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Correlations and static energies in the standard Higgs-medel. 

I. Montvay 

Deutsches Elektronen-Synchrotron DESY, Hamburg 

Abstract: Correlations in the W-boson and Higgs-bason channels and the static 

energy of an external SV(2)-doublet charge pair are investigated by Monte Carlo 

calculations in the SU(2) lattice gauge theory with a Riggs-scalar doublet, 

The mass ratio ~~~ and the shape of the static potential are used to obtain 

information on the renormalization group trajectories in the three-dimensional 

coupling constant space. Numerical evidence shows that only two of the couplings 

are relevant. The phase transition line on the border of the Riggs-phase is 

weakly first order, A lower bound~~~~~ 1.0±0,3 is obtained for the ratio of 

the Riggs-boson mass to the W-boson mass, 
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I. Introduction 

In the standird SU(J) ® SU(2) ® U{J) model the two non-abelian gauge symmetry 

factors play rather different roles. The local gauge symmetry corresponding to 

SU(J)-colour is unbroken, the SU(3)-colour charges are confined and the colour 

interaction is strong. The local SU(2) gauge symmetry, on the other hand, is 

broken by the expectation value of the Higgs-doublet field, the SU(2) charges 

are screened and the corresponding interaction is weak. Since the values of the 

coupling constants are changing ("running" or "sliding") according to the renorma­

lization group [1] , the meaning of strong and weak couplings have to be explained 

in more detail. The renormalization group invariant meaning of "strong inter­

action" is that the ratio of the SU(J) 1\ -parameter to the hadron masses is of 

order I. Still a bit more precisely, we have for SU(3)-colour 

I ltv ( 1\ SU.('O) I Mkcl..<t»c) I ~ 0(~) 
(I. 1) 

This statement takes into account, for instance, the factors between different 

reasonable A-parameter definitions ( 1\"Nfr'AA.) /\~)/\~·~etc.), In contrast 

to Eq. (I. I), for the SU(2) 1\ -parameter and the W-boson mass (~) experiments 

imply 

A su.c:.) / lr'fl-w 
':.. AO-Z"?> 

(I. 2) 

This number can be obtained from the value of the SU(2) coupling strength at, 

say, the W-mass and from the renormalization group equation assuming, for defi­

niteness, 3 standard fermion families and a single Riggs-scalar doublet, Eq.(I.2) 

implies that the SU(2) coupling is getting, in principle, strong at an energy 

scale of about lo- 12 eV. This has, however, no practical consequences because 

of the short range of the interaction due to the massive SU(2) gauge boson 

exchange, 

The smallness of 

some good reason 

1\SU.(~}for,wmay seem "unnatural" or "unaesthetic" unless there is 

for it, ln fact, in the framework of grand unification [z] the 
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SU(J) and SU(2) couplings become equal at some very high energy scale 

!1GU 1"'\) 10
15

- 10 17 Ge\', and Eq. (I.2) is explained by a relation like 

in. II s•C•) 

mw 
=C. 
~ M.~-...J.--. (I. 3) 

H c<u. 

with some constant c of order unity. The theoretical consequence of Eq. (1.2) 

is that the SU(2) @U(I) electroweak interaction can be treated by perturbation 

theory. The impressive success of the perturbative approach culminated not very 

long ago in the discovery of W- and Z-bosons at precisely the predicted masses [3]. 

The o~ly remaining source of uneasiness in the standard model is buried in the 

Higgs-sector incorporating the inherently non-perturbative phenomenon of sponta­

neous symmetry breaking, The main interest of the non-perturbative investigation 

of the electroweak theory lies, in fact, in the deeper understanding of the 

Riggs-mechanism [4] , which renders thew- and Z-bosons, the leptons and quarks 

and the, upto now elusive, Higgs-bason a mass, 

Strong weak-interactions, In the present paper the Higgs-sector of the standard 

SU(2) (g)U{l) electroweak theory is investigated by the non-perturbative numerical 

Monte Carlo method ~]. The calculation is performed in a coupling constant 

range, where Eq. (I. 2) is not fulfilled. On the contrary, similarly to Eq. (I. I), 

we shall typically consider the case 

I ~r 1\v.c~) /!Wlw) I ~ or1J, (L4) 

i.e. the values of coupling constants will correspond to a situation where the 

SU{2) weak-interaction is strong. The electromagnetic interaction will be neglect­

ed altogether (no U(J)-factor) and no fermions {leptons and quarks) will be 

considered. For a possibility, how to include these in the lattice action see 

Ref. ~]. 

The study of the standard SU(2) Higgs-sector in the situation corresponding to 

Eq. (1,4) is interesting from several point of vie\~s: 
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i.) it can reveal the existenee of non-perturbative constraints in 

the electroweak theory. For instance, the number of independent renormalized 

couplings can be smaller than the number of bare couplings. A large body of 

evidence [?] has been collected to support the occurence of such a "parameter 

"'' . . reduction" in the single-component T -theory, where the renormal1zed coupl1ng 

is probably always zero; 

ii,) it is interesting to compare and to confront the behaviour of 

the totally broken SU(2) gauge interaction with unbroken SU(N) colour, studied 

upto nov.r in most Monte Carlo investigations; 

iii,) the gauge-Higgs system is theoretically interesting for his own 

sake, as a representative of a class of quantum field theories; 

iv.) finally, there has been some speculations that weak interactions 

could perhapes become stron~ in the hundred GeV energy range [a]. This possibi­

lity seE.ms to be improbable at present, but direct experimental evidence is 

still scarce at such high energies. 

Previous Monte Carlo simulations of the SU(2) Higgs-system with scalar field in 

the fundamental {doublet) representation ~-12] concentrated mainly on the 

singularity structure in the coupling constant space. These studies showed, that 

there is a phase transition surface separating the Higgs-phase from the confine­

ment phase. These "phases" are, however, not qualitatively different from each 

other ~~, they are continuously connected beyond the edge of the critical 

surface. This structure is illustrated by Fig. l, which is a reproduction of 

F!.g. 3 of the paper by Kilhnelt, Lang and Vanes ~j], 

An interesting question is the order of the phase transition separating the 

Higgs-like and confinement-like regions. If there is a critical surface corres­

ponding to a second order phase transition,then the correlation length becomes 

infinite and some continuum theory can be defined in a limit going to this sur­

face. {The continuum theory may be trivial, i,e, non-interacting, except perhapes 

for some peculiar "fixed points" on this surface.) Information on the critical 

behaviour can be obtained e.g. from "finite size scaling" Q.Q or from a direct 

study of the correlations ~2]. 

In my previous paper t!,~ the correlations were numerically calculated in the 

limit of infinite self-coupling ( A?co; fixed length Higgs-field on the 
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lattice), This limit of the standard electroweak theory was considered extensively 

in the literature ~~ as an interesting limiting case, when the tree-level mass 

of the physical Higgs-bason tends to infinity, (The physical mass can, however, 

stay finite ~s].) The results in Ref. ~2] showed, that the correlation lengths 

in both the isovector ,-- (W-boson) and isoscalar 0++ (Riggs-boson) channels 

have a tendency to grow in the vicinity of the critical line, This could be inter­

preted as a sign for a second order phase transition, but a weakly first order 

transition with some small specific heat was equally possible, The present paper 

is an extension of Ref. Q2] : in the case of fixed-length Riggs-field (A_,. oo) 
more statistics is collected closer to the critical line and the variable length 

case is considered, too, for several values of the self-coupling A , The precise 

position of the phase transit~on is determined in several points directly from 

the correlations and evidence is presented for a weakly first order transition for 

all .A -values. The correlations are determined also in another important limit, 

namely for ~~eo (no gauge coupling) Q6]. Special emphasis is given to the 

information which can be obtained from the mass ratios and from the static potent­

ial concerning the renormalization group properties of the model, 

In the next Section, after summarizing the lattice formulation of the SU(2) 

fundamental Riggs-model, the results for the correlations will be presented and 

discussed, The position and order of the phase transition will be determined. In 

Section Ill, the static energy of an external SU(2) doublet charge pair is con­

sidered and consequences for the renormalization group trajectories ("lines of 

constant physics") in the three-dimensional coupling constant space will be 

discussed, The last Section contains the conclusions. 

II, Correlations 

The lattice action. The continuum euclidean action S of an SU(2) gauge field c 
interacting with a complex scalar doublet ~(~) can be written like 

sc. 
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= SJ.\ [ t "k-( Ffx)I'J FCx)/'' + f<•) b D <\> (x) 
! ! 

+ "<- ( f<·l~r·l-1r._r} 

... __ ... 

(II. I) 

Here FC.Il)J"'-l denotes, as usual, the field-strength matrix of the gauge field, 

J)f'" is the gauge-covariant derivative, A,(.. is the self-coupling constant of 

the Riggs-field and Vis the tree-level vacuum expectation value related to the 

opposite-sign mass term -rt.t+(")~{x) by 

'\r = t-: n:. 
[');<-

(II. 2) 

The gauge field is described on the lattice by the link variables t.\(x1;")E SU(l..) 

and the Wilson gauge lattice action is a sum 'Z... over positive orientation 
1' 

plaquettes ~, For the lattice description of the Riggs-field it is convenient 

to introduce the lattice site variable q>)C and the lattice bare couplings ~)A 
by the replacements • 

a.~(a.<) __., J)t: ~. 

