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Abstract 

A systematic nonperturbative formulation of quantum gauge theories is given, 

which defines the renormalized theory as an appropriate limit of a lattice­

regularized one. First some features of the regularization in particular with 

respect to fermions and to gauge invariance are discussed. The conditions for 

the existence of the 1 i mit, which are those of genera 1 renorma 1 i zabil i ty, are 

worked out in detail. A fundamental parameter singularity and basic equi­

valence relations are important features. Mass scales and RG invariants are 

defined in a general way. Directly measurable quantities and order parameters 

are considered. Various types of P functions are studied. The present know­

ledge about fundamental singularities in specific theories and the urgent need 

to investigate ones with matter fields are discussed. The consequent manner of 

applying KW transformations to QFT and the occurring restrictions are pointed 

out. An additional condition arising for correlation functions and its 

implications for particular transformation types are considered. Using an 

appropriate auxiliary-parameter representation only long-distance properties 

of the action enter QFT and a characterization of its parameters becomes 

possible. The need of investigating suitable classes of KW transformations is 

stressed. 
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1. Introduction 

It is rather clear by now that particle physics is to be described by 

quantum gauge theories. For this purpose, however, perturbative quantum field 

theory is actually not sufficient. In addition to the obvious defects that 

masses cannot be calculated and that confinement cannot be explained, 

increasingly also the analysis of amplitudes suffers from scheme-dependence 

ambiguities and from unknown nonperturbative effects. A severe conceptual 

drawback is that the very definition of the theory rests on the perturbative 

expansion. T-hus, a true ly nonperturbati ve framework is urgently needed. This 

would also allow to attack ·unification problems from the dynamical side. 

Renormalization is crucial for the definition of a quantum field theory 

(QFT). Historically it means the removal of divergences from the terms of the 

perturbative expansion. The more appropriate view is to consider it as the 

definition of the theory by a particular limit, which is a definite mathe­

matical concept. Any limit is based on a -sequence of certain quantities. In 

the present context the respective quantities are so-called regularized 

functions. The regularization then depends on the numbering of the sequence. 

A nonperturbative formulation clearly must be based on a nonperturbative 

regularization. Then for gauge theories in four dimensions so far the only 

possibility is lattice regularization. The lattice will be considered strictly 

in this sense here (which is to be contrasted to the applications where it 

provides approximations or models). Therefore, one should keep in mind that 

not the lattice quantities but only their limits are of physical interest. 

The lattice formulation of gauge theories [1,2] has the additional virtue 

of allowing gauge-invariant quantization. Thus, gauge fixing with its un­

p 1 easant features such as ambi gu i ties in certain gauges Q1 and operator 

ordering problems [4] can be avoided. In correlations of variant fields gauge 

fixing can be shown to produce implicitly a highly artificial average of 

invariant fields [5] . Instead of this in the gauge-invariant formulation one 

has to specify appropriate invariant fields (_6]. Such choices are expected to 

be restricted by the limit. 
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A difficulty which appears in lattice regulariZation is the so-called 

fermion degeneracy [7]. There are two ways to handle the additional degrees of 

freedom: to suppress them in the limit [7] or to interpret them {after some 

reduction) in a phenomenological manner as flavors [8]. Because for the latter 

view a consequent justification is missing, here the first way is used. The 

suppression mechanism will later be seen to fit rather naturally into the 

general representation of the limit. A hint where to look for a ·deeper under­

standing comes from the direct relation to the axial-vector anomaly [9,1Q). 

Since the lattice provides the only nonperturbative regularization, it is 

important to be able to include ileutrinos too. For this purpose the most 

general form of the suppression term for ordinary fermions (!.lj can be 

extended to include handed fermi ons as 1 imi ti ng cases LJ.2J, which can be cast 

into a simple representation with one additional parameter [13]. 

The envisaged general limit [6,1{l which defines QFT in a nonperturbative 

way, due to the lattice regularization used is a particular type of continuum 

limit. Its ultimate check can only occur by comparison with eXperiment. In its 

f.ormulation the aim is to use a minimum of ingredients and to start as much as 

pass i b 1 e from first pri nci p 1 es. Particular features will be that parameter 

singularities play a fundamental role and that the procedure is based on re­

normalization group (RG} invariants. The existence of this limit means general 

(nonperturbative} renormalizability. 

Some guide for the lattice formulation is that it should also lead to the 

usual classical and perturbative results. The classsical continuum limit is 

essentially that of the action alone. The perturbahve one gives perturbative 

QFT with the lattice providing a particular regularization. Because it occurs 

for the terms of an expansion, which poses a problem of interchange of limits, 

and because the expansion is at best asymptotic, the mathematical nature of 

the perturbative limit for any regularization is rath~r unclear. Furthermore, 

it does not refer to parameter singularities and (being based on normalization 

conditions for correlation functions) is not RG invariant. 
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It appears worthwhile to remember here that the RG of QFT is that of trans­

formations between different fixings of the scheme. The concept has been 

introduced by Stueckelberg and Peterman [15] for continuous transformations in 

the perturbative framework. The RG of Gell-Mann and LoW (16] is the dilatation 

subgroup of this· continuous _one. In the nonperturbative formulation a precise 

definition of the general RG (also including discrete transformations) will be 

given ~.1~. 

Because of some formal similarity to the dilatation subgroup of the RG, the 
Kadanoff-Wilson (KW) transformations (liJ in statistical mechanics are called 

RG transformations, too. This will not be done here since both concepts will 

be used and must not be mixed up. The consequent use of KW transformations in 

QFT will basically involve a rescaling within the correlation functions which 

occur in the definition of the QFT 1 imit. Therefore a study of (gauge 

invariant) transformations of correlation functions becomes necessary which 

goes beyond the usual considerations of transformations of partition 

functions. 

In the following a systematic formulation of the indicated nonperturbative 

framework wi 11 be given. The knowledge presently avail ab 1 e about the 

respective structure of theories of physical interest will be discussed. The 

way in which KW transformations become useful for QFT will be pointed out. 

In particular, after specifying the lattice formulation in sect.2, the 

general limit will be considered in sect.3. Then in sect.4 the information 

available about particular theories will be discussed and in sect.5 the 

aspects of using KW transformations in QFT will be treated. Finally in sect.6 

some general conclusions will be collected. 
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2. lattice formulation 

2.1. Preliminaries 

2.1.1. Definitions and remarks 

A hypercubic lattice is used since more complicated lattices so far 

appear to have no advantage. Euclidean space of four dimensions is considered, 

the results in which are to give those in Minkowski space properly by analytic 

continuation. The quantities to start from are correlation functions 

<c-) = f es iJ (1.1 1 
Jes 

where Sis the action and cr some function of fields. The abbreviation J stands 

for the product of all integrations, i.e. gauge-field group integrations j, 
fermion Grassmann integrations J and, if present, scalar-field integrations\) j. 

~ ¢ 
A typical example for Sis the QCD-type action 

s =- L::.;y.(z:rr,D,-'1 w,)+m) 'lV 
n' ,~'~ " 'rl

1
n 7"' 

( 1' 11 

+ ~~ ~ Tr ( Ur + L~t- 2 ) 
where 

Up = u:" u;,n+e U~,n+> U," 

D.,_"'" = (u:"' &, . .,.:; '" - U." bn',n+~) h ( 1. 3 I 

'W,n'n = (u:n' bn'.f~,n + u.,.h bn',n+~- 2 t•n) h 
and 

'\ = r exp (i/(58) wilh r>O. ( 1. 4 I 

The term f'1.W'l in (2.2) serves to suppress unwanted fermion degrees of 

freedom. It has been introduced for r=l and9=0 by Wilson [7] and first given 

in its general form by the present author [11]. It breaks the chiral symmetry 

which the classical theory otherwise would have for ffi=-0 (which, however, in 

the quantized theory anyway does not persist). It is interesting that (2.2) 

for m=o is invariant under 



'"'""' r'l'_.e o"l' 
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- - iOI..(s-"f _, "f e ) e __, e- 2<X 

i.e. under a generalized chiral transformation. 

(2.5) 

It is important to realize that the lattice formulation does not involve a 

length. The latter is only introduced by the limit prescription which is 

imposed. Thus, for the classical limit (i.e. for that of Salone)" one uses the 

correspondences 
A /'- -1 A -1tv 

X?. :; o. n., ) k,. := a o<,. J \IV\ = o. I'Y'o 

l ), A -1 j_ 
"t'(X) ~ 0-;:1'• l '/'(X)= 01 'j'• (2.6) 

A ( ) ~ -1 D I U ,' g>• 3 i\ )( = Q . Di\Y'I Wne.r('. ., ..... = e . 
to introduce the lattice spacing o. Then for a~ 0, one can e:g. check that 

(2.2) gives the usual continuum action. 

2.1.2. Schwinger-Dyson equations and Ward Takahashi identities 

The integrations in (2.1) have invariance properties which are not only of 

conceptual importance but also give rise to relations [5,11} useful in 

practice (and needed in the following). 

Schwinger-Dyson equations for fermions follow from the fact that (1J/1Hy,/)=0 

such that because of~= I:; ~"f .. ~ ~.if ... ~ one has the general relation 

Inserting F 

equation 

fLF=O. 
'""N "' esa' (with S depending on products -if·F 'f•f 

J es(~ ir+ ~) = 0 
""f·f "'"H 

"f 

I 2. ?l 

) one gets the 

(2. 8) 

and analogous relations follow by using right derivatives instead of left 

derivatives. 

To obtain Schwinger-Dyson equations for ·gauge fields as well as all kinds 

of Ward-Takahashi identities one has to start from transformations of the 

fields which leave f invariant. This allows to define general derivatives 
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'OJF = lim (F(y',f;U'J-F("f,f,u;\;~ , 
E. .... 0 ') 

(2.9) 

where f parametrizes the transformation and J denotes the particular one 

considered. These derivatives have the property 

j 'd
3
F =- o (2.10) 

Inserting again F = e5rr one obtains 

J e5 
( ('a

3S)a + '03 CJ) == o (2.11) 

For example, the transformations of the gauge field at a certain link 

exploiting the right invariance or the left invariance of the Haar measure 

1 ead to "right" or "1 eft" Schwinger-Dyson equations. respectively. Gauge type 

transformations and chiral transformations lead to various kinds of Ward­

Takahashi identities. It is to be noted that from these relations at the same 

time the proper definition of currents arises. 

