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Abstract

A systematic nonperturbative formulation of guantum gauge theories is given,
which defines the venormalized thecry as an appropriate 1imit of & Tattice-
requiarized one. First some features of the regularization in particular with
respect to fermions and to gauge invariance are discussed. The cenditions for
the existence of the limit, which are those of general renormalizability, are
worked out in detail. A fundamental parameter singularity and basic equi-
valence relations are impertant features. Mass scalies and RG invariants are
defined in & general way. Directly measurable quantities and order parameters
are considered. Various types of ﬁ functions are studied. The present know-
Jedge about fundamental singularities in specific theories and the urgent need
to investigate ones with matter fields are discussed. The conseguent manner of
applying KW transformaticns to QFT and the occurring restrictions are pointed
out. An additional condition arising for correlation functions and its
implications for particular transformation types are considered. Using an
appropriate auxiliary-parameter representation only long-distance properties
of the action enter QFT and a3 characterization of its parameters becomes
possible. The need of investigating suitable classes of KW transformations is
stressed.



1. Introduction

It is rather clear by now that particle physics is to be described by
quantum gauge thearies. For this purpose, however, perturbztive quantum field
theory is actually not sufficient. In addition to the obvious defects that
masses cannot be c¢alculated and that confinement cannot be explained,
increasingly also the analysis of amplitudes suffers from scheme-dependence

ambiguities and from unknown .monperturbative effects. -A severe conceptual '

drawback is that the very definition of the theory rests on the perturbative
expansion. Thus, a truely nonperturbative framework is urgently needed. This
would also allow to attack unification problems from the dynamical side.

Renormalization is crucial for the definition of a quantum field theory
{QFT). Historically it means the removal of divergences from the terms of the
perturbative expansion. The more appropriate view is to consider it as the
definition of the theory by a particular limit, which is a definite mathe-
matical concept. Any limit is based on a sequence of certain guantities. In
the present context the respective quantities are so-called regularized
functions. The regularization then depends on the numbering of the sequence.

A nonperturbative formulation c¢learly must be based on a nenperturbative
regularization. Then for gauge theories in four dimensions so far the only
possibitity is lattice reguiarization. The lattice will be considered strictly
in this sense here {which is to be contrasted to the applications where it
provides approximations or models). Therefore, one should keep in mind that
not the lattice quantities but only their limits are of physical interest.

The lattice formulation of gauge theories [1,2] has the additional virtue
of allowing gauge-invariant quantization. Thus, gauge fixing with its un-
pieasant features such as ambiguities in certain gauges [3] and operator
crdering problems [4] can be aveoided. In correlations of variant fields gauge
fixing can be shown to produce implicitly a highly artificial average of
invariant fields [5} . Instead of this in the gauge-invariant formulation one
has to specify appropriate invariant fields [55] Such choices are expected to
be restricted by the limit.

A difficulty which appears in lattice regularization is the so-called
fermion degeneracy [7] There are two ways to handle the additional degrees of
freedom: to suppress them in the 1imit [7] or to interpret them {after some
reduction) in a phenomenological manner as flavors [8] Because for the latter
view a consequent justification is missing, here the first way is used. The
suppression mechanism will later be seen to fit rather naturally into the
general representation of the limit. A hint where to look for é'deeper under-
standing comes from the direct relation to the axial-vector anomaly [9,1@.

Since the lattice provides the only nonperturbative regularization, it fs
important to be able to include neutrinos too. For this purpose the most
general form of the suppression term for ordinary fermions [_11] can be
extended td include handed fermions as limiting cases UZ], which can be cast
into a simple representation with one additional parameter [13].

The envisaged general Timit [6,14:] which defines QFT in a nonperturbative
way, due to the lattice regularization used is a particular type of continuum
limit. Its ultimate check can only occur by comparison with experiment. In its
formulation the aim is to use & minimum of ingredients and to start as much as
possible from first principles. Particular features will be that parameter
singularities play a fundamental role and that the procedure is based on re-
normalization group (RG) invariasts. The existence of this 1imit means general
(nonperturbative} renormalizability.

Some gquide for the lattice formulation is that it should also lead to the
usual classical and perturbative results. The classsical continuum 1imit is
essentiaily that of the action alone. The perturbative one gives perturbative
OFT with the Jattice providing & particular regularization. Because it occurs
for the terms of an expansion, which poses a problem of interchange of limits,
and because the expansion is at best asymptotic, the mathematical nature of
the perturbative limit for any regularizatton is rather unciear. Furthermore,
it does not refer to parameter singularities and (being based on normalization
conditions for correlation functions) is not RG invariant,



It appears worthwhile to remember here that the RG of QFT is that of trans-
formations between different fixings of the scheme., The concept has been
introduced by Stueckelberg and Peterman [}5] for continuous transformations in
the perturbative framework. The RG of Gell-Mann and Low [}é} is the dilatation
subgroup of this continuous one. In the nonperturbative formulation a precise
definition of the general RG (also inciuding discrete transformations) will be
given [?,lﬂ.

Because of some formal similarity to the dilatation subgroup of the RG, the
Kadanoff-Wilson (XW) transformations [}i} in statistical mechanics are called
RG transformations, too, This will not be done here since both concepts will
be used and must not be mixed up. The consequent use of KW transformations in
QFT will basically invoive & rescaling within the correlation functions which
occur in the definition of the QFT 1limit. Therefore a study of (gauge
invariant} transformations of correlation functions becomes necessary which
goes beyond the wusual considerations of transformations of partition
functions.

In the following a systematic formulation of the indicated nonperturbative
framework will be given. The knowiedge presently available about the
respective structure of theories of physical interest will be discussed. The
way in which KW transformations become useful for GFT will be pointed out.

In particular, after specifying the lattice formulation in sect.?, the
general 1imit will be considered in sect.3. Then in sect.4 the information
available about particular theories will be discussed and in sect.5 the
aspects of using KW transformations in QFT wil} be treated. Finally in sect.6
some general conclusions will be collected.

¢. Lattice formulation

2.1. Preliminaries

2.1.1. Definitions and remarks

A bhypercubic lattice is used since more complicated tattices so far
appear to have no advantage. Euclidean space of four dimensions is considered,
the resultsin which are to give those in Minkowski space properly by anaiytic
continuation. The guantities to start from are correlation functions

S
6 = lefo (2.1)

Je?
where $ is the action and O some function of fields. The abbreviation f stands
for the product of aill integrations, i.e. gauge-field group integrations f ,
fermion Grassmann integrations f and, if present, scalar-field 1ntegration£J].

’l."
A typical example for S is the QCD-type action ¢
Ea"d
S == (Sl D W)
n'n (2.2]

+ 5 T T (Ul -2)

]
where
i +
UP = U;n 2,n+6 Us,n+4 Uan
+ “ ;
D‘,\v\'n = ( an Sn'-f-ﬁ,n - Um\ (Sn',wi»a)/z (2.3 )
+
w"""'“ = (Uan' Snuam + Uﬁh Sn',h-l-;\ -2 5»..)/2
and

n=r exp(igsB) with r>o0. (2.4)

The term ;:qxva in (Z.2) serves to suppress unwanted fermion degrees of
freedom. It has been introduced for r=1 and©=0 by Wilson [7] and first given
in its general form by the present author [lﬂ. It breaks the chiral symmetry
which the classical theory otherwise would have for =0 (which, however, in
the quantized theory anyway does not persist). It is interesting that {2.2)

for m=0 §s iavariant under
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i.e. under a generalized chiral transformation.

It is important to realize that the lattice formulation does not involve &
length., The latter is only introduced by the limit prescription which is
impesed. Thus, for the c¢lassical Timit {i.e. for that of S alone) one uses the
correspondences

X )
3 -

Apx) & oz Yo s d)(x)é 0\14%. (2.6)

A0 £ @By where Un, = e B

to introduce the lattice spacing &«. Then for a —0, one can e.g. check that

2

~ =4 wq A
a n, Ko=a dq,m?_am

{2.2) gives the usual continuum action.

2.1.2. Schwinger-Dyson equations and Ward Takahashi identities

The integrations in (2.1) have invariance properties which are not anly of
conceptual importance but alsoc give rise to rejations [5,11] useful in
practice (and needed in the following).

2
Schwinger-Dyson equations for fermions foliow from the fact that (G/ﬁaﬁp):ﬂ
]] 2 A .
such that because of [ = ) Refap 2 up one has the general relation

A"

J'%__ F =0 Co(e
4

Inserting F = eSO'(with $ depending on products iFg;*AP,F ) one gets the

equation

s(as X
Jef (o )= =
4

and analogous relations follow by using right dertvatives instead of left
derivatives.

To obtain Schwinger-Dyson equations for ‘gauge fields as well as all kinds
of Ward-Takahashi identities one has to start from transformations of the
fields which leave f invariant. This allows to define general derivatives

F = lim (F(«,-»',«?,'U‘»—F(«y,{f,uj)/g s

£+ 0
where € parametrizes the transformation ang J denotes the particular one
considered. These derivatives have the property

{@F=0. (2.10)

Inserting again F = eSU one obtains

fes((635)0'+ 830) =0 . (2.11)

For example, the transformations of the gauge field at a certain Tink
exploiting the right invariance or the left invariance of the Haar measure
lead to "right" or "left" Schwinger-Dyson equations, respectively. Gauge type
transformations and chiral transformations lead to various kinds of Ward-
Takahashi identities. It is to be noted that from these relations at the same
time the proper definition of currents arises.