'>- .. ~ ').')(-<. 

~-co.r),_~ (A-2.~)/>t. (II,3) 

Here 0., denotes, as usual, the lattice spacing. In these variables the euclidean 

lattice action is 

~ -r;: u.l'} 
(II. 4) 

The lattice is assumed to be periodic in all four directions. 2. means a 

summation over all lattice sites, Z. is a sum over positive ~nd 
directions ( f:.~~,t.Z 1 Z3,tLI), fstands for a 

and ~ is related to the bare gauge coup ling '} by 

negative 

unit vector 

~~ljN· 
in direction j 
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The peculiarity of the SU(2) doublet field ~X is that 

sented by its length O~o and by an SU(2) matrix o( ,, ~ 

given by ( 0(,.~ 1 ~): 

"'~ 0( "t'A='-\'x x)«1-

::h" ..._ t-
T x ~ <:<0 '-!' (" = <?.o<,,~, 

it can also be repre­

The correspondence is 

(II.S) 

"" Here ~ is the opposite hypercharge doublet field in SU(2) @ U(l) E is the 

antisymmetric unit tensor), Using the new variables, the lattice action can 

be written as 

S<~: { o'-- 3.£-..o +'A( o'"- ~)._ -x L. 0 • 9,1-r["'• • 'UI•,t)"' V 
X fl(. '5X )x f'>O }(+r X.+i ~ s 

,_~~ (~- fkU,) (II.6) 

. ' ., 
The integration measure was originally 9;d~.d~ d Uf,,r) 

> 
(if d '} 

denotes the invariant Haar-measure in SU(2) ) , but in Eq. (II.6) the factor D S 

' " d9,d"',d\.lcv). is included in the exponent, therefore the measure is simply 

Let us introduce, instead of the SU(2) link- and site-variables t-Hx,r)and 

~X , the gauge invariant link variable 

VC•,r\""" 0( ... A '\A.cx,f) " ., ;r...-r )(. (II.7) 

Due to local gauge invariance, this can be used for the description of the 

gauge field also in the pure gauge part, therefore the lattice action can be 

written like 

S = ~ [ q;- 3 .f...S'~ +- ')._ (q~- ~).,__ ).{ f,o 9x•( ~" \.;. Y (x,f\} 

~ ~ t ( ~ - ~ -r.; ~) (II. 8) 

3 
This does not depend on C(" , therefore the integration do(.)( gives only an 

unessential constant factor and can be omitted. The integration measure for 
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3 
Eq. (U.S) is d9~JV(x!r) . The disappearance of the angular part O(x of 

the Riggs-field is usually expressed by saying that it is"eaten" by the gauge 

field. Since both 9x. and \f(x1f) are gauge invariant, both of them describe 

physical degrees of freedom: '((x,f) corresponds to the (gauge-) W-boson and 

9x to the physical (Higgs-) H-boson. 

The SU(2) Riggs-model with Riggs-field in the fundamental representation has 

a global SU(2) "weak-isospin" syrruuetry. In the full SU(2) @U(I) electroweak 

theory this symmetry corresponds to the transformations l~.JJ, (~-::.QI/'1 r) 1 

.u~d.., c.~!.> 
1 
i ~ _.e,... , therefore it is broken by electromagnetism and by 

fermion mass differences within doublets. In the action (II.8) the exact global 

weak-isospin symmetry transformation is 

V' -1 ("'/')= U: V(x,()l)_ ' ?,~ 9x 

For comparison, the local gauge transformation is 

l{rx,r) u~' tll•,r)'U., 
_\ 

d. ~u. 0( 
X x X 

Y'f,,r) ~ Yrv) 

+' +u._ 
0( ~ 0( 

X X X 

(II.9) 

(II. Jo) 

With respect to weak-isospin the W-boson is isovector, the Riggs-boson is iso­

scalar. 

There are interesting limits of the model, which can be studied separately, In 

the case of infinitely strong self-coupling A_,. 0() the length of the Riggs­

field is frozen to ~K= ~ , and the action is 

S = = -1-{L \.i-Vcx,,..) .-!!>L..(~- f"!;~). err. Ill 
'A oo x,(-.o I \ 1' 

The correlations in this limit were· investigated in Ref. Qz]. This is the 

limit of a very strongly interacting Higgs-field, where Jl and ~C in Eq. (II.2) 

.~~ 
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go to infinity in such a way that the tree-level vacuum expectation value 

'\T ~ Q"{>t remains constant. The tree-level mass )"-Jl of the physical 

Riggs-boson goes also to infinity. Nevertheless, as it was shown in Ref. Ez] 
and as we shall see below in more detail, the lowest mass in the isoscalar 0++ 

channel remains finite. 

~"""" (zero gauge Another important limit of the action in Eq,(II.S) is 

coupling). In this case the link variable \j (x,lf) is a pure gauge, therefore 

it is more convenient to restore the angular Higgs-va.riable 

to Eq. (11.6}, which gives 

d.. and return 
X 

$ =LfnL-3.&.n t-A(n':_;,)L-><-"L:. 9 .~.~(./ .o<.)~ 
(\ .. eo K LY.IC. ).It "},1( f?-0 Jt."f "7 x; J' (II, 12) 

This is the lattice version E6J of the Gell-Mann-L~vy linear cr--model D7]. 

It has a global SU(2) 0SU(2) syrrunetry corresponding to the transformation 

( lj_:t E-SU<~)), 

I ~~-~ II 
0( =VI. "' "" )1. - /( + 

(II.\3) 

SU(2) ® SU(2) is equivalent to 0(4) and the SU(2) group elements can also be 

represented by a unit-length four-vector ( 0.
0

, a.~) : 

o( = Q, 
X 0 1 I( 

~t'[""Q 
of" ..r,l( ( ':.; 'l'o...J.\- .. o.t..-;,) (11.14) 

In the limit ft._,,.., the model in Eq. (II.\2) becomes the non-linear 0(4) 

(j -model in four dimensions: 

sf>-.. , ).zoe= -2)t z_ 
"if"' 

Q ' Q 
~,·~r '?• 

(II. IS) 

In the continuum limit the action Sfl•oo in Eq. (II. 12) is expected to describe 

3 massless Goldstone-bosons and 1 massive scalar particle, which are presu­

mably non-interacting DSJ· 

~- -.---<-. 
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Monte Carlo calculation of the correlations. The Monte Carlo simulation in the 

SU(2) fundamental Riggs-model can be 

Eq. (II.S). For the fixed length case 

done by using 

(A""' CD ) the 

the lattice action in 

action is given by (II. 1 1). 

8
4 

lattice, The In the present paper the correlations were computed on an 

SU(2) link variables were replaced in most cases by the elements of the 120-

dimensional icosahedral subgroup. The updating was done by the Metropolis­

method with 6 hits per link for the gauge field \A.(r1f) and 6 hits per site 

for the length variable 9x . The links and sites were updated in a random or­

der, but always full sweeps were performed alte.rnating over links and sites, 

Diagonal correlations (and sometimes a few off-diagonal ones) were measured in 

different channels. In all cases the three-momentum was projected out both to 

f :=--0 and t = nj('lo'J (1 in lattice units) in all three space-like direc­

tions. The time-slices were chosen in all four possible orientations. The measu­

rement of the correlations was performed only after every 5th or 10th full 

sweep in order to reach more independent configurations. The results given 

below were collected typically from So00-10000 sweeps for every point in the 

coupling constant space, The configuration was started in most" cases from a 

previously equilibrated configuration in some neighbouring point. At least 1000 

equilibrating sweeps were performed before starting to collect data on the 

correlations, The computer time used for the calculation of correlations 

amounted to about 400 CPU hours on the Siemens 7.882 at the University of 

Hamburg. 

To obtain the correlations in the W-boson channel an appropriate operator is 

As it was 

1Pc,
1 

o:z = ~[T,.. V(x,<YtJJ r~,-r~ 1,~,3). (II. 16) 

discussed in Ref. [12], this has weak-isospin Iw=l and spin-parity 

For the ~=0 Higgs-boson channel there are several possibilities: 

0 ~ :2-.. --r;: v 
" ("'1,") "f(~, ... ) 

0 ~ 
~ 

0 ~ 
A 

9x 
2.. J;; V(x,Wc) -

(II. 17) 
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The first is the symmetric combination of the three space-like orientation 

single plaquette operators, which is often used in QCD gluebal1 spectrum cal-

++ ' h . . 1. .,.l'c o• + 
culations for the 0 channe • T e second 1s the genu1ne 'tJ::.O) ::r -= 

Riggs-variable (the length of the Biggs-field). The third operator appears 

in the 'A=co action (II.ll). Assuming that the 0++ state is the lowest iso­

scalar state, the symmetrization in OG. and OA can also be omitted, provided 

that the correlation is determined at large enough distances and therefore the 

higher mass contributions from othe spin-parity channels can be neglected. 

Similarly, the lowest mass can also be inferred from off-diagonal correlations, 

like e.g. between ~V~'I'II) and ""t;-V(X(I\) (""\'f<t\.), if the distance is large enough. 