2.2. Fermion considerations 

2.2.1. Propagator limits 

In order to get definite criteria for an adequate fermion treatment one has 

to see where precisely the naive description goes wrong. For this purpose 

first the free propagator 

G,.,•n 
f 5 -e -11'•, "Y. 
"/' 

- f e5 

"' 
(2.12) 

(with all u,.;;1 in (2.2)) 

on an infinite lattice is 

is considered for tt= 0. Its Fourier representation 

rr rr 

G"'n =- (2~)•J...Jd~ 
-iT -rr 

i.ct•(n'-t~) 
e 

i ~(7. Sino.:,_-m 

2:!;1~2.0(~ +W\'L 
• 

I 2 .13) 

which with integrations over the full period of sin oc,. is not yet in a 

reasonable form for the limit. However. by subdividing and shifting of 

integration intervals one gets the equivalent representation 



11" J[ 

j r' , '· G-"." =- (?.rrl* • ··Jd"' 
where 

11" _![ -"i 2. 

io~.·(n'-n) 
e 
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~ ~?. (n'-YI) i;>. Si t1 c<,_ - ~ (1'1
1

-111) ~ 

~ sln-tol.?. + W.'-
> 

fb Lf n11 odJ J Ylr eve.V\ rr "' ?. ) 

'f,(n)= 0 othen./1'se 

r· if o.ll "r eve"' 
'f c~J "" o other-w't·se 

( 2 .14) 

( 2 .15) 

(2.16) 

which is appropriate. Realizing that the limit is to be taken in the sense of 
distributions and using (2.6) one readily sees that o\ 1 G .... ·., has the correct 
1 imit. 

The averaging over the 16 corners of an elementary cube, which in the free 

case is due to the application to a test function, in perturbation theory 

still wor~s in- diagrams without multiplication of fermion propagators. How­

ever, wrong results arise for fermion loops. Thus, at this point one gets a 
true criterion [11]. 

It is to be stressed that considerations of the spectrum on the lattice do 
not help within this respect. Actually, it is not too difficult to construct 
modified actions which do not show a spectrum degeneracy, which however, 
still run into trouble with fermion loops. Thus, the simple example given is 
typical for the general situation. 

The way out is to use~ ::f 0 in which case one obtains from (2.12) 

G-,.1"1 
=: - _1_ d\f (,d•(.,..'-h) l ~ 'i'" .S.Lt'l 0<;~,- W\ - We. 

f
rr /rr , . . ~ -<t,e 

If. ... IX e 
(1.rr) Z::s,'..,'o<,.,_;;;c+ w(W+2C;;ccse) 

_:rr -rr ?. 

I 2 .17) 

where w = r L: (1 - cosc<1 ). Again by decomposing and shifting integration 
' intervals one achieves integrations from - '!.f to f. Then 15 of the 16 arising 

terms are suppressed in the 1 i mit due to the sign change from 1 - cos 0(,, to 

1 +cos ex) caused by the indicated shift. Then the correct results are obtained 
also for fermion loops in perturbation theory. Therefore, the formulation with 

~~0 appears to be appropriate for the nonperturbative case, too. 
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2.2.2. Axial-vector anomaly 

A second criterion for the fermion treatment is that one must get the 

correct anomaly. To check this it is important to start from the properly 
defined Ward- Takahashi identity in which currents and other quantities are 
unambiguously determined. For the transformation f ... -+ e~C<nfsllf' .. lfr,-"Af .... eJ·oc..,fr. 
(2.9) applied to (2.2) gives 

( ; " ) '0~ s = - f J,,- ], i"-' + 2' w; ;;p, (" "~'" +!::. (2.18) 

where 

] :, = ~ ( <~jqr,;r, U,: 'fo+s + f"•~ t• ~ U," "fh ) ( 2' 19) 

and 

/::, = - L f,; ( f,, ~ (> W'"·" "Ji" + Af-1 (>IN,"""'!',') . (2.20) 

In passing it is to be noted that "point-splitting" forms of currents arise 
here automatically while in conventional approaches they must be introduced by 

hand. 

For simplicity now 0' in (2.11) is specialized to 0' = 1, though general a' 
can straightforwardly be treated too 0o,ll}. One then has 

j e s (~ ( ]: -J:"-') - 2. ~;;:; f" (>"/'" J = J e s Ll 
~ ~ 

(2.21) 

By using the Schwinger-Dyson equation (2.8) the r.h.s. of (2.21) gets the form 

)
' 5 
e L =' L r.-[ f,.(c;:X+X&\o] fe' (2.22) 

"'' "i' 
where 

X = '\~vi~ G == ( ~ (g-, D,- '\IV,)+;;; t (2.23) 

From (2.21} and (2.22) it is seen that the correct anomaly occurs if one has 

[10, 11] 
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0-' t{g-,-(G-X'+XG-)nn] ~ 
'-

1._,_ Tr L Er"'S F.r)!) F.g (x) 
1b Ti t•"·'•S (2.24) 

To establish the connection between degeneracy suppression and anomaly it 

suffices to prove (2.24) for an external field u~l'lusing (2.6) and keeping g'l. 

fixed as has been done [10,18]. 

It is to be noted that at the quantized level in any formulation an 

additional regularization is needed which breaks ·chiral symmetry and gives 

rise to the anomaly. The particular feature here i-s that the respective 

regularization at the same time is related to the degeneracy phenomenon. 

2.2.3. Neutrinos 

With ·the replacements 

(> -7 t· 
1 + If• see ?( 

cos X where :!!"<'X<:!r .z 2 

and 

"!' ~ t,; r f -4 ~ :..~· f 
in (2.2), instead of (2.17) one gets the free propagator 

G- ' = - ~ J~-;:~ 
h n (2lf)• 

-n -rr 

l«·(~l..~-~) 
e 

. ..,., 1+/{>si,"X , wX(~ -cf,8 
L.1lt"l), '1.. ~(.,v~tx"- T m+We ) 

:2si~'l.D(,_+M2..+ w(w+2W: &.OS 6) 
' 

(2.25) 

( 2. 26) 

( 2. 27) 

Obviously for (2.27) the 

for (2.17). Thus letting 

limit can be performed in the same way as indicated 
lr 

in addition 'X-+± 2 corresponding to the handedness 

and m......,. 0, the correct results in perturbation theory are to be expected for 

neutrinos, too. Therefore, this formulation should also be appropriate for the 

nonperturbative case. 
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2.3. Gauge-invariant quantization 

2.3.1. Effective fields in variant formulation 

In conventional approaches, in addition to allowing quantization at all, 

gauge-fixing leads to nontrivial results for correlations of gauge-variant 

fields. It is useful to analyse in more detail what happens within this 

respect before looking for an alternative to such correlations in the 

invariant formulation. On the lattice this can be done in a well defined way. 

After chasing a gauge-fixing function F(U) one defines +(U) by 

~(u) J F(U'J = 1 (2.28) 

v 
where V denotes gauge transformations. Then the relation 

jes = r {es~F 
v v v 

(2.29) 

leads to the definition of correlation functi"ons with gauge fixing 

< (J >F 
{e 5 ~FO' 
j e 5 ~F 

Conversely now, multiplying numerator and denominator in (2.30) 

·steps of type (2.29) backwards one arrives at [5,11] 

< Q")F < cr.rr > 
where 

I FCU'J(J(U' ,_, 
v ,"J',"f') 

j F( U') O'.ff(U,1f,f) = 
v 

(2.30) 

by f and doing 
v 

(2.31) 

(2. 32) 

Thus, a correlation functi'On with gauge fixing is equivalent to one without it 

of an effective field combination creff' For a gauge-variant 0', O"eff is a 

highly artificial average involving different pieces of F in the numerator and 

in the denominator of (2.32). 

On the lattice it is seen that the choice of F actually needs some care 

[5]. In order that (2.32) can be.sensible, appropriate forms ofF [5,6] are to 

be used. 
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It is to be noted here that the Ward-Takahashi identities which play a 

major role in convent'ional renormalization are nontrivial solely due to gauge 

fixing [li]. In fact, for the derivative (2.9) associated to the gauge trans­

formation V one has '()~o.S = 0. What then remains of (2.11) is j e 5 ~: ... 0'= 0. 

Using this and the definition (2.30) one obtaines <F-
1'd:o. (Fo')>F = 0 or 

.(() ra~. lV1 F >. + ( 0~. o- >, "'o (1.33) 

which is the general form of the mentioned identities. 

2.3.2. Choice of appropriate invariant fields 

Invariant fields occuring in~. like 

-'F·r' "i'·r I 1. 34 l 

-~~Eo.\)' -,OiH "/""'f·o.~ ... "t ... ;_..a,.. 
N. Q"t. ••. , o., 

( 1. 35) 

+ Tr (up+ upt) I 1. 36) 

for mesons, baryons or glue, respectively, are, of course, to be used in any 

formulation. However, e.g. for t\f,.,• f .... in the gauge-variant formulation one 

needs an alternative in the invariant one. One observes that for f ... •ll( ..... the 

numerator of (2.32) contains terms of type 

,,, U ("'''1 ) . f·'f' 5•· i•f "" 4'-'f' r_.. itf'•f 
'71 <•! . ( ,,, ) 

where .r .... • ..... is a path from n to n' and U p","' denotes the 

11.37) 

ordered product of 

gauge-field factors along it. The coefficients of these terms as well as the 

denominator of (2.32) involve expressions of type 

L 'i' = Tr- L) ( :t:'i') 11.38) 

where 'f.(l)is a loop and l)(.t:"'>again the ordered product. Thus, in the invariant 

formulation matters are considerably simplified by directly choosing one 

invariant bilocal field of type (2.37). 
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To find a replacement for gauge-field correlations of the variant 

formulation one has to look for appropriate field-strength quantities on the 

lattice. For this purpose one observes that in the Schwinger-Dyson equations, 

i.e. in the equations (2.11) related to the invariance of the gauge-group 

measure, such quantities are given by [5,11] 

,..-r~J ( U' U ) · · 
:J "'•" = P•- P-< /(1.t) 

I 1. 39) 

where Up 1 is just Ur at (2.3) and o... = 2,3,4 denote products around the 

plaquette starting at the other corners. Then, similarly as for the matter 

field in (2.37), one can define bilocal field-strength combinations 

Tr- (To,,.- U(P)i"J ~-.· U(P.'~.))_ 11.40) 

Furthermore, more general multilocal fields arise by additional insertions of 

11.39) into 11.40) or 11.37). 

