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Correlations and static energies in the standard Higgs-model,

I. Montvay

Deutsches Elektronen-Synchrotyon DESY, Hamburg

Abstract: Cortelations in the W-boson and Higgs-boson channels and the static
energy of an external SU(2)~doublet charge pair are investigated by Monte Carlo
calculations in the SU{2) lattice gauge theory with a Higgs-scalar doublet,

The mass ratio mw/m.H and the shape of the static potentizl are used to obtain
informarion on the renormalization group trajectories in the three-dimensional
coupling constant space. Numerical evidence shows that only two of the couplings
are relevant, The phase transition line on the border of the Higgs-phase is
weakly first order, A lower bound mH/mwéi 1.040.3 1is obtained for the ratic of

the Higgs—~boson mass to the W-boson mass,

I. Introduction

In the standard SU(3) @ SU(2) @ U{i) model the two non-abelian gauge symmetry
facters play rather different roles. The local gauge symmetry correspeonding to
SU(3)-colour is unbroken, the S$U(3)-colour charges are confined and the colour
interaction is strong, The local SU(2) gauge symmetry, on the other hand, is
broken by the expectation value of the Higgs—doubiet field, the $U(2) charges

are screened and the corresponding interaction is weak, Since the values of the

coupling constants are changing ("running' or "sliding”) according to the rencrma-

lization group D] , the meaning of strong and weak couplings have to be explained

"styong inter—

in more detail, The renormalization group invariant meaning of
action" is that the ratio of the SU(3) A -parameter to the hadron masses is of

order 1. S5till a bit more precisely, we have for SU{3)-colour

I'&’V(/\Sum/ Mm&x@)l N o) © (1.1

This statement takes into account, for instance, the factors between different
reasonable A—parameter definiticns { Amm\ Ap‘@, AM' etc.). In contrast
te Eq.(I.1), for the SU(2) A -parameter and the W-boson mas;u%mw) experiments
imply

-3
Asua /’mw =410 a2

This number can be obtained from the value of the SU(2) coupling strength at,

say, the W-mass and from the renormalization group equation assuming, for defi-

niteness, 3 standard fermion families and a single Higgs—scalar doublet, Eq.{I.2)

implies that the SU(2) coupling is getting, in principle, strong at an energy
scale of about lu_]2 eV. This has, however, no practical consequences because
of the short range of the interaction due to the massive SU(2Z) gauge boson

exchange.

W

The smallness of su(q/gn may seem "unnatural” or "unaesthetic" unless there is
some good reason for it. In fact, in the framework of grand unification [?] the

S m e ey ——— L — e e e, v == e e e o= e s



..2_

$U(3} and SU({2) couplings become equal zt some very high energy scale

M ey io15 _ 10]7

ey GeV, and Eq.(I.2) is explained by a relation like

P Asu(:—) - P M bhodror } (1.3
Mo M eu

with some constant ¢ of order unity. The theoretical consequence of Eq, (I.,2)
is that the SU(2) @ U(1} electroweak interaction can be treated by perturbation

theory, The impressive success of the perturbative approach culminated not very

long ago in the discovery of W- and Z-besons at precisely the predicted masses Y}].

The only remaining source of uncasiness in the standard model is buried in the
Higgs-sector incorporating the inherently non-perturbative phenomenon of sponta-
necus symmetry breaking. The main interest of the non-perturbative investigation
of the electroweak theory lies, in fact, in the deeper understanding of the
Higgs-mechanism [f] , which renders the W- and Z-bosons, the leptons and gquarks

and the, upto now elusive, Higgs~boson a mass,

Strong weak-interactions. In the present paper the Higgs=sector of the standard

SU(Z)C)U(]) electroweak thecry is investigated by the non-perturbative numerical
Monte Carle methed Eﬂ. The calculation is performed i1n a coupling constant
range, where Eq.{I.2) is not fulfilled. On the contrary, similarly to Eq.(1.1),

we shall typically consider the case

Iﬂn’(/\su(z) /mw‘)l S OM); (1.4)

i.e. the values of coupling constants will correspond to a situation where the
SU(2) weak-interaction is strong. The electromagnetic interaction will be neglect-
ed altogether (no U(l)-factor) and no fermions (leptons and quarks) will be

considered. For a possibility, how to include these in the lattice action see
Ref. [6].

The study of the standard SU(2} Higgs-sector in the situation corresponding to

Eg, (I.4) is interesting from several peint of views:

i.) it can reveal the existence of non-perturbative constraints in
the electroweak theory, For instance, the number of independent rencrmalized
couplings can be smaller than the number of bare couplings. A large body of
evidence E] has been collected to support the occurence of such a '"parameter
reduction” in the single-component q) ~theory, where the renormalized coupling
is probably always zero;

ii.) it.is interesting to compare and to confront the behaviour of
the totally broken SU(2)} gauge interaction with unbroken SU{N) colour, studied
upto now in most Monte Carlo investigations;

iii,) the gauge~Higgs system is theoretically interesting for his own
sake, as a representative of a class of quantum field theories;

iv.) finally, there has been some speculations that weak interactions
could perhapes become strong in the hundred GeV energy range é}. This possibi-
lity seems to be imprcbable at present, but direct experimental evidence is

still scarce at such high energies.

Previcus Monte Carlo simulations of the SU(2) Higgs-system with scalar field in
the fundamental (doublet) representation l}-lé] concentrated mainly on the
singularity structure in the coupling constant space. These studies showed, that
there is a phase transition surface separating the Higgs~phase from the confine-
ment phase. These "phases” are, however, not qualitatively different from each
other D;ﬂ , they are continucusly connected bevond the edge of the critical
surface. This structure is illustrated by Fig. }, which is a reproduction of

Fig, 3 of the paper by Kilhnelt, Lang and Vones DD]

An interesting question is the order of the phase transition separating the
Higge-like and confinement-like regions. If there is a critical surface corres-
ponding to a second order phase transition,then the correlation length beccmes
infinite and seme continuum theory can be defined in a limit going to this sur-
face. (The continuum theory may be trivial, i.e. non-interacting, except perhapes
for some peculiar "fixed points" on this surface.) Information on the critical
behavicur can be cbtained e,g. from "finite size scaling tla or from a direct

study of the correlations DZ]

In my previous paper Eﬁ] the correlations were numerically calculated in the

limit of infinite self-coupling ( )\—700 s fixed length Higgs-field on the
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lattice}, This limit of the standard electrowesk theory was considered extensively
in the literature LH] as an interesting limiting case, when the tree-level mass
of the physical Higgs-boson tends to infinity. (The physical mass can, however,
stay finite DS].) The results in Ref. EZ] showed, that the correlacion lengths
in both the isovector 1 (W-boson) and isoscalar o™t (Higgs-boson) channels
have a tendency to grow in the vicinity of the critical line, This could be inter-
preted as a sign for a second order phase transition, but z weakly first order
transition with some small specific heat was equally possible, The present paper
is an extension of Ref. l:lZ] : in the case of fixed-length Higgs~field {A-—=> OO)
more statistics is collected closer to the critical 15.:12 and the variable length
case 1s considered, too, for several values of the self-coupling .l . The precise
position of the phase transition is determined in several peints directly from
the correlations and evidence is presented for a weakly first order transition for
all A -values. The correlations are determined also in another important limit,
namely for ?:-?oo (no gauge coupling) [_16] Special emphasis is given to the
information which can be obtained from the mass ratics and from the static potent-

ial concerning the renocrmalization group properties of the model,

In the next Section, after summarizing the latrice formulation of the SU(2)
fundamental Higgs-model, the results for the correlations will be presented and
discussed, The position and order of the phase transition will be determined. In
Seetion I1I, the static energy of an external SU(2) doublet charge pair is con-—
sidered and consequences for the renormalization group trzjectories ("lines of
constant physics”) in the three-dimensional coupling constant space will be

discussed. The last Section contains the conclusions,

TII., GCorrelations

The lattice action., The continuum euclidean action S of an SU(2?) gauge field

interacting with a complex scalar doublet #’(I‘) can be written like

S S LT (P P+ $05 T 0

NI v&)‘f

(TI.1)

.

