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Abstract: 

In four-dimensional lattice gauge theory without quarks the lowest particle 

states in the strong coupling region correspond to a spin zero and a spin two 

glueball. They are degenerate in the lowest order of the strong coupling 

expansion. There exists an effective transfer matrix, acting in the lowest 

order eigenspace, whose eigenvalues are identical with the corresponding 

ones of the full transfer matrix to all orders in the strong coupling expansion, 

It is constructed here up to the 8th nontrivial order for different gauge groups. 

Diagonalization yields the energy-momentum dispersion relations for glueball 

states. 
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1, Introduction 

The low-lying spectrum of lattice gauge theories has been studied by different 

methods (1]. One of them is the strong coupling expansion. For several low 

lying particle states (glueballs) strong coupling expansions of their masses 

have been derived for different gauge groups and lattice actions (2-8]. In 

the following we limit ourselves to the consideration of Euclidean lattice gauge 

theory with standard Wilson action, For zero-momentum states the strong coupling 

calculation of their energies simplifies in comparison to the case of nonzero 

momentum. This is due to the fact that zero-momentum states transform irreducibly 

under some representation of the cubic lattice symmetry group. This allows the 

explicit construction of operators which create such states out of the vacuum[2,9]. 

On the other hand 1 for states with generic nonzero momentum, the lattice symmetry 

does not give any restrictions on the operators creating them. If one likes to 

calculate their energy one has to determine the states properly. In particular 

they contain parts belonging to different irreducible representations of the 

cubic group and the relative amplitudes of these contributions must be calculated. 

In another article [10] we considered a triple glueball vertex function in the 

framework of the strong coupling expansion. The calculation required knowledge 

of the energy-momentum dispersion relation for low-lying glueballs and of the 

corresponding eigenstates. This information can be obtained from the results of 

the present article. 

The essential ingredient of our method is an effective transfer matrix whose 

eigenvalues coincide with the eigenvalues of the full transfer matrix belonging 

to the lowest glueball states. We calculate the effective transfer matrix up to 

12th order in the strong coupling expansion. Since the expansion starts at fourth 

order this amounts to a calculation of eight orders. Diagonalizing the matrix 

the energy-momentum dispersion relations for ~he lowest spin zero and the lowest 

spin two glueballs are obtained, 

For gauge groups SU(2) and z2 Kimura and Ukawa [11] already studied the energy­

momentum dispersion relation of the scalar glueball. In their calculation, however, 

they do not use the proper eigenstate but a state which behaves like the zero­

momentum state with respect to rotations. As a result the two-plaquette correlation 

function faileQ to exponentiate. Their results for the energy are nevertheless 

correct up to terms quadratic in the momentum. 
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Our notations are the following. The models are defined on a hypercubical lattice 

in 4 dimensions, The gauge field U(b) ~ G is attached to the links b of the 

lattice and takes values in the gauge group G. The ordered product of variables 

U(b) on the boundary of an elementary plaquette pis called U(p). The action is 

s ~ .3,. I: R~ +r lJ(p) 
~· p 

11) 

The sum extends over all unoriented plaquettes p and g is the bare coupling 

constant. Expectation values of functions ~of the link variables are evaluated 

by 

< 6-7 ~ l--' 5 11 dU(b) 
b 

IJ' e.xp(-S) 

where 

z ~ 
is the partition runction, 

11 d U(b) 
b 

e.xp(-S) 

12) 

I 3) 

The quantity which corresponds to the Euclidean time evolution operator exp(-tH), 

where His the Hamiltonian, is the transfer matrix T [12]. It is known to exist 

for the lattice gauge theories under consideration [13, 14]. The lattice Hamiltonian 

is defined by 

f1 a·' Lo~ T 

where a is the lattice spacing. In the following we set a"' 1, Physical states 

with energy E are eigenvectors of the transfer matrix with eigenvalue 

)._ = "-"f'(-E) 

The transfer matrix commutes with spatial lattice translation. Consequently 

physical states carry definite momenta P and we write 

T"Ylpl "-"f' (- E(pl) Y(p) 

... 
p (p._p.,p.) I \";I ~ 11 

__ .-_.__ __ ....__ _.........._,.___" --

I 4) 

Is l 

16) 

IT) 
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For a particular particle the corresponding function E(Pl is its energy-momentum 

dispersion relation, and its mass is 

yY\ ; E( 0) 

Concerning the strong coupling expansion we use the notations and definitions 

of [3]. In particular the expansion parameter is denoted u. 

