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Abstract:

In four-dimensional lattice gauge theory without quarks the lowest particle
states in the strong coupling region correspond to a spin zero and a spin two
glueball, They are degenerate in the lowest order of the strong coupling
expansion. There exists an effective {ransfer metrix, acting in the lowest
order eigenspace, whose eigenvalues are identical with the corresponding

ones of the full transfer matrix to all orders in the strong coupling expansion.
It isconatructed here up to the 8" nontrivial order for different gauge groups.
Diagonalization yields the energy-momentum dispersion relations for glueball

states.

t. Introduction

The low-lying spectrum of lattice gauge theories has been studied by different
methods [1]. One of them is the strong coupling expansion. For several low

lying particle states (glueballs) strong coupling expansions of their masses

have been derived for different gauge groups and lattice actions [2-8]. In

the following we limit ourselves to the consideration of Buclidean lattice gauge
theory with standard Wilson action. For zero-momentum states the strong coupling
calculation of their energies simplifies in comparison to the case of nonzero
momentum. This is due to the fact that zero-momentum states transform irreducibly
under some representation of the cubiec lattice symmetry group. This allows the
expliecit construction of cperators whieh create such states out of the vacumﬂ[Q,Q}
On the other hand, for states with generic nonzero momentum,the lattice symmetry
does not give any restrictions on the operators creating them. If one likes to
caleulate their energy one has to determine the states properly. In particular
they contain parts belonging to different irreducible representations of the

cubic group and the relative amplitudes of these contributions must be caleulated.

In another article [107] we considered a triple glueball vertex function in the
framework of the strong coupling expansion. The calculation required knowledge
of the energy-momentum dispersion relation for low-lying glueballs and of the
corresponding eigenstates. This information can be obtained from the results of

the present article.

The essential ingredient of our method is an effective transfer matrix whose
eigenvalues coincide with the eigenvalues of the full transfer matrix belonging
to the lowest glueball states. We calculate the effective transfer matrix up to
t2th order in the strong coupling expansion. Since the expansion starts at fourth
order this amcunts to & calculation of eight orders. Diagonalizing the matrix
the energy-momentum dispersion relations for Lhe lowest spin zero and the lowest

spin two glueballs are obtained.

For gauge groups SU{2)} and i Kimura and Ukawa [11] already studied the energy-
momentum dispersion relation of the secalar gluebagll. In their caleculation, however,
they do not use the proper eigenstate but a state which behaves like the zero-
momentum state with respect to rotations, As a result the two-plagquette correlation
function failed %o exponentiate. Their results for the energy are nevertheless

correct up to terms quedratic in the momentum.
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Our notations are the following. The models are defined on a hypercubical lattice
in b dimensions, The gauge field U(b) € G is attached to the links b of the
lattice and tekes values in the gsuge group G. The ordered product of variables

U(b} on the boundary of an elementary plaguette p is called U(p). The scticn is
2
S = - & 7 Re +r Ulp) (1)
p N

The sum extends over all unoriented plagquettes p and g is the bare coupling
constent. Expectation values of functions & of the link variables are evaluated

by

<oy -2 [ TdUK) 0 expl-S) (o)
Z=ST‘£olU(lo) exp(-S) B

is the partition function.

The guantity which corresponds to the Buclidean time evolution operator exp{—tH),

vhere H is the Hamiltonien, is the transfer matrix T [12]. Tt is known to exist

for the lattice gauge theories under consideration {13,1h]. The isttice Hamiltonian

is defined by
A
H= - o LlogT )

where a is the lattice spacing. In the following we set a = 1., Physical states

with energy E are eigenvectors of the transfer matrix with eigenvalue

1 = Q"F("E) (5)

The transfer matrix commutes with spatial lattice tramsiation. Consequently
. .. > .
physical states carry definite momenta p and we write

P =C(pupaps), lIplew )

. . . . LL
For a particular particle the corresponding function E{p) is its energy-momentum

dispersion relation, and its mass is

o= E(3) (8)

Concerning the strong coupling expansion we use the notations and definitions

of [3]. In particular the expansion parameter is denoted u.

2. Effective Transfer-matrix

In the framework of degenerate perturbation theory in quantum mechanics the
concept of an effective Hamiltonien is well-known [15]. Conslder o Hamiltonian

of the form

H=H, +V (s

where HO is a solvable unperturbed Hamiltonian and V is a perturbation. Suppose
Ho has a n-fold degenerate eigenvalue EO with eigenspace :H%. In higher orders

of perturbation theory the dJdegeneracy is lifted giving rise to n distinet eigen-
values E{i), i =1, ..., n of the full Hamiltonian H, An effective Hamiltonian T
is an operator acting only in the n-dimensional space '3{0, whose eigenvalues are
identical with the E(i). There are different ways to consbruct ﬁ order by order

in perturbation theory.