Clearly, physics must not depend on the choice of paths in (2.37) and 

(2.40). In the variant formulation the respective freedom is contained in the 

choice of the gauge too, changes of which may be absorbed by the wave-function 

renormalization. Thus one expects that the required independence can be 

established at the level of the renormalized theory. 

In addition to the field combinations suggested by particle physics order 

parameters, testing phases of the regularized theory, and closer in spirit to 

statistical mechanics are of interest. Best known within this respect are 

loops [1,2], i.e. combinations (2.38). There have also been efforts [19] to 

use certain quantities of type (2.37). 
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3. General 1 imit 

3.1. Definitions, conditions, properties 

3.1.1. Implications of variable dependences 

A particular lattice theory by (2.1) gives a set of correlation functions 

of form 

G (n,, ... , n,; 3<>···<J,) I 3 .1) 

which are to be used to define the limit. In (3.1) the "'rare the integer 

variables of the particular function and the 9~ are the essential parameters 

of the theory. For the moment one may think of the g: as of the usual bare 

parameters; more precise criteria for essential parameters wi 11 be given 

later. 

The first step now is to relate the 1'1g to physical lengths Xs. If v numbers 

the sequence which is to define the limit, this may be done by putting n9(v) ~ 

int (YXg/b) where b is the length unit. Actually it is sufficient to require 

only 

"s (v) ~ v ><f 
6 

where the equivalence sign~ is defined by 

Alv) = B (vJ if A(.;) /I>Cv) __,. 1 for v-> DO. 

Obviously continuous v can be used. 

I 3. 2) 

I 3. 3) 

A basic requirement now is that in physical quantities the dependences on 

the Xs must not be wiped out for V?cO. This means that only dependences on the 

lattice variables of the types 

V\g /VI5'1 I 3. 4 l 
and 

"f f 15<• ... JS<l I 3. 5) 

are allowed to occur, where 

frs,, ... ,g,)---; o for 
c 

3;--+ 3' I 3. 6) 

holds for the approach from some region of the parameter space. Then one gets 

n~(-v)/nS',{..I)~ x~lxg' and n8 (v) f(gdv), ... ,gt(v))-) x8 C with finite C for 

suitable dependences gl(v) as will be explained in the following. 
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In general ·the functions (3.1) themselves are not expected to have only the 

allowed dependences (3.4) and (3.5) but certain combinations 

Pu(r\'J'''II"'g; 91l'"l5L) I 3 7) 

of them. In (3. 7) .b denotes the particular combination. The subclasses of such 

functions which are of main interest ~>:ill be discussed later. It suffices to 

perform the infinite-volume limit for the combinations (3.7) considered. This 

is henceforth understood having been done before letting v-+oo, which in view 

of (3.2) is necessary. 

3.i.2. Necessary structure of functions 

There may be up to£ independent "taming" functions, i.e. functions of the 

type occurring in (3.5). Thus in general one has 

fi (3<>···.· 5<) with l..=1}"'1k (3.8) 

where k & .e , with 

fi ( 3< ' .•• ' ~' ) ..... 0 for ji..., si I 3. 9) 

for the approach from some region of parameter space. The value of k depends 

on the particular theory and on the region of parameter space considered. If 

k<~ there are further .i-k independent functions 

fiC5, ... ,5,) w.th i= k•1,.- .. 1 t I 3 .10) 

which are not subject to (3.9).(For·k<e, if the functions (3.8) have suitable 

properties, (3.9) can possibly be extended to the approach of a e -k 

dimensional manifold.) 

According to the allowed dependences (3.4) and (3.5) and to (3.8) ~ (3.10), 

the structure of the functions (3.7) must be such that 

P< (n1 (v), ... , V1,(v) j j<, ···; 9') 
I 3. 1 i) 

~ F .. ,x (vf,, ... ,v(,i fk.,, ... ,f,l for 3;--> 3~ 
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with f; "f; (Sp··,jt) 

multiply some or all 
and x:; (x1, ... ,xr), where 1 inear combinations of v~ )''., vfk 
of the xJ'. This implies the property 

F0 sx(v11 ... 1V.e.) = F~;x (sv1 ) ... )sv'~jv'~+<)"-,Vt.) , ' 
( 3. 12 I 

of the functions F~f· 

3.1.3. Basic equivalence relations 

The task now is to determine the dependences g.: (v) such that g; (ll)4 9Lc for 

v-+ooin an appropriate way. Then the limit of interest 

Q.,x = lim P<r(n,(vJ,. .. 1 n,(~Jjg 1 tvJ, ... ,a,(vJ) 
1 v~ oo J 

F..,, (v(t , ... , vf,; f,+, ,.,., f,) ' 
(3.131 

= lim 
Y400 

where now t =fj(g 1 (Y), ... ,gt('Y)), can be calculated. 

For the determination of g,;('V) one has to prescribe t defining values Qcf,XHjl 

with j = 1, .. . ,t and to consider the corresponding i relations (3.13) with the 

9t(v) as unknown. In other words, one has to solve the system of equivalence 

relations 

~if,x><j,(vj. , ... ,vf. J+,, ... ,f,) ~ Ocii,xHj> 

where j" 1, ... ,£ and t"'t(g,(VI, ... ,g<(v)l. 

I 3.141 

In order that (3.14) has a solution, conditions of the type known from the 

inverse function theorem ml,!st hold. The inversion here occurs in two steps. 

For the first one the inverse set of the functions F1 ;:,~"J(j) is needed, i.e. the 

existence of 

H,~,iJ(i.) (u1 , ... ,uL)= Vi u.i = F,.,,1u1(v,, ... ,v,), (3 .151 

with i ,j = 1, ... ,.f, in a suitable interval (which depends on the experimental 

values of basic physical constants). For the second step the inverse set of 

the functions f1, i.e. the existence of 

hj <i., ... ,~,) :0 3i ~' = fc (:J,--.,g,) ' ( 3.161 
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with i,j 1, ... ,£, is 

with i 1, ... ,k is in 

to be required in a suitable region (which for the +~ 
the vicinity of zero). 

3.1.4. General properties of solutions 

Assuming now that the described conditions are satisfied, the general 

solution of (3.14) can be written down and the resulting properties can be 

studied. 

By applying (3. 151 to (3.141 one obtains 

\If• (g1 (vJ, .•. , ~,(VJ);;:; Rc for i = 1 , .•. , k 

fc (g, (v),. ··,jd"!).::: R< fOr i =- k+11 ·"J t 
where 

Ri. = H(5',~HiJ (Qc~,tHIJ 1 ... , Q£61(Ho) > ~:::. 11 ••• J e ~ 
Then using (3.161, from (3.171 and (3.181 one gets 

~ [.,. ( R, R, . n n ) · 
9i(v) = J vJ--·Jv>"k+1,···J"' J )=1,.-.,~. 

Now inserting (3.20) into (3.13) one obtains 

Q6 ,x = F~r,• (R, .... ,R,) 

for the basic renormalized quantities. 

( 3.17) 

( 3.181 

( 3.191 

(3.201 

( 3. 21 I 

Clearly, the determination of 9j(~) up to equivalences is sufficent for ob­

taining Q lf,lf . The r.h.s. of (3.20) describes a definite curve in parameter 

space. The particular direction of approach of the singularity, implied by 

this is what guarantees s i mu 1 taneous "taming" by the independent functions f~ 

with i = l, ... ,k (which can be read off from (3.17)). 

The quantities (3.21) behave under dilatations x~ -:> sx~ as 

Ossx == F~,(sR,, ... ,sP.,;f?,,,, ... ,R,) 
I v J J 

(3.221 
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which follows from (3.12). Among the constants R1 , ... ,Rl. of the renormalized 

theory, R
1 

, ••. ,R"' have the nature of mass seal es, for which on thus gets a 

precise ·definition (masses in general occur as linear combinations of these 

scales with coefficients depending on the particular function under 

consideration). Then the number of independent "taming" functions of a theory 

is just that of its mass scales. The A parameter of QCD is an example of such 
a scale. The investigation of these scales beyond pure (one-parameter) gauge 
theory appears important with respect to the mass problems in particle 
physics. 

3.1.5. Consistency and RG invariance 

In order to check the consistency of the outlined procedure one uses (3.21) 
to select l particular values 

Q,;;,;,ijl = F,;,x}(J> (R,, ... , R,) j=1, ... ,e 1 
I 3.131 

requiring that for these values invertibility of type (3.15) holds, i.e. that 

Hl~)·)(l) (u1 , ... , ut) = V;_ } Uj = Fc;
1
;)(j> (V1 1 .• -,vL) 13.14) 

with i,j =- l, ... ,.t exists. Then one uses the set of the Q(61'XHj> for a new 
solution of the equivalence relations (3.14), which leads to new constants 

R~ = H(i
1
XJ(q(Q<6\X)(1) 1 ••• )Qt5

1
X;(.o), L:::-1r e. (3.25) 

On the other hand, one can use (3.24) to invert (3.23). Comparing the result 
of this with (3.25) it is obvious that 

R 
' 

R 
' 

l:::=1) ... 1l. 13.16) 

i.e. that the Ri. are universal constants. From (3.26) one gets 9;(v)~ gj(v) 
and, therefore, again (3.21). Thus one has, in fact, consis~ency. 

