DEUTSCHES ELEKTRONEN－SYNCHROTRON

DESY 85－012
February 1985

裔

$56-3-97$
綗工所㤊書窒

H．Baer
CERN，Geneva，Switzerland

K．Hagiwara
Deutsches Elektronen－Synchrotron DESY，Hamburg

S．Komamiya
Physikalisches Institut，universität Heidelberg

DESY behält sich alle Rechte für den Fall der Schutzrechtserteilung und für die wirtschaftliche Verwertung der in diesem Bericht enthaltenen Informationen vor.

DESY reserves all rights for commercial use of information included in this report, especially in case of filing application for or grant of patents.

To be sure that your preprints are promptly included in the HIGH ENERGY PHYSICS INDEX,
send them to the following address (if possible by air mail) :

DESY
 Bibliothek
 Notkestrasse 85
 2 Hamburg 52
 Germany

CONSEQUENCES OF MODELS FOR MONOJET EVENTS FROM Z BOSON DECAY

H. Baer ${ }^{1}$, K. Hagiwara ${ }^{2}$, and S. Komamiya ${ }^{3}$.
${ }^{1}$ CERN; Geneve, Switzerland
${ }^{2}$ DESY, Hamburg, F. R. Germany
${ }^{3}$ Physikalisches Institut der Universität Heidelberg, F. R. Germany

Abstract

Three models for monojet events with large missing transverse momentum observed at the CERN p \bar{p} collider are studied: i) Z decay into a neutral lepton pair where one of the pair decays within the detecter while the other escapes, ii) Z decay into two distinct neutral scalars where the lighter one is long lived, and iii) Z decay into two distinct higgsinos where the lighter one is long lived. The first model necessarily gives observable decay in flight signals. Consequences of the latter two models are investigated in both $\mathrm{p} \overline{\mathrm{p}}$ collisions at CERN and $e^{+} e^{-}$annihilation at PETRA/PEP energies.

One of the attractive possibilities to explain the large missing transverse momentum (ϕ_{r}) and monojet events observed ${ }^{(1)}$ at the CERN $p \bar{p}$ collider is to postulate a single production of a very heavy particle X whose subsequent decay leads to a jet and missing momentum. If the missing momentum comes from the $Z \rightarrow \nu \tilde{\nu}$ decays, then the X mass is estimated to be in the $160-170 \mathrm{GeV}$ range whereas it may be in the $100-120 \mathrm{GeV}$ range if ϕ_{r} comes from a light stable particle ${ }^{(2)}$. The former scenario tends to require very large coupling to produce X with a sufficient rate ${ }^{(3)}$ while the latter requires introduction of a new weakiy interacting light particle, e.g. a photino ${ }^{(2)}$.

Allowing for a large uncertainty in the p_{T} measurement, the X particle in the latter scenario can be the Z boson (93 GeV). The Z decay into a fourth generation neutrino pair ${ }^{(4)}$ has been examined by Krauss, and Gronau and Rosner ; more recently Glashow and Manohar proposed ${ }^{(5)}$ the Z decay into two distinct Higgs bosons as a possible mechanism.

In this paper we study the consequences of the Z-boson parent models for the large ϕ_{T} events. First, we present a simple argument that Z decay into a particle-antiparticle pair cannot account for the data. Secondly, the Glashow-Manohar model is examined in detail and its supersymmetric version, the Z decay into two higgsinos, is also studied as an example of a model with fermion decay mode of the Z boson. Observability of the signals of these models in $e^{+} e^{-}$annihilationm at PETRA/PEP energies is discussed at the end.

If the observed large \emptyset_{T} plus monojet events come from a particle-antiparticle decay mode of the Z boson, then the particle lifetime should be such that the one decays in the detecter while the other doesn't ${ }^{(4)}$. The probability that one of the pair decays before flying a length l_{0} and the other decays after l_{1} reads

$$
\begin{equation*}
P(\langle l\rangle)=2 \exp \left(-\frac{l_{1}}{\langle l\rangle}\right)\left[1-\exp \left(-\frac{l_{0}}{\langle l\rangle}\right)\right] \tag{1}
\end{equation*}
$$

where <l> denotes the mean-free-path of the particle. It is then easy to show that the probability is bounded by

$$
\begin{equation*}
P(<l>) \leqslant 2 \frac{l_{0}}{l_{1}}\left(1+\frac{l_{0}}{l_{1}}\right)^{-\left(1+l_{1} / l_{0}\right)} \tag{2}
\end{equation*}
$$

where the maximum value is taken when $\langle l\rangle=l_{0} / \ln \left(1+l_{0} / l_{1}\right)$. Since no visible decay in flight signal has been reported ${ }^{(1)}$, the detected particle
cannot fly significantly while the other should at least fly more than 1 m before decay. With $l_{0}=1 \mathrm{~cm}$ and $l_{1}=1 \mathrm{~m}$ as a very conservative guess, we find that the probability cannot be larger than 0.7% which excludes the scenario