Here F(‘)}W denotes, as usual, the field-strength matrix of the gauge field,
‘:D/A_ is the gauge—covariant derivative, A is the self-coupling constant of
the Higgs~field and ¥ is the tree-level vac&um expectation value related to the
cpposite-sign wass term -f':.**-(*)#(‘d by

U= /‘i_*r_i; ) (11.2)
e
The gauge field is described on the lattice by the link variables u(’ﬁ/ol)e SU(L)
and the Wilson gauge lattice action i3 a sum 2. over positive orientation
plaquettes?. For the lattice description of the Higgs-field it is convenient
to introduce the lattice site variable (Px and the lattice bare couplings '-’-5) A

by the replacements

ad(as) —s F tb“
'>\L — Awu-t
2~ (ou/-x)?'—-—:- (4-27‘3/”‘ ] (11.3)

Here Q. denotes, as usual, the lattice spacing. In these variables the euclidean

lattice action is
S=2{x (grd-1)" +4, &, - "% ¢xtj‘:u(’ﬁ/“)¢,% *
(11.4)
+0Z {1- 2T

The lattice is assumed to be periodic in all four directions. Z means a
summation over all lattice sites, 2 is 2 sum over positive :nd negative
directions ( ’u: 1:4’1;2.’:"_'5,1_'_‘!), ;Lstands for a unit vecter in direction r-
and (5 is related to the bare gauge coupling % by P=If/3".
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The peculiarity of the SU{2) doublet field q}x is that it can also be repre-

sented by its leagth ?x?'o and by an SU(Z) matrix ¢{ . The correspondence is
}'e

given by ( bt="|90 ):

L
CPA:qux,dl 1

TR _ + (11.5)
(Px _d_(@c’pr&a?xo(x}d,‘ :

~
Here Q') is the opposite hypercharge doublet field in SU(2) @ U(i) ( &£ is the
antisymmetric unit temsor}., Using the new variables, the lattice action can

be written as

/J-'?D
*‘[%,ZP-(A'.%’EL{?) - (I17.6)

S=Z{gi-ahg + M xZ g ?Iﬂ[«;/:wx./t)uj}

. 3 Y 3
The integration measure was originally ?:A?sd«& d u(*;/“) (if Cl%,

denotes the invariant Haar-measure in SU(2) }, but in Eq, (11.6) the factor

3
is included in the exponent, therefore the measure is simply d?xd dx d“(x,/u)_

Let us introduce, instead of the SU{Z) link- and site-variables U(x,/a.)a“d

b(x , the gauge invariant link variable

(I1.7)

V(K./t) = a:‘_ A u(’(./&) o

Due to local gauge invariance, this can be used for the description of the
gauge field also in the pure gauge part, therefore the lattice action can be

written like

7 T
S22 {8~ 3hg. + Mo -uZ 0,20, T Vinp

+[’J%M— %T;\ZP) , (11.8)

E)
This does act depend om dx , therefore the integration ddx gives only an

unessential constant factor and can be omitted. The integration measure for

_-7_

3
Eq.(II.8) is d?ﬁd V(xif) . The disappearance of the angular part O(A of
the Higgs-field is usually expressed by saying that it is"eaten” by the gauge
field. Since both Qx and \/(X‘/I) are gauge invariant, both of them describe
physical degrees of freedom; Y{x,r) corresponds to the (gauge-) W-boson and
9}: to the physical (Higgs-) H-boson.

The SU(2) Higgs-model with Higgs—field in the fundamental representation has
a glebal SU(2) "weak-isospin"” symmetry, In the full SU(2)®U(1) electroweak
theory this symmetry corresponds to the transformations LeJL {l-"—@,/ﬂ,f),
,u.,,d] CeA l-t(..-yle,— , therefore it is broken by electromagnetism and by
fermion mass differences within doublets. In the action (I1.8) the exact global

weak-igsospin symmetry transformation is

\ -1 N
V("’t/*)'-‘— w V("'/‘“)u ) 9x=9, . (11.9)
For comparison, the local gauge transformation is

U () = U Wl YU,

L) M""
& = o
X T x x X (II.Jo)

' :
\/ (YJ/“) = V(’ﬂ/&) .
With respect to weak-isospin the W-boson is isovector, the Higgs—boson is iso=

scalar,

There are interesting limits of the model, which can be studied separately. In
the case of infinitely strong self-coupling A-—yw the length of the Higgs-—

field is frozen to ee.-_/{ , and the action is
X

S ~ 'KZ—'L;V(XI/L) 4-(5%— (’1"%1-‘:\/) . arn

=00 x)fr;o P

The correlations in this limit were investigated in Ref. EZ , This is the

limit of a very strongly interacting Higgs-field, where /.l and />\c' in Eq.(I1.2)
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go to infinity in such a way that the tree-level vacuum expectation value
v 0.—4()_{, remains constant. The tree-level mass /X\ﬁ. of the physical
Higgs—boson goes alsc to infinity. Nevertheless, as it was shown in Ref, EZ]
and as we shall see below in more detail, the lowest mass in the isoscalar 0++

channel remains finite.

Ancther important limit of the action in Eq, (IL1.8) is Pu—?oo (zero gauge

coupling). In this case the link variable V(le»\) is & putre gauge, therefore

it is more convenient to restore the angular Higgs-variable A  and return
X

to Eq.(I1,6), which gives

=Z{gh-3bg + NI~ Z 0 O, (<"
oo %{9x3 R ) )L/nvo?xv/:? (“"‘?’1“")}-(11.12)

This is the lattice version Eb] of the Gell—Mann—Lé'vy linear & -model [_17]
It has a global SU(2) @SU(Z) symmetry corresponding to the transformation
(Y, esuw):

\ -4
._21,{-‘ & U\+ (I1.13)

SU(2) @SU(2) is equivalent to 0(4) and the SU(2) group elements can alsc be

represented by a unit-length four-vector (O.Q,Q.*):

of = Q ++T Q (—r -_-_-,'M-wa.”t-n’#) (11.14)
“

x o, % o o x

In the limit k-?w the model in Eq, {I1,12) beccmes the non-linear 0(4)

T -model in four dimensioms:

S

In the continuum limit the action 'Sﬁ--o in Eq.{IL.12) is expected to describe

Bmco, hmoo " “2"%15‘0 Qouep Yox o

3 massless Goldstone-bosons and 1 massive scalar particle, which are presu-

mably non-interacting [18] .

Monte Carlo calculation of the correlations. The Monte Carlo simulation in the

5U(2) fundamental Higgs-model can be done by using the lattice action in

Eg, (I1,8). For the fixed length case (A-200 ) the action is given by (II.11).
In the present paper the correlations were computed on an 84 lattice. The
SU(2) link variables were replaced in most cases by the elements of the 120-
dimensional icosahedral subgroup. The updating was done by the Metropolis-—
methed with 6 hits per link for the gauge field u(X;/-L) and 6 hits per site
for the length variable 9! . The links and sites were updated in a random or-

der, but always full sweeps were performed alternating over links and sites.

Diagonal correlations (and sometimes a few off-diagonal ones) were measured in
different channels, In all cases the three-momentum was projected out both to
P._o and P ﬂ/(ch (1 in lattice units) in all chree space~like direc~
tions., The time—slices were chosen in all four possible orientations. The measu-
rement of the correlations was performed only after every 5 th or lOth full
sweep in order to reach wore independent configurations. The results given
below were collected typically from 8000~1000C sweeps for every point in the
coupling constant space, The configuration was started in most cases from a
previously equilibrated configuratioen in some neighbouring point. At least 1000
equilibrating sweeps were performed before starting to collect data on the
cerrelations, The computer time used for the calculation of correlations
ameunted to about 400 CPU hours on the Siemens 7,882 at the University of

Hamburg,

To obtain the correlations in the W-boson channel an appropriate operator is

OS:!:)“ :ﬁ['[;_\/(x,’m) (MI'{H: U 3). (I1.16)

As it was discussed in Ref, [12], this has weak-isospin va-l and spin-parity
PC
J

=1 . TFor the I.w=0 Higgs—-boson channel there are several pessibilities:
(%) P ' (1.7

OH = Qx 1
= V(xm)
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The first is the symmetric combination of the three space-like crientation
single plaquette operators, which is often used in QCD glueball spectrum cal-
Pe ~++
=0 —
w 2 ? =0
Higgs—variable (the length of the Higgs~field). The third operator appears

+4+ . ,
culationg for the O channel. The second is the genulne I

in the l)\'—'-oo action (II.11). Assuming that the 0" srate is the lowest iso-
scalar state, the symmetrization in OC. and OA can also be omitted, provided
that the correlaticn is determined at large enough distances and therefore the
higher mass contributions from othe spin-parity channels can be neglected.
Similarly, the lowest mass can also be inferred from off-diagonal correlatioans,
like e.g., between 'G-V(x;m) and FV()(,‘I\) {(m$n), if the distance is large emough.