The results obtained for the correlations in the W- and H-boson channels are 

shown in Figs. 2A-2C and in Table I. Always the inverse correlation lengths are 

given, i.e. the estimate of the lowest mass in lattice units in the given channel, 

Table I also contains some global average quantities like the average link L 
1 

average plaquette ":p , average length ~ , length dispersion (5'" and average 

action per site h . These are defined, respectively, like ~ 

L= < kk--V!.-,t)/ 

1' = < ~ - k ~,;. v1' > 
~= <s>x> ~ ""J <9:1-<9 ... / 

"'"" G~(~-ik=Vp) +<q>3£.9. +- 1-(~~-~)'-/ +-

+ 'iht < 1- i o o • --r; Vl•,t)'> z .., ... w .. r / . 
(II. 18) 

In the average action per site the constant term 

to Eq. (II.8). in analogy to the constant ~~ in 

8x is added with respect 

the average plaquette term, 

In theW-boson channel, for Q."~\v<~, the correlation can be determined, with 

relatively small errors, upto the maximum distance d.,-::::4 on the a4 lattice, 
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The correlations in some sample points were shown in Ref. ~2]. The qualita­

tive behaviour is here rather similar. The easiness of the measurement of 

correlations at larger distances reminds the general behaviour in 2-dimensional 

0"' -models [19] and not the pure SU(2) gauge theory, where it is rather 

difficult to obtain large distance correlations ~~. For UWIW'"24S the correlation 

drops fast at small distances. In such points the mass estimate is obtained from 

distance d..=--" (or at most from J.<e.:t ) , therefore these points have large 

systematic errors. The errors shown include some subjective estimate of the 

systematic errors, too. 

In the case of the Biggs-boson channel the situation is more involved. The one­

plaquette operator ()~ in Eq. (II. 17) behaves rather similarly, or even still 

somewhat worse, than in pure SU(2) gauge theory, i.e, the correlation usually 

cannot be determined beyond c\ .. :::.1 . The best points for 0( are below the phase 

transition line (')t('}tc.;, see below), where the behaviour, and also the value 

of the correlation length, is rather similar to pure SU(2) gauge theory at the 

same ~ -value [20]. The other two operators OH and OA behave oppositely: for 

Jt.<.~G~ they are worse, for 'X)?ee.r however much better than Oc;: . 

For ?e>Xc.r the diagonal correlation of OK and <l can be determined, within 

the given statistics, upto d.-::..Z. or d.-=.3 • OA behaves for A>o.~ 

still somewhat better than OH. , but the mass estimates from OA and OH are 

always compatible. In the Figures and in Table I always the best estimate for 

Q~H is given, sometimes including also information from the off-diagonal 

correlations between 'k=-V(x-1'1n) and 1=rV(K1~) (tllf1t). 

The energies E'l obtained from the pe~ correlations give in most cases. 

within errors. the same mass N)ii,.._Jt.".:'t'L as the 1'=0 time-slices. This shows 

that Lorentz-invariance is approxim~tely restored! in the measured points. There 

seem to exist, however, some systematic deviations in the points with largest 

correlation lengths ( ~ ~ ~ } ,where the !=-~ mass is usually lo-2o% higher. 

This may be due to finite size effects, since finite cut-off effects are ex-

pected to become smaller for large ~ 

Behaviour near the phase transition. The qualitative behaviour of d~Wand Q~H 

fo< ~=1.3) ).=oO (Fig. 2A), ~=~.:! 1 ).=(0 (Fig. 2B) and ~~~.3 1 )-=0A 
(Fig. 2C) is quite similar. The main difference is in the widths of the '>L-

-~ - .-
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range, where similar changes occur: the region near the phase transition is 

squeezed for small ).. . The reason of this behaviour is quite clear: at ~=0 
the model defined by the action (11.8) has a kinematical singularity. In the 

Biggs-phase, where the link expectation value is substantial cL_,A for")(~eo ), 

for large enough "hopping parameter'' X , the hopping term proportional to )(.. 
~ 

wins over the stabilizing 9JC. term and the action is unbounded from below if 

9:<~00 For very small A the A(<;l~-~)'2... term can stabilize the theory only 

for very large CjlJt: therefore the change above ")tet" is squeezed into a small 

it -region, which is asymptotically proportional to ~ , 

Appart from the squeezing, there is a remarkable universal behaviour for 

different " . This can already be seen in the global averages given in Table 

I. For instance, the link expectation value is a universal function of the 

plaquette expectation value (see Fig. 3). This shows, that ;C is not the 

correct variable to use. Plotting the W-boson mass as a function of the link 

expectation value, one obtains the remarkable universal curve shown in Fig. 4A. 

The same for the Higgs-boson mass, in Fig. 4B, shows a universal behaviour,too, 

although the errors are larger and maybe there is some mild tendency for the 

A-=0.1 points to fall somewhat below the rest. Fig. 4B has to be contrasted, 

however, with the tree-level prediction tn1 = ~J>:. , according to which -'Yt\.H 
H < 

should go to infinity for /..-?tiO . 

Figures 4A and 4B reveal a discontinuous behaviour of the masses at L=LC("';;. QZG 

At this point t:\'WIW jumps from values around Q"ft\.;'0,5" to Q'l'~\,{.,:~.0. At the same 

time Q'l'll~ jumps from Q"ff\ N0.5" to O.'ff\j..("'t1 , a value consistent with the 

0++ glueball mass at the~same ~ in SU(2) [3~, Therefore, at ~-:2.3 the 

critical surface on the border of the Higgs-phase is discontinuous (first 

order) for all ~ -values considered. This is not really in contradiction with 

Refs. (?-1 ~, where the phase transition was classified as second order, because 

the hysteresis associated with the transition is rather weak, Some two-state 

jump behaviour in the updating can only be seen for the smallest A, value 

( ~=.O,A ). The position of the weakly first order transition is, however, 

substantially lower than the lines given in Ref. ~~ and shown also in Fig. I. 

The present best estimates for )fG.r are {always for f=-~."2:, ) : 

'A~"" 

'A= A.o 

'i-=0.~ 
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"lt"' = 0. o 8" ±o.ooS" 

Ax;;'0.'3 

\.tu- = 0,1.03 1: 0.002. 

A><~ 0,09 

\{« ,.o, A92. :t:O.oo-1 

A>t ~ 0.01. 
(II.I9) 

The A}( values give the approximate widths of the typical structure above ")(=Xer 

(for ").._,o 61{. is expected to vanish like ,f'X ). Concerning the order of the 

phase transition, the Aachen-group reported very recently some preliminary 

evidence in favour of a two-state structure at very small :A values [21]. 

An interesting observation at the phase transition is, that the average action 

per point 4 has a maximum at ;(:=.}(e.r-(see Fig. 5). The instability associated 

to this maximum is an intuitive r·eason why the phase transition is disconti­

nuous, Let us note, that the perturbation-theoretic Coleman-Weinberg phenomenon 

[22-23] also implies a first order transition, 

Below the phase transition {""')t<Xc:.r) everything looks very much like in pure 

SU(2) gauge theory (further arguments in this direction will be given in the 

next Section). In the Biggs-phase ( "'t))l~), far away from the phase transition, 

'nlK is roughly twice as large as ~W (this is similar to the situation in a 

Type I superconductor with , . ..,\?Mo\-..1 12:3] ). Near the critical line, however, 

M\l\ and1'Yiw becom nearly equal. Due to the somewhat large errors it is im­

possible at present to say, whether there is a region for it>)lc:.ralso with 

~H<~w (like in Type II superconductors), For the moment the numbers are con­

sistent with -n1K~''"'\,., {with error: ~ 1-1 ~ (tO:t0,"3)''t\iJ ) , but further Monte Carlo 

studies on larger lattices and higher statistics can decide whether ""H <"""'-.r 
is possible or not. The lower bound for the Higgs-boson mass H!'\K!: (A.0%0,1)ottiw 

is relevant {upto electromagnetic and fermionic corrections) also to the real 

world with small gauge coupling, since ~tifoMW' increases for decreasing gauge 

coupling strength {see the next Section in connection with the discussion of 

the renormalization group trajectories). 

Let us note, that concerning the occurence of """"~~~vJ the present conclusions 
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differ somewhat from those of Ref. E2J. The reason is the better statistics 

closer to the phase transition, which allowed a more precise localization of 

the phase transition. Points with'tt11i~~were found in Ref. [12] only near the 

endpoint of the phase transition line (near ~.:::;1.5' ). Here we see that such 

points occur also at ~~1. 3 (and very probably also for every larger ~ ) , 

if one is going close enough (from above) to ){::. Xe.r-

Correlations at f:~oo . The ~~00 limit of the correlations can _be numeri­

cally studied by a separate Monte Carlo simulation based on the action in 

Eq. (II. 12). This is equivalent to an 0(4) 5'"-model in 4 dimensions, therefore 

the 0(4) variables defined in (II. 14) can also be used. For technical reasons, 

however, I took the SU(2) (YSU(2) action (II. 12) and used for the SU(2) site 

variables ( o(x.) the elements of the icosahedral subgroup. 

Let us denote the inverse correlation length at ~:r.DO measured by the Riggs-field 

length variable 9~ by~· For the inverse correlation length between the 

angular variables o(K let us introduce the notation 0.""') . In the conti-

nuum licrit discussed below ~ is the mass of the massive Higgs-bason, where-

as Nit'} is the mass of the 3 Goldstone-bosons. We expect, namely, at some 

critical value 1( =-Xcc- (which is a function of 'X : Xc,.r:::. ){cr(A) ) spontaneous 

symmetry breaking. On the lattice this is manifested for >t~ ')((("(>-.) by a 

spontaneous alignment of the SU(2) variables in some arbitrary direction. 