2.2. Fermion considerations

2.2.1. Propagator Jimits

In order to get definite criteria for an adequate fermion treatment one has
to see where precisely the naive description goes wrong. For this purpose
first the free propagator

G = iesm.f\?n

(2.12)
fe*
o

{with all L£¢E1 in (2.2}) is considered for n= 0. Its Fourier representation
on an infinite lattice is

oW
G_ _— _i__ 4 {erfr’-n} L ;X; $in oy — M ) 13
wn =T |0 € S (2.13)
Zcin Xa M :
~F -1 A

which with integrations over the full period of s$in o, dis not yet in a
reasonable form for the 1limit. However, by subdividing and shifting of
integration intervals one gets the equivalent representation '
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S_sin oty +
2

- T
where *
1k L‘fn,‘ OJO{) s even (r\*’l)
%(V‘) - 0 oftherwise {2.15)

\

{1& if oll M. even 7 (2.16)
o otherwice

p (n)
which is appropriate. Realizing that the Tlimit is to be taken in the sense of
distributions and using (2.6) one readily sees that of‘(3ghhas the correct
Timit.

The averaging over the 16 corners of an eiementary cube, which in the free
case is due to the application te a test function, in perturbaticn theory
sti11 works in- diagrams without multiplication of fermion propagators. How-
ever, wrong resuits arise for fermion Toops. Thus, at this point one gets a
true criterion [11].

It is to be stressed that considerations of the specirum on the lattice do
not help within this respect. Actually, it is not too difficuit to construct
modified actions which do not show a spectrum degeneracy, which however,
still run into trouble with fermion Toops. Thus, the simple exampie given is
typical for the general situation,

The way out is to use rl:‘-.. 0 in which case one obtains from (2.12)

4 . . Fa%s -—l‘f;e

1 "3 Lete{n-n) g %:ga S ¥y — it — W e o
' lldee e - — ,
nn am* T sintot, + M+ w (W20 05 6)
2

where w = 1 4:'_ {1 - cose). Again by decomposing and shifting integration
T . Then 15 of the 16 arising
terms are suppressed in the Timit due to the sign change from 1 - cos e to

intervals one achieves integrations from -%rtc

1 + coso, caused by the indicated shift, Then the correct results are obtained
alsc for fermion iocops in perturbation theory. Therefore, the formulation with
PL*O appears to be appropriate for the nonperturbative case, too.

2.2.2. Axial-vector anomaly

A second criterion for the fermion treatment is that one must get the
correct anomaly. 7o check this it is important to start from the properiy
defined Ward-Takahashi identity in which currents anq other quantitie; are
unambiguousiy determined, For the transformation S L em"rs’% ,"?.'-.“’M?-.&w"arr,
{2.9) applied to (2.2} gives

”aiS:—A?Ui—}:,n_a)-mL%«?hﬁ wa + A (2.18)

where

Tan = % (ol Uan s+ e s U ) (2.19)
and

A =~ L QZ)——; (IEP"'VZX} W';\n‘ﬂ -4}’"_"/@‘7{5 W’)""”‘iv".) . (2.20)

In passing it is to be noted that "point-splitting” forms of currents arise
here auvtomaticelly while in conventional approaches they must be introduced by
hand.

For simplicity now @ in (2.11) is specialized to U = 1, though general T
can straightforwardly be treated too ['10,11]. Ore then has

JQS(ZI(]Q];-;‘) - 2im n}lg?f%) = fesﬂ . (2.21)
v rw

By using the Schwinger-Dyson equation (2.8) the r.h.s. of {2.21) gets the form

J-GSA = ifr[}(;(GX+XG)Mt{Jes (2.22)
w /

’\r

where

1
X = VL;W1 G = (%({aDa*an)“‘m) . (2.23)

)

From (2.21) and (2.22) it is seen that the correct anomaly accurs if one has

[10,11]
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i 3
'a_l.r tr [{5’(6’)(-{-)(6')»«\»\ - "T[_' IFER v a0 r\v J() F;g (X) .(2 "

To establish the connection between degeneracy suppression and anomaly it
suffices to prove (2.24) for an external field Uanusing {2.6) and keeping g*
fixed as has been done [10,18].

It is to be noted that at the quantized level in any formulation an
additional regularizetion is needed which breaks chiral symmetry and gives
rise to the anomaly. The particular feature here 1is that the respective
regularization at the same time is related to the degeneracy phenomencn.

2.2.3. Neutrinos

With the replacements

{456 sin X

JTer T ' T
g -'—>X'7~ VLY, where -3 < X<

[2 — 2 =
ox v Y 7 ¥ax ¥ {2.26)

in (2.2}, instead of (2.17) one gets the free propagator

(2.25)

i

and

T Cg?a

Slhy f A
f"'gg SL“O( - _____( M/El )

Lo(-(h‘-h) LZ 8".\

G, =~ J d'
nn {211')“ ¢ Z_c;‘“.x}.q-ml-;- wi{w+2m s @)
- - A

{2.27}

Obviousiy for (2.27) the 1imit can be performed in the same way as indicated
for (2.17). Thus letting in addition 7“’i-%5 corresponding to the handedness
and m — 0, the correct results in perturbation theory are to be expected for
neutrinos,too. Therefore, this formulation should alsc be appropriate for the
nonperturbative case.

- 10 -

2.3. Gauge-invariant quantization

2.3.1. Effective fields in variant formulation

In conventional approaches, in addition to allowing quantization at all,
gauge-fixing leads to nontrivial resuits for correlations of gauge-variant
fields. It is useful to analyse in more detail what happens within this
respect before Tooking for an alternative to such correlations in the
invariant formulation. On the lattice this can be done in a well defined way.

After chosing a gauge-fixing function F(U) one defines +(U) by

¢(U}fF(U') =1 (2.28)

v
where Y denotes gauge transformations. Then the relation

Jes = \[IES#)F (2.29)

leads to the definition cf correlation functions with gauge fixing

[4F0
o - ¥ -
< >F fe$¢F ’

Conversely now, multiplying numerator and denominator in {(2.30) by f and doing

(2.30}

“ steps of type (2.29} backwards one arrives at [5,1ﬂ v

<o—>F - <0;ff> (2.31)

A [FWIOW v,7)
O;E(U,af,ry).-: Tr () , (2.32)

Thus, a correlation function with gauge %?xing is equivaient to one without it
of an effective field combination Géff. For a gauge-variant G, Oéff is &
highly artificial average involving different pieces of F in the numerator and
in the denominator of {2.32}.

where

On the lattice it is seen that the choice of F actually needs some care
[B}. In order that (2.32) can be. sensible, appropriate forms of F f5,6] are to
be used.
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It is to be noted here that the MWard-Takahashi identities which play a
major role in conventional renormalization are nontrivial solely due to gauge
fixing [11]. In fact, for the derivative (2.9) associated to the gauge trans-
formation ¥V one has ?:;S = 0. What then remains ef (2.11) is f eSGK;U’= 0.
Using this and the definition (2.30) one obtaines <F"G;; (Fd))F = Q or

V]
Lo nFo + e, 0> =0 (2.33)
which is the general form of the mentioned identities.

2.3.2. Choice of appropriate invariant fields

Invariant fields occuring in O, 1ike

Apf pnp .34
|
?V_! ?M 60()---,0\!«' ’\)Vﬁfuﬂl L ‘Af’nfway (2.35)
, +
LT (U, +U) (2.36)

for mesons, baryons or glue, respectively, are, of course, to be used in any
formuiation. However, e.g. for ﬁh;nyn in the gauge-variant formulation one
needs an alternative in the invariant one. One observes that for @&w?g the
numerator of (2,32) contains terms of type
[

) /q:--\o\'l.’.1 S:'m A{MP = /\I}n')&' U (p:;'l.v)\)/‘]un# (237)

() ] o
where Tbn is a path from n tc n' and Lf(;b“) denotes the ordered product of
gauge-field factors along it. The coefficients of these terms as well as the
denominator of (2.32) invoive expressions of type

. . (') ’
L = Tr UEY) (2.38)
() ;
where :E is & 100p and Uﬁﬂvagain the ordered product. Thus, in the invariant

formulation matters are considerably simplified by directly choosing one
jnvariant bilocal field of type {2.37)}

- 17 -

To find & replacement for gauge-field correlations of the variant
formuiation one has to look for appropriate field-strength guantities on the
lattice. For this purpose one observes that in the Schwinger-Dyson equations,
i.e. in the equations {2.11) related to the invariance of the gauge-group
measure, such quantities are given by iS,llj

(=3 it j P
— — 2.39
Foaw = (V- Up)/20) (2.39)
where L&, is just LL of (2.3) and oc = 2,3,4 denote products arocund the
plaquette starting at the other corners. Then, similarly as for the matter
field in {2.37}, cne can define bilocal field-strength combinations

T (%o UPS) T, U(S). G

n I
Furthermore, more general multilccal fields arise by additional insertions of
(7.39) into (2.40) or {2.37})

Clearly, physics must not depend on the choice of paths in (2.37) and
(2.40). In the variant formulation the respective freedom is contained in the
choice of the gauge too, changes of which may be absorbed by the wave-function
renormalizetion. Thus one expects that the required independence can be
established at the level of the renormalized theory.