The results obtained for the correlations in the W= and H-boson channels are

shown in Figs. 2A=2C and in Table 1. Always the inverse correlation lengths are

given, i.e, the estimate of the lowest mass in lattice units in the given channel,

Table T alsc containg some global average quantities like the average link L}
average plaguette ‘-'P , average length ? , length dispersion 6‘? and average

zction per site A . These are defined, respectively, like

L= <imVipy |

0= <9 , & =l<eir-<o

2

A= GR<A-ATVY 440 -3ho + Ng-0 "> +
{IL.18)
8 < - %9&9‘7‘* T V{x’f)> .

In the average actionm per site the constant term 8}{ is added with respect

to Eg.(II.8), in analogy to the constant G(‘ll in the average plaquette term.

In the W-boson channel, for Q"Mwsff , the correlation can be determined, with

relatively small errors, uptc the maximum distance d_'—‘q on the 81' lattice.

- 11 -

The correlations in some sample points were shown in Ref, EZ] The qualita-
tive behavicur is here rather similar. The easiness of the measurement of
correlations at larger distances reminds the general behaviour in Z-dimensional
€ ~models DB} and not the pure SU(2) gauge theory, where it is rather
difficult to obtain large distance correlaticns [2(3] For O‘mw?"-sthe correlation
drops fast at small distances, In such points the mass estimate is obtained from
distance c{-.—.ﬁ. {or at most from CL“:Z ), therefore these points have large
systematic errors. The errors shown include some subjective estimate of the

systematic errors, too.

In the case of the Higgs—boson channel the situation is more involved. The one-
plaquette operator OC\‘ in Eq.(11.17) behaves rather similarly, or even still
somewhat worse, than in pure SU(2) gauge theory, i.e, the correlation usually
cannot be determined beyond d,='f . The best points for OQ are below the phase
transition line ('}E('}{u_ , see below), where the behaviour, and also the value
of the correlation length, is rather similar to pure SU(2) gauge theory at the
same & -value [20]. The other two operators OH and OA behave oppositely: for
LR,

For ')f)){u_ the diagonal correlation of OR andq‘can be determined, within
the given statistics, upto d_:-.z, or &23 . OA behaves for 9\)0‘1
still somewhat better than OH , but the mass estimates from OA andOH are

- they are worse, for '){)‘}Ca, however much better than OG .

always compatible. In the Figures and in Table T always the best estimate for

Qm, is given, scmetimes including alsc information from the of f-diagonal
H g

correlations between FV(X."“) and FV[X{"\) (711‘-4'!-)

The energies E4 cbtained from the P:d correlations give in most cases,
within errors, the same mass M= :' 1 as the p=0 time—-slices. This shows
that Lorentz-invariance is approximately restored in the measured points. There
seem to exist, however, some systematic deviations in the points with largest
correlation lengths (g~2, },where the ?g{ mass is usually lo-20% higher,
This may be due to finite size effects, srnce finite cut-off effects are ex—

pected to become smaller for large ; .

Behaviour near the phase transition. The qualitative behaviour of awt | and Q‘M_H
for B-_-ﬂ..a))\:oo (Fig, 24), f5=2..3])\=4.0 (Fig. 2B) and paﬂ.,s,)-.-o,al
1

(Fig. 2C) is quite similar. The main difference is in the widths of the W -
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range, where similar changes occur: the region near the phase transition is
squeezed for small A . The reason of this behaviour is quite clear: at A=0

the model defined by the action (II,8) has a kinematical singularity, In the
Higgs—phase, where the link expectation valge ig substantial (L’?A for =0 ),
for large enough "hopping parameter”  , the hopping term proportional to R

wins over the stabilizing Q‘ term and thezactig_n is unbounded from below if

Q¥ o0 + For very small A the 3\(9:"‘4) term can stabilize the thecry only

for very large Q,‘ , therefore the change above ')Cq_ is squeezed into a small

%, ~region, which is asymptotically proportional te J")Z .

Appart from the squeezing, there is a remarkable universal behaviour for
different >\ . This can already be seen in the global averzges given in Table
1. For instance, the link expectatien value is a universal function of the
plaquette expectation value {(see Fig., 3). This shows, that ¥  is not the
correct variable to use. Plotting the W-boson mass as a function of the link
expectation value, one obtains the remarkable universal curve shown in Fig. 4A.
The same for the Higgs—boson mass, in Fig. 4B, shows a universal behaviour,too,
although the errors are larger and maybe there is some mild tendency for the
)\:0.1 points to fall somewhat below the rest. Fig. 4B has to be contrasted,
however, with the tree—level prediction M = U‘J-)-\; , according to which 'WLH
should go to infinity for ,)\"709 . )

Figures 4A and 4B reveal a discontinucus behaviour of the masses at LﬁLc(’;" Q26 '
At this point Oy, jumps from values around QMNHD.E to am‘“gz.o. At the same
time QM jumps from Q‘Mu’“ovg to Q'MHN{.Q , a value consistent with the

o** glueball mass at the same (3 in SU(2) El(ﬂ. Therefore, at F‘z.s the
critical surface on the border of the Higgs—phase is discontinuous (first
crder) for all ?\ -values considered., This is not really in contradiction with
Refs, [9-10], where the phase transition was classified as second order, because
the hysteresis associated with the trensition is rather weak, Some two-state
jump behaviour in the updating can only be seen for the smallest ?\ value

( >\=.O.c{ ). The position of the weakly first order transition is, however,
substantially lower than the lines given in Ref. Dq and shown also in Fig. 1.

The present best estimates for )et‘-r are (always for P=z.3 ¥

- ]_3 -

')\:,x:,- ')Ec_r= 0,282, ro.00%

AnE 0.3
=40 W, = 0.303 £ 0,002

A¥e 2 0,09
N=04 1 I{Q_ =0, 4132 £0.004

{I1.19)
Ay = 0.CL

The AX values give the zpproximate widcths of the typical structure above W=M,..
(for 7\-’0 &H. is expected to vanish like M. Concerning the order of the
phase transition, the Aachen-group reported very recently some preliminary

evidence in favour of a two-state structure at very small Q& values [2!].

An interesting observation at the phase transition is, that the average action
per point 4 has a maximum at ¥=M, (see Fig. 5). The inscability associated
to this maximum is an intuitive reason why the phase transition is disconti-
nuous, Let us note, that the perturbation-theoretic Coleman-Weinberg phenomenan

[22—23] also implies a first order transitiom.

Below the phase tramsitiom (’){(){q) everything looks very much like in pure
SU(2) gauge theory (further arguments in this direction will be given in the
next Section)., In the Higgs-phase {'lE))fq,), far away from the phase transition,
'ﬂ|H is roughly twice as large as ’M“; (this is similar to the situation in a
Type I superconductor with MH>M\N [23]). Near the critical line, however,
M".H and'wlw becom nearly equal. Due to the somewhat large errors it is im-
possible at preseat to say, whether there is a regiom for ){)){“ also with
'MHOMU (like in Type II superconductors). For the moment the numbers are con-
sistent with ‘MHZ’M‘N (with error: "MHZ (4-“:0.3)”)“' ), but further Monte Carle
studies on larger lattices and higher statistics can decide whether { My
is possible or not. The lower bound for the Higgs—boson mass i, 2 M-OtO.B)'WIw
is relevant (upto electromagnetic and fermionic corrections) also to the real
world with small gauge coupling, since 'MHMW increases for decreasing gauge
coupling strength (see the next Section in conmection with the discussion of

the renormalization group trajecteories).

. ~ .
Let us note, that concerning the occurence of "W\H-.:'mw the present conclusions
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differ somewhat from those of Ref. EZ] The reason is the better statistics

clogser to the phase transition, which allowed a more precise localization of
the phase transition. Points withmﬁgmwwere found in Ref. DZ] only near the

endpoint of the phase transiticon line (near ?_7':4.5_ ). Here we see that such
points occur also at l%=1-.3 (and very probably also for every larger S.b ),

if one is going close enough {from above) to ){‘-'—){m_ .