The consequence of the spontaneous symmetry breaking SU(2) ®SU(2) ~ SU(2) 

(or equivalently 0(4)--?"' 0(3) ) is the appearance of 3 massless Goldstone-

bosons ( "''<'tt.1!-=-0 ) in the continuum limit. 

The Monte Carlo simulation at ~- t!O was carried out, similarly to the ~ < 00 

case, on an 8
4 

lattice. In the ~etropolis updating procedure the site variables 

o( and 0 were updated simultaneously, with 6 hits per site (in a randomly < ,. 
chosen order of sites). Concerning the number of sweeps and the amount of 

statistics the same applies as for the finite ~ simulation (see above). The 

results obtained for QYr'\C} and O.~.C... are shown in Figs. 6A and 6B and in 

Table II. In the Table the average link l- , the average length 9 , the length 

dispersion ~ and average action per site ~ are also included. These are 

defined, similarly to (II.\8), like 
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L= < 1. ~-<-("'+, o( )) ,. .... r , 
9 = <9.> (5"9 = J <s>!/- <g, > ... 

h= < ~> 3 B.~x + }_(?~1)'-> + 8x. < ~-}9, 9x<f ~("'xi '\1). (II.2oJ 

As a function of the average link l- , there is a similar universality as for 

finite ~ (see Fig. 7). 

As it is shown by Fig. 7, at the critical link expectation value L=L ~o.~ "' } spontaneous symmetry breaking takes place. Above this critical point the 

Goldstone-bason mass (in lattice units) Q"l?t'} is consistent with zero, At 

L ";..L(..("" the Riggs-mass {in lattice units) a.""'1~ has a minimum value of 

o.""'.~,_=o.~ :t:o.1 

"~-= t 0 

!-= 0, ~ 

The critical ).tat the two "--values is, respectively: 

>{,. = 0, ~4'f :t'O,Oo3 

x,. = o.~b4:to.oo~ (II. 21) 

The inverse correlation lengths around the critical point behave continuously 

(there is no discontinuity like in Fig. 4A-4B). This is consistent with the 

expected second order phase transition. Above the critical point there are 

very long range correlations in the angular variables, extending practically 

over the whole lattice. In fact, the value of the angular correlation is typi­

cally only 5-JQ% smaller between the most distant (d=4) time slices than for 

d=l. In the limit "t-71tc.r the asymptotic behaviour of the correlations in the 

angular variables is expected to be power-like (it goes to zero like the 

inverse of the euclidean distance to the power (2.+,) where ") is some critical 

exponent [7)). It is remarkable, that the measured correlation length for the 

length variable in the broken symmetry phase 1l>){cr is quite different from 

zero. This would not be the case for a strong coupling of the Goldstone-roades 

to the Riggs-particle, since for sufficiently strong coupling the two-Goldstone­

boson cut at zero mass would dominate. The small coupling is consistent with 
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the expectation that the SlJ(2) doublet 

tinuum limit for Xry.)("().) (A fixed), 

4 t -theory has a non-interacting con-

It will be argued in the next Section, that the continuum limit in the coupled 

gauge-Riggs system is ~~00 and >t-?>)l~(),)(from above in the Riggs-phase) for 

any non-zero 'A . Let us note, that according to Fig. 7 , for ~""'co (exactly 

zero gauge coupling) and ){..,X<:}).) the correlation length in the Higgs-field 

length remains finite in lattice units. Therefore, the ~_,.00 limit of the 

Higgs-mass in the gauge-Higgs system ,ew..._ 0.¥1\\-\.=C is not equal to 0.-n11)')0 
1\...,.1:10 "\\, 

measured at ~-a:> . The pure Higgs-field length fluctuations remain infini-

tely short range compared to the fluctuations in the interacting theory, Another 

aspect of ~~0 is, that in the continuum limit '){...:,)E'er-().) ( ~fixed) of the 

pure Riggs-system the mass corresponding to the Riggs-field length is infinite, 

therefore the model describes only three non-interacting zero-mass scalar 

particles, 

III. Static energies 

~~ilson-loops. The static energy E(R.) of an external SU(2)-doublet charge pair 

is a characteristic property of the SU(2) gauge-field system: in the case of 

confinement it increases linearly for large distances, whereas in a screening 

phase {like the Riggs-phase) it goes asymptotically to a constant, As it is 

well known, E(lt) can be determined from the expectation value of Wilson-loops 

WR.tr~ 11f-U..~,T with time elongation T and euclidean distance R between 

the endpoints for fixed time: 

Qt(R)=-t_ ,_,.,. i t..'N'i',-r 
T {III.l) 

Some Monte Carlo measurements of the static energy ~(R) were performed on 8
4 

lattice in Ref. ~2], where it was shown that rotation invariance of f'(R.) 
is well satisfied if the largest correlation length is at least 1. 

In this paper a more detailed study of the static energies will be presented, 

- J 7 -

It was carried out on 12
4 

lattice using the icosahedral subgroup for the 

SU(2) variables. The lattice actions (Il.8) and (II. 11) were used, and the 

IHlson-loops were calculated from the gauge invariant links V(lC",r) , This 

is equivalent, because of gauge invariance, to the use of the original link 

variables -~.,rhich appear in the definition of y../f..(i , The values of planar 

\,-ilson-loops with ~ ( R. 1T~ 5' were determined (after '"" 1 000 equilibrating 

sweeps) in 2 000.3 000 sweeps for some selected points in the 3-dimensional 

parameter space ( ').1~ 1 >t ). The results are collected in Tables IIIA-IIIC. 

This calculation took about 600 CPU hours on the Siemens 7,882 computer at 

the University of Hamburg. 

Because of the limitation in time elongation T, the best way to extract the 

static energy E(IS) is to fit the 5 points ( ~~~~ S ) by the sum of two 

exponentials: 

'vJF.,T 
-f~"'' _.r • ._l 

= c~R. e + c2R- e. (III.2) 

The industrious reader is invited to repeat the calculation .on the basis of 

Table III. Here only the final results will be shortly swmnarized_: the fit is 

good and the value of the smaller energy C-ift. is always stable with small 

error, Therefore, one can identify o..t'(R.) with ~~ . The second energy EzR. 

is also reasonably well determined, and its value is typically 3-6 times 

larger than .!"J\R.. (typical values of £'.t.R,. are in the range 1.6-2,3). This 

means that the field configuration around the external charge pair is suffi­

ciently rigid and the static energy can be considered, to a good approximation, 

as a potential energy. 

The R-dependence of the potential for ~~R,~5' was compared to 3 simple 

forms: 

o( - """R -e. +-c. (Yukawa) 
R 

Q E(1<-) = ~ - o( """ .rC (Hulth~n) 

Cea.~~ .. i) 

o( <- ci'<> 1<. +-C (string) (III. 3) 

~ 

The best fit parameters are given in Table IV in those cases, when an accept-
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able fit could be obtained by the given form. The systematic errors of the 

fitting procedure were roughly estimated from the deviations in such cases, 

when different fits were possible, 

As it can be seen from Table IV, the Yukawa- or Hulth~n-form gives a good fit 

in the Biggs-phase far enough from the phase transition surface. Therefore, 

the potential in these points is given, to a good approximation, by the massive 

W-boson exchange, For typical examples see Fig. 8. The fitted mass values O.f'lo'\.­

in Table IV are, within errors, consistent with theW-boson mass a'l'Yl.w 

determined from the correlations (see Table I). There is, however,. some syste­

matic difference between the Yukawa- and Hulth~n-form: the former gives always 

smaller masses than the latter. Approaching the phase transition surface from 

above, the potential develops a quasi-linear, confinement-like behaviour for 

intermediate distances. The change between the pure Yukawa-like and more and 

more explicit string-like behaviour is continuous (for illustration see 

Fig. 9), Near the phase transition the Yukawa-fit gets gradually worse (see 

e.g. Figs. IDA-JOB). It is expected, that in the Biggs-phase at very large 

distances the potential finally tends always to a constant, but the turn-

over might set in rather late. Eventually, it would be very interesting to 

know the exact behaviour at very large R. For instance, if the ~-'7.:'0 form 

is given by c..e-Mt. -;;t ~(-a'\,~), then the value of W could be quite 

different (e.g. much smaller) than the short distance coupling ~ , Further 

l.fonte Carlo studies may give some hints in this direction, but this is pre­

sumably a rather difficult question for a numerical study, Below the phase 

transition surface the potential becomes rather similar to the pure gauge 

theory confinement potential. For instance, at { /.""e>a) ~:..2,2J >fe0,3 ) 

there is almost no difference compared to ~::: ~.0 in pure SU{2) gauge theory 

{see Tables III-IV and Fig. II). 

Concerning the ~-dependence of the potential, if the average link Lis used 

as variable (like e.g. in Figs. 4A-4B), then the same universal behaviour is 

observed as in the correlation lengths. For fixed 'A the pattern of the short 

distance behaviour of the potential can be characterized by the "renorma­

lized gauge coupling" o( obtained in the fits (III.3). This definition of the 

renormalized coupling is, of course, not very precise, because strictly 

speaking~ is a function of R. But for a first qualitative understanding it 
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is sufficient to consider the average defined by the fits. Taking the A~eo 

values of r;J.. from J'able IV, a simple linear interpolation gives the curves 

of constant coupling shown in Fig. 12. 

