A3M' sinh(1r{J) [1'2 + 4A 2 - 1'(1'' + 4A 2) '''J-'. 
- ~{J 

(8.22) 

For j = 1, and A = 2, we show in fig. 3 the approximate radial density distributions, 

hi, h~, hl, and h~. These are calculated from our analytical expressions {3.12) and (4.29) 

and are valid in the weak binding approximation. (The actual binding energies for the 

states considered are given in table 1.) Within the accuracy of the plots, the more accurate 

wave functions calculated numerically by the method ofref. [2} would not be distinguishable 

from the present ones. Also shown, in fig. 4, a.re plots for the case A = 3, j = 2. 

0. Minimal angular momentum as a 1pecial case 

For p, = 0, or j = lql- !, there is only one eigensection of angular momentum [6] 

~;,· = •\') 
Jl 'Y' Ji •. (9.1) 
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With p. = 0, we can formally express this in terms of ej~~ and e);~ [6] as 

1 ( ,(1) q ,(2)) q;;. = v'2 --;;. + ~';;. . 

If we decompose the j = [q[ - i bound·state eigensection as 

• !. l~ql • [ ~F(r)q;;.] ,P(r) = r -iG(r)q;;. 

{9.2) 

(9.3) 

make use of eq. (9.2}, and compare with the decomposition of eq. (2.1}, we find the corre

spondence 

with 

F} 1 ~q {(-h1 +h2) 

G ~-=o v'2 l~ql (ha- h4) 

h1 = -h2 and h3 = -h4• 

(9.4) 

(9.5) 

In appendix A, eq. (A.l4), we have found for 11 = o·in the interior region a solution 

h• = -/i/~l = C-/iK.(z), (9.6) 

where .1: = ljp, Cia a conatant, and D must be taken to be 

"-(1' = 0) = iPo = i/J(I' = 0) = i{2IAI- U112
. (9.7) 

The dilferenl!al equations (4.3) furn!ah lho other three redial wave functiona, 

A 
-IAiha = h• = C-/iK;p,(z), 

A d 
-IAih' = h1 = C dz 1-/iK;p,(z)l. (9.8) 

It foll<>WB from (9.4) and (9.5) lhai, for A > 0, lhe present h; give precisely ihe so!ution.s 

of lhe interior region found in ref. I• I· 
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In the exterior region, we note that N+ --t 0 as J..t --t 0 [cf. eq. (8.8}[, and thus find 

from (3.12), 

-~~~h2 =h 1 =N_p1 1 2K;p,()2A(A B)p), 

-h, = 
1
A

1
h, = _!_N_ dd (p 112K;p,()'"zA"("A----,B"'J•)], A 2A p 

(9.9) 

again in agreement with (9.4) and the solutions of ref. [4]. 

10. Range of valld!ty 

For clarity of presentation, we have assumed that [A[ is not large !see eq. (2.9)]. We 

here show that this condition can be relaxed provided that the binding is sufficiently weak. 

Let 

Po= 1 + {J, (10.1) 

with {J defined in terms of A and p. by (6.11}. The condition for the validity of the power 

expansion used in the exterior region is thus [compare (11.8.2) and (5.5}] 

{A 2 
- B 2)p2 <Po. (10.2) 

Together with {3.1) we get 

lA + Bj-112 < p < P~''(A'- B')-1/2. (10.3) 

From (C.4) with v = i{J we find the following condition for the validity of the power 

expansion used in the interior region, 

'lb111 1 l+v++ip.2-p. 
• > b;; = 4ii+ i/JI ~ + "+ + ~,., . {10.4) 

Since the last factor is 0(1), we can rewrite this simply as 

• > P;;1''· (10.5) 
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Together with (4.1} we thus have 

·-l/2 
Po < P < lA- Bl-112

• (10.6) 

In order for the procedure of this paper to be valid, the ranges (10.3) and (10.6) must 

overlap. This requires 

iJ0'i' < iJ~f'(A2 - B 2)- 1i 2, (10.7) 

and 

lA + Bl-'i' < lA- Bl-'i'. (10.8) 

The inequality (10. 7) implies 

1 
'< A' (1 + 11 2

), (10.9) 

whereas (10.8) implies 

E<C: 1, (10.10) 

which is the same 88 the original (2.8}. Of these two, (10.9) is the niore restrictive. It is 

somewhat more explicit to rewrite (10.9) 88 allowing the following two cases: 

(i) When P = 0(1) [or IAI <: A0[, then the condition is 

'< IAI-'· (10.11) 

(ii) When P > 1 [or IAI > A0[, then the condition is 

'< IAI-'· (10.12) 

These are consistent with (l!.8.20) and (ll.8.22). 
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Appendix A. Some Solutions to the Differential Equation (4.15) 

This appendix gives a brief survey of some of the solutions to the fourth-order differ

ential equation (4.15). We organize these according to the paths of integration shown in 

fig. 5. 

Class I. Contour C 1 

Since this contour starts and ends at IYI -+ oo, above the real axis, we choose a Hankel 

function H~1) in the integrand. The boundary terms therefore VB.Ilish, and eq. (4.15) is 

satisfied by 

j 1Ul(z) = f dyyl+•H£1l(zy)(1 + y2)'u;(-y2). 
fc, (A.1) 

Here 11 can take on four values [see eq. {4.24)], p = -~J. or ~J--1, and u; is a hypergeometric 

function given by eq. (4.21). It will be shown in appendix B that the functioiUI defined 

by eq. (A.l) all vanish exponentially 88 z -+ oo. At most two of these can be linearly 

independent, since eq. (4.15) also has two solutions that become exponentially large as 

X-+ 00, 

For large values of x, the asymptotic behaviour of the integral (A.l) is controlled by 

that of u;( -y 2) in the neighborhood of u = i. In this respect, the simplest hypergeometric 

functiom are u2 and us. A natural choice of functions which are well-behaved a.s z-+ oo 

is thus 

Jl'l(z) = f dyyl+•H£1l(zy)(1+y2)-•u2(-y2), 
fc, 

j 1(
6 l(z) = f dyy1+•H£1l(zy)(1 + y2)-• u6(-y2). 

fc, 

(A.2) 

(A.3) 

We have here picked a value for p, p = -~J.. Taking the other value, p = IJ. - 1, we 

would merely interchange u2 and u.6 (and the two solutiom). 