Correlations at {%——:oo . The [&)-—?00 limit of the correlations can be numeri-
cally studied by a separate Monte Carle simulation based on the act'ion in

Eq.(I1,}2), This is equivalent to an 0{4) & -model in 4 dimensions, therefore
the 0(4) variables defined in (II.14) can alsc be used. For technical reasocns,
however, I took the SU(2) ®SU(25 action (II.12) and used for the SU(2) site

variables ( dx) the elements of the icosahedral subgroup,

Let us denote the inverse correlation length at P"""-’ measured by the Higgs-field
length variable 9& by M&' For the inverse correlation length between the
angular variables o(x let ug introduce the notation QM3 . In the conti-

nuum limit discussed below M‘\& is the mass of the massive Higgs-boson, where-
as Ml,} is the mass of the 3 Goldstone-bosons. We expect, namely, at some
critical value ¥ =X oo (which is a functien of L ){“=Hc‘.(>‘) ) spontaneous
symmetry breaking. On the lattice this is manifested for ){.Z)!‘(O‘) by a
spontaneous alignment of the 5U(2) wvariables in some arbitrary direction,

The consequence of the spontanecus symmetry breaking SU(2) @ SU(2) —> SU(2)

(or equivalently 0{4} — 0(3) } is the appearance of 3 massless Goldstone-

bosons ('V'R.%E-O )3 in the continuum limit,

The Monte Carlo simulation at P’N was carried out, similarly to the P(’O
case, on an 85' lattice. In the Metropolis updating procedure the site variables
°<x and 91 were updated simultaneously, with 6 hits per site (in a randomly

chosen order of sites). Concerning the number of sweeps and the amount of
statistics the same applies as for the finite P simulation {see above), The
results obtained for O“M‘} and Q‘M& are shown in Figs. 6A and 6B and in
Table II, In the Table the average link L. ; the average length @ , the length
dispersion 6';, and average action per site A are also included. These are
defined, similariy to (II.18), like

- ]5 -
L= <§;T'3'(°<:7: LAY
$=<9> , S| <o

A= <g7: -3 9\9,‘ + }\(9:;4)17 + 8 <A "% 9&?&7{‘;[“*;1 °‘,D>. (11,209

As a function of the average link l- , there is a similar universality as for

finite (.1, (see Fig. 7).

.. . . . . L=L 202
As it is shown by Fig., 7, at the critical link expectation value or ;
spontaneous symmetty breaking takes place. Above this critical point the
Goldstone-boson mass {in lattice units) QM is consistent with zerc, At

L:Lq_ the Higgs—mass (in lattice units} 0.’”4,;\' has a minimum value of

Qm&_%o‘ig'f_—olp{ ., The critical M, at the two A-values is, respectively:
Q}\r:’i.o | }{u=o.2[l-+r0,003
=04 - e = 0464 x0 004 (11.21)

The inverse correlation lengths around the ecritical point behave continuously
{there is no discontinuity like in Fig. %4A~4B), This is consistent with the
expected second order phase transition. Above the critical point there are
very leng range correlations in the angular variables, extending practically
over the whole lattice, In fact, the value of the angular correlation is typi-
cally only 5-10% smaller between the most distant (d=4) time slices than for
d=1, In the limit 1,50{{( the asymptotic behaviour of the correlations in the
angular variables is expected to be power-like (it goes to zero like the
inverse of the euclidean distance to the power Cl+*ﬂ where %) is gsome critical
exponent [?]). It is remarkable, that the measured correlation length for the
length variable in the broken symmetry phase )L)){‘r is quite different from
zero, This would not be the case for a strong coupling of the Goldstone-modes
to the Higgs-particle, since for sufficiently strong coupling the twe-Goldstone-

boson cut at zerc mass would dominate, The small coupling is comsistent with
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the expectation that the SU(2) doublet q)—theory has a non-interacting con—
tinvun limit for ®=23¢, (%) (A fixed).

It wiil be argued in the next Section, that the continuum limit in the coupled
gauge-Higgs system is F»-—?oo and )!.—?}C“()*)(from above in the Higgs-phase) for
any non-zero’)\ . Let us note,that according to Fig. 7 , for E;a-oo (exactly
zero gauge coupling) and }{n}){c{(}') the correlation length in the Higgs—field
length remains finite in lattice units. Therefore, the fb—&oo limit of the
Higgs-mass in the gauge-Higgs system '&;;oo'm#\;o is not equal to O.W&‘;O
measured at ".\sao . The pure Higgs—field length fluctuations remain infini-
tely short range compared to the Iluctuations in the interacting theory. Another
aspect of amic is, that in the continuum limit ﬂaﬂq(%) ¢ A fixed) of the
pure Higgs-system the mass corresponding to the Higgs-field length is infinite,
therefore the model describes only three non-interacting zero-mass scalar

particles,

III. Static energies

Wilsen-loops, The static energy E(R') of an external SU(2)-doublet charge pailr
is a characteristic property of the SU(2) gauge-field system: in the case of
confinement it increases linearly for large distances, whereas in a screening
phase (like the Higgs-phase) it goes asymptotically to a constant, As it is
well known, E(K) can be determined from the expectation value of Wilson-loops
W&TE %‘T;'u, RT with time elongation T and euclidean distance R between

the endpoints for fixed time:

QER) =~ bm L AW

R,
T 0o ' (111,1)
ome Monte Carlo measurements of the static energy were performed on
Some M Carl £ th i Er formed on 8”
lattice in Ref. [1_2], where it was shown that rotation invariance of 'E.(E)

is well satisfied if the largest correlation length is at least 1,

In this paper a more detailed study of the static energies will be presented.

- 17 -

It was carried out on 124 lattice using the icesahedral subgroup for the
SU(2) variables., The lattice actions (II1.8) and (TI.!1!} were used, and the
Wilson-loops were calculated from the gauge invariant links V(x.r—) . This
is equivalent, because of pauge invariance, to the use of the original link
variables which appear in the definition of WF-.‘F . The values of planar
Wilson-loops with AQR\T—-‘QK were determined (after »~ |000 equilibrating
sweeps) in 2 000-3 000 sweeps for some selected points in the 3-dimensional
parameter space (')\gP])C J. The results are collected in Tables IIIA-ITIC.
This calculation took about 600 CPU hours on the Siemens 7.882 computetr at

the University of Hamburg.

Because of the limitation in time elongation T, the best way to extract the
static energy E(K) is to fit the 5 points EEREN) by the sum of two

exponentials:
W —5eT 5T

= C,_ & c (111.2)
RT 1R * zg,e .
The industrious reader is invited to repeat the calculation on the basis of
Table III, Here only the final results will be shortly summarized: the fit is
good and the value of the smaller energy & R is always stable with small
error. Therefore, one can identify QE(R) with é';m . The second energy eZR
is also reascnably well determined, and its value is typically 3-6 times
larger than EAR. (typical values of Ez.g, are in the range 1.6-2,3), This
means that the field configuration around the external charge pair is suffi-
ciently rigid and the static energy can be considered, to a good approximation,

as a potential energy.

The R-dependence of the potential for <R < was compared to 3 simple
-~ = p

forms:
_—— e C (Yukawa)

O, !
Q_,E(R) - - (degmﬁ,/h +C (Hulthen)

- k&G'R- + C (string} {111.3)

The best fit parameters are given in Table IV in these cases, when an accept-



able fit could be obtained by the given form., The systematic errors of the
fitting procedure were roughly estimated from the deviations in such cases,

when different fits were possible. -

As it can be seen from Table IV, the Yukawa- or Hultheén-form gives a good fit
in the Higgs-phase far enough from the phase transition surface. Therefore,
the potential in these points is given, tc a good approximation, by the massive
W-boson exchange. For typical examples see Fig. 8. The fitted mass values OW-
in Table IV are, within errors, consisteat with the W-boson mass QM
determined from the correlations (see Table 1), There is, however, some syste-
matic difference hetween the Yukawa- and Hulthén-form: the former gives always
smaller masses than the latter. Approaching the phase transition surface from
above, the potential develops a quasi-linear, confinement-like behaviour for
intermediate distances, The change between the pure Yukawa-like and more and
more explicit string-like behavicur is continuous (for illustration see

Fig. 9}. WNear the phase transition the Yukawa-fit gets gradually worse (see
e.g. Figs. I1CA-10B). It is expected, that in the Higgs-phase at very large
distances the potential finally tends always to a constant, but the turn-

over might set in rather late. Eventually, it would be very interesting to
know the exact behaviour at very large R, For instance, if the R-7e0 form

is given by wt-%u?(.-omw\l) , then the value of W could be guite
different {e.g. much smaller) than the short distance coupling ¢ . Further
Monte Carlo studies may give some hints in this direction, but this is pre-
sumably a rather difficult question for a numerical study. Below the phase
transition surface the potential becomes rather similar to the pure gauge
theory corfinement potential. For instance, at ( A= 00, e=-z.3, #=0.3 )
there is almost nc difference compared to ‘l: 23 in pure 50(2) gauge theory
(see Tables III-IV and Fig. 1i).