The transformation from one defining set to another one, 

{ O.cs,i)(lJ > L== 1) . .- 1 1] _, [ Q<6S>rJ.> ) jo:: 11 •.• ,e1 I 3.171 

is nothing else but the general RG transformation of QFT. Its general form can 
be explicitly written down by inserting (3.19) into (3.23), which gives 
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C..c&>~)(jJ == F(;)Xl(jl (Hci)~)(IJ(G.r&)iH!l, ... )Q.or>.<JC.o)) 

• · .. , 1-/ (6, XHO (Q(6)?J(1)) -- 'J Q (.f,XJW)) ~ 
13.18) 

Due to the invertibility properties expressed by (3.15) and (3.24) a RG 

transformation is invertibl~, too. By (3.27) -(or (3.28)) the concept of RG 
transformations is now precisely and generally·defined. It is to be noted that 
also discrete transformations occur. 

Having the general definition of the RG it is seen that the consistency 

shown before means that the quantities Q~~~ given by (3.21) as weli as the 

constants R of the theory are general RG invariants. 

The necessity of using asymptotic equivalence instead of equality now 
becomes also transparent. For one fixing of the scheme by (3.14) one could, of 
course, use equality. The solution of this, however, after a RG transformation 
in genera]. does only satis·fy equivalence relations. 

3.2. Function combinations of interest 

3.2.1. Class of functions related to physics 

The most important class of function combinations P6 among those introduced 
by (3. 7) is the one related to S-matrix elements and physical masses. In order 
to see how this class of combinations is to be constructed a look on the 
conventional formulation is useful, Starting from the general set of 
correlation functions, the first step there is to form connected functions 
because these are the ones of physical interest (in additon they have more 
reasonable mathematical properties). Similarly, in a next step one even 
restricts to one-parti cl e-irreduci ble functions. Traditionally renormal i zed 
functions 

r (tAj) .•• ! u,.-) 

"" 
and renormalized parameters 

= z ;.{1/'2. ztAr/'L r (U11" .. )1A,.-) 

1 • • • r 

"" 5' = "" ( .'l· 3,, ... ,3,;vf;-) 

13.19) 

13.30) 
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are introduced. Quantities which are invariant under the dilatation subgroup 

of the RG satisfy 

·~ + "' "" 'd ( t r '"r fu f< 'O_f-) Q = 0 
I 3. 31 I 

where 
p ren d :'" ' =r ~ Jr 

13.32) 

are the renormalized ~functions. 

A simple rule for the construction of quantities which satisfy (3.31) from 

functions (3.29) is that in the respective combinations all wave-function 

renormalization factors ~S must cancel out. This obviously holds for the class 

of functions 

r: (i..11l····JUr) 
ren 

(c <"··=, > r: (• .. ~,) )'I' 
re.n • • I"""€Y• 

( 3. 33) 

(with M =-1A1+ •• ;+1.A,..) which determines physical quantities as will be pointed out 

now. 

The mass moo; follows from the special case 

,-.<"·;2) 
I ~en (x,x') 

(
c(u,:2) r (u.:l) )'/2 
"'" (~,~') re• (x,x') 

13.34) 

of (3.33) because m! is a simple zero with coefficient one of 

(j )
-1 

/'- (I.Aoc::: 2) 

(~ ~ren (p,-p) ) 

dp' r<"··'> ren (9,-9) 9;f 

I 3. 35) 

A (i-1 .. -c').~ lA..-.=: 1. 

where r;.e.,., 1 s the momentum-space trans form of r;..~... ) . 
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The S matrix is given by the on-shell values of the function 

( 
. ' 

Pi-m" )"i <).\ I 1 <' 

.. ~ 1.. 
( p~- ro:J' 

A 
rl""r~---,~-~t) 

"" 
( 

,.::: (i.IQ.r.::: 2.) c (VI..,M= '2.) ) f/'2. 
r-en # • • rtVI 

13.36) 

(where to simplify the notation a possible spin structure has been 

suppressed). (3.36) is a straightforward transform of (3.33). It is to be 

noted that in standard formulations the product of factors ( (p'l - m~)tr<~=2.)) l/2.. 

does not occur because of the restriction to rather special normalization 

conditions. 

RG-invariant coupling strengths (i.e. physical ones) can also be defined by 

particular values of functions (3.36). For example, the definition of the 

electric charge in the Thomson limit is of this type. Furthermore, the so­

called invariant charge of f"theory is a special case of (3.36). 

3.2.2. General starting point 

The crucial observation now is that wave-function renormalization efffcts 

cancel out from (3.33) such that one can as well start from 

r(U111•"")1Ar) 

I 3. 37) 

( rl"'~.~2) .. r (~.M;'2))'rz 

formed by bare functions. If (3.37) is constructed from lattice functions, one 

gets nothing else but particular combinations Po as introduced by (3.7). The 

requirement of dropping out of the wave-function factors of the perturbative 

framework, in the general case is replaced by the condition that only the 

dependences (3.4) and (3.5) are allowed to occur. Then with the structure 

(3.11) and the properties (3.15) and (3.16) not only invariance under the 

dilatation subgroup but under the general RG is guaranteed for the result. 

$-matrix elements, physical masses and RG-invariant coupling strengths are now 

in an obvious way given by the Q5",Y related by (3.13) to the particular P0 of 

the form 13.37). 
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Obviously the traditional renormaiized functions and renormalized constants 
C10 not occur in the general formulation; tt1eir introduction appears rather as 
an unnecessary complication from the general point of view. It is also seen 
that the general conditions are weaker than the conventional ones by avoiding 
to fix wave-function features and by replacing equalities by asymptotic equi­
valences (which actually turned out to be a necessity). 

3.2.3. Nonlocal fields and order parameters 

The considerations in sect. 3.2.1. started from local fields. However, also 
the nonlocal objects discussed in sect. 2.3.2. are of interest. A hint for the 
construction of appropriate combinations Pe in that case comes from the 
renormalization properties of loops in continuum perturbation theory [20], 

'W"~ = e 2Pz,[t,l ... Z,(f,)W 1 W=<L> (3.3S) ; 

where p is the perimeter and '/<J the angle of the y--th cusp (for a loop wfth a 
cross point, in addition mixing with loops in contact at this point is to be 
taken into account). Using again the rule of dropping out of wave-function 
renormalization, for rectangular loops with extensions u;, V( the combinations 

'v/(c<nV,) ... v/(~" II,) 

w C tr,il,) ..• 'vi ( C:,, II,) 
with 

s 
L(~;+V;-C>vc)=O (3.39) . ) 
t-:::1 

where W(u,v) "' <L ... ,v>
1 

are appropriate. On the other hand, constructing (3.39) 
from lattice functions one expects to obtain a new class of P~r (which has, of 
course, to be checked using the nonperturbative criteria). This class is just 
that of general Creutz ratios [21,22]. 

W(u,v) is primarily an order parameter [1] With respect to particle 
physics it provides a criterion for confinement in pure gauge theories [2]. 
The ratios (3,39), though not directly related to S-matrix elements, are 
usefJl to determine properties of the theory. They also give clearer signals 
from the order-parameter point of view. 

- 22 -

For <f"'p.-5".,-.... n_y .. p> similar renormalization properties as for< l > are to be 
expected {with a relation of type (3.38) supplemented by factors for the 
string ends with matter fields). This again leads to combinations which are 
candidates for functions P5 . The usefulness of correlation functions of type 
< ~ .. ·S.,•,.. ~ ... > as order parameters in the presence of matter fields needs further 
investigation [19]. It appears that also in this case combinations P., should 
be better order parameters. 

For a systematic treatment of the multilocal fields of sect. 2.3.2 in 
particle physics, an appropriate choice of the paths P.5~1 relatect to the S~.~: is 
crucial. According to the available hints they all should have the same 
length, the same number of corners and, for convenience, no crossings (the 
crossings at the ~A;" are, however, to be accounted for). In order that it can 
be used in all functions, the length must be the maximal one, which in the 
infinite-volume limit gives paths running to infinity, Then the construction 
of P6 related to S-matrix elements and masses should be possible similarly as 
discussed for local fields before. 

3.3. Some ~-function relations 

3.3. 1. Functions in renormalized theory 

In view of the almost exclusive use of the dilatation subgroup of the RG in 
conventional approaches it appears worthwhile to have a brief look on the 
features of this subgroup in the general formulation, too. This means to 
specialize (3.27) to 

Q = 5' x1 = s Xg (3.40) 

by which (3.25) with (3.26) becomes 

Ri = Hr6,sii!ri 1 (Qri',si'Ji'i•···, Orff,sxW!) , i~1, ..• ,e. (3.41) 

By using (3.12) and (3.15), (3.41) can be cast into the form 

R " { 
S-

1
1-/,6XHC) (Qc61 s7)(1_\J···JQti;sXJ(el) for i-:::1

1
.,-

1
1<-) 

' 13.421 

Hr61X)(lJ(Qcf;si)(J) 1 ... ;O<o:>~~J(O) for L= k+lJ···1.e. 
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Now, considering (3.42) being inserted into (3.21), one gets the RG equation 

( -'£...__+ 
5 'ils-' 

where 

f), 
' 

= s-' 

__!._ ';) ) 
2- B; - - . Q5,X = 0 
t.= 1 "(1 Q(5

1
!>::< )(LJ 

d O.,s1
s'X)(il 

d $_, 

is the general ~ function of the renorrnalized theory. 

( 3. 43) 

13.44) 

Clearly 13.43) and 13.44) 

respectively, It is, however, to 

are the analogues of (3.31) and (3.32), 
rt" 

be noted that the Q(.S 1 sXX~land the 9i (1-J) are 

in general different within two respects. Firstly, a Gc5',si){~} is a particular 

value of a RG-invariant quantity which a g~e...(IJ) needs not to be (and usually 

is not). Secondly, the Q(f1 si}(~)are neither required to be small nor to allow 

any expansion while the g~!~(~J), of course, must do. 