Glashow and Manohar proposed a model ${ }^{(5)}$ with Z boson decay into a scalar $\left(h_{1}\right)$ and a pseudoscalar $\left(h_{2}\right)$, where h_{1} has a long lifetime and remains undetected while h_{2} decays into ordinary hadrons to form a monojet. This scenario has been achieved within the two Higgs doublet extention ${ }^{(8)}$ of the standard model, where the two scalar doublets φ and ψ have vacuum expectation values (v.e.v.) u and v, respectively, with $v / u \ll$ 1. Flavor changing neutral currents are avoided ${ }^{(7)}$ by imposing the discrete symmetry $\psi \rightarrow-\psi$ in both the scalar potential and Yukawa couplings; only φ couples to fermions. Among the three neutral physical bosons h_{1} and h_{2} are the almost purely real and imaginaly part of ψ_{1} respectively, and thus have small couplings to fermions suppressed by v / u. The scalar h_{1} is light since its mass $\left(m_{1}\right)$ is proportional to the smal v.e.v. of v, while the pseudoscalar mass $\left(m_{2}\right)$ is small due to a broken continuous symmetry (ψ number ccnservation) in the massless limit.

The production cross section for the process $f \bar{f} \rightarrow h_{1} h_{2}$ reads
$\frac{d \sigma}{d \cos \theta}=\xi \frac{\pi \alpha^{2}\left(a_{f}^{2}+b_{f}^{2}\right) s}{64 N x_{w}^{2}\left(1-x_{w}\right)^{2}\left[\left(s-m_{z}^{2}\right)^{2}+m_{z}^{2} \Gamma_{z}^{2}\right]} \lambda^{3 / 2}\left(1, \frac{m_{1}^{2}}{s}, \frac{m_{z}^{2}}{s}\right) \sin ^{2} \theta$
where $N=1$ (3) for color singlet (triplet) $f, x_{W}=\sin ^{2} \vartheta_{W}, a_{f}=I_{3 f}-2 x_{W} Q_{f}, b_{f}$ $=I_{3 r}, I_{3 r}$ and Q_{r} are the weak isospin and electric charge of f, and $\lambda(a, b, c)=$ $a^{2}+b^{2}+c^{2}-2 a b-2 b c-2 c a$. The factor ξ measures the mixing in the neutral boson sector ${ }^{(6)}$, which in the present case reads $\xi=1-0\left(\mathrm{v}^{2} / \mathrm{u}^{2}\right)$. When $\xi=1$ and $m_{1}=m_{2}=0$, the total production rate is half the neutrino-pair production rate. If $m_{2}>m_{1}$, then the pseudoscalar h_{2} decays either into a fermion pair with the rate

$$
\begin{equation*}
\Gamma\left(h_{2} \rightarrow f \bar{f}\right)=\eta \frac{N G_{F} m_{f}^{2}}{4 \sqrt{2} \pi} m_{2}\left(1-\frac{4 m_{f}^{2}}{m_{2}^{2}}\right)^{3 / 2} \tag{4}
\end{equation*}
$$

where the mixing factor $\eta=O\left(v^{2} / u^{2}\right)$, or into a fermion pair and h_{1} via virtual Z exchange

$$
\begin{equation*}
\alpha \Gamma\left(h_{2} \rightarrow h_{1} f \bar{f}\right)=\frac{1}{2 m_{2}} \sum_{1} d \Phi_{3} \tag{50}
\end{equation*}
$$

with

$\sum=\frac{\xi N e^{4}\left(a_{f}^{2}+b_{f}^{2}\right)}{2 x_{w}^{2}\left(1-x_{w}\right)^{2}\left(m_{z}^{2}-q^{2}\right)^{2}}\left\{4\left(f h_{1}\right)\left(\vec{f} h_{2}\right)-q^{2} m_{1}^{2}+\frac{2 b_{f}^{2} m_{f}^{2}}{a_{f}^{2}+b_{f}^{2}}\left[m_{1}^{2}+m_{2}^{2}-\frac{q^{2}}{2}-\frac{\left(m_{1}^{2}-m_{2}^{2}\right)^{2}}{2 m_{z}^{2}}\left(2-\frac{q^{2}}{m_{z}^{2}}\right)\right]\right\}$