For large x, we find these two solutiom to be given by (see appendix B) 

2 ( 2 )1/2 (2 )-p+I [ (1 )] 1,' >(z) = ;;;; oin(~l')r(1- 1')•-• ;; 1 + o ;; , (A.4) 

26 



,,c•J(•) = CJ'' sin(~l')r(l')•-· m· [1 + o(;)J. (A.5) 

We note that the leading powers are different. The functions /l2)(x) and / 1(
6)(.:e) are 

therefore Jinearly independent. 

Class ll. Contour C 2 

The contours cl and c2 are identical for large IYI· Therefore, the Hankel function 

H51l must aga.in be used, and the integrand is identical to that of (A.l): 

t,Vl(z) = f dyyi+"H~1 l(xy)(1 + y')•u;(-u'). lc, (A.6) 

For large z, the region around 'IJ !:::! -i dominates the integral, and the simplest func

tions are again those for which j = 2 and 6. A computation analogous to the one given in 

appendix B gives (with p = -p;) 

t,\'l(z) = •'(--l-2v)•/2 CJ'' sin(~JL)f(l- JL)e• (~f"+l [1 + o(;) ]. (A.7) 

,1~)(•) = .•c---2v)•'' CJ'' •in(~JL)r(l')•' (~}[1+ o(;) J. (A.8) 

valid as z --+ oo. Again, taking the other value of p is equivalent to an interchange of 

11\'l(z) and t,\6l(z). 

Class III. Contour C a 

The functions 

t,V/(z) = { dyyi+"H~1)(zy)(l+y 2)Pu;(-y2) lc, (A.9) 

are very similar to those of Class II. In fact, with p = -p., we find asymptotically, as 

% --+ oo, 

t,\~l(z) = -e•C••-•-2vJ•/' CJ'' sin(,..JL)f(I- JL)e' (~r•+I [1+ o (;) J. (A.IO) 

t,\~l(z) = -e'H•-2v)w/2 CJ'' sin(1rJL)r(JL)e• (~n1 + 0 m J. (A.ll) 
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Up to a phase factor, as x-+ oo, these are thus equal to the Class II functions. Presumably, 

the Class II and Class III functions differ by some function which is exponentially small as 

x-+ oo (related to the Class I functions), and which therefore cannot be determined by 

an asymptotic evaluation of the kind given in appendix B. 

Class IV. Contour C 4 

The contour C4 , which is the positive real axis, is especially useful for small values of 

x. We therefore choose the Bessel function in the integrand to be Jv(xy), which has the 

simplest behaviour for small x. Furthermore, for the present problem, the only relevant 

function of this Class IV is the one with j = 1. Therefore, we study the function 

/gl(z) = 1~ dyyi+"Jv(zy)(l + y')•u 1(-y2). (A.12) 

This integral (A.l2) is convergent at the lower limit when 

Re 11 > -1. (A.l3) 

At the upper limit, it is absolutely integrable if IRe VI < "i; it is however summable for 

all finite values of V because of the oscillatory nature of Jv(zy). It is thus convenient to 

think of the right-hand side of (A.l2) as including an extra factor of exp( -£y) with £ --+ o+ 

after integration. This is precisely Abelsumm.ability. The /~)(z) interpreted in this way 

is studied further in appendix C. 

We comment briefly on the special case p = -JJ = 0. In this case, the integration can 

be carried out explicitly to yield (eee p. 855 ofref. jll]) 

(I) f(1 + v) K.(z). 
f,v (z) f(l + }v + }v)f(l + }v }v) (A.!4) 

Apart from a normalization constant, this is a radial wave function for j = lql- ~- The 

connection with that case is discussed in sect. 9. 
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Appendix B. Asymptotic Expansion of ti'l(x) and tr''l(x) 

As x-+ oo, relatively simple asymptotic expansions can be obtained for f 1(
2)(x) and 

/ 1(
6)(x). These functions are defined by (A.l). For large x, the main contribution to the 

integrals (A.2) and (A.3) comes from the neighborhood of y = +i. It is therefore convenient 

to shift the variable of integration, 

y = e'"'/2(1 + t2} 1/2. 

The Hankel function can be expressed in terms of a modified Bessel function [lOJ, 

H~11(xy) = ;_ e-<wvf2Kv(xv'i'+t'), ,,. 

and, using J1 dy = -t dt) we find 

tr'il(x) = _;_ {~ dtt(1 + t 2)"12Kv(zv'i'+t')t''.:l.;. ,.,.. lo 

(B.1) 

(B.2) 

(B.3) 

Here t 2Pfl.; is the discontinuity of (1 + y2)Pu;(-y2) across the cut (taken along the real 

axis in the t·plane), 

fl.;= lim [ei~~"Pu;(l + t 2 - it")- e-i~rpu;(l +t2 + i£)}. 
(-oQ+ 

(B.4) 

Since u 2(1 + t 2) and t--4p-2 ue(l + t 2) have no branch point at t = 0, we find the 

following simple results 

t 2Pfl. 2 = 2isin{11'-p) t 2PF(l + p+ a+,l + p +a_; 2 + 2p; -t2), 

t 2Pfl. 6 = 2isin{1rp) t-2P-2F(-p +a:+, -p+ a_; -2p; -t2}, 

where we have introduced the abbreviations 

"± = }(v ± o). 
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(B.5) 

(B.6) 

(B.7) 

These expressions show explicitly that interchanging the two possible values of p, namely, 

-JL and JL- 1, i.e., interchanging p and -(1 + p), is equivalent to interchanging fr(2l(x) 

and tr'"l(x). 