Inserting (3.42) into~~~~= 0 it is seen that the functions BL satisfy 

1--ici?,liJCi> + Z:. Bj 'OH,<,x;<<J 
= 0 (or l= 1r.-1 k 

J '() Q <6, ,, !lj' 13.451 

2:.:. B· r;) H,<,iiJ(il 

j 1 'o Oc<,s<Hj• 
= 0 for i:k+1 1 ... ,t 

where H(~;)Hll=H(6,ixJQ(;,~;){lJ•····Q(6,~XXe.Jl· A consequence of (3.45) is that 

Bi = B, (Q(i',si71(0 , ... , Q,;,sii)(t)) 13.46) 

is the functional dependence of the Bi., which considering .en s-
1 

as "time' allows 

the picture of "stationary flows". 

3.3.2. Bare & functions 

Because (3.2) allows continuous Y, one can define bare p functions by 

~; = v~ 
dv 

( 3. 47) 
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By differentiating (3.17) and (3.18) with respect toY one obtains 

where 

f; + 
I 

t z fj 
j~l 

'Of; 

'0 5 j 
~ 0 for l..=-11 ... ,k 

' L Pi~ o;; 0 for L= k+1, ... ,~ 

13.48) 

j = 1 . 'dj; 

fc =r:lg,lv), ... ,g,lv)) and 9j" 9jlv). From 13.48) it follows that 

fj EO fi (j 11vJ, ... ,g,Cvl). 13.49) 

Formally (3.48) and (3.49} are similar to (3.45) and (3.46), respectively. 

However, apart from the fact that the nature of the g, (v) and of the Q(515 ¥H~l 

is entirely different, mathematically the relations involving the f: are only 

asymptotic equivalences while those of the B\ are equations. 

By inserting 13.17) and 13.18) into 13.23) with 13.40) and using 13.11) one 

arrives at the equivalence 

Qc?)sxw:; f; Fc~)XJ(lJ (svf1)·'·Jsvf"'> fkd>-··;ft) (3.50) 

with i = l, ... ,.e and fi= fi(g 1 (v), ... ,ge(v))>which connects the Q(5,siJ and 

the 9j(v}. Differentiation of (3.50) with respect to v gives 

O ;; t fi '<I ~<,i><iJ + v '3 F,ii,i<Jti) 

1=1 "3Si tav 
I 3. 51 I 

Because of v '<lF{i,XWl == s oFr&;iJ(i'J __ .Bfrom ( 3. 51) it follows that 
1lv """<\S - ' 

B· ~ 
l 

£ 

f; F' 
~ Fc6, X>Cl> ( svfl 1 ••. J svfk; f" .. ~, .. ,1 f() 

13.51) 

'd s; (v) 

with i ~ !, ... ,£, t =fjlg,lv), ... , g,lv)) and p; =:pjlg1 (v), ... , g,lv)). It 

is to be noted that due to (3.15) and (3.16) the derivatives "dFc6>i'J(idv1)•"/v£)/>Ovi 

and 'dfi.(g1 , ... , gd/~gj are finite matrices. The equivalence (3.52) is the 

precise general relation between the two types off functions. 
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4. Situation in specific theories 

4.1. Properties of pure gauge theories 

4. 1.1. Knowledge from Monte-Carlo simulation 

Though proofs remain to be given by analytical methods, Monte-Carlo 
simulations are valuable for exploring the situation. Here information from 
such simulations about the parameter singularities in specific theories are 
considered which are of interest in the present context. 

Results which test (3.11) directly have been obtained [22-24] for SU(N), 
where N = 1, ... ,4, and U(l) using a special case of (3.39), namely 

'v/('2.v,2v) 'vJ (v,v) 

( \.1 ('lv, v )) 2 F (vfrs)) I 4. 1) 

with V = 1,2. Their qualitative behaviour is shown in Fig.l. It is seen that 
the steepness of the curves increases with v for g:l. > g!, where g~ = 0 for 
SU(N) and g! ~ 0.99 for U(l). This is in accordance with 

d F'(vfcs\) 

.Jg 
~F'f'v I 4. 2) 

where F'*- 0 andf':f 0 due to (3.15) and (3.16), respectively. For SU(N) the 
interpretation is consistent with k= 1 and f(g)~O for g'l"))> g~. For U(1) the 
same is true in the confinement region g

2 > 9o
2

, while in the Coulomb region 
g::. < 9o

2 
one has the case k = 0 without a mass scale. Thus one gets reasonable 

results though V = 2 is actually far from V-?-OOin any sense. 

If one is willing to make assumptions about the form of 
also extract information aboutf(g) from Monte-Carlo data. 
assuming that for u,v large enough one has 

In \./(u,v) <:: C:o- Cf(U.-tV)- C2.('u V 

for special cases of (3.39) like 

'v/(v.+l,v+J) W(u,v) 

\V(u+J,v) 'v/(u,V+1) 
or 

W ( u+ f, U+ f) 

'W(u+2
1

u) 

W(u,v), one can 

In particular, 

14.3) 

I 4. 4) 
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one gets 

' p ~ ex p (- c, f ) I 4. 5) 

Using this, the data of the simulations for SU(N) with N = 2,3 [21] and for 
U(l) [23l allow to obtain the string tension c2(: For SU(N) there is agreement 
at large g~ with 

( rv Ln g'- + l n ( N- /,•2) 
following from the strong-coupling expansion, and at small g~ with 

f
' -_. k­

rv e fl,s~ (H'f i'1 

14.6) 

14. 7) 

to be discussed below. The crossover between the behaviours (4.6) and (4.7) is 
fast (occurring roughly near g'l ~ 2 and g'l. ~ 1 for N = 2 and N = 3, 
respectively). For U(l) the fit 

.£. (-~ - _:_ r·" for I /V 3' > 0.95 0. ss g ... I 4.8) 

and 

f ""' 0 for j'< 0.3j 
I 4. 9) 

holds within the accuracy of the data. 

4.1.2. Use of bare P function 

For £ = k = 1 integration of (3.48) gives 

fc~rv>);;; f(jCv,)) 
3'') 

exp (- J ~ ) 
grv,> forj> 

I 4 .10) 

The approximation which replaces~ by= in (4.10) is essentially that of 
scaling [25], which is what is to be improved by Symanzik's program [26], and 
which so far is only under control by reference to perturbation theory. From 
the considerations in sect.3.1 it follows that this approximation in general 
is not RG invariant. 
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Of course, (4.10) is only of interest if the~ function is given. By (3.47) 

it is actually simply f(g(v)) 2: f(g(Yo))YofV as one also gets directly from 

(3.171, i.e. from f(g(vll;:;: Rv-: 

For SU(N) from perturbation theory one obtains the representation 

f (~(vi) = - po g\vl- p, 5;(vl- ()(g7c,!J). i 4 .11 I 

Neglecting O(g1 ) and inserting (4.11) into the scaling approximation of (4.10) 

one arrives at the asymptotic-scaling approximation (4.7). Thus, though the 

perturbative expressions from which (4.11) is derived by far do not show the 

dependence (3.5), via ~(g) one obtains an approximate function f(g). 

Some comments on the nature of (4.11) appear in order at this point. It is 

well .known that the lowest-order coefficients fro and {; 1 [27] are invariant 

with respect to perturbative transformations. Actually one starts from the 

relation analogous to (4.11) which holds for r-€1'oand gr-t\11), in which case the 

transformation is between greh()J) and some grw(O'). Keeping Y finite, a trans­

formation from grQ~"~(IJ) to g(v) then leads to (4.11). Thus, in addition to its 

perturbative nature the finiteness of v is important for (4.11) to hold 

approximately. From (3.50) and (3.52) it is seen that the general relations 

are rather subtle and allow, in fact, at best an approximation for finitev·. 

4.2. Gauge theories with matter field.s 

4.2.1. Masses ir. QCD 

According to the structure of (3.11) the hadron masses in QCD must arise 

from lattice expressions of form 

M, (g, ;;;, I ••. ) ;;;f) := t Crj ~ (S, "<, ... , w;l) 
F' /J 

( 4.121 

where r denotes the particular hadron. They are obtained from 

M = [,W\ 
r v-7 ro 

N ' 

~ M, C~c•l,;;,cvJ, ... ,,;;;;1cvi)=.!..L:c}; (4.131 
j b J"( 
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after determining by (3.14) the dependences g(Y), ~~(v), i.e. the curve (3.20) 

in (g,rtl1 , •. ,ffi{-) space along which one has to approach the fundamental 

singularity at gc., mt. 
Having gc. = 0 with the taming function f(g) discussed before in the pure 

gauge-field case and m~ = 0 with taming Junctions f.: (ffi() = m. in the free­

fermion case, naive combination leads to expect the singularity at the point 

g( = 0, mt = 0 in (g,ffij,····mf) space and to envisage the possibility k = l 

where£= {' + 1. This picture is supported by considerations off functions of 

the asymptotic free theory to be presented later. 

It is to be realized that by (3.9) the functions (4.12) for any t' have to 

go to zero if gc ,ffi~ is approached. For an approximate evaluation one should at 

least be close to this critical region. Unfortunately this is not the case 1n 

the respective Monte-Carlo simulations [28 and references given there] and 

strong-coupling computations [7,29] though they allow to some extent a fair 

description of spectra. For example, for pseudoscalar and vector mesons the 

stron·g-coupling results 

2 ( cosh Mps -1)= 
(c,;;;+" 1"- ~)(c.;;; H l~- 1) 

~ 2 
("'·HI - 3 ; 2 

~ ( ,;;;.,.~ l'- 3) ( (W>+d- 2) 
( 4 .14) 

1.. ( cosh Mv - I) = 
l;; nr- 1 !z. 

exhibit singularities only at different values of; (the ones closest tom= 0 

at in= -2 and at ffi::: -2.3, respectively). Of course, one can blame this to the 

fact that g 'Z. = o0 is really far from g"" = 0. However, for 9'1. ~ 1, which can be 

reached by Monte-Cario simulations, the situation is also far from the ideal 

one. This is shown qualitatively in Fig.2 for the meson example. 

4.2.2. Use off functions in QCD 

Requiring f small enough such that asymptotic freedom persists, one can 

again try to get information by using ~ functions from perturbation theory. 

Similarly as (4.11) for g(y), there are bare functions associated to the mi(V). 