where we use the particle labels as their four momenta, $q=f+\bar{f}=h_{2}-h_{1}$, and the three body phase space reads

$$
\begin{equation*}
d \Phi_{3}=(2 \pi)^{-5} \delta^{4}\left(P-p_{1}-p_{2}-p_{3}\right) \prod_{i=1}^{3} \frac{d^{3} p_{i}}{2 E_{i}} \tag{5c}
\end{equation*}
$$

In the $m_{r} / m_{2}, m_{1} / m_{2}$, and $m_{2} / m_{z} \rightarrow 0$ limit, the integrated decay rate is

$$
\begin{equation*}
\Gamma\left(h_{2} \rightarrow h_{1} f \bar{f}\right)=\xi \frac{N G_{q}^{2}\left(a_{f}^{2}+b_{f}^{2}\right)}{384 \pi^{3}} m_{2}^{5} \tag{6}
\end{equation*}
$$

The scalar h_{1} is sufficiently long lived to escape detection as far as $m_{1}<$ $2 \mathrm{~m}_{\mu}$ and $\eta<10^{-2}$. Its suppressed coupling to fermions makes it difficult to observe h_{1} at lower energy hadronic collisions, e.g. in the beam dump experiments. The branching fraction for the direct decay modes $h_{2} \rightarrow f \vec{f}$,

$$
\begin{equation*}
r=\sum_{f} \Gamma\left(h_{2} \rightarrow f \bar{f}\right) /\left[\sum_{f} \Gamma\left(h_{2} \rightarrow f \vec{f}\right)+\sum_{f}\left(h_{2} \rightarrow h_{1} f \bar{f}\right)\right] \tag{7}
\end{equation*}
$$

depends on the masses m_{1} and m_{2}, and the suppression factor η. We find r $>90 \%$ for $\mathrm{m}_{2}<10 \mathrm{GeV}$ and $\eta=10^{-3}$.

Shown in Fig. 1 as solid lines are the predictions of the GlashowManohar model for the $\not \phi_{\mathrm{T}}$ distribution in $p \bar{p}$ collisions at $\sqrt{s}=540 \mathrm{GeV}$. We used the Duke-Owens ${ }^{(B)}$ parton distributions with $\Lambda=0.2 \mathrm{GeV}, \mathrm{m}_{2}=93 \mathrm{GeV}$, $\Gamma_{\mathrm{z}}=3 \mathrm{GeV}, \xi=1$ and the QCD motivated factor $\mathrm{K}=1.4$. The $\mathrm{r}=1$ case shows a clear Jacobian peak at $\not \phi_{\mathrm{T}} \sim \mathrm{m}_{2} / 2$ while the $\mathrm{r}=0$ case ($\mathrm{h}_{2} \rightarrow \mathrm{~h}_{1} \mathrm{f} \overline{\mathrm{f}}$ decay only) shows a much softer distribution because of the cancellation between two missing h_{1} momenta. The Jacobian peak is sharper than those observed in W and Z leptonic decays due to the $\sin ^{2} \vartheta$ angular distribution (Eq.(3)) characteristic of scalar-pair production from a vector boson.

The integrated cross section for $\underline{p}_{\mathrm{T}}>35 \mathrm{GeV}$ is

$$
\begin{equation*}
\sigma\left(\not \emptyset_{\mathrm{T}}>35 \mathrm{GeV}\right)=33 \mathrm{pb} \quad \text { for } \mathrm{r}=1 \tag{8a}
\end{equation*}
$$

$$
\sigma\left(\not p_{\mathrm{T}}>35 \mathrm{GeV}\right)=8 \mathrm{pb} \quad \text { for } \mathrm{r}=0
$$

(8b)
The latter cross section should be further multiplied by the branching fraction to hadronic decay modes which is roughly 60% for three neutrinos in the region $4<m_{2}<10 \mathrm{GeV}$. The spectra are found to be virtually independent of m_{2} below 20 GeV . In order to have a significant contribution to the monojet cross section of about $50 \mathrm{pb}^{(1)}$, the branching fraction r cannot be much less than unity. The observed smallness of the charged multiplicity of the monojets ${ }^{(1)}$ then implies that m_{2} be at least below bottom-pair threshold. The main decay modes of h_{2} would be into $c \vec{c}$ and $r \bar{T}$ or $\$ \bar{S}$ depending on m_{2}.