We now expand the hypergeometric function, 

ti'l(x) = -- sin(1rp) dtt1+2'(1 + t 2)"i2K.(xv'i'+t') 4 1~ 
,. 0 

. L r(1+p+a++nl r(1+p+a +nl r(2+2pJ (-1l" t'" 
•=0 r(1+p+a+) r(1+p+a-) r(2+2p+n) n! 

0 

(B.B) 

This-integral can be .evaluated in closed form (see p. 95 of ref. llOJ). With p == -'p., and 

using Kv(z) = K-v(z), we find 

/ ''>( l 2 . ( l L r(1-" + "+ + nl r(1-" + "- + nl r(2- 2") x = - sm 1rp. 
I W n=O r(1 I'+ a+) r(1 I'+ a_) r(2 21' + n) 

{'-1)" (2)-•+1+• < 

. --r(-1' + 1 + n) - K-•+•-I-n(x). 
n! x 

(B.9) 

The other solution, IPJ)(x), can be obtained by repeating this procedure with p = p. -1. 

This amounts to replacing -p. by p.- 1 in the above expression, keeping 11 1 a:+ and a:-_ 

unchanged. 

The present expansion is an asymptotic one, useful as x -+ oo. We may then also 

expand the modified Bessel functions in an asymptotic series [tO}, 

K (x) = (~)'1'.-· L r(}+,+m) 1 (2x)-m, 
'Y 2x _ m=O f(i+"Y-m) m! 

(B.10) 

and express Jt'2>(x) as an asymptotic l!!leries where each coefficient is given by a sum, 

t'')(x) = (2.)'1' .-•sin(wl') "\" "\" r(1 - "+ "+ + n) 
I wx· ; ~ ~ r(t· p+a:+) 

r(1-~<+a +n) r(2-21') (-1)"r( ) 
-- -~<+1+n r(1- I'+ a_) r(2- 21' + n) n! 

• r(-t+p.-v-n+m) 4-m (~)-}l+l+n.+m 
r(-}+1'-V-n-m) m! X ' 
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By an explicit evaluation, we find the first few terms to be given by 

(2) ( 2 )'/2 (2 )-~+1 / 1 (x) = rrx sin(~l')e-•r(-1' +I) ;; 

· {I+ !1-(-:1' + 1) 2
- ~ + {(v2 + v2)[x-• 

+ H3- 2JL) -I!_JL5 + lfp.4- ~JL3 + ~JL2- ~JL + ~ 
- (v 2 + v2)(-11' + ~~~ 2 - :1]1' + "{) 

+ Hv' + v')(2 -I')+ {v2v2(! -l')]x-2 + O(x-8) }· (B.!2) 

The solution / 1(
6)(z) is obtained from this expression by the substitution -JL-+ p.-1, with 

v and t:i kept unchanged. 
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Let 

Appendix C. Series Expansions for the Differential Equation of Sect. 4 

We choose as the starting point the fourth-order ordinary differential equation {4.8). 

00 

!.(x) = L b,x•+2k 
A:=O 

(C.!) 

be a solution of (4.8), where vis given by (4.12). The substitution of (C.l) into (4.8) gives 

the recurrence formula 

{i(v + 2k) 2
- (! + 11 2)j 2 - (11 2 + 4A2))b, 

- 2[(v + 2k- 1) 2 - ! + (II-1) 2Jb,_ 1 + b,_, = 0. (C.2) 

In terms of the a± of (B.7) with the v and v of (4.24), (C.2) can be written in the form 

4k(k + v)(k + a+)(k + a-)h 

- [k(k + v) + (k -I+ a+)(k -I+ a_)+ 11(11- l)jb,_, 

+ ih-2 =0. (C.3) 

Equation (C.3) is solved by 

b =(-I)' (!)1+-+».!.. r(I +v) ..t-. (k)(-I)•-• 
• 2 kl r(I+v+k) ~ l 

r( -a_ -z)r( -a+ -l) 
r(I 11 Z)r(11 l) ' (C.4) 

as can be verified by considering separately each term in the sum over I. These coefficients 

are symmetric under interchange of a+ and a_, or fi-+ -fi. 

An alternative form of this solution is 

a =(-I)' (!)1+•+».!.. r(I + v) ..t-. ( k) r(I + p+ a + m) 
• 2 kl r(I+v+k) ~0 m r(I+p+a-) 

r(-p+ a++ k- m) r(-a_- k)r(-a+- k + m) 
· r( p + a+) r( p)r(I+ p k + m) ' 

(C.S) 
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where pis given by (4.22). The coefficients ak and bk are in fact equal, as will be shown 

presently. Both forms are useful. 

Historically, the coefficients bk and ak were obtained by formal expansions of the 

integrand in (A.12). 

In order to show that 

ak = bk, (C.6) 

we consider 

A,~c = ak/CJu B•= b,fc,, (C.7) 

where C k is some k-dependent factor. If the two generating functions 

00 00 

GA(z) = I; A,z•, G8 (z) = I: B,z•, (C.B) 
k=O k=O 

are identical for all z, _then the two original coefficients ak and bk must be identical for all 

k. The factor Ck is chosen such that the expressions (C.~) can be summed in closed form. 

Let us first consider 

A,=2_ 0 (k)f(1+p+a-+m) f(-p+a++k-m) 
k! ~0 m. f(l+p+a-) f(-p+a+) 

f(-a+-k+m) 
f(-p)f(1+p-k+m)' (C.9) 

which implies a constant of proportionality 

• (1)1+•+2• f(l + v)f(-a_- k) 
C•=(-1) 2 f(l+v+k) · (C.10) 

With k = j + m, the generating function is seen to factorize, 

GA Z = ~ f zm+; f(1+p+<r-+m)f(-p+a++j)f(-a+-j) 
( ) L,., . m!j! f(l+ p+ a_)f( -p + "+)f(-p)f(1 + p- j) m=O J=O 

= [f(1 + p+ a_)r(-p+ "+)r(-p)[-1Gf(zJG:(z), (C.ll) 
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where 

and 

oo m 
Gt(z) ~ I; ::, f(l+ p + "- + m) m. 

m=O 

= f(1 + p+ a_)(1- z)-•-•--1 

GA( ) = f z; r(-p+ "+ + j)f(-a+- j) 
' z ;=o j! f(1 + P- j) 

= sin(7rp) ~ ::!_ r(-p+j)f(-p+a++j) 
sin(""+) L,., jl f(1 + "+ + j) J=O 

sin(1rp) f(-p)f(-p+ "+) F( ) 
= sin(1ra+) r(l+a+) -p,-p+a+;l+a+iZ. 