At the one-loop level one gets for large Y 
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[3" ~-j3.., ~;l•) 3 1(~) I 4.15) 

where~m = l2n'f' for SU(3) [30]. From 14.11) and 14.15) it is seen that there 

is an ultraviolet-stable fixed point at g=O, m~=O, indicating that one has, in 
fact, g.; =0, iilf=O. 

The flow curves, which are obtained by integratin~ (3.47) with the one-loop 

p functions, are given by 

;:;;, Cv) 
~ \. t Y0 ) 

P~ _ {9'lv))2/). 
- l' (v,) I 4.16) 

where ~o = l1!-2f!3ll16;if' for SUI3). The flow pattern described by (4.16) 

indicates that one has, in fact, the case k=L It, furthermore, suggests the 

possibility of a phase-transition line along the g2 axis. 

4.2.3. Situation in other cases 

While the information about the singularity structure in QCD is restricted 

to indications on the location in parameter space and on the value of k, even 

these features are not clear in other theories of particle physics. This means 

that one is still far from a truely nonperturbative description. 

For QED obviously the region wit\1 g2 < 0.99 of the U(l) gauge field is to 

be considered. Again the question is which structure arises upon combination 

of gauge fie 1 d and matter fie 1 d. Now, however, due to the 1 ack of asymptotic 

freedom, no hints from perturbation theory are available. 

In tne standard model of electroweak interactions again the perturbative 

knowledge does not help. Ideas about possible features may, however, be 

obtained from the Higgs models related to its sectors. For the fundamental 

representation of the Higgs field the confinement phase and the Higgs pha·se 

are continuously connected [3D, i.e. not actual1y different. In the abelian 

case there is in addition a separate Coulomb pl1ase. At the present stage of 

affaires [32,3~, however, conclusions about a possible singularity structure 

of an electroweak theory appear premature. 
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4.3. Actions with auxiliary parameters 

The lattice action leading to a particular continuum theory is by far not 
unique. For the description of more general action forms, representations in­

volving auxiliary parameters are convenient. This is illustrated in the 

present sect. by typical examples. 

The motivations for using more general forms are firstly to get a faster 

approach of the limit and secondly to study nearby phase structures in the 

larger parameter space. In addition, the fermion description discussed in 

sect.2 2 apparently involves auxiliary parameters. 

The dependence of the auxiliary parameters on the essential ones is 

restricted by the fact that one must get the proper classical limit and 

pos sib 1y by further conditions re 1 a ted to the particular purpose under con­

sideration. 

Instead of the gauge-field part of (2.2} one may consider the 

generalization 

Su = 4= l-!,l~l ';L '2.Re·Tr (U(e,)-1), 14.17) 
I. Ci 

which in addition to the product of gauge-field factors along the path t':o 
around a plaquette uses products along more general loops e;. in particular 

CJ, C)J, Q, fori ~ 1,2,3, respectively. There are no unique -criteria for 

improving the convergence by the choice of the auxiliary parameters U.((g}. In 

Syrnanzik's program at the tree level one gets [34] U0 = j. g-2, U1 -= -~-1,Lt~= 0 

for i > 1, while Wilson proposes [35) Uo = 4.376 { 2, U1 =- 0.252 g-2
, lA 1 =- 0, 

U3=- 0.17 g-2, u~-= 0 fori> 3 according to block-spin considerations. 

Another possibility of generalizing the gauge-field action is to use the 

character expansion 

L v,13l :[ '2Re 'X,(Up). 
.- p 

Sv I 4 .18) 

Examples of choices of the auxiliary parameters v~ are the fundamental-adjoint 

action for SU(2) [36], with Vo = -2\.V ... - 3v1 , Vh+ 4v1 "' g-'l, v~= 0 for r > 1, 

and Manton's action [37] where for SU(2} [38] Vc.=(t-:!i-~)f'\ Vr=t(-1l'r+l('2.r+1)r~L(r-f1f2g_,. 
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(more general forms than Vr = Vr;g'l.occur, e.g., for the heat-kernel act10n 

[38]). An illustration of the effect of nearby singularities in the larger 

parameter space is provided by the fundamental-adjoint example for SU(Z), 

which has the phase structure shown in Fig.3 as found by Monte-Carlo 

simulation [36]. The first-order-transition line points just to the re.gion of 

the v .. -;:z,axis where the crossover between the behaviours (4.6) and (4.7) occurs. 

For the fermion part of (2.2) a more general form, no longer restricted to 

nearest neighbors, is 

S " - ( D(jl I J(j) ~) =- Lll)',• L_L:(cj(> ,-~jW,)+m, ~V, 
"f 1'1!)1'1 '}.. j 1"11'\ 1' 

I 4 .19) 

where 

Q~ 1, = ( U {P.,',n'+jt) b.'+j~,n- U(P,+jA,n) b,',Mj) )/2 
(4.20) 

v:~:. = (u (~'Aj~) ~-··fi,, + U(P,.ji) ~·~•+j~- zh) h . 

The choice of coefficients in (4.19) corresponding to tree level improvement 

is [39] c1 = j, c.._=- i· t1 = jr, 7t""- jr and Cj =7j= 0 for j > 2. A choice 

with a continuum-like spectrum, however no longer satisfying the criteria of 

sect. 2.2 , is [40] cj o 1-l)i'
1
jj, ~;o 0. 

In (2.2) rand e are auxiliary parameters, the (r,e) space being restricted 

to the region r > 0. Thus the actual nature of the ·fermion description is that 

of an auxiliary-parameter representation. That there is no dependence of 

auxiliary parameters on essential ones is due to the special parametrization 

introduced. Instead of the form of the fermion part in (2.2) one could e.g. 

use 

S = L (.J- 2:: fo+~ (f,+rectr'f) U(Po+lJ'j'.-tiji.,"J'-) 14.21) 
fit' VI of':t?. J 

where A=~ 1, ... ;!4 and(-.)=-~. Then in general one has the dependence J(ffil •. 
N N ) 

r(m). ~(m) describing a suitable curve in (g,r,~) space (restricted tor> 0. 
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With the particular choice 

( 
~ .,_ .,_ )1/'2 

'? "" ""' + 1br + 8W.r cose 

lf = Cl, r-c_ to.. VI 
.;:._ sln e 

14.22) 
m cos e + Lfr 

r- c: r 
after appropriate rescaling of"f,fone arrives at the form (2.2). 

5. Kadanoff-Wilson transformations 

5.1. Transformation of the partition function 

5.1.1. Definitions and remarks 

A KW transformation amounts to integrate out shor-t distance degrees of 

freedom keeping the partition function fixed, which leads to a new {effective) 

action. In statistical mechanics it in general allows an easier and more 

appropriate evaluation in the critical region. 

Given an action, which may depend on several types of fields and on .t 

essential parameters, 

5(U,y,'f,~;3,····,3<i 1), I 5. l l 

after performing a KW transformation, which reduces the degrees of freedom by 
d 

a factor J., one gets an effective action denoted by 

s (l),"''','f, q,,- 5,, ... ) 5< i). J I 5. 21 

By a further transformation, reducing by (i/))d, one arrives at an action with i 
instead of A in (5.2), and so on. To condense the notation, in the following 

mostly S(U,g,)) will be used, which may be considered as a shorthand for (5.2) 

or as a special case of it. 
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A general formulation of the transformations is 

e sciJ,g,?:) 
= 

with the composition rule 

j 'I,, (0, U) 
u 

5(U,3,?.) 
e 

f Ji,. (U, u') Y~·" (U: u) = T,, (U, u). 
U' 

The requirement to keep the partition function fixed 

J 
v 

s (IJ, 9 ,5:) 
e 

leads to the condition 

= 
[ e s cu,g,?.l 

u 

J 4~ (G, U) = 1 
[} 

( 5. 3) 

( 5. 4) 

( 5. 5) 

( 5. 6) 

In statistical mechanics· (5.5} means to keep physics fixed, whi1e in QFT it is 

a convenient technical condition. 

There is obviously considerable freedom in the choice of KW 

transformations. Here gauge invariance is an additional requirement. Invariant 

block variables for pure gauge fields have been constructed with scale factors 

(minimal ratios ?..ill) 2 &~and, in particular for d=4, with U &2J and {2'@3]. 

A central issue in the applications of KW transformations is the existence 

of a reasonable fixed point. The rescaling of fields crucial for linear trans­

formations is not needed for nonlin~ar ones [44]. Therefore, for gauge 

theories no tuning problems of a similar type are to be expected. Neverthe­

less, s-ince the fixed point on one hand depends on the particular trans­

formation and on the other hand is responsible for fundamental properties of 

the theory, it is an important task to get the transformations under control. 

Further conditions on the transformations, which are related to correlation 

functions and to the application in QFT, will be discussed later. 
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5.1.2. Example for use of auxiliary parameters 

The form of the action changes in general under the transformation (5.3). A 

straightforward representation is then in terms of the types of contributions 

which can be generated, as may e.g. be expressed by the expansion 

S(U,g,?.) == .Z:dg,-Al S,W). 
' 

(5. 7) 

This is seen to be a particular auxiliary-parameter representation, the ?. de­

pendence describing the effect of the mappings {5.3). The points generated by 

subsequent KW .transformations are on a curve in auxiliary-parameter space 

which starts at :X=l from a -prescribed point depending on g. 

In the vicinity of a fixed point of the transformation (5.3). whic-h is 

given by the property 

c, Cg, ~ J = Cc (3, I.) = + 
(· 
' 

an overview is obtained by using the linearization 

where 

~ ... 
C·(o,-:1)-C 

l J c ~ '2: ~· (cj(S,?.)-cj) 
J 

T-
l J = 

l()c; (g,'lJ 

acj(S;/.) .. 
c~~.cg,"l.) = ck 

Assuming that (5.10) can be diagonalized, one gets 

T:· = 
l J ( ;-)~L Ji- u.;, I Vtj 

(5.8) 

( 5. 9) 

( 5 .10) 

( 5.11) 

with ~Y.eJ·lJ;t::. bit and ftAt(\.{j~ ~ij . 

dictat~d by (5.4). With 
r
. j< 

The form 'i) of the (real) eigenvalues is 

s, = ~ s, L(,, 
' 

)· = 4= 
J 

v,j cj ( 5 .12) 

i.e. transforming to the eigenbasis, one obtains from (5.7} 

S(u,g,?:l = 2: )d5, ~) S, (U) , 
i 

( 5. 13) 

where according to (5.9) 

),(3,;-) 
,. 