The Z boson decay into two distinct fermions necessarily violates flavor diagonality of the neutral current in the standard model. Interesting fermion decay modes of the Z boson, however, can appear ${ }^{(9)}$ in the supersymmetric extention of the standard model: $Z \rightarrow \chi_{1} \chi_{2}$ where χ_{1} and χ_{2} are mass eigenstates of the neutral gaugino-higgsino sector. Here we assume χ_{1} to be lighter than $\chi_{2}\left(m_{1}<m_{2}\right)$ and to have a long lifetime so that it escapes detection at the collider experiments. The production cross section for $\mathrm{f} \overrightarrow{\mathrm{f}} \rightarrow \chi_{1}, \chi_{2}$ near the Z boson pole is
$\frac{d \sigma}{d \cos \theta}=\zeta \frac{\pi \alpha^{2}\left(a_{f}^{2}+b_{f}^{2}\right) k\left[E_{1} E_{2}-\eta_{1} \eta_{2} m_{1} m_{2}+k^{2} \cos ^{2} \theta\right]}{4 N x_{w}^{2}\left(1-x_{w}\right)^{2} \sqrt{s}\left[\left(s-m_{z}^{2}\right)^{2}+m_{z}^{2} \Gamma_{z}^{2}\right]}$
where $k=\lambda^{1 / 2}\left(s_{1}, m_{1}{ }^{2} ; m_{2}{ }^{2}\right) / 2 \sqrt{s}$ is the momentum of χ_{1} and χ_{2} in the colliding $f \vec{f} \mathrm{c} . \mathrm{m}$. frame, $\mathrm{E}_{\mathrm{i}}=\left(\mathrm{k}^{2}+\mathrm{m}_{\mathrm{i}}^{2}\right)^{1 / 2}, \eta_{\mathrm{i}}= \pm 1$ the sign of the Majorana condition $\chi_{1}=\eta_{1} C \bar{\chi}_{1}$, and the mixing factor ζ corresponds to $\left(\delta_{1} \delta_{2}-\gamma_{1} \gamma_{2}\right)^{2}$ in the notation of Ellis et $\mathrm{al}^{(9)}$. At $\zeta=1$ with $\mathrm{m}_{1}=\mathrm{m}_{2}=0$, the total production rate is twice that of a neutrino-pair. A large cross section is expected for $\zeta \sim 1$, in which case χ_{2} decays into $\chi_{1} f \bar{f}$ mainly via virtual Z exchange; the spin averaged decay distribution reads in this case

$$
\begin{equation*}
d \Gamma\left(\chi_{2} \rightarrow \chi_{1} f \bar{f}\right)=\frac{1}{2 m_{2}} \frac{1}{2} \widetilde{\Sigma} d \Phi_{3} \tag{10a}
\end{equation*}
$$

with
$\tilde{\Sigma}=\frac{\zeta 2 N e^{4}}{x_{w}^{2}\left(1-x_{w}\right)^{2}\left(m_{z}^{2}-q^{2}\right)^{2}}\left\{\left(a_{f}^{2}+b_{f}^{2}\right)\left[\left(f \chi_{1}\right)\left(\bar{f} \chi_{2}\right)+\left(f \chi_{2}\right)\left(\bar{f} \chi_{1}\right)+\eta_{1} \eta_{2} m_{1} m_{2}(f \bar{f})\right]\right.$

$$
\begin{equation*}
\left.+\left(a_{f}^{2}-b_{f}^{2}\right) m_{f}^{2}\left[\left(x_{1} \chi_{2}\right)+2 \eta_{1} \eta_{2} m_{1} m_{2}\right]\right\} \tag{10b}
\end{equation*}
$$

where we used the particle labels for their four momenta as before. We remark here that the produced χ_{2} has a net polarization due to parity violation. Hence the spin-averaged decay distribution (10) can be used only when one does not distinguish between f and \bar{f} in the final state. The asymmetry is expected to be small in $e^{+} e^{-}$annihilation because the Z coupling to electrons is almost parity conserving. In the limit of $\mathrm{m}_{\mathrm{f}} / \mathrm{m}_{2}$, $\mathrm{m}_{1} / \mathrm{m}_{2}$ and $\mathrm{m}_{2} / \mathrm{m}_{\mathrm{z}} \rightarrow 0$, the integrated decay rate is

$$
\begin{equation*}
\Gamma\left(\chi_{2} \rightarrow \chi_{1} f \bar{f}\right)=\zeta \frac{N G_{F}^{2}\left(a_{f}^{2}+b_{f}^{2}\right)}{192 \pi^{3}} m_{2}^{5} \tag{II}
\end{equation*}
$$