In addition te the field combinations suggested by particle physics order
parameters, testing phases of the regularized theory, and c¢loser in spirit to
statistical mechanics are of dinterest. Best known within this respect are
Toops [1,2], i.e. combinations {2.38). There have also been efforts [19} to
use certain quantities of type (2.37)
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3. General limit

3.1. Definitions, conditions, properties

3.1.1. Implications of variable dependences

A particular lattice theory by (2.1) gives a set of correlation functions
of form

G<n1)"‘inr)—81)"wﬂi) (3'1)

which are to be used to define the Timit. In (3.1} the wn. are the integer
variables of the particular function and the g are the essential parameters
of the theory. For the moment one may think of the §i as of the usual bare
parameters; more precise criteria for essential parameters will be given
later.

The first step now is to relate the wg to physical lengths X,. 1f v numbers
the sequence which is to define the 1imit, this may be done by putting hg(v) =
int. {vxy/b) where b is the Jength unit. Actually it is sufficient fo require

only Xg
A

where the equivalence sign = is defined by
Aw) 2 By f AW)/Bvi-—1 ‘for v 50, (3.3)
Obviously continuous Vv can be used.

A basic requirement now is that in physical quantities the dependences on
the %, must not be wiped out for v+, This means that only dependences on the
lattice variahles of the types

he /g (3.4}
and

ne § g0 -0 g0) | (3.5)
are allowed to cccur, where
4
f(31)"')32) - 0 for g Y {3.6)
holds for the approach from some region of the parameter space. Then one gets

Ngl¥1/ngi ()= xg/xg. and ng(v) ]‘(g, (v),...,9e (V)3 %, C with finite € for
suitabie dependences g; (v} as will be explained in the foilowing.

- 18 -

In gereral the functions {3.1}) themselves are not expected to have only the
a1lowed dependences {3.4) and (3.5) but certain combinations

F%.(n,,,,,,ng; 31],,,,5L) (3.7
of them. In (3.7) & denotes the particular combination. The subclasses of such
functions which are of main interest will be discussed later. It suffices to
perform the infinite-volume 1imit for the combinations (3.7} considered. This
ts henceforth understood having been done before letting w= oo, which in view
of (3.2} is necessary.

3.1.2. Necessary structure of functions

There may be up to £ independent "taming" functiens, i.e. functions of the
type occurring in (3.5). Thus in general one has

fo(goenge) with =1,k (3.8)
where k£ £, with
ri (31,...,3¢)% g for‘ SJ—éﬁj {2.9)

for the approach from some region of parameter space. The value of k depends
on the particular theory and on the region of parameter space considered. If
«<{ there are further £-k independent functions

TL(S{-,.-A)Ijg) with (= Kkl ..o, L {3.10)

which are not subject to (3.9).(For k<&, if the functions (3.8) have suitable
properties, (3.9} can possibly be extended %o the approach of a é -k
dimensional manifold.)

According to the z1lowed dependences (3.4) and (3.5} and to (3.8) - {3.10),
the structure of the functions (3.7} must be such that

P (nyvi, ..., n,(0); 31)---)91)

= Fs,x (\Jﬁ,...,\)rk)’ fk*“...)ﬁg) ‘for 3;43?

{3.11)
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with ﬁ = ﬁ(ﬂu-wﬂl) and x = {X,,...,%x. ), where linear combinations of vﬁ,...,VTL

multiply some or all of the x,. This implies the property

Fﬁ',sx(vﬂ---)vt) = FEJ)( (89 ) ey SV Vi ooy Ve ) (3.12)

of the functions fg,.

3.1.3. Basic equivalence relations

The task now is to determine the dependences g; {v) such that g;(v)— gf for
v c0in an appropriate way. Then the limit of interest

O\G;Y = il:_)moo PG(n«j(v))d--)mr(v)}.S{(\))J.,.JSl(V'))

= lim B funr fo)

v

(3.13)

where now 1} EEI}(g,(V},...,g,(V)), can be calculated.

For the determination of g;(v} one has to prescribe ? defining values Qfaiﬂﬂ
with j = 1,...,£ and to consider the corresponding £ relations {3.13) with the
g;{v) as unknown. In other words, one has to solve the system of eguivalence
relations

F—(E,I){J’) (V]‘i Yoo VT" ;TK'H 107y )[E ) = Qfg)?)(j) (3.18)

where j = 1,...,¢ and F-:—ﬁ(g,(v),...,gz(ll)).

Ir order that (3.14) has a solution, conditions of the type known from the
inverse function thearem must hold. The inversion here occurs in two steps.
For the first one the inverse set of the functions ﬂ@;)ﬁjis needed, i.e., the
existence of

H(G-',EJ(I:) (LL,,.,.,U,_): Vi 5 LLJ = (6‘-);)(‘]‘)(\4,..-,\/3)) (3.15)

with 1,5 = 1,...,f, in a suitable interval (which depends on the experimental
values of basic physical constants). For the second step the inverse set of
the functions T%, i.e. the existence of

hj (+‘)--t)¢€) = ﬂj' ) ¢"‘ = ]‘E (3““"51) , (3.16)
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with 1,5 = 1,...,2, is to be required in a suitable region (which for the ¢£
with i = 1,...,k is in the vicinity of zeroj.

3.1.4. General properties of solutions

Assuming now that the described conditions are satisfied, the general
solution of (3.14) can be written down and the resulting properties can be
studied.

By applying (3.15) to {3.14) one obtains

\JT;, (S{W),.,.)ﬂg(\’))gR{ fnr f:'.',.,./k {3.17)
fi (g0, geO) E R for =k, (3.18)

where
R: = Henw (Qemw,--, Qiow), i=1,...,¢. (3.19)

Then using (3.18), from (3.17) and (3.18) one gets

[ R R . N
g}(\-’) = i’lj (V{‘J"')VKJR"“)"')R’E)) J=1J"'jf' (3-2{))

Now inserting (3.20) into (3.13) one obtains
Qex = Fenx (Ry, -, Re) (3.21)
for the basic renormalized gquantities.

Clearly, the determination of gj{v¥) up to equivaiences is sufficent for ob-
taining Qsx . The r.h.s. of (3.20) describes a definite curve in parameter
space. The particular direction of approach of the singularity, implied by
this 1is what guarantees simultaneous "taming" by the independent functions
with i = 1,...,k (which can be read off from (3.17)).

The quantities {3.21) behave under dilatations xg —» sx, as
(3.22)
O‘F,SX = Fg)y CSRIJ"‘JSRkJRk+f;»'fJR£)

?
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which follows from (3.12). Among the constants Ris... Rz of the renormalized
theory, R, ,...,R, have the nature of mass scales, for which on thus gets a
precise "definition (masses in general occur as linear combinations of these
scales with coefficients depending on the particular function under
consideration). Then the number of independent “taming" functions of a theary
is just that of its mass scales. The A parameter of QCD is an example of such
a scale. The investigation of these scales beyond pure (one-parameter) gauge
theory appears important with respect to the mass problems in particle
physics.

3.1.5. Consistency and RG invariance

In order to check the consistency of the outiined procedure one uses (3.21)
te seiect £ particular values
-~ ~— R :
&{S;X){j) = Ff!»XH_jI (KU'“IRE) N ‘}),,,}2) (3.23)
requiring that for these values invertibility of type (3,15} holds, i.e. that

H(G’,?)(() (b, W) = v uj = F(E‘,;)(J')(V,,..»,vt) {3.24)
with 1,3 = 1,...,£ exists, Then one uses the set of the Q(aQ)g)for a new
solution of the equivatence relations (3.14), which leads to new constants

N

R, = H(E,;)(iﬁ (Q(%;}(‘))“-) Q(E,;)(U) ) L= 4., b, (3.25)
On the other hand, one can use {3.24) to invert (3.23). Comparing the result
of this with (3.25) it 1s cobvicus that

C. _ p. - 3.26
RL - RL } L= 1)"‘IZ' ( ;
i.e, that the R; are universal constants. From (3.26) one gets E;(v)&? gj(v)

and, therefore, again {3.21), Thus one has, in fact, consistency.

The transformation from one defining set to another one,

‘[O\(E,;)(i) ) t= 1:"‘122 - {Q(g,;m’) y 1% 1""’4 (3.27)

is nothing else but the general RG transformation of QFT. Its general form can
be explicitly written down by inserting (3.19) into (3.23), which gives
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Qg = F{E,htj)(Hcé,ﬂ(“(&ﬁ“”a"'1&"5—)‘5”’”)’
(3.28)
ceey H(E)Q)(U (Q(E,)?)(i)) -y Q(b:f;)rt}))'

Due to the invertibility properties expressed by (3.15) and (3.24) a RG
transformation is invertible, too. By {3.27) {or (3.28}) the concept cof RG
transformations is now precisely and generally.defined. It is to be noted that
also discrete transformations occur.