(C.12) 

(C.13) 

In the last step we have used the reflection formula, and F is a hypergeometric function. 

Thus, 

GA(z) = sin(1rp) 1 -p-• _1 sin(""+) f(1+a+) (1 -z) - F(-p,-p+a+;1+a+;z). (C.14) 

The coefficients Bk are now given by bk and C,~c leqs. (C.4) and (C.lO)], 

1 1 0 (k) k-l f( -a- -l)f( -a+ -I) B,~ k! r(-a--k) L,., 1 (-1) f(l+p-l)f(-p-1)' 
l=O 

(C.15) 

where p can be either -JJ or I"- 1. With k = j +1, the generating function can be written 

as 

G8 (z) ~ sin(7ra_) f ( _1) 1 ~ f( -a- - l)f( -a+ -I) 
" •=o II f(1 + p -l)f( p I) 

oo zi . I: 1 f(l+ "-+I+ JJ 
j=O J· 

sin(7ra_) f(-l) 1 z1 f(-a--l)f(-a+-1) 
" l=o I! f(1 + p l)f( p I) 

. f(1 + "- + 1)(1- ·J-1-•--I 

= (1- z)-1-•- ~/(--~:/ -p) F(-p,1 + p; 1 + "+; -z/(1- z)). (C.16) 
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By reexpressing the hypergeometric function of argument -z/(1 - z) in terms of one of 

argument z [9], and using the reflection formula for the f-functions, we arrive at the form 

(C.14). We have thus proved (C.6). 

These coefficients are especially simple in the limit J..L --+ 0. Let us consider the quantity 

- I' 2 bk = 1m ( ) ) ( b,. ·-o l'f _,._ r(-a+ r 1 + v) 
(C.17) 

Only the l = 0 term contributes in this limit, and we obtain the series expansion for the 

modified Bessel function 111 [10], 

~ 

lv(•) = I; ~ •• •+2
•. 

k=O 

Note that this is exponentially increasing for large z. 

(C.!S) 

In the remainder of this appendix we discuss in the general case the asymptotic be

haviour of f 11 (:c) as z--+ oo. We shall see that for all four values of v, the functions / 11 (z) 

become exponentially large as z -+ oo. 

The behaviour of fv(x) for large z is determined by that of a11: (or b~c) for large k. 

This latter problem is most naturally studied through the generating function (C.14}. By 

(C.S) and Cauchy's theorem, 

Ak = ..!._, i GA (z) dz 
21r1 c zll:+l 

(C.l9) 

with the contour of integration encircling the origin (see fig. 6). The integrand has a branch 

point at z = 1. We shall deform the contour of integration as indicated by the dashed 

curve labelied C ' in fig. 6. 

For large k, the dominant contribution to the integral will come from the region near 

z = 1. We can then approximate 

z-k-1 = (1 + z -1)-11:-1 c:::- e-(lc+l)(•-1). (C.20) 
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We next use an identity of hypergeometric functions [9], 

F(-p,-p+ a+; 1 + a+;z) 

f(1 + a+)f(1 + 2p) F(-p, -p + "+; -2p; 1- z) 
f(1 + p + "+)r(1 + p) 

f(1 + a+)r(-1- 2p) (1 z)'+>•F(1 + p+ "+•1 + p;2 + 2p; 1- z), 
+ f(-p+ "+)r( P) - (C.21) 

and replace the F(a,/Ji"ti 1- z) by 1, their limiting values as z--+ 1. The integral (C.19) 

can then be approximated as 

Ak- _!.__ sin(~p) ( dz ,-(HI)(•-1) [ r(1 + 2p) (1- z)-p-1-o_ 
- 2~i sin(~a+) }0 , f(l + p+ a+)f(l + p) 

+ r(-1- 2p) (1 - •)•-·-]· 
r(-p + "+)r(-p) (C.22) 

The contribution along the arc at lzl --+ oo vanishes, and each of the remaining integrals 

is just the Hankel representation of the r -function. Thus, 

A,"' ~~~(~P\ {r:t + 
2P} jr(t + P + a-)r(t + P + "+W1(k + l)P+•-

sm 11'0:+ 1 + P. 

+ (p- -p -1) }• k > 1. (C.23) 

The coefficients of interest, a~~:, may now be obtained from eqs. (C.7) and (C.IO). 

Using also the Stirling formula for the k-dependent f-functions, we find that, ask -t oo: 

(
1 )2+v+2k sin(~p) f(l + 2p) a1c c:::- - - f(l + v) ::c:-;-::-'::::,'-::.P=, -;C,:-7-'+ 2 sin(~<>-) sin(~a+) f(1 + p) 

·if(!+ p + a_)f(l + p + a+)J-I e2• k-•k-l-v+p + (p- -p- 1). (C.24) 

The asymptotic behaviour of f 11(x) as z-+ oo can now be determined by replacing the 

sum over k by an integral, and evaluating the integral by the method of steepest descent. 
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Let us introduce the abbreviation 

z = - (~)2+v r 1 sin(1rp) f(1 + 2p) 
v 2 ( + v) sin(1r<>-) sin(1r<>+) r(1 + p) 

. [r(1 + P + a_)r(1 + P + "+W'· 

Then 

(1)" J,.,(x) ::::: z,.,x"' L _ e2kk-2.t-1-11+p x2k + (p +-+ -p -l) 
•--co k 2 

"' Zvz" I dk ex(>)+ (p- -p- 1), 

with 

x(k) = 2k + 2kln(z/2)- (2k + 1+ v- p) Ink. 