<::: )· 
- )~' 'I< + (~ (j,Cg,l)- f•). (5.14) 
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~ 

The behaviour of (5.14) for increasing ?. is related to calling an eigen-

direction relevant, irrelevant or marginal if~~> 0, < 0 or= 0, respectively. 

It is to be streSsed that this here refers only to the 1 inear approximation; 

in particular the marginal directions need to be checked beyond this. 

With respect to a more general characterization to be given later it is 

useful to state the geometrical description in the present case: 

a) For r- marginal eigenvalues ·one has a r- dimensional hyperplane of fixed 
points. After projecting to an appropriate subspace the situation with 
one fixed point remains to be considered. 

b) Points which for increasing S: are driven to the fixed poi-nt are said to 
belong to the "critical" hyperplane". 

c) Points not belonging to the "critical" hyperplane in the case of k' 
relevant eigenvalues are driven to the k' dimensional "renormalized" 
hyperplane and away from the fixed point. 

5.1.3. General auxiliary-parameter representations 

Instead of (5.7) one could, for example, as well use an expansion of e ' 
Then, there are various possibilities for the type of expansion. Also, one is 

not restricted to series representations. Even in case ·of a series the 

auxiliary parameters ci need not be the coefficients (e.g. for pure SU(N) 
~ 

theory because of gc = 0 a representation of S of form (So + ?: c; S.: ) /Co is 
._:..1 

convenient). Thus, there are many auxiliary-parameter representations out of 

which a suitable one can be selected. 

The general representation can be written in the form 
v 

5 ( V, 3 , 'A ) = S ( U ; C1 , c., .. _ ) (5.15) 

where c:~::::C~(g,A), or if S(U,g,A} is considered as a shorthand of (5.2) more 

explicitlyC[~C,:(g., ... ,g,;fl). The notation (5.15) 

other functions, e.g. for e5= E one gets E(U,g,A) 

straightforwardly extends to 
v 

= E(U,c, ,c2., ... ). 

In order to generalize the geometric description of the preceding 

1 i neari zed ex amp 1 e, one has to note that by an appropriate non 1 i near map 

hyperplanes are replaced by manifolds. This suggests a generalization in terms 

of manifolds and the use of the related mathematical tools for working out 

precise conditions. In this way also fixed-point structures of more general 

nature can be reached. 
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Restricting for simplicity to structures which do not involve additional 

complications, the generalized geometrical description is: 

a) There may be a r- dimensional manifold of fixed points. After mapping to 
an appropriate manifold in parameter space the situation with one fixed 
point remains to be considered. 

b) Points driven to the fixed point for increasing A are said to belong to 
the ''critical'' manifold. 

c) Points not belonging to the "critical" manifold are driven to the k' 
dimensional "renormalized" manifold and away from the fixed point. 

This is illustrated in a simple case in Fig.4. 

According to the geometrical description, the generalization of (5.13) is 

of form 

') ( u' s' A) = s ( u; ) I 'j, ' ... ) I ( 5. 16) 

where a component I;(g,l) is called relevant, irrelevant or marginal if it is 

driven away from the fixed point, towards it or nowhere at all, respectively 

(now understood generally, i.e. beyond the 1 inear approximation}. 

5. 1.4. Associated type of p function 

If in (5.16) the special case is considered where one component is relevant 

and all others are irrelevant, for large A one may use 

5(Uig,?.) ~ SW,)ij,>l). ( 5 .17) 

With the functions C.t(g, 1) prescribed, ) {g,A) is determined via the trans­

formations (5.3) for the respective discrete values of?.. It is understood 

here that there is one relevant parameter g. 

Starting from a point closer to the fixed point may be compensated for by 

doing more transformation steps. The condition for arriving at the same result 

is 
)i5',>1) = )i3,>). 

(5.18) 

Obviously (5.18) defines a dependence of g' on A' which can be expressed by 

) (s""'(1'), -:<') ~ c ( 5. 19) 
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It is important to keep in mind that lw() ') is the value related to the 

starting point of the KW transformations. The factor "' is the one reached 

after the particular number of transformation steps. In (5.19) C is given by C 

=) (g,).) where )(g,A) is determined as described before. 

Though originally derived only for the discrete values 1\' occuring in 

(5.3), (5.19) may more generally be considered for continuous A'. With 

suitable invertibility properties of the function ) one then gets gKW(A) for 

continuous values A, too. Then one can define the f-tunction 

~ Kw' = 'A 
d 9KW(>) 

d?. 
(5.20) 

The relation of lw().) to g(v) and of ~KW to~ will be established later. 

5.2. Transformation of correlation functions 

5.2.1. General formulation 

Now the formulation of KW transformations introduced in sect.5.1.1. for 

partition functions is extended to correlation functions which is important 

for the application to QFT. 

Inserting (5.3) into the general form 

f estu,g,il CJ(U,i l 
~ 

u 
of the transformation, it is seen that 

J e"tu,s,"lu(U,A) 

\) 

j O'(iJJJ 1;;, (U,U) = (J(U, 'A) 
u 

(5.21) 

(5.22) 

is the condition which d'(U'5) has to satisfy. For the special case CJ'(Uj) = 1, 

with O(U,'),) = I (5.22) becomes just (5.6). The crucial feature of (5.22) is 

that it maps from O'(U,)) to O'(U.~). In practice this means that for some 

desired final o'(G;5:) to be obtained by a KW transformation, (5.22) gives the 

necessary initial Cf(U,J.). 
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5.2.2. Particular transformation types 

To study the implications of ( 5.22) in the case of blocking 

transformations for definiteness the one of Swendsen [4ll for pure gauge 

fields shown in Fig.5 is considered. As illustrated in Fig.6, for a given 

CJ'(U}) already by one transformation step a large number of contributions to 

O'(U,).) arises (which increases with dimension). For more steps the number of 

terms grows very rapidly. In this way O'(U,)) becomes a definite 1 inear 

combination of form 

(J(U,?.) = (J,(U,?.)+ 4=1Ji(U,?.,:l). 
'*' 

(5.23) 

Here a;, is the contribution involving only the first term of the 

transformation in Fig.5, with gauge-field factors along a path Po (consisting 

of one or several loops in the present case). While the path Po is the same as 

occurs for (J'(G',i), the P; with i ;f 0 according to the construction are ones 

distributed around 'P". Since for O'o(U,A) the subdivision along :P" is finer by 

a factor ?.n.. than for O'(lJ}), the effect in lattice units is an expansion of 

all extensions occurring in O:,(U,';I) by a factor ~/'). as compared to those in 

IJ'( u.J:). 
It is to be stressed that it is necessary to choose O'(U,)) out of the image 

set of (5.22) because otherwise o'(0',5:) and then (5.21) would simply not be 

defined. In particular, one is not allowed to replace the "thick path" 

consisting of the distribution of 'Pi by a "thin path" made up of P" alone. 

Another possibility is to use KW transformations of the thinning type which 

preserve the overall properties of ~. This in particular means that one has a 

path :Po common to o'(U,7:) and to il'(U,l<) (instead of to il'o(U,>) only in (5.23)). 

The effect of (5.22) then is solely the expansion of the extensions in O'(U,~) 
by a factor ?.;A related to the change of subdivisions. A simple example is 

shown in Fig.7. 

Getting straightforward properties of a' under thinning transformations, 

however, the problem is actually shifted to S. At least in higher dimensions 

this may show up by drastic changes of the fixed-point structure. On the other 

hand, the blocking transformations with all old variables involved in new ones 

tend to prevent such changes. 
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Of course, also for usual blocking transformations [41-43] and their 

obvious generalizations it remains to be checked what the fixed-point 

structure actually' is. Further, in view of the effects on rr'it is important to 

know more about the thinning type of transformations. It is to be noted here 

that Kadanoff's reformulation [45] of Migdal's transformation [46] realizes a 

thinning transformation of the indicated type, which, however, is exact only 

in 2 dimensions. 

5.3. Application to quantum field theory 

5.3.1. Rescaling of QFT functions 

In order to define the limit as pointed out in sect.3, one has to construct 

functions P17 (n1 (Y). ..• ,nr(v);g1 , ... ,gt) which satisfy (3.11). For this purpose 

one needs the correlation functions G(n 1 (v), ... ,n,.(v);gj , ... ,g.t) with ns(v) 

given by (3.2) and with gl still independent of v. Thus, G is to be calculated 

for large n ~ and close. to the singularity at gf, for which an appropriate 

method is to be found. 

A reformulation by KW transformations becomes possible if one restricts the 

va 1 ues of x ~ and v such that 

'"'s(vl "'Y ><, 
b 

Xs ;~te3er J 
b 

Y= f )·2J 3;. · · (5.24) 

replaces the equivalence (3.2). Then extending the notation a'(U,J.) of 

sect. 5. 2 to 0'( v, U, ~ ) , where v resu 1 ts from the dependence on n J ( v) , the 

functions of interest read 

G(n, (vJ, ... 1 ;,,(vJ j ~) = 
[ 

S(U,9, !) 
e O(v,U, 1) 

u (5.25) 
J escu,~, n 
u 

(again with g possibly being a shorthand for g 1 , ••• ,g( and U for all fields). 

By a KW transformation according to (5.21) and (5.5) one gets 
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G-(~,(vJ, ... ,n,M; 5J = 
r .S(u,3,~! ~) 

e {f(v, U, ~ 

" (5.26) 

J esiu,g,?:) 
u 

as the transform of (5.25) provided the condition (5.22) is satisfied. 

5.3.2. Rescaling for particular transformations 

In the case of a thinning transformation (in the sense of sect.5.2.2) one 

has 

(5(-v, U,?.) ()(vir, U, ~1-.:) ( 5. 27) 

if Y/'C and ?.jr: are integers, because -J > 1 means to expand all extensions 

given for Y = 1 by a factor v, while (for the transformations considered) 1'1 

describes a shrinking of them by a factor A. Then for ?: = 'V (5.26) using 

( 5. 27) becomes 

G- (n, (Y) 1 • •• ! n,(v!j 3) -
f e s (1!, j' v J CT ( 1) 0, 1) 
v 

I 5(U,j,v) 
• e 
" 

(5.28) 

with the remarkable property that theY dependence is transformed completely 

to the action. Thus the ultraviolet limit in a' is replaced by an infrared 

limit in S. 