Having the general definition of the RG it is seen that the consistency
shown before means that the quantities qu given by {3.21) as well as the
constants R of the theory are general RG invariants.

The necessity of using asymptotic equivalence instead of equatity now
becomes also transparent. For cne fixing of the scheme by (3.14) ane could, of
course, use equality. The solution of this, however, after a RG transformation
in general does only satisfy equivalence relations.

3.2. Functicn combinations of interest

3.2.1. Class of functions related to physics

The most important class of function combinations PFg among those introduced
by {3.7) is the one related to S-matrix elements and physical masses. In order
to see how ithis ciass of combinations is to be constructed a Jook on the
conventional formulation 1is useful., Starting from the general set of
correlation fumctions, the first step there is to form connected functions
because these are the ones of physical interest (in additon they have more
reasonable mathematical properties}. Similarly, in a next step one even
restricts to one-particle-irreducible functions. Traditicnally renormalized
functions

(Ui, -nr,Ur) e /2 Up /2 (U eey¥hr)
e, = 2T e (3.29)

and renormalized parameters

Few

?I.L - 3:19\(31}“" ﬂng/f“) (330)
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are introduced. Quantities which are invariant uncer the dilatation subgroup
of the RG satisfy

£
(155 F im0 - =

ren dai”
ﬁae = p _;]_i— (3.32)
[/\

are the renormalized p functions.

where

A simple rule for the construction of guantities which satisfy (3.31) from
functions (3.29) is that in the respective combinations all wave-function
renarmalization factors 2@ must cancel cut. This obviously holds for the class
of functions

I"("‘H" ;u
ren

(uurﬂ [ (e =) \'? (3.33)
(r. )

Ten r

(with M =t.%u,) which determines physical quantities as will be pointed out
now.

The mass m,, follows from the special case
(Ma=12)

[ren (XD
s a1 12
({_'( Y 4>y . %X,XI))

ten reém

(3.34}

f {3.33) because mﬁ is a simple zero with coefficient cre of

-1

A(m:?.)
(EJ._ M ) {3.35)
e g=p

{Ua {Huz2)
where rﬂ F:e“ .

few 15 the momentum-space transform of
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The S matrix is given by the on-shell values of the function

A
: 1 {-n('/‘\l)"‘:””)
2 2 N3 2 k3 2 rén (336)
( ]"mm)l"" (P"\-m‘-"m) A (Vo= 2) A (Ban=2) \i/2
f o= =)

(where to simplify the notation a possible spin structure has been
suppressed}. {3.36) is a streightforward transform of {3.33). It is to be
noted that in standard formulations the product of factors {{(p" - m:)/f%(““;z))1/z
does not occur because of the restriction to rather special normalization
conditions.

RG-1invariant coupling strengths (i.e. physical ones) can also be defined by
particular values of functions (3.36). For example, the definition of the
electric charge in the Thomson limit is of this type. Furthermore, the so-
called invariant charge of %F theory is a special case of {3.36).

3.7.2. General starting peint

The crucial observation now is that wave-function renormalization effects
cancel out from {3.33) such that one can as well start from

{'—I(U'h-")ur)
( I—-wu.x-,.:'z) I—ﬂ(w%wz))ffz

{3.37}

formed by bare functions. If (3.37) is constructed from lattice functions, one
gets nothing else but pabticular combinaticns P as introduced by (3.7). The
requirement of dropping out of the wave-function factors of the perturbative
framework, in the general case is replaced by the condition that only the
dependences (3.4) and (3.5) are allowed toc occur. Then with the structure
(2.11) and the properties (3.15) aad {3.15) not only invariance under the
dilatation subgroup but under the gemeral RG is guaranteed for the result
S-matrix e]eﬁents, physical masses and RG-invariant coupling strengths are now
in an obvious way given by the QE# related by (3.13) to the particular Pg of
the form {3.37).
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Obviously the traditional renormalized functicns and rencrmalized constants
do not occur in the general formulation; their introduction appears rather as
an unnecessary complication from the general point of view. It is also seen
that the general conditions are weaker than the conventional cnes by avoiding
to fix wave-function features and by replacing equalities by asymptotic equi-
valences (which actually turned out to be a necessity}),

3.2.3. Nonlocal fields and order parameters

The considerations in sect. 3.2.1. started from local fields. However, also
the nonlocal objects discussed in sect, 2.3.2. are of interest. A hint for the
construction of appropriate combinations Pg 1in that case comes from the
renormalization properties of loops in continuum perturbation theory [?O],

Ween = BZPZCLB&)..,ZJX:)W) W=JLy, (338

where p is the perimeter and Y, the angle of the $-th cusp (for a loop with a
cress point, in addition mixing with Toops in contact &t this point is to be
taken into account). Using again the rule of dropping out of wave-function
renormalization, for rectangular loops with extensions u;, v; the combinations

Wl Vi) en s W (s, VO
WLV W V)

S A~
with Z (Wi =t;- Vi) =0, (3.39
=1

where W{u,v} = <Luyv> are appropriate. On the other hand, constructing (3.39)
from lattice functions cne expects to cbtain a new class of Pe (which has, of
course, tc be checked using the nonperturbative criteria). This class is Jjust
that of general Creutz ratios {21,22].

W(u,v) is primarily an order parameter [1] . With respect to particile
physics 1t provides a criterion for confinement in pure gauge theories [2].
The ratios (3.39), though not directly related to S-matrix elements, are
useful to determine properties af the theory. They also give clearer signals
from the order-parameter point of view.

Y

For <ﬁ%?35;nﬂ&p> similar renormalization properties as for < L > are to be
expected (with a relation of type (3.38) supplemented by factors for the
string ends with matter fields). This again Jzads to combinations which are
candidates for functions Ps. The usefuiness of correlation functions of type
<¢nh5»h ¢u> as order parameters in the presence of matter fields needs further
investigation [19]. It appears that also in this case combinations Pe should
be better order parameters.

For a systematic treatment of the multilocal fie]@s of sect. 2.3.2 in
particle physics, an appropriate choice of the paths ?ﬁ:’re1ated to the Siﬁ is
crucial. According to the available hints they all should have the same
length, the same number of corners and, for convenience, no crossings {the
crossings at the gixﬂ‘are, however, to be accounted for). In order that it can
be used in all functions, the length must be the maximal one, which in the
infinite-volume 1imit gives paths running to infinity. Then the construction
of Pg related tc S-matrix elements and masses should be possible similarly as
discussed for local fields before.

2.3, Some B-function relations

3.2.1. Functions in renormalized theory

In view of the almost exclusive use of the dilatation subgroup of the RG in
conventional approaches it appears worthwhile to have & brief look on the
features of this subgroup in the general formulation, too. This means to
specialize (3.27) to

F=6 , Xy = 5%, (3.40)
by which {3.25) with (3.26) becomes

Ri = He,smw (Qasnn,..., Qesnw) st e, (.01
By ustng {3.12) and (3.15), (3.41)} can be cast inte the form
-1 _ s
s H@,EJ(L) (QfE,muu“w Qre?,simi) 'for t=1., .k,

RL - ' (3.42)
H (Ej?)(LJ(Q(rE)si)ﬁ) J --a,Q(EJS;;(e)) far = ki, 4,
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Now, considering (3.42) being inserted into {3.21), one gets the RG equation

-1
4 b Z_ ) = (3.43)
( _1 i=1 B ?Q(s sX 0 Qs,x 0

. = ¢! d Qe s700
i ds—i {3.44)

where

is the general P function of the renormalized theory.

Clearly (3.43) and (3.44) are the analogues of (3.31) and ({3.32},
respectively. It is, however, to be noted that the Q. :x x)and the g?“(p} are
in general different within two respects. Firstly, a Q@ axiy is a particular
value of a RG-invariant quantity which a g'{“(p) needs not to be {and usually
is npot). Secondly, the Q( s®) are neither required to be small nor to aliow
any expansion while the g'-:‘“(p), of course, must do.
dRs

Inserting {3.42) into o . satisfy
H& )
H(E,?)(L) Z B 2héng. 0 fJor t=1,... %K
s 2 Qe 50 (3.45)
ZB} m— = 0 Tor (= k+1},..li’l
J AE, s

where H@;;,(;,E He ;)\‘:)(Q(E)S;EJ({), oo« »Q@skye) ) - A consequence of (3.45) is that

B, = B (Q(g,sx)m,--. Q(E s;?J(U) (3.46)

is the functional dependence of the B;, which constdering 06" as "tine' allows
the picture of "stationary fiows".

3.3.2. Bare B functions

Because (3.2) ailows continuous ¥, one can define bare[ﬂ functions by

fJE =V _5_01 () {3.47)
' dv
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By differentiating (3.17) and (3.18} with respect to ¥ one abtains

: £t %7 ,
T; + Z{ b Lz for =tk
= gﬂi (3.48)

12
iR
(o]

j’cr— L=k+1,..-)£

where }L 5‘;’(‘31(\/) ..., 0e(v)) and 9= 9 (v). From (3.48) it follows that

b & FJ- (440910 e ). (3.49)

Formally (3.48} and (3.49} are similar to (3.45) and (3.46), respectively.
However, apart from the fact that the nature of the g;{v) and of the Q& 7))
is entirely different, mathematically the relations involving the F are only
asymptotic equivalences while those of the B; are equations.