The saddle point is determined by 

d~x(k)l =O, 
k=k. 

which gives [neglecting terms of 0(1/k) and 0(1/z)[ 

Further, 

and 

k,=! 2' 

~ I 4 . 1 dk' x(k) = -- + o(-) k=k. x z2 ' 

I ,.,(x) ::::: Z,.,z"' ex(.t.) I dk e-(2/•)(.t-.t.):~. 
·-~ 

This leads to the asymptotic behaviour, 

fv(z) "' /;:'(z), 
·-~ 

37 

with 

u 1 ji;r sin(?TJL) • x =- - l+v e fv ( ) 2 2z ( ) sin(,-<>-) sin(1r<>+) 

(C.25) 
{

f(1-21') (z)-" 
· r(1 I') [r(1- I'+ a_)r(1- I'+ <>+W' 2 

r(-1+21') 1 (z)"-'} + r(l') [r(l' + <>-)r(l' +"+)I- 2 . (C.33) 

(C.26) 

(C.27) 

(C.28) 

(C.29) 

(C.30) 

(C.31) 

(C.32) 
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Appendix D. Series Expansions of t?>(x) and / 1(
5)(x) for small x 

In appendix B we have found that the solutions t?>(x) of the differential equations 

(4.15), which were given in terms of integrals, are bounded as x--+ oo. In this appendix, 

we give the corresponding series expansions for small x. Since (4.15) is of fourth order, it 

follows from (C.!) that 

t.Ul(x) = c\i)fv.(x) + clj)f-v+(x) + c¥lfv_(x) + c':/lf-v_(x). (D.!) 

The coefficients c~i) depend on the choice of parameters v, v, and p adopted for Jli>(x). 

These relations will be a.nalogous to the relationship between Bessel functions [10], 

Kv(x) 
~ 

2sin(~v) [Lv(x)- Iv(x)]. (D.2) 

The f±v(x) and l±v(x) all grow exponentially for large x, whereas / 1(j)(x} and Kv(x) 

become exponentially small as x --+ oo. 

We need the formulas for two linearly independent Jfi>(x). Let us fix 

p=-J.L, 

and consider / 1(
1)(x) and Jt'>(x). Our approach is to evaluate 

t?l(x) = f dyy'+•H~1 l(xy)(! + y 2)-• F(a,b;c; -y2) lc, 

(D.3) 

(D.4) 

to leading order for small x, in order to determine the coefficients c}1
) by recognizing the 

various leading powers of fv(x} at small x. By symmetry arguments we shall later obtain 

the coefficients c~6} from c(1l. • • 
The following evaluation is only valid for v and D both pure imaginary. While this is 

not the case for the physical values (4.24), we assume that the validity of our formulas can 

be extended by analytic continuation. 
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For small !xy!, we can approximate 

H~1 l(xy) "'R., 

H v = A 1(xy)• + A 2(xy)-•, 

with [10[ 

,-i•v (' )v 
A,= -[isin(~vW' r(l + v) 2 • 

I (' )-v A,= [isin(~vW' r(l- v) 2 · 

On the other hand, for large y, 

with [9] 

provided 

(I +y2)-"F(a,b;c;-y2) "'F, 

F = Asy-2(jj+o) + A4y-2(jj+b)' 

r(c)r(b- a) r(l+ v)r( -v) 
A,= r(b)r(c- a) = r(l "+ "-)r(,. + "-)' 

_ r(c)r(a- b) _ f(l + v)f(v) 
A,- r(a)f(c b) - f(l "+ "+)r(l' + "+)' 

[arg(y'JI < ~. 

We will thus use the following approximation 

f dyy'+•[H~1l(xy)- HvJI(! + y2)-• F(a,b; c; -y')- F'] "'o. lc, 

(D.5) 

(D.6) 

(D.7a) 

(D.7b) 

(D.8) 

(D.9) 

(D.!Oa) 

(D.!Ob) 

(D.ll) 

(D.12) 

At small !yJ, the first and/or the second factor is small, while at large Jy!, the last factor 

is small. It follows that 

t."l(x) "'I1 +I,- I,, (D.13) 

40 



where 

1, = f dyy~+"HS'l(zy)F, 
lc, 

12 = { dyyl+vRv(l + y2)-~-'F(a,b;c;-y 2), 
lc, 

1a = { dyyl+vjjvF. 
lc, 

These three integrals can all be evaluated analytically. 

(D.14) 

(D.15) 

(D.16) 

We first consider 1" and divide the contour of integration into the two parts Co. and 

Cb, as shown in fig. 7. On 0 0 the condition (D.ll) is not satisfied. We shall therefore 

make use of the fact that the left-hand side of eq. (D.S) is symmetric under y +-+ -y, and 

evaluate F on C ~ instead of on C a· We thus have 

On C ~ (y = Re-i""/"): 

I'= Aaei(Hv+O)w/<t R-2-v-o + A
4
ei(2+v-O)wj.f R-2-v+O, (D.17a) 

On c, (y = Re'•l•): 

F = Aae-i(Hv+O)w/4 R-2-v-o + A
4
e-i(2+v-o},../.f R-2-v+D, (D.17b) 

having inserted for a and b the values (4.23). 