2. Effective Transfer-matrix 

In the framework of degenerate perturbation theory in quantum mechanics the 

concept of an effective Hamiltonian is well-known [15]. Consider a Hamiltonian 

of the form 

H l-1. + v 

18) 

19) 

where H0 is a solvable unperturbed Hamiltonian and V is a perturbation. Suppose 

H0 has a n-fold degenerate eigenvalue E0 with eigenspace ~0 • In higher orders 

of perturbation theory the degeneracy is lifted giving rise to n distinct eigen-
( i) . . . . . . ,... 

val,~es E , 1 "' 1, , , , , n of the full Har01lton1an H. An effect1ve Ham1-lton1an H 

is an operator acting only in the n-dimensional space ~ , whose eigenvalues are 
(.) 0 ,... 

identical with the E 1 , There are different ways to construct H order by order 

in perturbation theory. 

In the following we apply this concept to the strong coupling expansion of lattice 

gauge theory. The transfer matrix T is normalized such that its largest eigenvalue, 

belonging to the vacuum ~0 , equals one. 

T "~". "~"· 

In the strong coupling region the three next largest eigenvalues correspond to 

particle states l_4,5,16] 

T'~",(r) )._ ' ( r l "!'; qn 1,'1.'., 

I 1o) 

111) 
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For zero momentum -r1 belongs to the trivial representation A1 
. . - -lattlce symmetry group and lS called 0 -glueball, whereas ~ 2 

of the cubic 

and y
3 

are 

degenerate and transform according to the representation E of the cubic group, 

being called 2++_glueball [11. Both types of states have even spatial parity 

and even C-parity [2,5). 

In the strong coupling expansion one obtains 

A.; (f) 
.. 

1J. + 
5 

Ct(u. •= 1,'Z,3 ( 12) 

Thus in the leading (fourth) order of the expansion the three states are degene­

rate. Furthermore there are no other states with even C-parity degenerate with 

the states above to leading order. 

For some gauge groups, in particular for SU(3), there is a C-odd triplet, trans­

forming under the representation T
1 

of the cubic group, which is degenerate with 

the states above in the leading order of the expansion. It is called 1+--glueball. 

For simplicity we restrict ourselves to the C-even states in the following. Of 

course, everything can also be applied to the C-odd states. 

It is well known how to construct states which generate the states ~(p) in the 
l 

leading order of the strong coupling expansion. Let 

p; ( ~ iEt1,2. 1 3\ 

be a space-like unoriented plaquette at time t = 0 with center ~ and being 

perpendicular to the i-axis. We call i the orientation of this plaquette. 

Define 

::( Ul • { h U(p;C;;'lJ-<+r Ulrl>}'V,; 

( 13) 

( 14) 

where trU(p) acts as a multiplication operator on the vacuum state ~0 • Since 

the momenta commute with T it is convenient to work with momentum eigenstates from 

the beginning 

'l';(f) NL: _, ~ 

)( 

e 

..... 
1p·x 

( 15) ~.u 
' 

... - ~ w • - ~ - ~ 
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The sum extends over all possible centers of plaquettes and N is an irrelevant 

normalization factor. These states satisfy 

T 'f; (f) = 
~ .. ) 

11.. 'f; ( !" .r&(u') I 16) 

and they are orthogonal to the vacuum. In the strong coupling expansion as well 

as in Monte Carlo calculations they are used to create the lowest glueball states 

from the vacuum. The matrix 

Ca (pl = <"'';<f]l "''k(pl> 

is nonsingular in the strong coupling expansion. 

Now let 

; 

p = L: i'Y;(pl > < 'V;(pll 
i" 1 

be the projector on the space of glueballs with momentum; and consider the 

matrix 

~;~o("•fl < 'f'; ( p) I p T h p I '¥'~ ( F I> 
Obviously we have 

.. 
<l,lV1.p) = c+ c " " T 

where 

" T = c' D c 
and 

D = .\,~~(;Upl, A.,<pl, J..,<rl) 

( 17) 

I 18) 

( 19) 

120) 

121) 

122) 

This means that knowledge of the matrices ~ would allow to obtain an effective 

transfer matrix T, whose eigenvalues are the desired exact eigenvalues A.(t) 
l 

of the glueball states. 
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In fact it turns out that the matrices 3 can be calculated in the strong coupling 
expansion, The essential observation is that the moment-cumulant-transformation 
[17,3] provides a method to obtain the projection operator P exactly to all orders 
of the expansion. I shall dispense with showing this in detail but merely in­
dicate the line of reasoning. The starting point are the correlation functions 