By inserting {3.17) and {3.18) intc {3.23) with {3.40) and using (3.12) one
arrives at the equivalence
Qi sni) & Fena (SVTn-f-; Svﬁw’ }Cuh---; ]:) (3.50)
with 1 = 1,...,4 and f,‘E ﬁ'(gi (v1,...,9e(v] ), which connects the 0 ¢7) and
the gj(v). Differentiation of (3.50) with respect to v gives

£ BFE =z, E= .-
0L > by Eno o, RhE@ (3.51)
=1 ’38; G

Because of  PFEB S'BEE,i’thJ:_Bfrom (3.51) it follows that
v 28 ‘

7. F(s:’;){{) (SVT!J...)Svrk;rml)..,,]ct)
’83;(\*)

(3.52)

bz Eh

=1

with 1 = 1,...,8, Tjgﬁ-(g,(v},..., aelv)) and B =B (grvd.o s gelv)). It

is to be noted that due to {3.15) and {3.16] the derivatives ’3F(s',:?)(i)(vn..-,%)/ﬁv_"

and @fé(m vy ge)/’dgj are finite matrices. The equivalence (3.52) is the
precise general relation between the two types ofF» functions.
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4. Situation in specific theories

4.1. Properties of pure gauge theories

4.1.1. Knowledge from Monte-Caric simulation

Theugh precfs remain to be given by analytical methods, Monte-Carlo
sfmulations are valuable for exploring the situation. Here information from
such simulations about the parameter singularities in specific theories are
considered which are pof $nterest in the present context.

Results which test (3.11) directly have been obtained [22-24] for SU{N),
where N = 1,...,4, and U(1) using a special case of (3.39), ramely
2v,2v) W (v,v)
Wiy, 2 g (VTfﬁ’) (4.1)
(W {(2v,v))

with v = 1,2. Their qualitative behaviour 95 shown in Fig.l. It is seen that

the steepness of the curves increases with v for g" > gf,', where g: = 0 for
SU{N) and g': = 0,99 for U(1). This is in accordance with

dF‘-(V]C(S\) P

mrrem i A
where F's= 0 and{'s$ 0 due to (3.15) and (3.16), respectively. For SU(N) the
interpretation is consistent with k= 1 and f(g)—;O for ¢~ gf,‘. For U(1} the
same is true in the confinement region g"" > g:’, while in the Coulomb region
g2 < g: one has the case K= 0 without a mass scale, Thus one gets reasonable
results though ¥ = 2 is actually far from v—=>001in any sense,

(4.2}

If one is willing to make assumptions about the form of W(u,v), one can
also extract information aboutf(g) from Monte-Carlo data. In particular,
assuming that for u,v Targe enough one has

. z
ln Wu,v) = CD"Ci(u"'V)"“C?-f uv. (4.3}

for special cases of (3.39) Tike

W(M+?Jv+?) \A/(uJV) | W(u-f-}’/ u+ 1)
W{ut1,v) Wiu,v+1) W{uta, u)

(4.4)
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one gets

P >~ exp (—sz) . (£.5)

Using this, the data of the simulations for SU(N) with N = 2,3 [21] and for
U(l) [23] allow to obtain the string tension czf% For SU{N) there is agreement
at large g* with

1
f ~ Lﬂ 81 + [n (N_ éxz) H (4.6}
following from the strong—coup]ihg expansion, and at small 91 with
! B
2 — -
['r e B8 (pg) P ) (4.7)

to be discussed below. The crossover betweern the behaviours (4.6) and (4.7) is
fast {occurring roughly near g'1 7~ 2 and g'L 2 1 for N = 2 and N = 3,
respectively). For U(1) the fit

[~ (5 - =) for 97>0.83 (g
and

]L = 0 fo.r 31< 0,33 5]

helds within the accuracy of the data.

4.1.2. Use of bare .5 function

For £ =k =1 integration of (3.48) gives

g )

f(ﬂ(v)) = }c(ﬁ(v.,)l) exp (—*3({0) f;_f({_ﬁ_)_ ) . (4.10)

The approximation which replaces = by = in (4.10) is essentially that of
scaling [25}, which is what is to be impraved by Symanzik's program [_26_-[, and
which so far is only under control by reference tc perturbation theory. From
the considerations in sect.3.1 it follows that this approximation in general
ts not RG invariant.
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0f course, (4.10) is only of interest if the p function is given. By (3.47)
it is actually simply f vi) = T Vo) )¥o/V as one also gets directly from
(3.17), i.e. from T(g{v‘)}- va

For SU{N) from perturbation theory one obtains the representation
,B(a(vl) = -F ) - Fﬁ g’(vl - J(ﬁv(“’) . (4.11)

Negiecting 0{g7) and inserting (4.11) into the scaling approximation of {4.10}
one arrives at the asymptotic-scaling approximation (4.7). Thus, though the
perturbative expressions from which {4.11) is derived by far do not show the
dependence (3.5), via F(g) one obtains an approximate function f{g).

Some comments on the nature of (4.11) appear in order at this point. It is
well known that the lowest-order coefficients Po and P{ [27] are invariant
with respect to perturbative transformations. Actua?fy one starts from the
relation analogous to (4.11} which holds for "€ and greﬁu), in which case the

eh(yy and some §7°(i). Keeping v finite, a trans-

transformation is between g
formation from g™"{y) to g{v] then leads to (4.11}. Thus, in addition to its
perturbative nature the finiteness of v is important for (4.11) to hoid
approximately. Frem (3.50} and (3.52) it is seen that the general relations

are rather subtle and allow, in fact, at best an approximation for finite ¥.

4.2. Gauge theories with matter fields

4.2.1. Masses in QCD

According tc the structure of (3.11} the hadron masses in QCD must arise
from lattice expressions of form
K

Mt (8);‘11)"'7‘“4) = ‘}—Zi er ﬁ (S)ﬁn"‘il”\;‘{) (4.17)

where T denotes the particular hadron. They are obtained from

[
Mt = E:i::; T M (3(V)3m1(v}).,.)m{(w>_b;clj} (4.13)
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after determining by (3.14) the dependences g(v), ﬁ;(v), i.e. the curve {3.20)
in (g,ﬁ, ,...,ﬁ} ) space along which one has to approach the fundamental
L

singularity at g%, m:.

Having g“= 0 with the taming function f(g) discussed before in the pure
gauge-field case and ﬁf = 0 with taming functions 'ﬁ'(ﬁ}) = m; in the free-
fermion case, naive combination leads to expect the singularity at the point
g“ = 0, iy = 0 in (g,M,...,Mg) space and to envisage the possibility k = £
where £ = §+ 1. This picture is supported by consideraticns of F functions of
the asymptotic free theory to be presented Tlater,

It is to be realized that by (2.9) the functioens (4.12) for any T have to
go to zero if ¢ @S is approached. For an zpproximate evaluation one should at
least be close to this critical regien. Unfortunately this is not the case in
the respective Monte-Carlo simuiztions EZS and references given there] and
strong-coupiing computations [7,29] though they allow to some extent a fair
description of spectra. For example, for pseudoscalar and vector mesons the
streong-coupling results

(rit) ((3+0)—1)
(m4)t - 3 /2

~ meeyez) (e - 2)
o L - 1 = (¢ +4)qz)(
2 Lo (el = 2/2

Q_( cosh fc{ps - 7)’—
{4.14}

exhibit singularities only at different values of ﬁ‘(the ones closest to =0
at § = -7 and at m= -2.3, respectively). Of course, one can hiame this to the
fact that gz = o0 is really far from g'i = (. However, for J’z 1, which can be
reached by Monte-Cario simulations, the situation is also far from the ideal
ore. This is shown gqualitatively in Fig.2 for the meson example.

4.2.2. Use of P functions in Qch

Requiring 4— small enough such that asymptotic freedom persists, one can
again try to get information by using P functions from perturbation theory
Similarly as (4.11) for g{v), there are bare functions associated to the m, {w).
At the one-loop level one gets for large ¥
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By %= R ) g2 (v) (4.15)

wher‘eﬁm = (211“)'4 for SU(3) [30]. From {4.11) and {4.15) it is seen that there .

is an ultravioiet-stable fixed point at g=0, ﬁ‘-'=0, indicating that one has, in
fact, g°=0, ff=0.

The flow curves, which are obtained by integratiﬁg (3.47) with the one-loop
P functions, are given by

P
%C(") _ (S"Lv))zpe
s Tl

(2.16)

L3

-4

where B. = (11-2f/3)(167) for SU(3). The flow pattern described by (4.16)
indicates that one has, in fact, the case k=£. It, furthermore, suggests the
possibility of a phase-transition line along the g* axis.

4.2.3. Situaticn in other cases

While the information about the singularity structure in QCD is restricted
to indications on the Jocation in parameter space and on the value of k, even
these features are not clear in other theories of particle physics. This means
that one is still far from a truely nonperturbative description.