Further, we note that for smallJyJ the integrand behaves like JyJ raised to an imaginary 

power (v and D are here assumed to be imaginary). The contours C ~and Cb can therefore 

be extended down to the origin, 

It= loo dR R-1-D Aa[e-i""J/4H~t}(zRei""/") 

_ ei,..(v+O/<t)H~l)(.zReai,../4)1 + (P +-+ -P). (D.18) 

With t = xR, we obtain 

It= zD Aafooo dtt-l-Pje-iwPJ4n£I>(tei,../4) 

_ eiw(v+P/4}H~l)(teaiwf4)J + (P +-+ -o). (D.19) 
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Next, we express the H~1 ) in terms of modified Bessel functions [10], 

Kv(z) = !i11'ei,..vf:iH£1>(zeiwf2), (D.20) 

and use (see eq. 6.561.16 of ref. ]11]) 

ioo zPKv(az) dz = 2P-14-p-Ir(1 + ~ + ")r(l + ~- ") (D.21) 

to get 

1 = _ (=-)" sin("a+) r(-a+)r(a-)r(1 + v)r(-o) 
1 2 ,.. r(t I'+ a_)r(l<+ a_) 

_ (=-)-•oin("a-) r(-a_)r(a+)r(t +v)r(o) 
2 " r(t I'+ a+)r(l' +a+) · 

(D.22) 

The remaining two integrals we do simultaneously, in order to exploit the cancellations 

at large JyJ. In the variable w = y2, the contour of integration is indicated by the solid line 

in fig. 8. We deform the contour as indicated and note that, since I' is the large-argument 

limit ofF, there are no contributions to 12 -Is along the a.rcs AB and EF. Also, because 

11 and Dare imaginary, there are no contributions near the origin (along CD). We are left 

then with 

1:~- I a= ! f. dwwvf2[A 1z"'w"'l2 + A 2z-vw-vf2] 
BC+DE 

·](1 + w)-•F(a,b; c; -w)- Aaw-•-•- A,.,-•-•]. (D.23) 

The terms in this expression with coefficients Aa and A 4 give integrals of the type (with 

t = ]w]) 

lim JR dt t-l+w = lim _!. (Rw - £141). 

J:::~ ( ,r::~ w 
(D.24) 

Since w is pure imaginary, these vanish. 

In the y plane, there are three branch points at ±i and 0. We talr:e the first two 

corresponding branch cuts to be along the imaginary axis extending to infinity, and the 
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third one to be the negative real axis. Thus in the w = y2 plane, there are two branch 

cuts, one from -oo to -1, and the other from 0 to +oo, both along the real axis. The 

phase of w is accordingly 0 along DE and 211" along BC: 

/2- Ia = 1 fooo dt {!A1z"t" + A2z-"j- [A 1 z"e 2~~"i"t" + A2:z:-"J} 

· (I + t) -• F(a, b; c; -t). 

The A2 contributions cancel, and we are left with 

l2-ls= ~z"A1(l-e2riv) 100 

dtt"(l+t)-~F(a,b;l+v;-t). 

This integral gives (see eq. 7.512.10 of ref. [11[) 

(x)" sin(?rl') I,- I 3 = 2 -,..-r(-a-)r(-a+), 

where we have inserted the values for a, b, and A 1• 

To summarize, for small z, to leading order, we then have 

t?l(x)"' (~)"sin~l') r(-a_)r(-a+) 

_ (:".)• sin(1ra+) r(-a+)r(a_)f(l+ v)r(-o) 
2 " f(l I'+ a_)f(l' +a_) 

_ (=-)-• sin("a-) r( -a_)r(a+)f(l + v)r(o) 
2 " f(l -I'+ a+)r(l' +a+) ' 

valid for v and V both pure imaginary. 

(0.25) 

(0.26) 

(0.27) 

(0.28) 

We need these formulas for two linearly independent functions. Let us now turn to 

j = 5 [cf. eq. (0.4)[: 

ti'l(x) = f dyy'+•H51l(xy)(!+y')-•u,(-y2) lc, 

= f dyy'+•(-y 2)-"H51l(xy)(! + y2)-• 
lc, 

· F(l - p.- a_, 1 - p.- a+i 1 - v; -y2) 
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(0.29) 

where we have taken u 5 from eq. (4.21). The phase factor must be chosen to allow for a 

cut along the negative imaginary axis (starting at the origin), i.e., 

(-y2)-" = eir"(y2)-". (0.30) 

Since [10[ 

H£1>(xy) = e-ill'v H~1J(xy), (0.31) 

the phases cancel and it follows that 

ti'l(x) = f dyy 1 -"H~~(xy)(! + y2)-•F(l-l'- a_, I-I'- a+; I- v; -y2). (0.32) lc, 

We note that the integrand is the same as for J?>(x), with the replacement (v +-+ -v). 

Hence, 

ti'l(x) = fi'l(x; v- -v). (0.33) 

An expansion of / 1(
6)(z) in powers of z will thus yield as the first terms, 

ti'l(x) = (~r· sin~ I') r(a+)f(a_) 

+ (=-)• sin(?ra_) r(a_)r(-a+)f(l- v)r(-o) 
2 ,.. f(l I' a+)r(l' a+) 

+ (~)-• sin("a+) r(a+)r(-a )f(l- v)r(o) 
2 " f(l I' a_)r(l' a_) · 

(0.34) 

The above analysis was aimed at determining the leading powers. Since we know on 

general grounds that relations of the type (D.l) exist, we may replace the various leading 

powers by the complete series. Thus, we obtain from eqs. (C.l) and (C.4): 

fv(x) =! (:".)" sin(,..l') f(-a-)r(-a+) + O(x"+2). 
2 2 " 

(0.35) 

By comparing the leading terms, we are led to the foilowing results: 

t?l(x) = 2/.(x)- 2sin("a+) r(! + v)f( D) 
sin(,..l') f(l I'+ a_)r(l' +a_) t.(x) 
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- 2sin(~<>-) r(l + v)f(t>) 1-o(x), 
sin(~l') r(l I'+ "+)r(1<+ "+) 

(D.36) 

t,<•>(x) = 2/-v(x) + 2si~("<>-) f(l- v)f(-t>) fo(x) 
sm(?rl') r(l- I'- "+)r(l'- <>+) 

2sin("a+) r(l- v)f(<>) I 
+ sin(~l') f(l-1'- a_)f(l'- <>-) -o(x). (D.37) 

The fact that these combinations of series are actually free of terms that behave like 

e11 as z--+ oo can be checked using the uymptotic form, eq. ·(C.33). 
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Appendix E. Summary on the Basis f( 1)(x) and t<•>(x) 

In this appendix we shall give explicitly the functions f( 1) and f(5) which we have used 

as a basis in our description of the interior region, together with some of their properties. 