"Chiral" loops. The potential energies deduced from Wilson-loops refer to a 

pair of infinitely heavy particles, which are transforming as a vector-like 

(i.e. non-chiral) doublet under SU(2), In the SU(2) @U(l) electroweak theory 

the fermions (leptons and quarks) are in a chiral representation: left-handed 

fermions form doublets, but the right-handed ones are scalars. The chiral 

transformation property can influence the forces acting on a heavy particle. 

In order to have a feeling on this effect, let us consider heavy, chiral, 

naive fermions on the lattice, The fermion matrix in the bilinear fermion 

action can be written, in this case, like 

Q~ ~- K 7t ~1' or W•,r) + l:f tr J (III.4) 

Here \/~,fl) is the gauge invariant link variable introduced in the previous 

Section and K is the hopping parameter inversely proportional to the mass. In 

the hopping parameter expansion, for very heavy fermions, only the shortest 

paths contribute. (For a review of the hopping parameter expansion see [}tQ,) 
This gives the straight time-like sides of the Wilson-loops for non-chiral 

fermions. In the case of (III.4) the dominant contribution for \('~ 0 is 

again the straight line, but instead of a product of all link variables along 

the time-like sides, we have the product of every second (gauge invariant) 

V(t1f), For the space-like sides, representing the field between external 

charges, it is possible to take both a full product of all links or every 

second link (or even more complicated products of links). For the simplicity 

of comparison, let us take full products. In Fig. 13 the potential extracted 

from such "chi ral" loops is compared to the potential obtained in the same 

way from lhlson-loops at ( '}..:ooo 1 f~2..3J)C-::0.5'). As it can be seen from the 

Figure, the potential energy is reduced somewhat at larger distances by the 

chiral transformation property, but the overall qualitative behaviour remains 

the same. 
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Difennion "zoo". The interesting consequence of the potential acting on a 

heavy fermion doublet pair is the possibility of bound states in difennion 

channels. (Note that the SU(2) representations are real, therefore both 

fennions and anti-fermions feel the same potential.) Even a pure Yukawa­

potential -oce"JJp{-w..,..)J~ has bound states, if the coupling o( is large enough 

and if the constituents are heavy enough. A short numerical investigation 

shows, that the existence of at least one bound state in the non-relativistic 

SchrOdinger-equation is guaranteed for «.M/"'1,.. (M is the reduced mass). The 

largest 0( value in Fig. 12 is around 0( ~ ~/3 , therefore M/111., /3 is 

enough. Of course, the quasi-confining potential shape near the phase transi­

tion line is even more favourable for bound states than the Yukawa-like 

potential. 

In a world with strong "weak interactions" there would be many different 

kind of difermion bound states: SU(3) colour octets, sextets etc. from 2 

quarks, lepta-quarks from a lepton and a quark, bound states of 2 leptons 

and so on. It is interesting, that states with similar quantum numbers were 

proposed recently in different contexts, in order to explain some strange 

kind of events seen at the proton-antiproton collider and at PETRA. From the 

long list of papers let us just mention Ref. [2s]. where colour-octet bound 

states were introduced, and Ref. [2i}, where lepta-quarks were proposed. 

Assuming, that weak-interactions become somehow strong at a few hundred GeV, 

the explanation of such bound states would be rather easy, if there were a 

fourth standard fermion family with masses in the loo GeV range. The question 

remains, of cour-se, open bow weak interaction could be weak at low energy and 

strong at high energy •. As a logical possibility, let us remind the above 

discussion about the short distance (- eJ./.r) and very long distance 

( C- W ~ (-"""'·w..,/.; ) behaviour of the potential in the Riggs-phase 

near the phase transition line. If 00 were much smaller than r:l. , the puzzle 

would be solved, 

Renormalization group trajectories. An important question in the lattice­

regularized SU(2) fundamental Higgs-medel is, whether there exists a conti­

nuum limit defining a non-trivial (i.e. interacting) quantum field theory. 

The first complication compared to the pure gauge theory (where the existence 
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of a non-trivial continuum limit is generally assumed, but upto now is not 

mathematically proved) is the presence of several independent couplings. 

Therefore, let us first state in general terms how the continuum limit should 

look like in principle, if there are several independent couplings. 

Let us consider a lattice field theory with -11,.- coupling constants [~):: 

~" 'l·) ... ) ')., 
jectories" (RGT's) 

. In order to define the "renormalization group tra­

in the space of coupling constants let us choose a "refe-

renee quantity" -wt.
1 

with physical ~imension of mass. Its value in lattice 

units ;t.o~~Q1'r1..( is a function of the couplings: ft.o~=,?"-t'(<t1· In addition, let 

us choose ( 11\-~ ) independent, dimensionless ratios of physical quantities: 

[~]e. j:Z..) j-
3 1 ... ) f-1\. , and consider the "curves of constant reference 

ratios" Cc,)with J,cto1o'J)t ( "":::.2 1 ,., 1 11... ), Along such curves the change 

of the reference quantity /(A=Q""l~ defines the change of the lattice unit t.l. 

uniquely. An absolute value of CL in terms of some units (e.g. eV- 1) is 

specified if the physical value of M'\..-1 as a function of [JJ is given, 

A simple possibility is to take the value of IWIJ\ [l) -independent, but 

other choices can be sometimes more advantageous. (One has to keep in mind, 

that for M\. A~ [lj -independent the absolute scale on ( [l] depends on the 

choice of the refence quantity ~4 . ) On a given curve C[l) the coupling 

constants ~i (-t:-=1 1 ~. 1~ can be considered as functions of the lattice 

~t -=-1 ftJ (0..) , and the corresponding ~-function can be de­spacing: 

fined as 

~,c[~};=-a.. 
I [~j 
dv~i (a..) 

c:W-. 
(IlLS) 

Sometimes it is also convenient to choose a reference coupling, say, 9-t 
and consider, on a given curve c[\)' the lattice spacing and the other 

couplings as functions of it: a.~a.CIJ(~4)and ~{~~lJJ (~{) (.ft:=ctJ3J .. 'JM) .. 
In this case one has, obviously 

c9rl 
~~ 

= 
~-r._ ['}) 

~~ [ ~) 
(III.6) 

This can be considered as a differential equation for the curves of constant 

reference ratios. 
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The necessary condition for the existence of a continuum limit is, that 

there exists (at least one) "critical point" (~e.]= ~.tt.1'}f.c.1''')~'ti.C. 
in the coupling space, such that 

i.) Lqe.J lies on some subset Kc. of the curves of constant 

reference ratios; ;.;._ [J) 
ii.) for Cc,)6'R.c.we have q..,...,.q<1c. 0.. ('j-1)=0 ; 
iii.) every (in general dimensionful) physical quatity 

measured on the lattice tend' on C[~) e. "12< for ['}] .-,['}e1 
-p 
to a I'J-

dependent value 1'm 
<- in such a way, that the deviation from the limiting 

value vanishes at least as fast as some power of r· (or of Q....), 

In other words, physical quantities are constant along C:[~J €: +2~ in the 

vicinity of the critical point "CCJ-"1 upto corrections ("lattice artifacts") 

of order at mostf.ol It is useful to define a "scaling region" 5~ 
belonging to [~ by the requirement that the deviation of physical quanti­

ties from the continuum limit "t>c,..C,) is in some specified sense "small" 

for ['1)GS. Within the scaling region Sc. the curves Cc~J can 

simply be called "curves of constant physics". Because of the above mentioned 

freedom in defining the scale, it is natural to consider the dimensionful 

physical quantities as functions of the lattice spacing Q.. and of the couplings 

(<1) : '"f=. ""P(a. 1 ~<'1l"'l~,._). In the scaling region Sc. the constancy of the 

physical quanties along the curves of constant physics can be expressed by 

the "renormalization group equation" (RGE): 

""' d [-o..~ +L r!J~}a"Q. }'P= O(~A) 
vO.. t=11 a"- I (III. 7) 

Here the right hand side stands for the "scaling violating" lattice artifacts. 

This equation reflects the fact, that in the scaling region the change in 

lattice spacing can be compensated (upto lattice artifacts) by an appropri­

ate change ("renormalization") in the couplings. The curves of constant 

physics can also be called "renormalization group trajectories". 

It can happen, that the limiting values --p[l] of the physical quantities 
<-

are the same for different curves ( [~) , If the set of curves with 

equal limiting values spans out a hyperplane of dimension ,(_, one can say 
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that only ( lfl..-i.) couplings are "relevant" ( l couplings are irrelevant), 

In this case the irrelevant couplings can be omitted (or kept constant), 

The RGE will be valid with ( "'--i) istead of It\. couplings. A critical point 

[~J with ( "1..-L) relevant couplings can be said to have "rank" (11.-t). 

In general there can be many (even an infinity} of critical points. It is 

also possible, that the above requirement iii.) is fulfilled only for some 

well defined subset QC of physical quantities. (For instance, '"'Pc-Qc. is 

allowed to depend only on some subset of field variables.) Such a critical 

point can be called "reduced". The number of relevant couplings for a redu­

ced critical point is usually smaller (its rank is lower), than for a normal 

critical point. 