For QED obviously the region with g% < 0.99 of the U(1) gauge field is to
be considered, Again the guestion is which structure arises upon combination
of gauge field and matter field. Now, however, due to the lack of asymptotic
freedom, no hints from perturbation theory are available.

In the standard model of electroweak interacticns again the perturbative
knowledge 'does not help. Ideas about possible features may, however, be
obtained from the Higgs models related to its sectors, For the fundamental
representation of the Higgs field the confinement phase and the Higgs phase
are continuously connected [3g , i.e. not actually different. In the abelian
case there is in addition a separate Coulomb phase. At the present stege of
affaires [32,333 , however, conclusions about a possible singularity structure
of an electroweak theory appear premature.
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4.3. Actions with auxiliary parameters

The lattice action leading to a particular centinuum theory is by far not
unique. For the description of mcre general action forms, representations in-
voelving auxiliary parameters are convenient. This s illustrated in the
present sect. by typical exampies.

The metivations for using more general forms are firstly to get a faster
appreach of the 1imit and secondly to study nearby phase structures in the
larger parameter space. In addition, the fermion description discussed in
sect.2.2 apparently involves auxiliary parameters.

The depengence of the auxiiiary parameters on the essential ones is
restricted by the fact that one must get the proper classical 1imit and
possibiy by further conditions related to the particular purpose under con-
sideration.

Instead of the gauge-field part of {2.2} one mey consider the
generalization ‘

SU = 2w 2 2ReTr (UeH—1) | @
[ i C(

which in addition to the product of gauge-field factors along the path €,
around a plaguette uses products along more general loops 8[, in particular
=3, @ , @, for 1 = 1,¢,3, respectively, There are no unique criteria for
improving the convergence by the choice of the auxiliary parameters U;(g}. In
Symanzik's program at the tree level one gets [34] U, = % g"’, U, = —1—12g'1, U= 0
for i > 1, while Wilson proposes [35:} U, = 4,376 g'z, Us= - 0.252 g% U, = 0,
ty= - 0,17 9—2, t;= 0 for 1 > 3 according to block-spin considerations.

Another possibility of generalizing the gauge-field action is tc use the
character expansion

Su = Z Vi (9) S 2Re X (Uy) | (4.18)
= 3

Examples of choices of the auxiliary parameters v, are the fundamental-adjoint
action for SU(2) f36], with V, = -2¥g - 3v,, Vip+ 4y = g% vo= 0 for r > 1,

and Manton's action [37] where for SU(2} [38] \/g'-'-(:i--"-s—i) 5‘1} \/r-l(-1)‘“-”(7.r+|)r'l(ru)'zg"l

=2
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{more general forms than ve = G}/g1occur, e.g., for the heat-kernel action
@5]). An illustration of the effect of nearby singularities in the farger
parameter space is provided by the fundamental-adjeoint example for su(z),
which has the phase structure shown in Fig.3 as found by Monte-Carle
simulation [36]. The first-order-transition line points just to the regicn of
the vy,axis where the crossover between the behaviours (4.6) and (4.7) occurs.

For the fermion part of (2.2} & more general form, no longer restricted to
nearest neighbors, is

5,‘1, = - Z fl?h: (Z: Z(CjﬁDf," QJW;NHQ'«)".“ 41/,4 {4.19)

wyn 2

where

D,J‘(i-)..l = ( U(R]',n'-ij’a) éh'-fj'a;" - U(P'H-J;;H) gn',n-#ji)/ﬁ
(J) ‘ » . {4.20)
V’;\ = (U(fni,n'.,.j?i) én’ﬂ'i)ﬂ'}' U(:pn-&ji\jn) Sn’1n+:i'a - 25:«"") /2- .

t
nn

The choice of coefficients in (4.19) corresponding to tree level improvement
. 4 1 4 1 X L .

is [39} Cp =3, Gt 'E’Q‘zfr’ 'Zi=—§r and ¢ =M= 0 for § > 2. A choice
with a continuum-like spectrum, however no longer satisfying the criteria of

sect. 2.2 , is [4C] ¢ = (‘1ﬂ*1/j, 7o

In {2.2) r and & are auxiliary parameters, the (r,8) space being restricted
to the region r » 0. Thus the actual nature of the fermion description is that
of an auxiiliary-parameter representation. That there is no dependence of
auxiliary parameters on essential ones is due to the special parametrization
introduced. Instead of the form of the fermion part in (2.2) one could e.g.

use

Snf = Z;__ (ﬁ; ﬁ'i; Pnt (X'ﬁrefa’r‘P) U(-pmi}n)/"f]"\_/_'y_"/",/“) (¢.21)

where 2 =2 1, .. %4 and b".; =~3’a. Then in general one has the dependenceg(ﬁ),_
r(E),l?(ﬁ) describing a suitable curve in (g,r,?) space (restricted to r > 0).
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With the particular choice

1/2
p = (M4 16rty 8ir 0s©)
= Lrc Tan m sin © (4‘22)
¥ WoCos © + Hr

o= 1

after appropriate rescaling ofqﬁfone arrives at the form (2.2}

5. Kadanoff-Wilson transformations

5.1. Transformation of the partition function

5.1.1. Definitions and remarks

A KW transformation amounts te integrate out shori distance degrees of
freedom keeping the partition functicn fixed, which leads to a new {effective)
action. In statistical mechanics it in general allows an easier and more
appropriate evaluation in the critical region.

Given an action, which may depend on several types of fields and on £
essential parameters,

—
S(U, 4, 9,658,095 1), (5.1)
after performing a ¥W transformation, which reduces the degrees of freedom by
d .
a factor A, one gets an effective action denoted by

S(U,%, %, 65 90,---,9¢5 23 (5.2)
By a further transformation, reducing by (i/ﬂ}d, one arrives at an action with ﬁ
instead of A in (5.2), and so on. To condense the netation, in the following
mostly S{U,u,%) wiil be used, which may be considered as & shorthand for {5.2)
or as a special case of it.
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A general formulation of the transfermations is

6 ,;\/\') et S(U )})
R A NI 5
v
with the composition rule

J %l'(JJU‘) j;\o.(U: U) = Y;l (U,U) (5.4)

Ul
The requirement to keep the partition function fixed
0,q,%) Uya,%)
I eS( ;ﬁj = eS( ,)8) (5-5)
v U

leads to the condition

J L0V =1, (5.6)

o~

t
In statistical mechanics (5.5} means to keep physics fixed, while in QFT it is

a convenient technical condition,

There is obviously considerable freedom in the choice of KW
transfermations. Here gauge invariance is an additional requirement. Invariant
block variables for pure gauge fields have been constructed with scale factors
(minimal ratiosX/a) 2 [§1] and, in particular for d=¢, with V3' [82] and y2(33].

A central issue in the applications of KXW transformations is the existence
of a reasoneble fixed point. The rescaling of fields crucial for linear trans-
formations 1s not needed for nonlinear ones [ﬁi) . Therefore, for gauge
theories no tuning problems of a similar type are to be expected. Neverthe-
less, since the fixed peint on one hand depends on the particular trans-
formation and on the other hand is responsible for fundamental properties of
the theory, it is an important task to get the transformatiens under control.

Further conditions on the transformations, which are related to cerrélation
functions and to the application in QFT, will be discussed iater.
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5.1.2. Example for use cf auxiliary parameters

The form of the action changes in general under the transformation (5.3). A
straightforward representation is then in terms of the types of contributicns
which can be generated, as may e.g. be expressed by the expansion

S(U,a,%) = Za(g) Si(U). (5.7)
i

This 15 seen to be a particular auxiliary-parameter representation, the A de-

pendence describing the effect of the mappings (5.3). The points generated by

subsequent KW transformations are on a curve in auxiliary-parameter space

which starts at A=1 from a prescribed point depending on g.

In the vicinity of a fixed point of the transformation (5.3), which is
given by the property

~ ) #*
Ci(9,2) = cilg,r) = & (5.8)
an overview is obtained by using the linearization
~ ¥ .
. _— .. . - C- 5.9
Cilgr?) —¢; = Ty (¢gm-¢f) (5.9)
where 5

Re:(g i) |
T = —2— | . (5.10)
D) legg,M =g .
Assuming that (5.10) can be diagonalized, one gets
K)ﬂ*
J— A P . 5.11
th"%"“‘“(} Y ﬂ (51
~ {
with _szh'u)-,:.éx‘,_ and Zgu;,vig-z 55J'. The form {%—) of the (real} eigenvalues is
dictatéd by (5.4). With
5. = ‘L.Z S;Mae ) 52 = j.ZthC'j ) (5.12)
i.e. transforming to the eigenbasis, one obtains from (5.7}
S(U,9,2) = z Tel, %) S U) | (5.13)

where according to (5.9)

Sﬂ(ﬂ’%) % Te**' (%)5(()}(3;“3‘ I:) . (5.14)
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s

The behaviour of (5.14) for increasing * is related to calling an eigen-
direction relevant, irrelevant or marginal if 3:) 0, < 0or =0, respectively.
It is to be stressed that this here refers only to the linear approximation;
in particular the marginal directions need tc be checked beyond this.