The $\not{ }_{\mathrm{T}}$ distribution expected in this model is shown as a dashed line in Fig. 1 for $\zeta=1$. We set $m_{1}=m_{f}=0$ in this calculation. The distribution is rather insensitive to m_{2} below 20 GeV and the mean invariant mass of the jet system is roughly 50% of m_{2}. The area under the dashed curve is four times larger than the area under the solid curves. The integrated cross section for $\wp_{T}>35 \mathrm{GeV}$ reads

$$
\begin{equation*}
\sigma\left(\phi_{\mathrm{T}}>35 \mathrm{GeV}\right)=24 \mathrm{pb} \tag{12}
\end{equation*}
$$

One should further multiply this value by the hadronic branching fraction which is around $50-70 \%$ in the range $2<\mathrm{m}_{2}<20 \mathrm{GeV}$. Hence the significant contribution from this source can be expected only when ζ is very near to 1 . This then implies, as emphasized by Ellis et al ${ }^{(9)}$, that our long lived particle χ_{1} cannot be the lightest mass eigenstate of the neutral gaugino-higgsino secter in the minimal supergravity induced supersymmetry breaking model. It is not clear whether one can make a realistic model with the large $Z \rightarrow \chi_{1} \chi_{2}$ decay branching fraction and the sufficiently long χ_{1} lifetime.

The most important consequence of the models where the large p_{T} events come from anomalous Z decays is that they predict anomalous ϕ_{T} events in $e^{+} e^{-}$annihilation at PETRA/PEP energies via virtual Z exchange. In Fig. 2 , we show the total cross section versus $e^{+} e^{-}$c.m. energy \sqrt{s} for the processes $e^{+} e^{-} \rightarrow h_{1} h_{2}$ (solid lines) and $e^{+} e^{-\rightarrow \chi_{1} \chi_{2} \text { (dashed lines) with the }}$ maximum couplings $\xi=1$ and $\zeta=1$, respectively. Since m_{1} should be small in the $h_{1} h_{2}$ model to make h_{1} lifetime long and also in the $\chi_{1} \chi_{2}$ model to give hard \emptyset_{r} spectrum, we set $\mathrm{m}_{1}=0$ and show two curves for $m_{2}=2$ GeV (upper lines) and 20 GeV (lower lines). With the present integrated luminosity of about $100 \mathrm{pb}^{-1}$ per each group at $\sqrt{\mathrm{s}}=27-47 \mathrm{GeV}$ (PETRA)
and about $200 \mathrm{pb}^{-1}$ at $\sqrt{\mathrm{s}}=30 \mathrm{GeV}$ (PEP), we should expect a sufficiently large number of events to test the models.

Difference between the scalar-pair model ($h_{1} h_{2}$) and the fermion-pair model $\left(\chi_{1} \chi_{2}\right)$ is made apparent in $e^{+} e^{-}$annihilation experiments by their angular distributions, $\sin ^{2} \vartheta$ (Eq.(3)) and $1+\cos ^{2} \vartheta$ (Eq.(9)). respectively. In Fig. 3, we show the angular distribution of monojets in $e^{+} e^{-}$annihilation at $\sqrt{s}=45 \mathrm{GeV}$ for the two models with typical experimental cuts: $\phi_{\mathrm{T}}>0.15 \sqrt{\mathrm{~s}}$ and $\mathrm{E}_{\mathrm{jet}}>0.25 \sqrt{\mathrm{~s}}$. The heavier mass $\left(\mathrm{m}_{2}\right)$ is set to 5 GeV and the lighter mass $\left(m_{1}\right)$ is set to zero. The $\chi_{1} \chi_{2}$ model shows two peaks at higher $|\cos \vartheta|$ while the $h_{1} h_{2}$ model gives a peak at $\cos \vartheta=0$ as expected. Since in $e^{+} e^{-}$ annihilation experiments the $\not \phi_{\mathrm{T}}$ cut can be made much smaller than that imposed in the $p \bar{p}$ collider experiments, we can measure the $h_{1} h_{2}$ model signal even in the $r=0\left(h_{R_{2} \rightarrow h_{1}} f f\right.$ only $)$ case with comparable rate to the $r=1$ ($h_{2} \rightarrow f \vec{f}$ only) case; the distinction between the two cases should be apparent from the $E_{j e t}$ distribution. The methods presented here can thus be used to detect neutral Higgs bosons when one of them is long lived.