Concerning the }\—depeudence of the potential, if the average link L is used
as variable (like e.g. in Figs. 4A~4B), then the same universal behaviour is
observed as in the correlation lengths. For fixed 9\ the pattern of the short
distance behaviour of the potential can be characterized by the "renorma-
lized gauge coupling" ¢ obtained in the fits (III.3). This definition of the
renormalized coupling is, of course, not very precise, because strictly

speaking €& is a function of R. But for a first qualitative understanding it
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is sufficient to conmsider the average defined by the fits, Taking the A=eo
values of ¢4 from Table IV, a simple linear interpolation gives the curves

of constant coupling shown in Fig. 12,

"Chiral” loops. The potential energies deduced from Wilson-loops refer to a
pair of infinitely heavy particles, which are transforming as a vector-like
(i.e. non-chiral) doublet under $SU(2). In the SU(2Z) @9 U(1) electroweak theory
the fermions {leptons and quarks) are in a chiral representation: left-handed
fermions form doublets, but the right-handed ones are scalars. The chiral
transformation property can influence the forces acting on a heavy particle.
In order to have a feeling on this effect, let us consider heavy, chiral,
naive fermions on the lattice, The fermion matrix in the bilinear fermion

action can be written, in this case, like

_ A-Ys hr
Q- A#K%i% '0‘[*\/()(./“) + -—’%’Eb’/k} ’ (III.4)

Here \J(;|r9 is the gauge invariant link variable introduced in the previous
Section and K is the hopping parameter inversely propertional to the mass. In
the hopping parameter expansion, for very heavy fermions, only the shortest
paths contribute. (For a review of the hopping parameter expansion see [?é].)
This gives the straight time-like sides of the Wilson-lvops for non-chiral
fermions. In the case of (IIL,4) the dominant contribution for K> 0 is
again the straight line, but instead of a product of all link variables along
the time-like sides, we have the product of every second (gauge invariant)
\J(}‘r). For the space-like sides, representing the field between external
charges, it is possible to take both a full product of all links or every
second link (or even more complicated products of links). For the simplicity
of comparison, let us take full products. In Fig. 13 the potential extracted
from such "chiral" loops is compared to the potential obrained in the same
way from Wilsen—loops at (’?\=0°, F:z-sj}l:O.g). As 1t can be seen from the
Figure, the potential energy is reduced somewhat at larger distances by the
chiral transformation property, but the overall qualitative behaviour remains

the sane.
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Difermion "zoo". The interesting consequence of the potential acting on a
heavy fermion doublet pair is the possibility of bound states in difermion
channetls. (Note that the SU(2) representations are real, thlerefore both
fermions and anti~-fermions feel the same potential.) Even a pure Yukawa-
potential =—& (’#10(—”14'9/4— has bound states, if the coupling & 1is large enough
and if the constituents are heavy enough. A short numerical investigation
gshows, that the existence of at least one bound state in the non-relativistic
Schridinger-equation is guaranteed for O(M/rm, (M is the reduced mass}. The
largest & value in Fig. 12 is around dgd/g, , the}‘efore M/'mu73 is
enough. Of course, the quasi-confining potential shape near the phase transi-
tion line is even more favourable for bound states than the Yukawa-like

potential,

In a worid with strong "weak interactions” there would be many different
kind of difermion bound states: SU(3) colour octets, sextets etc, from 2
quarks, leptc—quarks from a lepton and a quark, bound states of 2 leptons
and so on, It is interesting, that states with similar guantum numbers were
proposed recently in different contexts, in order to explain some strange
kind of events seen at the proton—antiproton collider and at PETRA. From the
long list of papers let us just mention Ref. [25], where colour-octet bound

states were intreduced, and Ref, [_2@ , where lepto-quarks were proposed.

Assuming, that weak-interactions become somehow strong at a few hundred GeV,
the explanation of such bound states would be rather easy, if there were a
fourth standard fermion family with masses in the loo GeV range. The question
remains, of course, open how weak interaction could be weak at low energy and
strong at high energy, As a logical possibility, let us remind the above
discussion about the short distance (=— 04/4'} and very long distance

(C—Ww u\o(—mw—r’)/r ) behaviour of the potential in the Higgs-phase
near the phase transition line. If @ were much smaller than o , the puzzle

would be solved.

Renormalization group trajectories. An important question in the lattice-

regularized 5U{2) fundamental Higgs-medel is, whether there exists a conti-
nuam limit defining a non-trivial {(i.e. interacting) quantum field theory.

The first complication compared to the pure gauge theory (where the existence

- 21 -

of a non-trivial continuum limit is generally assumed, but uptec now is not
mathematically proved) is the presence of several independent couplings.
Therefore, let us first state in general terms how the continuum limit should

look like in principle, if there are several independent couplings.

Let us consider a lattice field theory with #. coupling constants E‘a] =
‘3*\ Dyyy G , In order to define the "renormalization group tra~
jectories” (RGT’s) in the space of coupling constants let us choose a "refe-

rence quantity” ’m,'! with physical d_imension of mass, Its value in lattice
units }L4=0’M4 is a function of the couplings:/blkc/AdE}]. In addition, let
us choose ( M~-4 ) independent, dimensionless ratios of physical quantities:
[g] = ?2.1-;3 . ’?4\.. , and consider the "curves of constant reference
ratics" Ctﬂwith {‘_:wt { ‘E:Z,,..,% ). Along such curves the change
of the reference quantity /i.{A:C\‘Wl“ defines the change of the lattice unit @
uniquely. An absclute value of Q. 1in terms of some units (e.z. eV_l} is
specified if the physical value of M‘I as a function of [;] is given,

A simple possibility is to take the value of M, [3] -independent, but
other choices can be sometimes more advantageous. (One has to keep in wind,
that for M‘\.A’;[;] ~independent the absclute scale on C[‘] depends on the
choice of the refence guantity fm-,! .) On a given curve C[;] the coupling
constants 31‘- ({ﬁi,--,‘l‘\) can be considered as functions of the lattice

spacing: = rﬂ (o) - and the corresponding P-function can be de-
¥ B

do Py
&,[ ]-__3__ %4
Pelgl=-o ——

Sometimes it is also convenient to choose a reference coupling, say, 94

fined as

(I11.5)

and consider, on a given curve CE‘}’ the lattice spacing and the other
; . : rel T3] &=2.3 .0
couplings as functions of it: gu g (9‘) and (34’; 9{' ((a{) (B=2,3%.,n),

In this case one has, obviously
[z}
o F"&, [‘}] ‘ (111.6)

dg, By L9l

This can be considered as a differential equation for the curves of constant

reference ratios.
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The necessary condition for the existence of a continuum limit is, that
there exists (at least one) "critical point" [(}o}= ‘34,,1 CJ,,:_-,-'-)aﬂc,
in the coupling space, such that

i.) [_C}c, lies on some subset ‘Rc of the curves of constant

reference ratios;

. s)
ii.) for Cre1eR we have L"w‘ o O
) [3]. 3 Gr e 34)5 }
iii.} every (in general dimensionful) physical quatity —P
measured on the latté‘g]e tends on CE‘] &E‘_ for fg] —5[(}:'] to a [?] -
dependent value ’P,__ in such a way, that the deviation from the limiting

value vanishes at least as fast as some power of /L‘ (or of Q).

In other words, physical quantities are constant along C[‘] e 25 in the
vicinity of the critical point EC}‘,‘] upte corrections ("lattice artifacts')
of order at most 4 ¢ It is useful to define a "scaling region" Sr_.
beleonging to [3fb

ties from the continuum limit ?ib

for [qle‘sc . Within the scaling region Sc. the curves CC;] can

vy the requirement that the deviation of physical quanti-
is in some specified sense "small"
simply be called "curves of constant physics". Because of the above menticned
freedom in defining the scale, it is natural to consider the dimensionful
physical quantities as functions of the lattice spacing @ and of the couplings
[q'] 1?—.&‘?(&,3“...,9‘}. In the scaling region 5‘._ the constancy of the
physical guanties along the curves of constant physics can be expressed by

the "renormalization group equation" {(RGE):

{—a,;:i +124:_4 ﬁ_[fjl'a:?a:. }T’-.: O(/&A)_

(II1.7)

Here the right hand side stands for the "scaling vielating" lattice artifacts,
This equation refiects the fact, that in the scaling region the change in
lattice spacing can be compensated {uptec lattice artifacts) by an appropri-
ate change ("renormalization”} in the couplings. The curves of constant

physics can also be cazlled "renormalization group trajectories",

s
It can happen, that the limiting values ’Pc.. ] of the physical quantities
are the same for different curves CE?]I ., Lf the set of curves with

equal limiting values spans out a hyperplane of dimension »8, one can say
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that only ( # - ) couplings are "relevant"” ( z couplings are irrelevant),
In this case the irrelevant couplings can be omitted (or kept constant}.
The RGE will be valid with { M—A } istead of M couplings. A critical point
[3‘_'] with (dL—L) relevant couplings can be said to have "rank” (‘YL-L}.