With respect tc a more general characterization to be given later it is
useful to state the geometrical description in the present case:
a) For r marginal eigenvalues one has a r dimensional hyperplane of fixed

paints. After projecting to an appropriate subspace the situation with
one fixed point remains to be considered.

b} Points which for increasing (Y are driven to the fixed point are said to
belong to the "critical" hyperplane”.

¢) Points not belonging to the "critical" hyperplane in the case of k'
relevant eigenvalues are driven to the k' dimensicnal “renormalized"
hyperplane and away from the fixed point.

5.1.3. General auxiliary-parameter representations

Instead of {5.7) one could, for example, as well use an expansion of €
Then, there are various possibilities for the type of expansion. Also, one is
not restricted to series representations. Even in case of @ series the
auxiliary parameters ¢; need not be the coefficients {e.g. for pure SU{N)
theory because of g€ = 0 2 representation of 5 of form {Se + éic;sg)/co is
convenient}. Thus, there are many auxiliary-parameter representations out of
which a suitabie one can be selected.

The general répresentation can be written in the form

S(U,ﬂﬂ\) =§(U;C,,Cz,._,) {5.15}

where C;E¢{g,%), or if S(U,g,%) is considered as a shorthand of (5.2) more

explicitly Ci= {9, ,...,9;A). The notatien (5.15) straightforwardly extends 1o
v

other functiens, e.g, for ¢°= E one gets E{U,g,A) = E(U,c,,Cq,...).

In order tc generalize the geometric description of the preceding
linearized example, one has to note that by an appropriate nonlinear map
hyperplanes are replaced by manifolds. This suggests a generaltization in terms
of manifolds and the use of the related mathematical tocls for working out
precise conditions. In this way alsc fixed-point structures of more general
nature can be reached.
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Restricting for simplicity to structures which do not involve additional
complications, the generalized geometrical description is:

a) There may be & r dimensional menifold of fixed points, After mapping to
an appropriate manifold in parameter space the situation with one fixed
point remains to be considered.

b) Points driven to the fixed point for increasing A are said to belong to
the "eritical® manifold.

c) Paints not belonging to the "critical® manifolc are driven to the k'
dimensional “renormalized” manifold and away from the fixed point.

This is illustrated in a simple case in Fig.4,

According to the geometrical descriptiom, the generalization of (5.13) is

$(U,q,2) = g(uﬁf’}”‘”) 3 (5.16)

where a component y(g,l) is called relevant, irrelevant or marginal if it s

of form

driven away from the fixed point, towards it or nowhere at all, respectively
{now understocd generally, i.e. beyond the Tinear approximation}.

5 1.4. Associated type of f functiaon

If in {5.16) the special case is censidered where one component is relevant

and 211 others are irrelevant, for farge A one may use
=, ‘
S{U g, 2) & S, Tem). (z.17)
With the functions ¢i{g,1) prescribed, 5{9,2) is determined via the trans-

formations {5.3) for the respective discrete values of 2. 1t is understood
here that there is one relevant parameter g.

Starting from a point closer to the fixed point may be compensated for by
doing more transformation steps. The condition for arriving at the same result

is . . .
g(?]a”\) = S(jl ) (5.18)

Obviously (5.18) defines a dependence of g' on X' which can be expressed by

‘5(5'*’“"(1*)}1‘) = C . (5.19)
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It is important to keep im mind that ng()') is the value related to the
starting point of the KW transformations. The factor A4' is the one reached
after the particular number of transformation steps, In (5,19} C is given by C
= E(g,l) where K(g,}) is determined as described before.

Though originally derived only for the discrete values A' occuring in
(6.3), (5.19) may more generally be considered for continuous A'. With
suitable invertibility properties of the function Y one then gets gKN(l) for
continuous values A, too. Then one can define the F'function

a SKW(',A)
d2 :
. KW KW . .
The relation of g () to g(v) and of ﬁ to F will be established later.

ﬁKW = 2 (5.20)

5.2. Transformation of corretation functions

5.2.1. Generai formulaticn

Now the formulation of KM transformations introduced in sect.5.1.1. for
partition functions is extended to correlation functions which is important
for the application to QFT,

Inserting {5.3) into the general form

!

7 a3 ~ $(U, 9,2
jesw’ﬁ’”O'(U,l) — e 3 0(U,2) (5.21)
v

<

of the transformation, it is seen that

~ ~

IO’( T;)(U}U) = JWU,A) (5.22)

0 ' )
is the candition which U(G,i has to satisfy. For the special case U(U ) =1,
with O{U,2) = 1 (5.22) becomes just {(5.6}. The crucial feature of (5.22) is
that it maps from G(G,a) to G{U,2). In practice this means that for some
desired final U{ﬁ,i) to be obtained by a KW transformation, (5.22) gives the
necessary initial O(U,3).
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5.2.2. Particular transformation types

To study the implications of ( 5.22} in the case of blocking
transformations for definiteness the cne of Swendsen [ﬁl] for pure gauge
fietlds shown in Fig.% is considered. As illustrated in Fig.6, for a given
U(U,i) aiready by one transformation step a large number of contributions te
O(U,%) arises (which increases with dimension). For more steps the number of
terms grows very rapidly. In this way O(U,2) becomes a definite linear
combination of form

OwWw,2) = 0 W)+ = GUN), (5.23)

. i*0
Here O, is the contribution involving only the first term of the
transformation in Fig.5, with gauge-field factors along a path Pe (consisting
of one or several loops in the present case). While the path fi is the same as
occurs for GYG,E), the ? with 1# 0 according to the construction are ones
distributed around P.. S1nce for 0,(U,A) the subdivision along ?u is finer by

“& factor ﬂ/) than for U(U 1), the effect in lattice units is an expansion of

a1l extensions occurring in 0.(U,>) by a factor ﬁ/a as compared to those in
UTRSE

It is to be stressed that it is necessary to choose ((U,2} out of the image
set of (5.2Z) because otherwise OTG,i) and then (5.21} would simply not be
defined. In particular, one is not allowed to replace the “thick path”
consisting of the distribution of ?1 by & "thin path" made up of }2 alone,

Angther possibility 1§ to use KW transformations of the thinning type which
preserve the overall properties of ', This in particular means that one has a
path P, commen to 6(U,7) end to O(U,A) (instead of to O,(U,3) only in (5.23)).
The effect of (5.22) then is solely the expansion of the extensions in U(G,a)
by a factor %/} related to the change of subdivisions. A simple example is
shown in Fig.7.

Getting straightforward preperties of O under thinning transformations,
however, the problem is actually shifted to 5. At least in higher dimensions
this may show up by drastic changes of the fixed-point structure. On the other
hand, the blocking transformations with all old variables involved in new ones
tend to prevent such changes.
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0f course, alse for usual blocking transformations [41-43} and their
obvious generalizations it remains to be checked what the fixed-point
structure actually is. Further, in view of the effects on 0'it is important tc
know more about the thinning type of transformations. It is to be noted here
that Kadanoff's reformulation [45] of Migdal's transformation f&ﬁ] realizes a
thinning transformation of the indicated type, which, however, is exact only
in 2 dimensions.

5.3. Application to quantum field theory

5.3.1, Rescaling of QFT functions

In order to define the limit as pointed out in sect.3, one has to construct
functions Ps(n1 (v, ..,0p{¥)39y,...,9:) which satisfy {3.11). For this purpose
one needs the correlation functions &{n,{v},...,n.(v}im v. .. sGe) wWith ng(v)
given by (3.2) and with g{ still independent of v. Thus, G is to be calculated
for large n, and clese to the singularity at gc for which an appropriate
method is to be found.

A reformulation by KW transformations becomes possible if one restricts the

values of Xe and v such that
X ¥e - -
ne vy = Toi , _b£ mnge‘- y VEL2,3, ... {5.24)

replaces the equivalence (3.2). Then extending the notation qiu,a) of
sect.5.2 to O(v,U,%), where v results from the dependence on ns,(v), the
functions of interest read

S(U)S)U
[ omun
Gn), ..., n g = & JeS(U;g:” (5.25)

v

{again with g possibly being a shorthand for g¢,...,g¢ and U for all fieids).
By a KW transformation according to (5.21) and (5.5) one gets

- A0 -

( $(0,9,3) N

;¢ o, U,2) (
nv, ..., n0g) = 2 — 5.26)

G(n, i s

v
as the transform of {5.25) provided the condition (5.22) is satisfied.

5.3.2. Rescaling for particular transformations

In the case of a thinning transformation (in the sense of sect.5.2.2) one

has
O, U 2y = 0(v/t, U, ast) o (5.27)

if ¥/T and 2/T are integers, because + > 1 means to expand all extensions
given for ¥v= 1 by & factor v, while (for the transformations considered) A
describes a shrinking of them by a factor A . Then for K:v (5.26) using
(5.27} becomes

} S(J)ﬂ)V) -
[ e 0,0 1)
. g 5.28)
G (n, )., netv);g) = —X _ (
(g 22500y e ’3) | S(U;8,v)
e
o
with the remarkable property that the v dependence is transformed completely
to the action. Thus the uitraviclet 1imit in O is replaced by an infrared
Timit in S.