After essentially completing this work, we received a preprint by J Rosner ${ }^{(10)}$ where related work is done.

Acknowledgements

The authors wish to thank V. Barger, K. Hikasa and M. Mohammadi for useful discussions.

References

1) UA1 Collaboration, G. Arnison et al., Phys. Lett. 139B(1984)115
2) V. Barger, K. Hagiwara, W.-Y. Keung and J. Woodside, Phys. Rev. Lett 53(1984)641
L. Herraro, L.E. Ibáñez, C. L6pez and F.J. Yndrain, Phys. Lett. 1458(1984)430
3) V. Barger, H. Baer and K. Hagiwara, Phys Lett. 146B(1984)257
D. Düsedau, D.Lüst and D. Zeppenfeld, Phys. Lett. 148B(1984)234
4) L.M. Krauss, Phys. Lett. 143B(1984)248
M. Gronau and J. Rosner, Phys, Lett. 147B(1984)217
5) S.L. Glashow and A. Manohar, Harvard Univ. preprint HUTP-84/A080
6) H.E: Haber, G.L. Kane and T. Sterling, Nucl. Phys. B161(1979)493
H. Hüffel and G. Pócsik, Z. Phys. C8(1981)13
G. Pócsik and G. Zsigmond, Z. Phys. C10(1981)367
7) S.L. Glashow and S. Weinberg, Phys. Rev. D15(1977)1958
8) D.W. Duke and J.F. Owens, Phys. Rev. D30(1984)4.9
9) J.-M. Frère and G.L. Kane, Nucl. Phys. B223(1983)331
J. Ellis, J.S. Hagelin, D.V. Nanopoulos and M. Srednicki, Phys, Lett. 127B(1983)233

J: Ellis, J.-M. Frère, J.S. Hagelin, G.L. Kane and S.T. Petcov, Phys. Lett. 132B(1983)436
10) J. Rosner, CERN report, TH 4086/85

FIG. 1 Missing transverse momentum distsribution from $Z \rightarrow h_{1} h_{2}$ (solid lines) and $Z \rightarrow \chi_{1} \chi_{2}$ (dashed line) with maximal couplings in $p \vec{p}$ collision at $\sqrt{s}=540 \mathrm{GeV}$ for $\mathrm{m}_{1}=0$ and $\mathrm{m}_{2}=5 \mathrm{GeV}$. The $\mathrm{r}=1$ curve shows the case when all the energy of h_{z} is detected via its $h_{2} \rightarrow 1 \bar{f}$ decay modes. The $r=0$ curve shows the other extremum when $B R\left(h_{2} \rightarrow h_{1} f f\right)=1$ and part of the h_{2} energy is carried away by h_{1}. We set $m_{f}=0$ and a QCD motivated factor $K=1.4$ has been included.

FIG. 2 Total cross section for $e^{+} e^{-\rightarrow} \mathrm{h}_{1} \mathrm{~h}_{2}$ (solid lines) and $e^{+} e^{-} \rightarrow \chi_{1} \chi_{2}$ (dashed lines) with maximal couplings plotted against \sqrt{s}. Upper and lower lines correspond, respectively, to the case $m_{2}=2 \mathrm{GeV}$ and 20 GeV with $\mathrm{m}_{1}=0$.

FIG. 3 Angular distributions of monojets produced in $e^{+} e^{-}$annihilation at $\sqrt{s}=45 \mathrm{GeV}$ for the $\mathrm{h}_{1} \mathrm{~h}_{2}$ model (solid lines) and the $\chi_{1} \chi_{2}$ model (dashed line) with the cuts $\not \emptyset_{T}>0.15 \sqrt{\mathrm{~s}}$ and $\mathrm{E}_{\text {jet }}>0.25 \sqrt{\mathrm{~s}}$. The parameters of the models are the same as those used in Fig. 1.

Fig. 1

Fig. 2

Fig. 3