In general there can be many (even an infinity) of critical peints. It is

also possible, that the above requirement iii.) is fulfilled only for some
well defined subset Qc of physical quantities, {(For 1'.nst.am:e,'-PéI-Qc is
allowed to depend only on some subset of field variables.) Such a critical

"reduced", The number of relevant couplings for a redu-

point can be called
ced critical point is usually smaller {its rank is lower), than for a normal

critical point.

In order to see, how these notions work in a specific case, let us consider
QCD with a single (dynamical) quark mass. In this case there are two couplings:
the gauge coupling r.} {or [5: 6(3-1) and the dimensionless qg.‘a‘rk mass )
variable t.\q'(for Wilsen-fermions cne can define /chﬂ (ﬂfn;! , where Kov

is the hopping parameter). The renormalization group trajectories are conven-
tionally parametrized by the renormalization growp invariant quark mass ™
{more precisely, by the ratio M“'/A , where A is the usual R6 M\ —parameter
for the SU{3) géuge coupling). The expected shape of the scaling region and

of the RGT’s /AW=PW(F>)MW in the ( (Q,/lov j-plane are shown in Fig. 14,
(For a more detailed discussion of QCD with dynamical quarks see Ref. [24]-)
The curve f-karq’:) is the line with zero quark mass qu-o( f-\c_‘_(FJ“w?

is its I-loop perturbative approximation}. The scaling region is, for MW?-O '
below the line (SQ), The eritical point, where all the RT’s with constant Mq’
meet, is at (@:-.oo) rl.w-zb.). If only pure gluonic quantities (like qlueball
mass, string tension etc.) are considered, the scaling region is larger: it
is for Mw?_o the whole region to the right of the line {SG}. For this re-
duced set of physical quantities there is only one relevant coupling (for

instance ), and there exists an infinity of reduced critical points along

the line [&:w} 4<}aql£-o.

In the SU(2) fundamental Higgs-medel the study of correlations and static
energles gives valuable information on the RGT’s, Along the RGT’s the mass
ratio MH /m\l has to be constant, and the force O.." AE(%)/A.'-EF(R)
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acting on the external doublet pair at physical distance *:Q‘R , can be

scaled between two points with scale ratio ;42'?'-0-1 /Q*l like

E(R-)"';,,ﬂz.; (E"’) . (111.8)

1 AF,

If the static enerpgy is determined for ¥ different distances, the forze
represents (N-1) different physical quantities. Since the static energy can
be obtained with good precision, Eq.(IIT.8) gives an accurate constraint om
the RGT’s. In fact, the scaling properties of the potential can be used in
pure SU(2) gauge theory for the precise determinaticn of the scale ratios
§47- [27'] In the Higgs-model the shape of the potential changes gradually
from Yukawa-type to a quasi-confinement form near the phase transition sur-
face in the ()‘ fSJ M )-space, Therefore, the RGT's can be pinned down by

the requirement of a constant shape,

As it was discussed in detail in the previous and present Sections, the masses
and static energies are universal functions of the link expectation value L
independently from >\ . This means that there exists a mapping between two

planes %"X"l and }\'-'-)\L

change, Therefore, the coupling censtant >\ is irrelevant, there are only 2

such, that the physical guantities do not

relevant couplings. (Small deviations from universality may be due to lattice
artifacts, and/or the optimal mapping can look a little bit different, for
instance, there may be some small A\ -dependent shift iﬂi3 .) The numerical
values of the masses and static energies obtained in Ref.ﬁz] and here are all con-
sistent with the assumption that the critical point in the ( F\J)Q }-plane
(for fixed non-zero }\) is at F:mlu-_-){“()-). { Rq_o‘) can be obtained in
the G -model at @:oo .} For U &M (){q (x) there are certainly the
reduced critical peints, equivalent to pure SU(2?} gauge theory. Below the
phase transition line in the { [5)){ }=plane, there might be also RGT's,
which would correspond to a confining theory with scalar matter fields and
Zero vacuum expectation values (as advocated in Ref. [8]). In the present
data we see no evidence fer this, because everything measured below the phase
transition line looks very similar to pure gauge theory. Nevertheless, in
future Monte Carlo studies one should go very. close to the phase transition

line from below, perhapes also at larger %—values, in order to have betrter
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constraints,

The present picture of RGT's is schematically represented by Fig, 15. As far
as the general pattern is concerned, this is quite similar to the pieture in
QCD with a single dynamical quark mass. More information on the shape of the
RGT's in the Higgs-phase can be obtained alsc from Fig. 12, where the curves
of constant renormalized gauge coupling ® are shown, Since the gauge coupling
is asymptotically free, one expects that on a RGT & decreases for decreasing
lattice spacing (i.e. for (5*.*90 ). Another way for the precise determination
of the RGT's is a direet Monte Carlo renormalization group D?B] study. In
summary, one can say that in the two relevant couplings ((‘.‘;,)& ), at arbit-
rarily fixed e » the renormalization group properties of the SU(2)
fundamentzl Higgs-model look similar to the situwation im Q€D with a single dyna-

mical quark mass.

The question naturally arises, what happens with the critieal point at
pz-ao})ta)fq_(k) for A>0 7 This could again be a line of lower rank cri-

tical points (now with 2 relevant couplings) tending towards the next higher

rank critieal point at h=0 ) F=DO H= 4/8 (with 3 relevant couplings).
Nevertheless, according to perturbation thecry the Py coupling cannot be
asymptotically free [29], therefore the existence of this eritical point is
rather doughtful.

IV. Conclusion

The numerical Monte Carlo study of cortelations and static energies in the

30(2) gauge theory with a Higgs-scalar doublet turned out rather useful for

the understanding of continuum physics behind the lattice-regularized theory,

In this paper numerical evidence was found for the irrelevance of the Higgs
self—coupling)\ - The renormalization group properties in the two relevant -
couplings ( p";&, ) are qualitatively similar to the situation in QCD with

2 single (dynamical) quark mass. It is expected that for fixed '\ there is a
single critical point at (&-_-.oo A= Hc(()) (where Xq(” is the critical

point in the G -model =zt r&:ao). In addition, for G-eo, Oh M (Xq('h)
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there is a line of reduced critical points, equivalent to pure SU{2) gauge

theory.

In the ( %i)(_ y=plane, for any fixed hro , the phase transition at the
border of the Higgs-like phase is of first order, This is shown by a marked
jump in both the W-boson and Higgs-boson mass, The renormalization group
trajectories (RGT's) in the Higgs-phase tend to 'X,u()qfrom above for [3%00.
Below the phase transition line, there might be RGT's describing a confining
theory with scalar matter fields, but presently there is no evidence for this,
since below the phase transition line every measured quantity looks very

gimilar to pure SU(2) gauge theory.

The first order nature of the phase transition implies a lower bound for the

ratio Higgs—mass to W-mass, The present numerical value of the bound is

/f_n_li. 2 1.0 +0.3 {Iv. 1)

My
This relation holds alsc for weak gauge coupling {upto electrcmagnetic and

fermionic. corrections), because ’Yﬂu /MN increases with deereasing (remorma-

lized) SU(2) gauge coupling.

The fact that there are only two relevant couplings implies, that the physical
value of MH/M»] is uniquely determined, if the remormalized gauge coupling
is known, The direct Monte Carlo evaluaticn of M, !‘Wlw for the phenomeno—
logically interesting weak coupling seems impossible. The best way is probably

to go into the ¢ -model at [%:ao , and calculate mW from the mass

parameter characterizing the spontaneous symmetry breaking SU(Z)@SU(2)
3 SU(2), {In the context of QCD ?‘} is usually denoted by ?ﬂ" ) A
possible way to -extract { by Monte Carle simulation in the ¢ -model was

proposed recently by Dashen and Neuberger Eé] . The numerical calculation

seems not very easy, but it is certainly worth to try.
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Table I. Table II,

The walues of the W-boson mass ( o.'mw) and Higgs-boson mass ( O.'M.H ) The values of QM and 0.'”}& for [3= 20 . The average quantities

in lattice units. The global average quantities L-;P; ? 3 0—9 and A L: Q‘G'? and A are defined in Eq.{II.20). The errors in the last numerals

are defined in Eq.(II.18). The errors in the last numerals are given in are given in paranthesis. If no error is given, the error estimate is £1in

paranthesis, If no error is given, the error estimate is __C_ 1 in the tast the last digit.

digit. The f_l, =value is always 22,3 , The lines with an asterisk were

obtained with full SU(2) group, the rest with the chsahedral subgroup, . .>\ ')E, O.'M? G’m‘& L /S ? 0-9