T;l<. (n, p) 

'L .. 
" 

> ~ • 

If'' X / -) -') 
e "-+rU(f';(X

0 +X,n)) h U ( Pl ( xo, 0 l)) 
c 

The second argument of the plaquettes are the time coordinates. We write -r: in 
the form 

T;~ l,, f) <"~',(rll T" "/'~ (f) > 
= 'S;~ ln,p) + <"f',(pl\ (1-P)T~(1-P)I'¥'l(Fl> 

(23) 

(24) 

The second term in (24) is of order u60 in the strong coupling expansion. The 
formulation of the strong coupling expansion for correlation functions in terms 
of lattice graphs [3] can now be generalized to the case of correlation matrices 
like L , The contribution of a graph is then given by a certain matrix. Moreover 
it can be shown that the moment-cumulant-transformation applied to correlation 

(3,17] also works here in the sense of matrix algebra. It yields an functions 

expansion for ~log T in terms of connected graphs. As usual it allows to isolate 
those contributions which exponentiate and represent corrections to the leading 
term 4log u. In this way the piece ~ is projected out from "t 

Using these methods I calculated the effective transfer matrix T up to order u 12 

which are 8 nontrivial orders of the expansion. From it the effective Hamiltonian 

A A 

f.\ = Lo 3 T (25) 

> 8 can be derlved up to order u • 

~--~~ ~~ -~~ ~ ... 
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3. Strong-coupling expansion 

In the following we present the results for the effective Hamiltonian H. Define 

~ 

r~ :l SIO j_ b. 

~·~ 
t· = l co> 4: f~ I 

A,~= tL-t:"L 
I R 1 1~ 

B;~ Ct>2) ~;~ 

d 1,:<,3 

In terms of the matrices A, B and 11. the expansions are as follows. 

For SU(2): 

' H (- 4 logu + 2u 2 )1L- u~{ [ 5
3
°- 1} 2 ] jL + 2A} 

- u6{ l- 104~056 + P2]1.+ 7A + 11B} 

_ us { [ 43442 _ 35 p2 + .l ( p2 ) 
2 J :!i + ( 67 + p2] A 

243 3 2 3 

+ l- 1 + 3P 2 ] B + 3A 2 + 3B 2 + 2(AB + BA)} 

For SU(3): 

' H (- 4logu- 3u + 9u 2 -
27 u3)jl 
2 

- u'{ L- 9- p'] :IL + 2A} 

- us{ l 2~1 - 3P2] 1L + 6A} 

- u'{ r- 1247947 7 ' 1 l 10240 +2P 2 .i+2A+11B} 

7 1 36 o28 989 + 12 p2) :U. _ 21A + 3Bl -u{L- 71680 

,._ __,._~ "' . -· ~ -~ 

(26) 

(27) 

(28) 

~ 
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For z
3

: 

- '( [113631493 _lli p' + 1 (p')' ]1L 
u 40 960 8 2 

' ' 7 H = (- 4logu- u +Lu2 --u3)1l 
2 3 

+ [6~3 + P2] A +t823 + 3P2] B 
_ u'( [ 5~ - i\'}11. + 2A) 

+ 3A 2 + 3B 2 + 2(AB + BA)} (29) 
- us{ [ 1~1 - P2)1L + 2A} 

For SU(CO): - u 6{ (-
1 ~7 + P2 ]11.. + 7A + 11B} 

H = (- 4 logu~ u'( [18- p'):!L + 2A) 
u 7 t(~+P 2)1l.. -A +Bl 

- u 6{ [54- P2)jl + 11A + 11B} 
_us{ (2~79 _ 1ap2 + ~ (P2J 2]f+ (56+ p2) A 

- u'( [124- 91>' + ~ ('p')'):1l+ [19 + !>') A 
+ t16 + 3:i) 2

] B + 3A 2 + 3B 2 + 2(AB + BA)} ( 32) 

For U(l), Wilson action: 

+ [1 + 3:i) 21 B + 3A 2 + 3B 2 + 2(AB + BA)} (30) 

For z
2

: 

' 3 '[409 "1 H = (- 4 logu + 2 u 2
) 1L - u { 2"4 - p 2 1L + 2A} 

~ = (- 4logu + u 2 ):i- u 4
{ [~ -P 2)1L+ 2A} 

' [ 281 1 " ) 8 -u{l-24+2p21L+ A+11B} 

- u 6{ ~ 11..+ 9A + 11B} 
_ u'(f 411349 _ 32 "> 1 ('')']AI 

l 2880 3 p + 2 p ...ij... 