In the following we apply this concept to the strong coupling expansion of lattice
gauge theory. The transfer matrix T is normslized such that its largest eigenvalue,

belenging to the vacuum “Yg, equals one.
(10}
TY, =V,

In the strong coupling region the three next largest eigenvalues correspond to

particle states [h,5,16]

T W (p) = L () Y (p) s 1,23 (1)



For zerc momentum "*H belongs to the trivial representation A1 of the cubice
lattice symmebtry group and is called O++—glueball, whereas “Yé and ’Yé are
degenerate and transform according tc the representation E of the cubie group,
being called 2++—glueball {1]. Both types of states have even spatial parity
and even C-parity [2,51].

In the strong coupling expansion one obtains
Y 5 ) .
1'.“3)= w o+ G(uw) 1= 12,3 {12)

Thus in the leading (fourth) order of the expansion the three states are degene—
rate. Furthermore there are no other states with even C-parity degenerate with

the states above to leading order.

For some gauge groups, in particular for SU{3), there is a C-odd triplet, trans-

forming under the representation T, of the cubic group, which is degenerate with

1
. . . . +—

the states above in the leading order of the expansion. It is called 1 -glueball,
For simplicity we restrict curselves to the C-even states in the following. Of

course, everything can also be applied to the C-odd states,

It is well known how to construct states which generate the states “+;(E) in the
leading order of the strong coupling expension. Let
> .
P.‘(x) , 1ef1,2,3 (13)
- . . . 3 .
be a space-like unoriented plaguetie at time t = C with center x and being

perpendicular to the i-axis. We call 1 the orientation of this plaguette.

Define
X, = UGG -dh Uy om

where trU{p) acts a&s a multiplicaticn operator on the vacuum state “?5. Since
the momenta commute with T it is convenient to work with momentum eigenstates from
the beginning '
g2
P - NZe  X(R) (19)
»

The sum extends over all possible centers of plaquettes and N is an irrelevant

normalization factor. These states satisfy

T (R) = w P(E) + O (16)

and they are orthogonal tc the vacuum. In the strong coupling expansion as well
as in Monte Carleo calculations they are used to create the lowest glueball states

from the vacuum. The matrix

> - ~> (17)
Cp Y= < I o>
is nonsingular in the strong coupling expansion.
Row let

3
P-Z IV > <Yl | (18)

it

. s Ind .
be the projector on the space of giueballs with momentum p and consider the

matrix
Qunp)= LH@IPT PR G >

Obviously we have

{19}

+ Lon

q (n, i; ) = C C T {20}

where

T - 0C'DcC (21)

and

[:) = J ta % ( ;14 ( E ) ! ;lg_( F'1| 1.3 ( F') ) {22}

This mesns that knowledge of the matrices ¢ would allew to obtain an effective
”~
transfer matrix T, whose eigenvalues are the desired exact eigenvalues li(i)

cf the glueball states.



In fact it turns out that the matrices § can be calculated in the strong coupling
expansion. The essential observation is that the moment-cumulant-transformation
[17,3] provides a method to obtain the projection cperator P exactly tc all orders
of the expansion. I shall dispense with showing this in detail but merely in-

dicate the line of reasoning. The starting point are the correlstion funchions

T {V\.F) =

T T L Up (e 2,0 FUCp (2,00 (@)

The second argument of the plaquettes are the time coordinates. We write T in

the Torm

T g = <QP-,(|?)| T" | Qf&(f’))>

= Sa B+ KRB ) TR IR > Y

The second term in (24) is of order u6n in the strong coupling expansion. The
formulation of the strong coupling expansion for correlation functions in terms
of lattice graphs [3] can now be generalized to the case of correlstion matrices
like T . The contribution of = graph is then given by a certain matrix. Moreover
it can be shown that the moment-cumulant—transformebion applied te correlation
funetions (3,17] elso works here in the sense of matrix algebra, It yields an
expansion for Elog T in terms of connected graphs. As usual it allows to isolate
those contributions which exponentiate and represent corrections to the leading

term klogu, In this way the piece g is projected out from T

Fad
Using these methods I calculated the effective transfer metrix T up to order u12,

which are 8 nontrivial orders of the expansion. From it the effective Hamiltonian

’l':\ = - Los :‘\- (25)

8

can be derived up to order u .
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3. Strong-coupling expansion

Fal
In the fcllowing we present the results for the effective Hamiltonian H. Define

"

‘l'.}:l COS%PQ

A Bty - £1 8,
B = (£ -2)§

5123

Tk

In terms of the matrices A, B and ‘]1_ the expansions are as follows.

For 8uU(2}):

my

= (- 4 logu + 2u2)A - u"{[%g - AL+ 2

- u®{ L-%% +B2) A+ 1A+ 1B}

A 2 ~
SRR - B e L) 10 (24 32)
+[- 1+ 352]B+3A2 + 3B2 + 2(AB + Ba)}

For 8U(3):

ﬁ=(—hlogu—3u+9u2—g§?'u3)ﬂ.