1.0 0.22 0.78(6) 1.91(EH1) | 0, 1436(6) 2.570 1.070 0,258

>\ % Qmw le'H L ? é ? Gé 1.C0 0.24 0,33(4) 1.14(9) 0.1717(3) 2,526 1,081 0,259
o0 | .35 2,5(5) 1.51(15)0 0.2011{3) | 0.3954(4) 8.693(3) 1.0 0.25 0.04(2) 0,447} 0.2198(12); 2.297(6) 1,092 0,255
Q0 {90.38 2,4(4) 1.272¢9) [ 0.2318¢4) | 0.3931(6) 8,760 (6) 1.0 0.26 | 0.03(2) 0.71(9) 0.2954(14) | 1.890(2) 1,124 0,256
oo 0.4 0.79(8) | 0.59(12) 0.2948(26) 0.3820(13)| 8.528(15) 1.0 0.27 0.02(2) 0.92(8) 0.3620(6) 1,467(8) 1.1490(4) 0,256
o [ 0,42 | 0.65(7) 1.08(12) 0.3437(11) 0.-3757(3) 8.3% (&) 1,0 0.28 | 0,04(2) 1.31(14) | 0.4180(9) 1,072{4) 1.173 ¢.249
Go| 0.45 | 0.62(11)] 1.4{2) 0.3993(3) | 0.3694(5) | 8.263(6) 1.0 0.3 0.03(2} 1,52(15) ] 0.5070(6) | 0.297(5) 1,216 0.245
ool 0.5% 0.63(7) 1.5(2} 0.4669(4) | ©.3623(3) 8.132(4) .o 0.32 0.02(2) 1.85(16} | 0.6361(4) [-0.485(3) 1,256 0,241
0 0.6* 0.67(11)) 1.7(3) 0.5574(2) { 0.3512(3) 7.971(3) U, ! 0.155( 0.51(¢5) 1.42(14) | 0.1512(3) 1.918(2) 1.2901(8} 0.410
== 0.8*t 0,89(9) 2.1(3) 0.6596(2) | 0.3348(3) 7.799(4) g.1 0.16 | 0,22(4) 0.92(11) ] 0.1664(4) 1,845{(8) 1.3022(6) C.413

1.0 { 0.2 4.0(5) 1,12(t6) 0.1181(3) | 0,3973(2) 8.310(6) 1.060} 0.26 0.1 0.163] 0,08(3) 0,46 (7) 0.1896(2) 1.735(3) 1,3191(2) 0.415

1,0 1]0.3 1.8(3) 1.09(8) | 0.2316(2) | ©.3924(2) 8.547(3) 1.1151 0.258 0.1 0.165{.0.04(2) 0.37(8) 0,2269(5) 1.522(6) 1. 346 0.417

1.0 | 0,31 ] 0,73(i2)] 6.98(10) 0.3216(4) 0.3772(3) 8.080(7) 1,152 | 0,250(2) 0.1 0.1671 0,02(2) 0.48(6) 0,2733{15)| 1.256(9) 1.3793(7) 0,421

1,0 1 0.32 4 0.56(6) 1.16{12)}} 0.3786(6) 0.3709(2) 7.821(9) 1,178 | 0.252(2) 0,1 0.17 | 0.04(3) 0.81(8) 0.3401(12)] 0,800(5) 1.430 0.426

1.0 | 0.35 § 0.67(7) | 1.55(16) ©0.4919(4) | 0.3583(2) | 7.256(6) 1.241 | 0.243 0.1 0,175} 0,03(2) | 0.94(12)| 0.4344(5) | 0.065(3) 1,514 0.527

1.0 | 0.4 0.83(7) | 1.72Q18Y 0.6101(5) | 0.3425(2) | 6,432(9) 1.3311 0.228 0.1 0.18 | 0.02{2) 1.21(11) | 0,5079¢1431-0.640(2) 1.5891{6) | 0.427

0.5 | 0.25 | 2.7(5) 1.25(84) 0.1957(6) | 0,3951(3) | 8,.318(6) 1,164 1 0,306

0.5 10.3 0.68(7) 1.34(18)| 0.5009{3) | 0.3569(2) | 6.821(8) 1,358 1 0.292

0.1 0.19 [ 2.5(5) 1.,26(11)| 0.2064(2) 0,3939(2) 7.775(11) 1.353| 0.420

0.1 ) 0,195 0.45(9F {1 0.50(12)] 0.3159(3) { 0.3771(2) | 7,220(32) 1.450( 0.429

0.1 0.2 0.53(7) 0.98(12) 0,4238(8) 0.3650{4) 6.673(15) 1,558 0,433

0.1 0,205} 0.53(6) 1.21(14) 0,4879(5) 0.3577(2) 6.301(9) 1.636 | 0.432

0.1 0.21 0.72¢7) 1,46(19)| 0.5428(3) G.351¢ 5.939(3) 1.712 | 0.427

0.1 0.22 | 0.85(7) 1.48(19} 0.6199(6) 0.3399(2) 5,298(10) 1.845| 0,410

Q.1 0.3 1.47(7) 2.4(3) 0.8415(2) 0,2728 0, 187 2.6281 0,327
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Table 1LIA, Table IIIB.

The expectation value of Wilson-lcops WRT in units eof 10_5. The expectation value of Wilson=loops WRT in units of 10—5.

ANl B ®n Wi Wiz Wi, \/\/4,., Ww AR \’\/21 Wgs \‘\Izq \/\/zs‘ Wss
=) 2.0 | 0.55 ]57142(12) | 35651(20) | 22770(20) | 14640(18) §635(17) o0 2.0 | 0.55 [ 16925(22) 8881 (20} 4833(18) 2661(8) 274(8)
L) 2.1 | 0.5 58983(9) 37855(14) | 24833(15) | 16384(14) | 10827(12) o 2.1 ] 0.5 18783(18) | 10212(15) 5722(12) 3238(10) 385(7)
0o 2.1 | 6.6 60832(7) 40634(10) | 27774(11) | 19094(10) 13145(10) ’ L] 2,1 | 0.6 22101¢13) | 13013012} 7982(11) 48909} 850(7)
0 2.1 (0.8 63142(7) 44145(10) | 31524(11) | 22647(11) | 16287(11) oD 2,1 ] 0.8 26323(12) | 16984{12) | 11168{1}) 7382(10) 1794(8)
oo 2.3 |63 60349 (12) | 38768(18) | 25247(21) | 16496(18) | 10789(16) &0 2,31 o0.3 18187(23) 9030(22} 4555(15} 2303(11) 71(5)
oo 2.3 | 0.4 61805(10) | 41123(36) | 27848(19) | 18946(18) | 12906(17) o0 2,3 | 0.4 21263(23) | 1181423 6715(18) 3858(15) 351(7)
20 2,3 [ o.45 | 63022(9) 43099(13) | 30055(15} | 21066(15) | 14787(14) o0 2.3 | 0.45 [ 23873(18) | 14268{18) 8731(14} 5386 (12) 835(8)
L 2.3 o5 63759(6) 44257(9) 31339(10) 22306 (10) 15900(10) o 2.3 ] 0.5 25380(13) 15696 (13} 9928(11) 6324(11) 1189(10)
o0 2,3 | 0.6 64885(6) 46021(10) | 3331411y | 24233(32) | 17644(12) %o 2.3 | 0.6 27666(13) | 17895(12) | 11806(12) 7828(11) 1769(9)
[ 2.3 | 0.8 66529(6) 48595(8) 36215(9) 2710610} 20316(10) aQ 2,3: 0,8 31013011) 21161 (11) 14677(10) 16225(9) 2958(9)
00 2.4 | 0.4 64259{8) 44586 (13) | 31500(1&) | 22354{14) | 15883(13) o 2.4 ] 0,4 25113(19) | 15163(19) 9352{16) 581213} 859(10)
&0 2.4 | 0.5 65631(6) 46819(10) | 34052(11) | 24883(11) | 18206(3 1) & 2.4 10,5 28145(13) | 18149(14) | 11934(13) 7901(12} 1722(9)
o0 2.6 0.6 66547(5) 48282(8) 35711{11) i 26536{12) | 19742{13) o0 2.4 1 0.6 30101(12) | 20072(13) | 13627(12) 9300(i1) 2379(t0)
) 2,5 | 0.4 66155(8) 47246(12) | 3434)(14) | 250673(16) | 18328(16) o0 2.5 1 0.4 28083(17) | 17822{18) | 11532{18) 7522(16) 1388(11)
oo 2.5 | 0,45 | 66784(10) | 48275(14) | 35530(17) | 26267(18) | 19442(18) -} 2,5 0,45 | 29512(20) | 19260(20) [ 12810(18) 8570(16) 1885(11)
1,0 2.3 | 0.32 {62896(9) 42880(15) | 29806(17) | 20829(17) | 14582(16) 1.0 2,3 1 0,32 | 23575(21) | 13988(20) 85¢0(17) 5208(14) 785(10)
1.0 2.3 | ©.35 | 64153¢10) | 44866(16) | 32021(21) | 22970(23) | 16502(21) 1o 2.3 ] 0,35 | 26154(20) | 16441{21) [ 10552(19) 6820(15) 1373(13)
L. 2.3 | 0.4 65753(6) 47378(8) 34835(%) 25736(9) 19038(9) 1.0 2,3 | 0.4 29430(%) 19603(9) 13295(9) 9063(8) 2371(8)
0.1 2.3 10,195 62428(11) | 42129(18) | 28970(20) | 20021(1%) 13861(17) 0.1 2.3 5 0,195 22586(23) 13045(23) 7712017) 4595(13) 5750t
0.1 2,3 §0.205| 64233(9) 44999{14) | 32166¢16) | 23116{15) | 16634(13} 0.1 2.3 1 0,205 26327(19) { 16604(20) | 10698(16) 6939(14) 1420(t0) *
0.1 2.3 1 0.22 | 66004(8) 47772(12) 1 35280(14) | 26179(i5) | 19447(15) 0.1 2,31 0.22 | 29939016) | 20100016 | 13737(14) 9431(12) 2565(11)
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Table IIIC. Table IV.