These functions are actually the functions 1P> and 1?> of Class I, described in appendix 

A, with particular choices for the parameters: p = -p,, 11 = v+, and D = v_ = i/3. 
In order to get more compact fdrmulas, we shall here use the abbreviations* 

where 

<>± = !(v+ ± i{J), 

v+ = [(~<'+4A2)'''+1''+ !I'''· 
fJ = 1(1'2 + 4A')''' -I''- !I'''· 

and with [61 

I'= [(j + !l'- q'l'''· 
The quantity fJ is real, i.e., 

]A]> !(I''- !l = ![j(j +I)- q'l· 

For small x we have the convergent expansions [cf. eqs. (D.36) and (D.37)1 

sin(?ra+) f(l +v+)r(-iP) S(iP v+;x) t<•>(x) = 2S(v+,iP; x)- 2 sin( .. l') f(l I'+ a_)f(l' + <>-) ' 

sin( .. a_) f(l + v+)f(iP) s(-iP,v+; x), 
-

2 
sin("l') r(l I'+ "+)r(l' + "+) 

. sin( .. a_) f(l- v+)f(-iP) S(i{J,v+;z) 
t<•>(x) = 28(-v+••P;z) + 2 sin("l') r(l I' a+)f(l' "+) 

+ 2 sin(~a+) f(l- v+)r(iP) . 
sin("!') r(l I' a_)r(l' _a_) S(-•iJ,v+;z), 

* This notation has been used in a more generic sense in the other appendices. 
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(E.!) 

(E.2a) 

(E.2b) 

(E.3) 

(E.4) 

(E.s) 

(E.6) 



with (cf. appendix C) 

~ 

S(v,V;x) = S(v,-V;:z:} = f,.,(x) = Lhxv+lk, 
k=O 

__ •(~)t+v+2k 2:._ f(l + v) 
b,- ( I) 2 k! f(l + v + k) 

• (k) ._,r(-}v+ !v-l)f(-!v- !v-1) . L 1 (-I) f(l-~>-/)f(l'-1) . 
1=0 

(E.7) 

(E.8) 

At large :z:, it is convenient to make use of the asymptotic expansions found in ap

pendix B. If we use two Kummer relations [9J, we can express J(l) and f(6) in terms of 

I(') and 1('), 

(1)( ) _ r(I + v+)r(-1 +21') l('l(x) 
I x - f(l' + a_)f(l' + "+) 

r(I + v+)f(l- 21') 1<•l(x), 
+ f(l- I'+ "+)f(! I'+"-) 

('l(x) = f(!-v+)f(-1+21') l('l(x) 
I r(l' "+)r(l' " ) 

r(I- v+)f(l- 21') 1<•l(x), 
+ f(l- I'- "-)f(l I' "+) 

where (cf. appendix B) 

( 
2 )1/2 f('l(x) = wx .-• oin(wl') 

. L L f(l- I'+"++ n) f(! -I'+"-+ n) f(2- 21') 
n-o m-o r(I I'+"+) f(l I'+ a_) f(2 21' + n) 

(-!)• f(-!+1'-V+-n+m) 4-m (2)1-•+•+m 
·--r(I-~>+n) -

nf r(-!+Jl-V+-n-m) mf % ' 

(E.9) 

(E.IO) 

(E.ll) 

l(s)(x) = (~) 1/2 .-• sin(wl') " " f(l' + "+ + n) r(l' + "- + n) f(21') 
wx f:'o ,;;:, r(l' + "+) r(l' +a_) r(21' + n) 

(-!)• f(!-1'-V+-n+m) 4-m (2)•+•+m 
·--f(l'+n) - - . 

nJ r(~-Jl-V+-n-m) m! X 
(E.l2) 

47 

As pointed out in appendix B, J(2) and f( 6 ) are related. If we let p, +-+ 1- p. (but leave 

v + and f3 unchanged), then we have 

l(')(x) - l(')(x). 

Since v+ and /3 are real, a_ = a:f., and the basis is real, 

1(1)(•) = 1<1>(x)', 

1<•>(x) = 1<•>(x)'. 

Also, the two functions are related by 

"+ +-+ -v+: l(ll(x) - f( 6l(x). 

(E.!3) 

(E.l4) 

(E. IS) 

The functions f(l)(:z:) and fC 5>(x) may be thought of as generalizations of modified 

Bessel functions. In order to illustrate this relationship, we shall multiply J(l)(:z;) and 

f( 5l(x) by suitable constants, and consider the limit p.-+ 0. We first note that /,.,(x) is a 

generalization of the modified Bessel function l 11(z), 

lim 2[,r(-iv + ~v)r(-!v- !v)f(l + v)[-1 lv(x) = Iv(x), ,_, (E.l6) 

as follows from (C.l7) and (C.!8). In (E.l6), we have (v,V) = (v+,iP), (-v+,iP), (iP,v+), 

or ( -iP, v+)· 

Let us then define the real functions 

f(l + a_)f(l + "+) 1(1l(x), 
k(ll(x) = 2f(l + v+) (E.l7) 

f(l- "+)f(l- "-) l('l(x). 
k('l(x) 2f(l v+) (E.l8) 

This is just a convenient rescaling of J{l)(:z:) and f( 6)(z). These functions (E.17) and 

(E. IS) have simple limits as 1J.-+ 0, 

lim k< 1>(x) = lim k(6l(x) = K;p,(x), 
~-o ~-o 

(E.l9) 
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with K iPo a modified Bessel function and 

Po= (2JAJ- ~)'i>. (E.20) 

In fig. 9 we compare plots of the functions k(1)(•), k(5)(z) a.nd K;p(z) for A= 3, I'= 10-• 

and I' = v'i (The latter case corresponds to JqJ = i and j = !.) 
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TABLE HEADING 

Table 1. Binding energies f;n = (M- E;n)/M for a few values of A= ~K, j, and n, with 

lql ~ ~-
Exact: Numerical results of paper I [2], 

WBA: Weak-binding approximation, eq. (6.13). 