_ ua{ l5~7 _ lO p2 + ~ (f>2) 2]f+ [20 + p2] A + [ 1~5 + P2] A + [ -1 + 3 P2J B 

+ 3i) 2B + 3A 2 + 3B 2 + 2(AB + BA)} (31) 
+ 3A 2 + 3B 2 + 2(AB + BA)} (33) 
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For U(1), Villain action: 

' H (- 4 logu + 2u2)1L- u~{ [11- P211l+ 2A} 

- u6{ (- 632 + P2)1+ [A+ 11B} 

- ue{ ( 3;9- 12 p2 + i (P2J2]1L + [23 + P2] A 

+ f- 1 + 3P 2 J B + 3A 2 + 3B 2 + 2( AB + BA)} (34) 

Diagonalization of H yields the energy momentum dispersions Ei(p) for the glue-
. ; 

ball states. Here we only wrlte down the results for the energy E1(p) of the 

O++_glueball and leave the other two as an exercise for the reader. Because the 

momentum dependence is rather complicated we present the energy in the form 

with 

E, ( P 1 = m + ~· f" + }·( (p')'- 3 Z p;') 

+ ~. Wl' 

~ 

WI = -4-lo~v.. +"L 
"" 

~ w 

+ i}(f') 

" W1~\A 

t = E ~~ 1A ~ a 
1A 

~ ~ 
~ = L ~l v.. ~ = 'L 'h 

It=• 
The coefficients are contained in table 1. The 

ll·8 ( 1 ) 
elgenvector v belonging to 

' the eigenvalue E1 of H is to lowest order in u given by 

\<I 

v~ t: k ( fl· ..1:. ~ r 1 

where ~, is a root of the equation 

, l 1. 1. 1. 1 '), 1) fA - L t:, + -Lt., + t, t:. fA -1 to't:t.: 0 

( 35) 

( 36) 

( 37) 

( 38) 

(39) 
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; 

What are these results good for? First of all the energy E1(p) as well as the 

corresponding eigenvector v(l) for a particular momentum with 

A 

p, &lu.-') (40) 

were needed in l10] in the course of a calculation of a triple glueball coupling 
. ~ . 4 constant. In thls case H can be determlned up to order u from the results above. 

Secondly the energy momentum dispersion E(Pl allows to consider the question of 

restoration of Euclidean invariance [11]. In the continuum limit Euclidean in­

variance should hold and E(~) should approach its relativistic form 

E 
A _, ::t. .,.1. -'ll. '+-

("' ~ f' l = W> + F' /:>."" + () ( F ) (41) 

In particular the quantity 

CA = 1"" ~ ( 42) 

should approach the value 1. For gauge group SU(2) it has been considered in [11], 

For SU(3) the strong coupling expansion of c1 is 

C=t>.<~t - Lo~ ,... l Sr. + 1 '8 1.1. + '" ,... '- l,oo "
1 

+ S 313 "' J 

-4-:l.1A + 10.v' -134-1A' ;- 6-(u;) } 

It is plotted in fig. 1 as a function of ~ together with the diagonal Pad€ 

approximant applied to the power series in (43). The behaviour is similar to 

( 43) 

the SU(2) case. In the crossover region around f ~ 5 the fUnction c1 reaches 

the value 1 and continues to increase for larger values of ~ • As the strong 

coupling expansion ceases to be reliable beyond the crossover, the true function 

c1 may well approach its limit value 1 there, as indicated by Monte Carlo cal­

culations [ 18 ]. 

Finally I would like to point out that the correlation matrix 3 can also be 

determined in a Monte Carlo calculation. If the masses of other glueballs in 

the parity-sector under consideration are sufficiently higher and if n is suffi-.. 
ciently large, the measurable correlations iCik(n,p) are approximately equal to 

the ~ ik' Numerical diagonalization of ~ would give the proper energies and 

eigenstates. Such an analysis could be done by extending the calculations of [19]. 

- _,_ 
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Table caption: 

Tab. 1: Coefficients of the strong coupling expansions (36), (37) for 

different gauge groups. For U( 1) both cases of Wilson's and 

Villain's action are listed. 

Figure caption: 

Fig. 1: The quantity c 1, defined in (42), as a function of ~ = 6/g 2 for 

gauge group SU(3). The upper curve shows the expansion (43), the 

lower curve is a diagonal Fade approximant. 
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