-u*{{-9-%]4 + 2a}
S [E sely e e
- u®( {— __12]%’.’:::)"{ + % 'ﬁ?] 4 + 2h + 118}

_— [— 36701228908 +12 524 - 214 + 38)

I e N e e WIS, WRPRY S R —_

(26)

(27)

(28}
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L rl e[S
+ 3A% + 3B? + 2(AB + BA))

For SU(® ) :

=3

=(- 4 logft u'{ [18 ~ 321 L + 2a)

- ut [5h - 3734 + 11a + 11}

w120 - 9h% + 3 (52 14w (194 $2) 4

+# 01+ 3521 B + 382 + 3B2 + 2(AB + BA)}

For Z,:

=0
n

{(~ & logu + u?) 4 - u"{ [% - Jﬁz‘]ﬂ[_ + 24}
- u®{ %1+ 94 + 11B}
- u®{ [% - 10 p? +~;— ({32)2}1+ [20 + 22 4

+ 3DZB + 342 + 3BZ + 2(AB + BA)}

For %4.:

S )

=(-hlogu—u+-g—u2~%u3}4l.
S B S LRI

- ui [% - 5214 + 24}

(29)
- ut - % + D)4+ TA + 118)
- u7[[%+§2]j]_ - 4 + B}
-t [2—%72 - 1857 + 2 (54 M+ [56 + p*) 2
+ [16 * 3B2] B + 34% + 3B% + 2(AB + BA)} (32)
For U(1), Wilscn action:
(30)

==Y

= (- 4 logu +gu2)ﬂ_— u"{[%%g - ’1'32]1[3- 25}
- uf{ I—%+%§E]ﬂ_ + 84 + 11B}

411346 32 A 1 ;2,02
M i R R R

S SEUPRIERRESE

+ 347 + 3B? + 2(AB + BA)) {33}
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For U{1), Villain action:

=y
[}

(- b logu + 2u?)d - u*{ [17 - 5211L+ 2a}
- [7 6—32 + %Z]jb TA + 11B}

(3 T+ 23+ 5] a

|-

T 352] B + 3AZ + 3B? + 2(AB + BA)} (3%

. . . a3 . . - -
Diagonalization of H yields the energy momentum dispersions Ei(§) for the glue-
ball states. Here we only write down the results for the energy El(;) of the
0++—g1ueball and leave the other twc as an exercise for the reader. Bercause the

momentum dependence is rather complicated we present the energy in the form

EalpYy= m &+ D 5% 4 g ( (ﬁ‘)"-}?;j,ﬁf)

. {35)
he (B0 v (B9
with
oo k 6
VV\=~L\‘L°2V\ +2W\'lu (36)
a o
I TN =7 g u =L baw
g- !z=~+$i I h:w%h ' h e S
The coefficients are contained in table 1. The eigenvector v(1) belonging to
the eigenvalue B, of ﬁ is to lowest order in u given by
at L =1 {38)
\/k = ‘t e ( F”, + t—h )
where "y is a root of the equation
Y 7,1 1,1 1,1 151, 1
W (ETE b e -2 0T <0 (39)

- 11 -
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What are these results good for? First of all the energy ET(p) as well as the

corresponding eigenvector v(1) for a particular momentum with
B, = O(u") (10)

were needed in [107] in the course of a calculation of a triple gluebsll coupling

~
constant, In this case H can be determined up to order u from the results above.

Secondly the energy momentum dispersion E(E) allows to consider the gquestion of

restoration of Eueclidean invariance [11]. In the continuum limit Euclidean in-
, » . )

variance should hold and E{p) should approach its relativistic form

¥ St
E=(m’+§’“}1=m+ P/ 2m +0(F‘*) (h1)

In particular the quantity

Co=2m} (12)

should approach the value 1. For gauge group SU(2) it has been considered in [11].

For SU(3) the strong coupling expansicn of ¢, is

C. - %u*{ Slogw [56 4 108w + 3¢ ut- 600w ¢ 5313 " ]
WA+ 62 W -3 T G () } (43)

It isplotied in fig. ' as a function of P together with the diagonal Padé
approximant applied to the power series in (43), The behaviour is similar to

the SU{2) case. In the crossover region around F # 5 the function C1 reaches
the value 1 and continues to increase for larger values of F . As the strong
coupling expansion ceases to be reliable beyond the crossover, the true function
C1 may well approach its limit value 1 there, as indicated by Monte Carlo cal-

culations [18].

Finally I would like to point out that the correlation matrix ¢ can also be
determined in a Monte Carlo cslculation. If the masses of other glueballs in

the parity-sector under consideration are sufficiently higher and if n is suffi-
ciently large, the measurable correlations T:ik(n,;) are approximately equal to
the € ik Numerical diagonalization of g would give the proper energies and

eigenstates. Such an analysis could be done by extending the calculations of [79].
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Table caption:

Tab. 1: Coefficients of the strong coupling expansions (36), (37) for
different gauge groups. For U{1) both cases of Wilson's and

Villain's action are listed.

Figure caption:

Fig. 1:; The quantity Ci, defined in (4?), as a function of P = 6/g? for
gauge group SU(3}. The upper curve shows the expansion (43), the

lower curve is a diagonal Pad& approximant,
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v !
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- 25 _.%
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1 L - . _ - L
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1 _ L
' 3 27
_ 4 - __1_ . _ A 1 L
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