{The values for j = 0 are from table 1 of paper III [5].) Where both entries are 

missing, the state does not exist. 
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FIGURE CAPTIONS 

Fig. 1. The contour of integration C 1 that defines the functions fUl(x) of eq. (4.25). 

Other contours are discussed in appendix A. 

Fig. 2. Plot of binding energies (M- E;n)(M versus A = ix:[q[ = ~K:, where 1t is the 

extra magnetic moment. The binding energies are as given by (6.13), with j the 

angular momentum. There are also bound states at E;o = 0 {3]. 

Fig. 3. Squares of normalized radial wave functions hl, h~, hi, and h~ versus p. These are 

defined by the decomposition (2.1). For large p they are given by (3.12), whereas 

for small p they are given by (4.29). The parameters considered are lql = !, j = 1, 

and A = 2. Results for three values of n are given. The minima are actually zeroes 

of the hi. 

Fig. 4. Same as fig. 3 but with j = 2, A = 3, and for n = 1 and 2. 

Fig. 5. Contours of integration in the complex y-plane. The branch singularities are 

indicated by crosses. 

Fig. 6. Contours of integration used for the evaluation of A~~:. 

Fig. 7. The contour C 1 divided into the t'Yo parts C., and c," which make angles of ±45° 

with the real y-axis. Note that the condition (D.ll) is not satisfied on C.,. 

Fig. 8. The contour C 1 as it appears in thew= y2 plane (solid, A~DF). We deform the 

contour as indicated by the dashed curves (ABCDEF). The phase of w = y2 at E 

and B is 0 and 21r, respectively. 

Fig. 9. Comparison of the functions k(ll(x) and k(5l(x) of (E.l7) and (E.l8) with the 

modified Bessel function Kip(x) for A = 3 and a) p, = to-" and b) p. = ..;2 

(!ql ~ ~and j ~ !). Solid: K;p(x); dashed: k(ll(x); dash-dotted: k(5l(x). In a) 

Kip(x) and k(ll(x) are indistinguishable. 
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Table 1 

Binding energies fjn = (M- E;n)/M for a few values of A= !..c, j, and n, with lql = ~ 
Exact: Numerical results of paper I [2J, 
WBA: Weak-binding approximation, eq. (6.13). 

(The values for j = 0 a.re from table 1 of paper III [SJ.) Where both entries are missing, 
the state does not exist. 

Method A= !..c 
I 2 5 10 20 50 

Exact 7.246 ·10-• 1.622 ·10 2 7.834 ·10-2 

WBA 7.243 ·10-• 1.625 ·I0-2 7.826 ·I0-2 
Exact 6.656 ·10-8 5.343 ·10-2 1.557 ·10-1 

WBA 6.634. IQ-3 5.339. I0-2 1.530 ·I0-1 

Exact 6.238 ·10-2 1.810 ·I0-1 3.222 ·10-1 

WBA 6.077 ·I0-2 1.754. I0-1 2.992 ·I0-1 

Exact 4.819 ·10-• 3.701·10 3 2.284 ·10 2 8.387 ·10-2 

WBA 4.819 ·10-• 3.707 ·I0-3 2.293 ·I0-2 8.376 ·IQ-2 
Exact 1.095 ·10-3 1.993 ·10-2 6.747 ·10-2 1.634 ·10-1 

WBA 1.095 ·IQ-3 1.999 ·I0-2 6.755 ·10-2 1.603 ·10-1 
Exact 2.499 ·10-2 1.087 ·10-1 2.051·10-1 3.308 ·10-1 

WBA 2.490 ·IQ-2 1.078 ·I0-1 1.990 ·I0-1 3.066 ·10-1 

Exact 9.915 ·10 1 7.155 ·10-· 6.769 ·10-3 2.730 ·10 2 8.739 ·10-2 

WBA 3.242 ·IQ-10 9.915 ·I0-7 7.159 ·IO-• 6.786 ·I0-3 2.741·10-2 8.725 ·I0-2 
Exact 8.498 ·10-• 6.721 ·10-3 2.994 ·10-2 7.612 ·10-2 1.679 ·10-1 

WBA 4.171·10-13 8.499 ·IO-• 6.742 ·IQ-8 3.009 ·I0-2 7.619 ·I0-2 1.647 ·10-1 
Exact 5.367 ·10-7 7.238 ·10-3 6.306 ·10-2 1.344 ·l0-1 2.188 ·10-1 3.361· I0-1 

WBA 5.367 ·I0-7 7.285 ·IQ-3 6.350 ·I0-2 1.334 ·I0-1 2.ll8 ·10-1 3.ll0 ·I0-1 

Exact 4.134 ·10-7 3.621·10-• 1.423 ·10-3 8.478 ·10-3 2.948 ·10-2 8.910 ·10-2 

WBA 4.134 ·I0-7 3.622 ·IO-• 1.424 ·I0-3 8.503 ·IQ-3 2.961·10-2 8.893 ·IQ-2 
Exact 4.776 ·l0-5 9.281·10-• 1.061·10-2 3.479 ·10-2 8.017 ·10-2 1.702 ·10-1 

WBA 4.776 ·IO-• 9.290 ·IO-• 1.065 ·J0-2 3.496 ·I0-2 8.020 ·I0-2 1.668. 10-1 

Exact 5.488 -lo-• 2.361 ·10-2 7.932 ·10-2 1.452 ·10- 1 2.249 ·10-2 3.386 ·10-1 

WBA 5.519 ·10-3 2.383 ·IQ-2 7.968 ·10-2 2:.:.437 ·J0-1 2.173 ·10-2 3.130. 10-1 

0 

-i 

Figure 1. 
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