For a blocking transformation, however, it turns out that {5.22) cannot be
rigorously satisfied. The reason is that the form (5.23) for fiw,U,1) is in
contradiction to the fact that 0{v,U,1) must arise from d(1,u,1} by an
expansion of all extensions by a facter ¥. If this holds for 0. it cannot be
achieved for the 0’1 with i3 0 as is illustrated by 2 simple example in Fig.8,

At this point it is instructive to satisfy (5.22) in an approximate way,
requiring O(v,U,1) to be properly given by O{1,U,1). Fer this purpose one

intreduces an associate quantity O for which T(U,v) = d{1,U,1) halds. Then O(U,1)

is to be caleulated according to (5.22). The approximation to be made when
doing this is for one step illustrated in Fig.9.
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For definiteness the transformation of Fig.% is used. The result depicted in
Fig.9 arises from an original loop of perimeter Lj. The values P; are ad-
Justable to optimize the approximation of smoocthing the loops with resuliting
perimeter ZLj. The facter Bq is obtained by summing the contributicns, which

gives ~ .
. | -
i = o+ Bi[(1+ 2= —1] (5.29)
where Lj = 2L}_1= Zr’L,. For ¥= 2" one then has

TW, 1) & g Ov, Uy 1) (5.30)
Thus it turns out that replacing O(v,U,1) in (5.25) by (5.30) the
transformation leads to (5.28).
The factor yi--fwin (5.30) is nothing e¢lse but the nonperturbative analogue of
the perimeter-divergence factor in (3.38). Evaluating the leading contribution
cne obtains '

4L
—1))“ f (5.31)

Vier-yo ® F1.,.F,, (1+2 (d

It is obvious that for a blocking transformation involving more paths the
expression 1+2(d-1) in {5.31) would be replaced by a larger one.

5.3.3. Implications for QFT limit

In the combinations Py needed for QFT, the factors (5.31) are to cancel
out. Thus, for the bilocking as well as for the thinning type of
transformations one arrives at the form of P which is made up by functions of
type (5.28). The restriction (5.24) implies that ng (1} is to be chosen large
enough {i.e. b small enough) for a sufficiently accurate description. This
means that in a ﬁay one has now a two-stage 1imit.

-For one essential parameter g by (3.14) with {3.11} the defining relation
for glv) is
_ , ~ _——
Pa(ni(u)y..,m{v),3(‘”)—" Fxo. (5.32)

For the transformed P¢ (made up of functions of form {5.28)), assuming that
{5.16) holds with one relevant component F, with respect to the dependences on
K,g and v (5.32) is of type
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P(ﬁi(i),.--,ﬁr(’)jj(ﬁ(”31")) £ Qe - (5.33)
By using the inverse function Rof p, (5.33) becomes
}'(S(v)}v) = R (OEJE ,'ﬁ(ﬂ) . {5.34)

Comparing {(5.34) with (5.19) it is seen that g(v)= ng(v) provided that C =
R(Qgz,Rujand that the above assumptions hold. Then also ﬁ and FKN defined by
(3.47} and (5.20) become equivalent.

In contrast to the application to critical phenomena in statistical
physics, the use of KW transformations in QFT turns out to be subject to sub-
stantial restrictions. This is apparent from the following overview:

1} For the partition function in (5.5} 5 can increase freely, which can be

fully exploited for any value of g.

2} For correlation functions in {§J2l) the condition (5.22) on O also
implies that a maximal value 3 =Ruuroccurs where a characteristic
extension in (" reaches the length of one link.

3) For QFT functions in (5.26) only Agvis generally reasonable and A=vis
the appropriate ¢hoice.

4} As is transparent from -{5.34), the basic equivalence relations of QFT,
(3.14) with (3.11), require that for increasing A=V simultaneously q is
forced to approach g€.

It should be noticed that according to {5.34) the magnitude of’?(Q
decides about possible methods for the further evaluation,

FpAlthalso

The assumption that (5.16} can be used to get {5.34) implies that only the
long-distance properties of $ enter the definition of QF7. OBn the other hand,
{5.34) obviously keeps I at a fixed value. Therefore, irrelevant components
must be either negligible in the corresponding region or not there at all due
to an appropriate choice of the form of S (for example in Fig.4 on the "re-
normalized" trajectory).

5.3.4. Criteria for essential parameters

The assumption that the action (5.1} can be chosen such that (5.16) becomes
SU 38009053 = S, e, T, (5.35)
with k' relevant compchents f;Efdg,,,..,gql) and £'-k' marginal ones

Ti = R(g, ».--,92 ), Tn the language of sect.5.1.3 means that on the "re-
normalized"'manifoldJS is determined by £' parameters.
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If one has £' = £ in {5.35) this confirms that there are, in fact, £
essential parameters as anticipated. If £' < £ more parameters than necessary
have been introduced and their number can be reduced to £'. On the other hand,
if £ > £ the original choice is not complete and masybe supplemented. In all
this appropriate invertibility properties of the T;are assumed.

Now in the case £' = £, which one achieves as indicated, k' is studied. In
the transformed Fs {constructed from functions of form {5.28}), theV de-
pendence enters via.the k' relevant components j;(gf,...,geiv} 0f_(5.35). It
is wiped out if by the choice of the gj one shifts Ji to the fixed-point value
}{ On the other hand, in {3.11) with (3.9) the v dependence is wiped out if gi
tends to g?. This reiates B-*T?-to g;*g? and leads to k' = k.

Since the fixed-point structure depends on the particular KW transformation
used, it is ‘important to investigate which class allows the present
characterization in a universal way.

6. Conclusions

For a truely nonperturbative description of particle physics at present
only lattice regularization is available. A suitable lattice formuiation can
be given, In particular, the problems with fermicons can be overcome by tech-
niques a deeper understanding of which should result from the further in-
vestigation of nonperturbative features. The gauge-invariant quantization
which becomes possible not only allows to aveid the difficulties of gauge-
fixing but also reveals important details of the theory.

General renormalizability means the existence of the 1imit which defines
the guantized theory in a nonperturbative way. Two types of conditions for
this occur, The first type is related to the aliowed variable dependences
while the second one concerns invertibility properties of the functioms in-
volved. The singuiarity 1in the space of essential parameters plays a
fundamental role. The dependence of the parameters on the numbering of the
sequence needed for the limit -is determined by a system of equivalence
relations. '
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From the given framework certain general features of the nonperturbatively
rencrmalized theory follow. The noticns of mass scales and constants become
precise. RG invariance can be defined in a geperal way. Clear relations
between various types of P functions arise,

As compared to the perturbative approach rather different renormalizability
criteria are obtained. The reference to the fundamental parameter singularity,
the mathematically sound definition of the iimit, the (general) RG invariance
of the formulation and the straightforward inclusion of gauge Tields are
features which contrast favorably to those of the perturbative case.

The knowledge about the critical singularities of interest s
{qualitatively) fair in pure gauge theories, howe%er, very unsatisfactory in
the presence of matter fields. Whiie in QCD due to asymptotic freedom there
are indications on the singularity structure, almest nothing is known in other
cases. To make progress within this respect is rather urgent because a truely
nonperturbative description is a prerequisite for the settling of any mass and
unification problems.

The consequent application of KW transformations to QFT basically consists
in a rescaling within the correlation functions which occur in the definitien
of the QFT Timit. In contrast to the application in statistical mechanics
their use here is subject to particular restrictions.

For the transformation of correlation function a nontrivial condition
exists which leads to features not there when merely transforming the
partition function. Specific behaviours arise for {gauge invariant) tranms-
formations of the blocking and thinning types. For QFT functions the
nonperturbative mechanism of multiplicative renormalization effects is related
to the blocking nature.

Only the Tong-distance properties of the action enter the definition of QFT
if in an appropriate auxiliary-parameter representation one goes to the "
normalized" manifold. This allows & characterization of the essential
parameters of QFT in terms of relevant and marginal components.

re-

Since KW transformations turn out to be of interest for nonperturbative QFT
from the conceptual as well as from the technical point of view, it appears
urgent to investigate detailed properties of suitable ¢lasses of them.
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Figure captions

Fig.1.
Fig.2.

Fig.3.
Fig.4

Fig.5.
Fig.6.

Fig.7.

Fig.8.

Fig.o.

Qualitative behavior of (4.1) for a} SU(N) and b} U(1)

Qualitative behavior of ﬁ for mesons,
a) for g*=1 in Monte-Carlo simulation,
b) for g*= 0 as needed theoretically

Phase diagram for SU(2) fundamentai-adjoint action

Example of fixed point FP, ‘critical” surface C5, "renormalized"
trajectory RT, and general trajectory T

Exampie of invariant blocking transformation

I1lustration of effect of one blocking step on O,
a) some links with gauge-field factors of 00,3,
b) a few typical contributions arising to O(U,a)

Example of effect of thinning transformation on a, a) U(ﬂ,i),b) g(u,»}

Example for behavior of U,
a) fer increasing v of QFT definition
b) for increasing » of blocking transformation

Approximation after one step of blocking transformation of O
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