In order to see, how these notions work in a specific case, let us consider 

QCD with a single (dynamical) quark mass, In this case there are two couplings: 

the gauge coupling 0 (or ~ == 6'<a- 1
) and the dimensionless quark mass 

~ -~ k 
variable ~~(for Wilson-fermions one can define i'Yo:s. (2.k"~), where 0,. 
is the hopping parameter). The renormalization group trajectories are conven­

tionally parametrized by the renormalization group invariant quark mass M<l,t 
(more precisely, by the ratio M<y/1\, where I\ is the usual RG !\-parameter 

for the SU(3) gauge coupling). The expected shape of the scaling region and 

of the RGT's fty=f~(~)M in the ( flfq, )-plane are shown in Fig. 14, 
(For a more detailed discussio~ of QCD with dynamical quarks see Ref. [z4].) 
The curve f'J~) is the line with zero quark mass f"\,,=o ( r~(F)'it~ 
is its !-loop perturbative approximation). The scaling region is, for MO;~O 

below the line (SQ), The critical point, where all the RT's with constant ~, 

meet, is at (~=.DO) r,-=-~ }, If only pure gluonic quantities (like qlueball 

mass, string tension etc.) are considered, the scaling region is larger: it 

is for ~~~0 the whole region to the right of the line (SG). For this re­

duced set of physical quantities there is only one relevant coupling (for 

instance~), and there exists an infinity of reduced critical points along 

the line ~:. «> I 4 <rev~ 110, 

In the SU(2) fundamental Riggs-model the study of correlations and static 

energies gives valuable information on the RGT's, Along the RGT's the mass 

ratio IM.I-t /"Wr.; has to be constant, and the force 0..1. dl;'(~) /d-r- ~ F(ft) 