For a blocking transformation, however, it turns out that (5.22) cannot be 

rigorously satisfied. The reason is that the form (5.23) for O'(v,U,1) is in 

contradiction to the fact that O'(v,U,1) must arise from o'(1,U,l) by an 

expansion of all extensions by a factorY. If this holds for «o it cannot be 

achieved for the CJ1 with i ::f= 0 as is illustrated by a simple example in Fig.8. 

At this point it is instructive to satisfy (5.22) in an approximate way, 

requiring o'(v,U,l) to be properly given by d(l,U,l). For this purpose one 

introduces an associate quantity O'for which O'(U.v):: o'(l,U,l) holds. Then 0\U,l) 

is to be calculated according to (5.22). The approximation to be made when 

doing this is for one step illustrated in Fig.9. 
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For definiteness the transformation of Fig.5 is used. The result depicted in 

Fig.9 arises from an original loop of perimeter Lj. The values p; are ad­

justable to optimize the approximation of smoothing the loops with resulting 

perimeter 2Lj. The factor '{i is obtained by summing the contributions, which 

gives 

where L j 

[i = "' + ~j [( 1+ z (d-tJfi -1] 
j-1 

2lj-1 = 2 Lt. For V = 2"' one then has 

i5"(U, 1) "'-' ft ···(• Cl(v, U, 1) 

(5.29) 

(5.30) 

Thus it turns out that replacing O(Y ,U,I) in (5.25) by (5.30) the 

transformation leads to (5.28). 

The factor '(1···[,., in (5.30) is nothing else but the nonperturbative analogue of 

the perimeter-divergence factor in (3.38). Evaluating the leading contribution 

one obtains 

'{t ... f· ~ f, ... f" (1+2.Col-nt·'!L, (5.31) 

It is obvious that for a blocking transformation involving more paths the 

expression 1+2(d-l) ;n (5.31) would be replaced by a larger one. 

5.3.3. Implications for QFT limit 

In the combinations Pu needed for QFT, the factors (5.31) are to cancel 

out. Thus, for the blocking as well as for the thinning type of 

transformations one arrives at the form of P~ which is made up by functions of 

type (5.28). The restriction (5.24) implies that nr(ll is to be chosen large 

enough (i.e. b small enough) for a sufficiently accurate description. This 

means that in a way one has now a two-stage limit. 

For one essential parameter g by (3.14) with (3.11) the defining relation 

for g(v) is 

Pif(Yi",(v)
1 
••• JVir(v)j~(vJ)~ Qii',i<. ( 5. 31) 

For the transformed P" (made up of functions of form {5.28)). assuming that 

(5.16) holds with one relev.ant component T, with respect to the dependences on 

j,g and v (5.32) is of type 
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:P(n,(IJ, ... n, (I); J (scvJ, v J) ;;;: a~,x (5.33) 

By using the inverse function l of P, (5.33) becomes 

) CgcvJ 1 v) ;;;: .'R (Qo,ii, Yi(1l). (5.34) 

Comparing (5.34) with (5.19) it is seen that g(Y)~ gKW(v) provided that C = 
){(0¢,~}\w)and that the above assumptions hold. Then alsop and ~KW defined by 

(3.47) and (5.20) become equivalent. 

In contrast to the application to critical phenomena in statistical 

physics, the use of KW transformations in QFT turns out to be subject to sub­

stantial restrictions. This is apparent from the following overview: 

1) For the partition function in (5.5) ~can increase freely, which can be 
fully exploited for any value of g. 

2) For correlation functions in (5.21) the condition (5.22) on a' also 
implies that a maximal value ~:r'),..o.r-Occurs where a characteristic 
extension in (f reaches the 1 eng.th of one 1 ink. 

3) For QFT f~nctions in (5.26) only i"&Yis generally reasonable and i=vis 
the appropri at.e choice. 

4) As is trans-parent from-.(5.34), the basic equivalence relations of QFT, 
(3.14) with (3.11), require that for increasing~~v simultaneously g is 
forced to approach g'. 

It should be noticed that according to (5.34) the magnitude of'A(Qif,¥1 ii(f~also 
decides about possible methods for the further evaluation. 

The assumption that (5.16) can be used to get (5.34) implies that only the 

long-distance prOperties of S enter the definition of QFT. On the ot~er hand, 

( 5. 34) obviously keeps f at a fixed va 1 ue. Therefore, i rre 1 evant components 

must be either negligible in the corresponding region or not there at all due 

to an appropriate choice of the form of S (for example in Fig.4 on the "re­

norma 1 i zed" trajectory) . 

5.3.4. Criteria for essential parameters 

The assumption that the action (5.1) can be chosen such that (5.16) becomes 

S(U, ... ;g, ... ,g.;;.) = SCU, ... ; )1 , ••• , Jt'), (5.35J 

with k:' relevant components r~=)l(gj, ... ,gtj.l) and l'-k' marginal ones 

)i =J;(gl , . .,,gt ), in the language of sect.5.1.3 means that on the "re­

normal ized" manifold 1 S is determined by l' parameters. 
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If one has .e· = i. in ·(5.35) this confirms that there are, in fact, l 

essential parameters as anticipated. If l' < .e more parameters than necessary 

have been introduced and their number can be reduced to .e•. On the other hand, 

if i' > .e the original choice is not complete and m~be supplemented. In all 

this appropriate invertibility properties of the r~ are assumed. 

Now in the case £' = .e. which one achieves as indicated, k' is studied. In 

the transformed P5'" {constructed from functions of form (5.28)), thev de­

pendence enters vi a the k' re 1 evant components )d 9t , ... , 9ti v) of ( 5. 35) . It 

is wiped out if by the choice of the gj one shifts r~ to the fixed-point value 

" Ji.. On the other hand, in (3.11) with (3.9) the v dependence is wiped out if g~ 
' .. c tends to 9t· This relates }i~Ji to g,~g, and leads to k' = k. 

Since the fixed-point structure depends on the particular KW transformation 

used, it is important to investigate which class allows the present 

characterization in a universal way. 

6. Conclusions 

For a truely nonperturbative description of particle physics at present 

only lattice regularization is available. A suitable lattice formulation can 

be given. In particular, the problems with fermions can be overcome by tech­

niques a deeper understanding of which should result from the further in­

vestigation of nonperturbative features. The gauge-invariant quantization 

which becomes possible not only allows to avoid the difficulties of gauge­

fixing but also reveals important details of the theory, 

General renorrna 1 i zabi 1 ity means the existence of the 1 imit which defines 

the quantized theory in a nonperturbative way. Two ·types of conditions for 

this occur. The first type is related to the allowed variable dependences 

while the second one concerns invertibility properties 

valved. The .singularity in the space of essential 

fundamental role. The dependence of the parameters on 

of the functions in­

parameters plays a 

the· numbering of the 

sequence needed for the limit ·is determined by a system of equivaleoce 

relations. 
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From the given framework certain general features of the nonperturbatively 

renormalized theory follow. The notions of mass scales and constants become 

precise. RG invariance can be defined in a general way. Clear relations 

between various types of ~functions arise. 

As compared to the perturbative approach rather different renormalizability 

criteria are obtained. The reference to the fundamental p~rameter singularity, 

the mathematically sound definition of the 1 imit, the (general) RG invariance 

of the formulation and the straightforward inclusion of gauge fields are 

features which contrast favorably to those of the perturbative case. 

The knowledge about the critical singularities of interest is 

(qualitatively) fair in pure gauge theories, however, very unsatisfactory in 

the presence of matter fields. While in QCD due to asymptotic freedom there 

are indications on the singularity structure, almost nothing is known in other 

cases. To make progress within this respect is rather urgent because a truely 

nonperturbative description is a prerequisite for the settling of any mass and 

unification problems. 

The consequent application of KW transformations to QFT basically consists 

in a rescaling within the correlation functions which occur in the definition 

of the QFT limit. In contrast to the application in statistical mechanics 

their use here is subject to particular restrictions. 

For the transformation of correlation function a nontrivial condition 

exists which leads to features not there when merely trans fermi ng the 

partition function. Specific behaviours arise for (gauge invariant) trans­

formations of the blocking and thinning types. For QFT functions the 

nonperturbative mechanism of multiplicative renormalization effects is related 

to the blocking nature. 

Only the long-distance properties of the action enter the definition of QFT 

if in an appropriate auxiliary-parameter representation one goes to the "re­

normalized" manifold. This allows a characterization of the essential 

parameters of QFT in terms of relevant and marginal components. 

Since KW transformations turn out to be of interest for nonperturbative QFT 

from the conceptua 1 as we 11 as from the techni ca 1 point of view, it appears 

urgent to investigate detailed properties of suitable classes of them. 
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Figure captions 

Fig.!. Qualitative behavior of (4.1) for a) SU(N) and b) U(1) 

Fig. 2. Qualitative behavior of M for mesons, 
a) for g'2.:::::: 1 in Monte-Carlo simulation, 
b) for 91.= 0 as needed theoretically 

Fig. 3. Phase diagram for SU(2) fundamental-adjoint action 

Fig.4. Example of fixed point FP, "critical" surface CS) "renormalized" 
trajectory RT, and general trajectory T 

Fig. 5. 
Fig.6. 

Fig. 7. 

Fig. 8. 

Fig. 9. 

Example of invariant blocking transformation 

Illustration of effect of one blocking step on,...O', 
a) some links with gauge-field factors of 0'(0',').), 
b) a few typical contributions arising to O'(U,l) 
Example of effect of thinning transformation on Cl, a) O'(U,i),b} O(U,A) 

Example for behavior of cr, 
a) for increasing v of QFT definition 
b) for increasing A of blocking transformation 

Approximation after one ·step of blocking transformation of a' 
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