- 24 -

acting on the external doublet pair at physical distance -t'=o...R , can be 

scaled between two points with scale ratio ~-12.. :0.1 /a~ like 

F1 CR)=~-<-~ (B:__ \ 
4:Z. "-' '~1:t.} (III. 8} 

If the static energy is determined for N different distances, the force 

represents (N-1} different physical quantities. Since the static energy can 

be obtained with good precision, Eq,(III.8} gives an accurate constraint on 

the RGT's. In fact, the scaling properties of the potential can be used in 

pure SU(2} gauge theory for the precise determination of the scale ratios 

~~~ {37]. In the Higgs-madel the shape of the potential changes gradually 

from Yukawa-type to a quasi-confinement f~rm near the phase transition sur­

face in the ( A1 ~~ )t)-space, Therefore, the RGT's can be pinned down by 

the requirement of a constant shape, 

As it was discussed in detail in the previous and present Sections, the masses 

and static energies are universal functions of the link expectation value L_ 
independently from A This means that there exists a mapping between two 

planes A- A1 and ~ ...... /..1. such, that the physical quantities do not 

change, Therefore, the coupling constant A is irrelevant, there are only 2 

relevant couplings. (Small deviations from universality may be due to lattice 

artifacts, and/or the optimal mapping can look a little bit different, for 

instance, there may be some small /..-dependent shift in~.) The numerical 

values of the masses and static energies obtained in RefizJ and here are all con­

sistent with the assumption that the critical point in the ( ~~ }t )-plane 

(for fixed non-zero A) is at ~.c..410 
1 
}t: }(c)>i. ( ).t.J>..) can be obtained in 

the 5"-model at ~=00 ,) For 0~).{. (}(C( (X) there are certainly the 

reduced critical points, equivalent to pure SU(2) gauge theory. Below the 

phase transition line in the ( ~) ).(. )-plane, there might be also RGT's, 

which would correspond to a confining theory with scalar matter fields and 

zero vacuum expectation values (as advocated in Ref, [sj). In the present 

data we see no evidence for this, because everything measured below the phase 

transition line looks very similar to pure gauge theory. Nevertheless, in 

future Monte Carlo studies one should go very. close to the phase transition 

line from belO'"...-, perhapes also at larger ~-values, in order to have better 

_.l!, __ 
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constraints, 

The present picture of RGT's is schematically represented by Fig, IS. As far 

as the general pattern is concerned, this is quite similar to the picture in 

QCD with a Single dynamical quark mass, More information on the shape of the 

RGT's in the Riggs-phase can be obtained also from Fig, 12, where the curves 

of constant renormalized gauge coupling t( are shown. Since the gauge coupling 

is asymptotically free, one expects that on a RGT 0( decreases for decreasing 

lattice spacing (i.e, for ~_,.110 ). Another way for the precise determination 

of the RGT's is a direct Monte Carlo renormalization group ~8] study, In 

summary, one can say that in the two relevant couplings ( ~1 )t ), at arbit­

rarily fixed 'f..>o , the renormalization group properties of the SU(2) 

fundamental Higgs-madel look similar to the situation in QCD with a single dyna­

mical quark mass, 

The question naturally arises, what happens with the critical point at 

~=oo 1 ~=)(C('(>.) for ~..::,00 ? This could again be a line of lower rank cri­

tical points (now with 2 relevant couplings) tending towards the next higher 

rank critical point at 'A=O 1 ~:tiO ) }.( = ~/g (with 3 relevant couplings). 

Nevertheless, according to perturbation theory the ~ coupling cannot be 

asymptotically free D 9], therefore the existence of this critical point is 

rather doughtful. 

IV. Conclusion 

The numerical Monte Carlo study of correlations and static energies in the 

SU(2) gauge theory with a Higgs-scalar doublet turned out rather useful for 

the understanding of continuum physics behind the lattice-regularized theory, 

In this paper numerical evidence was found for the irrelevance of the Higgs 

self-coupling A • The renormalization group properties in the two relevant 

couplings ( ~1 ·>t, ) are qualitatively similar to the situation in QCD with 

a single (dynamical) quark mass. It is expected that for fixed ~ there is a 

single critical point at ~=- 00 ) )(-::::. ).(Cc'"(').) (where x,,C)f is the critical 

point in the (r"-model at ~•co). In addition, for ~-eo, 04.){. <><q()..) 
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there is a line of reduced critical points, equivalent to pure SU(2) gauge 

theory. 

In the ( ~ 1 )(. )-plane, for any fixed I).">O , the phase transition at the 

border of the Higgs- like phase is of first order. This is shown by a marked 

jump in both the W-boson and Higgs-bason mass, The renormalization group 

trajectories (RGT's) in the Riggs-phase tend to 'd{c.r())from above for ~~co. 
Below the phase transition line, there might be RGT's describing a confining 

theory with scalar matter fields, but presently there is no evidence for this, 

since below the phase t.ransition line every measured quantity look.s very 

similar to pure SU(2) gauge theory. 

The first order nature of the phase transition implies a lower bound for the 

ratio Higgs-mass to ~1-mass. The present numerical value of the bound is 

~ 2 1.0:!: 0,3 
-~'~'~'01 

{IV.l) 

This relation holds also for weak gauge coupling (upto electromagnetic and 

fermionic- corrections), because 1'\"t'\kjofYI.W increases with decreasing (renorma-

lized) SU(2) gauge coupling. 

The fact that there are only two relevant couplings implies, that the physical 

value of I'Yr'\H /IYtf'tVis uniquely determined, if the renormalized gauge coupling 

is known, The direct Monte Carlo evaluation of "YnH {'WI.W for the phenomeno­

logically interesting weak coupling seems impossible, The best way is probably 

to go into the (j -model at ~ :=. c:tO , and calculate lt'YtW from the mass 

parameter ~ characterizing the spontaneous symmetry breaking SU(2) {E) SU(2) 

~ SU(2). (In the context of QCD ftt is usually denoted by f1t" . ) A 

possible way to ·extract ~~ by Monte Carlo simulation in the CT -model was 

proposed recently by Dashen and Neuberger [!_6] • The numerical calculation 

seems not very easy, but it is certainly worth to try. 
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Table !, 

The values of the W-boson mass ( a1"11.w ) and Riggs-boson mass ( O:ntH ) 

in lattice units. The global average quantities L }"'P 1 ~) <:5'"'~ and ~ 
are defined in Eq.(II.18). The errors in the last numerals are given in 

paranthesis. If no error is given, the error estimate is ~ 1 in the last 

digit. The {1 -value is always ~ =2.3 . The lines with an asterisk were 

obtained with full SU(2) group, the rest with the icosahedral subgroup. 

" lt a'Yilw Q"''H L -p ~ ~ 

00 0.35 2.5(5) 1.51(15) 0.2011(3) 0.3954(4) 8.693(5) 

00 0.38 2. 4 (4) I . 27 (9) 0 .2318(4) 0. 3931 (6) 8. 7'<! (6) 

00 0,4 0. 79(8) 0,59(\2) 0.2948(26) 0. 3820( 13) 8.528(15) 
i 

"" 0.42 0 .65(7) 1.0 8( 12)1 0. 3437 (II) 0..3757(3) 8.3'<1(4} 

Oo 0.45 0.62(11) I ,4 (2} 0.3993(3} 0.3696(5} 8.263(6) 

"" o.5*'" O.fJJ(7) 1.5 (2} 0.4669(4} 0. 3623 (3) 8.132(4} 

"" 0.6ojf 0. 6 7 ( 1 I) 1.7(3} 0.5574(2) 0.3512(3) 7.971(3} 

"" o .a* 0,89(9} 2, I ( 3) 0 .6596(2} 0.3348(3) 7.799(4} 

J.O 0.2 4.0 (5} 1 . 12 ( 16 0.1181(3) 0 ,3973(2} 8.3Jo(6} J.oEQ 

1,0 0.3 I. 8(3} l.O 9(8} 0 .2316(2) 0.3924(2) 8.547(3} 1. 115 

1.0 0,31 0.73(12} 0.98(\0) 0.3216(4) o. 3772(3} 8.080(7) 1. 152 

1,0 0.32 0.56(6} 1.16(12) o. 3786 (6} o. 3709(2} 7.821 (9} 1. 178 

1.0 0.35 0,67(7} 1.55(16) 0,4919(4) 0.3583(2) 7. 256 (6} 1. 241 

1.0 0.4 0.83(7} 1.72(18) 0.6101 (5) 0.3425(2) 6.432(9} I. 331 

0.5 0.25 2. 7(5} 1.25(14} 0. 1957 (6) o. 3951 (3) 8.318(6) 1. 164 

0.5 0.3 0,68(7} 1.34(18) o. 5009(3} o. 3569(2) 6,821(8} 1. 358 

0, I 0.19 2.5(5} 1 . 26 ( 11) 0.2064(2) 0.3939(2} 7.775(11) 1.353 

0.1 o. 195 0.45(9} 0.50(12) o. 3159(3) 0.3771 (2) 7.220(32} 1.450 

0, I 0.2 0.53(7) 0.98(12} 0,4238(8} 0.3650(4) 6.673(15) I. 558 

0.1 0.205 0,53(6} 1.21(14) 0.4879(5} 0.3577(2} 6,301(9} I. 636 

0, I o. 21 o. 72(7} 1.46(19) 0.5428(3} o. 3510 5,939(3) 1. 7 12 

0.1 0.22 o. 85(7} 1. 48( 19) 0.6199(6) 0.3399(2} 5,298(10} I. 845 

0.1 0.3 1.47(7} 2.4(3} 0.8415(2) 9.2728 o. 187 2.628 

~ 

0 ,2fu 

0 '258 

0.250(2) 

0.252(2) 

0.243 

0.228 

o. 306 

0.292 

0.420 

0.429 

0.433 

0.432 

0,427 

0,410 

o. 327 
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Table II. 

The values of Q'm'j- and 0."'1.( for ~""' t10 , The average quantities 

L 
1 
~\IS"~ and ~ are defined in Eq, (II, 20). The errors in the last numerals 

are given in paranthesis. If no error is given, the error estimate is ~ 1 in 

the last digit. 

" ')t Q'nl'Y 0'>11,t L ~ ~ ~ 
J.O 0.22 0. 78(6} 1.91(11) 0,1436(6) 2.570 1.070 0.258 

1.0 0.24 0.33(4} 1.14(9) o. 1717(3) 2.526 \,081 0. 259 

1.0 0.25 0.04(2} 0,44(7) 0.2198(12) 2.297(6) 1,092 o. 255 

1.0 0.26 0.03(2) 0. 71 (9) o. 2954(\4) 1.890(2} !, 124 o. 256 

1.0 0.27 0.02(2) 0.99(8} 0.3620(6) 1.467(8} 1.1490(4) 0,256 

1.0 0.28 0.04(2) 1.31(14) 0.4180(9) 1,072 (4) 1.173 0.249 

1.0 0. 3 0.03(2} 1.52(15) 0.5070(6) 0.297(5} l. 216 0. 245 

1.0 0.32 0.02(2} 1.85(16) 0.6361(4) -0.485(3) I~ 256 0,241 

0, I 0. 155 0.51(5} 1.42(14) 0.1512(3) 1.918(2} 1.2901 (8) 0,410 

O.l o. 16 o. 22(4} 0.92(11) 0.1664(4} 1.845(8) 1. 3022 (6) 0.413 

0. I 0. 163 0.08(3) 0,46(7) 0.1896(2) 1.735(3} I , 3191 (2} 0,415 

0, I o. 165 0.04(2} 0.37(8} 0,2269(5) 1.522(6) 1. 346 0.417 

0. I o. 167 0,02(2) 0.48(6} 0.2733(15) 1.256(9) I. 3793(7} 0,421 

0, I 0. 17 0.04(3} 0,8\(8) 0. 3401 (12) o. 800(5) 1.430 0. 426 

0.1 0.175 0.03(2) 0.94(12} 0.4344(5) 0,065(3) 1.514 0.427 

0, I 0.18 0.02(2) 1.21{\1) 0,5079(14} -0.640(2} 1.5891(6) 0.427 
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Table IliA. Table IIIB. 

The expectation value of Wilson-loops WRT in units of 10-
5

• 
. . . . ~ The expectat~on value of Wtlson-loops WRT 1n untts of 10 , 

>, ~ ).(. '<Vu '1-Ju. WH w.4 w,, 'A ~ X 'v../,.,_ wl3 w2~ w .. , w/j, 
00 2.0 0.55 57142(12) 3565 I (20) 22770(20) 14640(18) 9435( 17) co 2.0 0.55 16925(22) 888\ {20) 4833(18) 2661 (8) 274(8) .. 2. I 0,5 58983(9) 37855(14) 24833 ( 15 )_ 16384(14) 10827(12) 00 2. I 0.5 18783(18) 10212{15) 5722(12) 3238(10) 385(7) 

00 2. I 0.6 60832(7) 40634(10) 27774{1 1) 19094(10) 13 I 45 ( 10) co 2, I 0.6 22101 (13) 13111 ( 12) 7982(11) 4890 (9) 850 (7) 

00 2. I o. 8 63142(7) 44145(10) 31524(11) 22647(11) 16287{\1) 00 2. I o. 8 26323( 12) 16984{12) II 168 (I 1) 7382 (10) 1794(8) 

0() 2.3 0.3 60349(12) 38768( 18) 25247(21) 16496(18) 10789( 16) 00 2.3 o. 3 18187(23) 9030(22) 4555(15) 2303(11) 71 (5) 

"" 2.3 0.4 618a5(10) 41123(16) 27848( 19) 18946(18) 129a6(17) co 2.3 0. 4 21263(23) 11814(23) 6715(18) 3858(15) 351(7) 

00 2.3 0,45 63022 (9) 43a99(13) 30055(15) 21066(15) 14787(14) 00 2.3 0.45 23873(18) 14268(16) 8731 (14) 5386(12) 835(8) .. 2.3 0.5 63759(6) 44257(9) 31339(10) 22306(10) 15900(10) 00 2. 3 0.5 25380(13) 15696(13) 9928(11) 6324(11) 1189(10 .. 2,3 0.6 64885(6) 46021(10) 33314(11) 24233(12) 17644(12) Oo 2.3 0.6 27666(13) 17895{12) 11806(12) 7828( 11) 1799(9) 

00 2.3 o. 8 66529(6) 48599 (8) 36215(9) 271a6 ( 10) 20316(10) 0() 2.3 o. 8 31013(11) 21161 ( 11) 14677( 10) 10225(9) 2958(9) .. 2.4 o. 4 64259(8) 44586 ( 13) 31500(14) 22354(14) 15883(13) Oo 2.4 0.4 25113(19} 15163(19) 9352(16) 5812(13) 859(1a .. 2.4 0.5 65631 (6) 46819(10) 34052(1 I) 24883{11) 182a6(1 I) "" 2.4 0.5 28145(]3) 18149(14) 11934( 13) 79al (12) 1722 (9) .. 2.4 0.6 66547(5) 48282(8) 35711{11) 26536(12) 19742(13) "" 2.4 0.6 30101(12) 20072(13) 13627( 12) 9300(11) 2379(10 

"' 2.5 0.4 66155(8) 47246{12) 34341 (14} 25073(16) 18328(16) 00 2.5 o. 4 28083(17) 17822(18) 11532(18) 7522(16) 1388(11 

"" 2.5 0.45 66784(10) 48275( 14) 35530 ( 17) 26267(18) 19442 (I 8} bO 2. 5 . 0.45 29512(20) 19260 (20) 12810(18) 8570(16) 1885(11 

1,0 2.3 a. 32 62896 (9) 42880(15) 29806 ( 17) 20829(17) 14582(16) 1.0 2.3 0.32 23575(21) 13988 (20) 85(•0 (I 7) 5208(\4) 785 ( 10 

1,0 2.3 0.35 64153(10) 44866(16) 32a21(21) 22970(23) !65a2(21) 1.0 2.3 0.35 26154(20) 16441(21) 10552(.19) 6820(15) 1373(13 

1.0 2. 3 0.4 65753(6) 47378(8) 34835(9) 25736(9) 19038(9) 1,0 2.3 0.4 29430(9) 19603(9) 13295 (9) 9063(8) 2371 (8) 

0.1 2.3 a. 195 62428( II) 42129(18) 28970{20) 2aa21 (19) 13861(17) 0, I 2.3 o. 195 22586 (23) 13041 (23) 7712(17) 4595(13) 5 75 ( 10 

o. 1 2.3 0.205 64233(9) 44999{14) 32166(16) 23116(15) 16634(13) 

0.1 2.3 0.22 66004(8) 47772(12) 35280(14) 26179{15) 1944 7 (I 5) 

0.1 2.3 0.205 26327(19) 16604(20) 10698( 16) 6939(14) 

I 
142a(10 

0.1 2.3 0.22 29939(16) 20JOa(16) 13737(14) 9431 ( 12) 2565(11 
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Table IIIC. Table IV. 

' Parameters of the potential in a Yukawa-(Y), Hulthen-(H) and string-like(S) fit 
. . . . -5 

The expectat1on value of Wllson-loops WRT 1n un1ts of 10 . 

defined by Eq. (III.3). The errors in paranthesis are the sums of satistical 

A ~ X 'W, \r./3, 'N35 I 'Nijq w'l; errors and estimated systematic errors. 

'A I ~ I It I 1<t c( c OY>I o'er-00 2.0 0,55 4247(21) 2171 ( 13) 1130(7) 1101 (8) 553(7) 

"" 2. I 0.5 5059(14) 2658(9) 1430 (7) 1356 (9) 720(6) 

00 2. I 0,6 7316(13) 4284(10) 2554 (7) 2470(9) 1447(6) 00 2.0 0.55 s 0,305(15) 0. 75(2) 0.003(3) 

"" 2. I 0. 8 10561(12) 6790(10) 4401 (8) 4333(10) I 2795(8) 00 2. I 0,5 Y,H 0.312(14) 0.66(2) 0. 4 1 ( 12) 

"" 2 .. I 0.6 y ,H 0.258(9) 0.538{4) 0.64(18) 

"" 2. I 0. 8 y ,H 0.214(9) 0,441{2) 0. 91 (21) "' 2.3 0,3 3617(18) IS 10 ( 12} 626(8) 51 I (6) 

I 
I 79 (5) 

' 5798(18) 2999(14) 1579(10) 1459 (I l) 00 2.3 0,4 7 31 (8) 

"' 2. 3 o. 3 s o. 192 (22) 0.46(3) 0.160{10) 

C¢ 2. 3 0,4 s o. 274 (8) 0.63( I) p.o32C3) 

00 2. 3 0.45 s 0.250(5) o. 60( 1) 0,002(2) 

'<> 2.3 0,5 Y,H 0.234(6) 0. 52 ( 1) o. 42 ( 16) 

(\() 2. 3 I 0,6 y ,H 0.207(6) 0.453(2) 0.61 { 18) 

00 2. 3 0,8 y ,H 0.178(5) 0.387(1) I 0.82(22) 

00 2.4 0.4 s 0,241(5) 0.571 (6) 

I 
I 0.0118(17) 

0() 2.4 0,5 y ,H 0.206(5) 0.477(6) 0.33(15) 

'<> 2.4 0.6 y ,H o. 191 (5) 0.421 (2) I o. 60( 19) 

"' 2.5 I 0,4 s 0.213(4) 0.519(5) I 0.0067(14) 

Oo 2.3 0,451 7869(16) 4558(12) 2684(9) 2562(11) ' 1479(8) 

00 2, 3 0.5 9092(13) 5503( 10) 3379(9) 3255(10) 1981 (8) 

00 2. 3 0,6 11023(13) 7051(11) 4552 (8) 4453(11) 2851 {8) 

""I 2. 3 0,8 13960(12) 9478( II) 6479(9) 

I 
6376(10) 4342 (8) 

:I 2.4 0,4 8374 ( 18) 4833(14) 2835(12) 2681 (II) 1531 (9) 

2.4 0.5 11045(!4) 6989(12) 4472(9) I 4339(10) 2739(8) 

00 2.4 0.6 12784 ( 13) 8423(11) 5607( 10) 5471(11) 3617(10 

0() 2.5 o. 4 10492(18) 6434( 16) 4008(12) 3822(14) 233!(10 

00 2.5 0.45 11832(20) 7549(16) 4875(15) 4721(17) 3002(13 

1.0 2.3 0.32 7615(18) 4352(14) 2539(11) 2415(13) 1386 (9) 

1.0 2.3 0.35 9749(19) 6022(16) 376 7 ( 13) 3651 (19) 2248(14 00 
2.5 I 0.45 Y,H 0.201 (3) o. 48( l) o. 18(9) 

1.0 2.3 0,4 12541(11) 8286 ( 10) 5529 (8) 5425{10) 3580(9) 1.0 2. 3 o. 32 Y,H 0. 264(3) o. 61 ( 1) o. 14(7) 

0, I 2. 3 o. 195 6814(22) 3752(16) 2113( 11) 1981 ( 15) 1079( 10 1.0 2.3 0. 35 y ,H 0.218(7) 0.50(1) 0. 38( IS) 

0. I 2.3 0.205 9870(18) 6116(15) 3844 (I I) 3721 (15) 2306( 11 1.0 2.3 o. 4 y ,H 0. 187(5) 0.417(2) 0.69(21) 

0. I 2.3 0,22 12991 (IS) 8670(14) 5830(12) 5726(14) 3839(11 0. I 2.3 0. 195 s o. 277(5) 0. 64 ( l) I 0,0089(21) 

0, I 2. 3 o. 205 y ,H 0.218(6) 0.49 (I) 0,44{19) 

0, I 2.3 0.22 y ,H 0.190(6) 0.404(1) 0.81(25) 
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Figure captions 

~· The phase transition lines in the 

according to Fig. 3 in Ref. [10 J. 
-t • 

(~)){.)-plane for constant 1\ 

Fig, 2A. The inverse correlation lengths in 

boson ( Q'¥'1'\H) channel in lattice units for 

the W-boson ( O.'Yllw) and 

'>- ~"" > ~: .:<,. 
Higgs-

Fig, 2B, The same as Fig, 2A, for "-::::{0)~~2.3 

Fig, 2C. The same as Fig. 2A, for 'A:a.O, ~) ~ =2,'3 

~· The link expectation value l:. <!11-V,c) as a function of the plaqu­

ette expectation value "P..:;r <~-1-;T'f'V0) for different A -values at ~:2,3. 

~· The W-boson mass in lattice units ( Q~~) as a function of the link 

expec.tation value L '= < ~1i~) for different ~-values at ~=Z.3, 

~· The same as Fig. 4A, for the Higgs-boson mass ( Q'Yr\~ ) , 

~· The')(, -dependence of the average link L-= (j;. ~~), average 

plaquette "'P: <-i- ~~V0) and average action per point h=-(S/'as de-

fined in Eq.(II.l8), for ~·oo)~=Z.,3. The lines are drawn just to guide the eye, 

Fig, 6A, The inverse correlation lengths in the Golds tone-boson ( 01'\1}) 

Higgs-boson ( Q.') channel in lattice units in thefT-model at ~=. «> 

for 'A-~.0 

Fig, 6B, The same as Fig. 6A, for ?-_:0.~ . 

and 

~· The inverse correlation lengths in the G"-model at ?l:lDO plotted as 

a function of the average link L=(ilf-1/[defined in Eq. (II.2o). 

~· Typical examples of the static potential o.£ in such points, where 

the Yukawa-form gives a good fit. 
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~· The gradual change of the potential shape near the phase transition 

surface on the border of the Higgs-like region. The transition for "-•1:10,~:.2,3 
is at >((..("'= 0,';3(o ±0.005" 

Fig, 10A. An example of the potential, where the Yukawa-fit (dashed line) is 

much worse than the string-potential fit (full line). Note, that the best 

Yukawa-fit gives 

correlations is 

a mass Q'Yr'\, ~0.0, whereas 

a""'w :o.4S±o.o9. 
the W-boson mass measured from the 

Fig. lOB, Another example, where the Yukawa-fit (dashed line) to the potential 

is very bad, but the string-potential fit (full line) is quite good, Note 

also here, that the best Yukawa-fit requires O.Yt\=0 , whereas theW-boson 

mass obtained from the correlations is O.'YVIW '::. O.i-9 :t:.O.og , 

~· The static potential in a point ( ~= 0{)) ~::::2., l J)(-:.0,3) below the 

phase transition surface Cit< ).(C("), 

~· The curves of.constant renormalized gauge coupling ( 0() for ~aoo 

in the ( ~1 )t}-plane, The l~nes were obtained from the potential fits given 

in Table IV by a linear interpolation. The point P gives the position of the 

phase transition at ~=(lo(;l, ~=2.3 . 

~· Comparison of the static potential extracted from the expectation 

values of Wilson-loops and "chiral" loops. All the points shown were obtained 

from the ratio of loops with time-elongation T•J and 5. 

~· The expected shape of the scaling region in the (~>f'\1)-plane for 

QCD with N~=-"2> degenerate quark flavours, ~ is the SU(J) gauge coupling and fty 
is the quark mass parameter for Wilson-fermions. The shape of the RGT's for 

small and 

curves is 

large RG invariant quark mass Mq is shown, The meaning of the other 

explained in the text, A spectrum calculation with dynamical quarks 

wasperformedinRef.[30Jfor(~"'5,4; Pcv"'3.067S)and(~=S.3; fey= 
2.9762), These points are denoted, respectively, by A and B. The RGT's with 

constant ~q and the critical line fc"f'(~) tend for ~..,.to to f~ -=lf. 
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~· The schematic behaviour of the renormalization group trajectories 

in the ( ~1 )t )-plane for any ~~const.)O • The phase transition line is 

dashed-dotted, The full lines are the RGT's in the Higgs-like phase. The 

dashed lines could be RGT's in the confinement-like phase, which tend to the 

critical point below the phase transition line. 
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