5

The expectation value of Wilson-loops W in units of 10 7.

/ . .
BT Parameters of the potential in 2 Yukawa-(Y), Hulthen-(H) and string-like(S} fit

defined by Eq.(ITI.3), The errors in paranthesis are the sums of satistical

% (5 » \f‘/f_),?, \{\(31‘ \(\/35 wl{&[ qu errors and estimated svstemaztic errors.
oo 2.0 0.55 4247(21} 2171(13) 1130(7) 1101 (8) 553(7) l>\ (5 _}{ ¥t’t of ¢ am O.tf
co 2.1 0.5 5059{14) 2658(9) 1430(7) 1356(9) 720(6)
00 2.1 | 0.6 7316(13) 4284(10) 2554(7) 2470(9) 1447 (6) o0 2.0 0.55 S [0,305015) | 0.75(2) 0.,003(3)
o 2.1 | 0.8 10561(12) 6790(10) 4401 (8) 4333(10) 2795(8) [~ 2.1 0.5 Y,H 10.312(14) | 0.66(2) 0.41(12)
L] 2.3 10.3 3617(18) 1510¢12} 626(8} 511(6} 179(5) [+ 2.1 0.6 Y, 0 10.258(9) 0.538{4) 0.64(18)
] 2.3 | 0.4 5798{18) 2999(i4) 1579(10) 1459(11) 731(8) () 2.1 0.8 Y,H {0.214(9) 0.441(2) 0,91(21)
to 2.3 | 0.45 7862{16) 4558(12) 2684(9) 2562(11) 1479(8} [ 2.3 0.3 5 {0.192(22) { 0.46(3) 0.160{i0}
o 2,3 ] 0.5 3092 (13) 5503(10) 3379(9) 3255(10) 1981(8) o] 2.3 0.4 § 10.274(8) 0.63(1) 0.032(3)
L] 2.3 ] 0.8 110Z3(13) 7051 (11} 4£552(8) 4453011) 2851(8) oo 2.3 0.45 8 {0.250(5) 0.60(1) 0,002(2}
] 2.3 0.8 13960 (12} 9478(11) 6479(9} 6376 (10) 4342(8) oo 2,3 ' 0,5 Y,H 10.234(6) 0.52(1) 0,42(16)
oo Z.46 | 0.4 8374(18) 4833(14) 2835(12) 2681(11) 1531(9) ] 2.3 0.6 Y,H [0,207(6) 0.453(2) 0.61(18)
200 2.4 | 0.5 11045(14) 6989(12) 4472(9) 4339(1Q) 2739(8} o 2.3 0.8 Y,B |0.178(5) 0.387(1) 0.82(22)
=) 2.4 1 0.8 12784(13) B8423(11) 5607 (10) 5471(11} 3617(18) [=) 2.4 0.4 0.241{5) 0.571(6) 0.0118017)
o0 2,5 | 0.4 10492(18) 6434(16) 4008(12} 3822(14) 2331010 bo 2.4 0.5% Y,H |0.206(5) 0.477(6) 0.33(15)
o0 2.5 1 0.45 11832(20) 7549(16} 4875(15) 6721(17) 3002(13) oo 2.4 0.8 Y, H [0, 191(5) 0,421(2) 0.60(19)
1.0 2.3 | 0.32 7615{18) 4352(14) 25390113 2415(13) 1386 (9} o0 2.5 0.4 G.213(4) 0.519(3) 0.0067(14)
1.0 2.3 ] 0.35 9749(19) 6022(16) 3767(13) 3651(19) 2248(14) oo 2.5 0.45 Y,H {0.201(3) 0.58(1) 0.18(9)
1.0 2.3 | 0.4 12541113 8286(10) 5529(8) 5425(10) 3580(9) 1.0 2.3 0.32 Y,H |0.264(3) 0.61(1) 0.14(7)
0.1 2.3 | 0.195| 68314(22) 3752(16) 2113¢11) 198 (15) 1079(10) 1.0 2.3 C.35 Y,H |0,218(7) 0,50(1) 0.38(15}
0.1 2.3 | 0,205| 9870(i8} 6116(15) 3845(11) 3721(15) 2306 (11} 1.0 2.3 0.4 Y,H [0.187(5) 0.417(2) 0.69{21)
0.1 2,31 0,22 129931(15) 8670(14) 5830(12) 5726(14) 3839(11) 0.1 2,3 0.195 0.277(5) 0.64(1) 0,0089(21)
0.1 2.3 0,205 Y,H |0,218(6) 0.49(1) 0.44(19)
0.1 2.3 0.22 ¥Y,H j0.190(6) 0.404(1) 0.81(25)
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Figure captions

-2
Fig. 1. The phase transition lines in the (3,){)-])13.11& for constant R
according to Fig., 3 in Ref. EIO].

Fig. 24, The inverse correlation lengths in the W-boson (C\‘mw\ and Higgs-
boson (Q’W\H} channel in lattice units for A= 6@ ,(3.—.2..3 .

Fig, 2B, The same as Fig. 24, for A= 4.0,[&—.-.2,3
Fig, 2C, The same as Fig. 2A, for 9\10»4) @=2.3 .

Fig. 3. The link expectation value L= <%1:'Vl> as a function of the plagqu—
ette expectation value Tm <4-%’1}Vu> for different A -values ac P=2.3.

Fig, 4A, The W-boson mass in lattice units (Q"MW) as a function ¢f the link
expectation value L=<%-'D%} for different M -values at G'—‘-Z.&

Fig. 4B. The same as Fig., 4A, for the Higgs-boson mass ( OMH ).

Fig. 5. The ¥, -dependence of the average link L‘(%ﬂ\é}, average

plaguette Pe <4“ .lET'.' Vﬂ> and average action per point b=<3> as de-

fined in Eq.{I1,18), for ‘= oo}@—.;z,s. The lines are drawn just to guide the eye.
Fig, 6A, The inverse correlation lengths in the Goldstone-boson ( QMg ) and
Higgs—boson (Q’m&) channel in lattice units in the & —model at (&: oo

for ')\-40

Fig, 6B, The same as Fig, 6A, for A=0.4 .

Fig. 7. The inverse correlation lengths in the & -model at an plotted as
a funcrion of the average link L=<-§-:B'V£>defined in Eq. (II.20}.

Fig, 8. Typical examples of the static potentjal Q.E in such points, where

the Yukawa-form gives a good fit.

_3?..

Fig. 9. The gradual change of the potential shape near the phase transition
surface on the border of the Higgs—like region. The transitiocn for Aﬁw,ﬁ':-z.:ﬁ
is at W .= 0,28 £0.005 |

Fig. i0A, An example of the potential, where the Yukawae-fit (dashed line) is
much worse than the string~potential fit (full lime). Note, that the best
Yukawa-fit gives a mass QM $0.0, whereas the W-boson mass measured from the
correlations is O"Mw =0.45+0.09.

Fig. 1OB. Another exampie, where the Yukawa—fit (dashed line) to the potential
is very bad, but the string-potential fit (full line) is quite good, Note
also here, that the best Yukawa-fit requires QWM =0 , whereas the W-boson

= 039 x008 .

mass obtained from the correlations is C\‘\Mw
Fig. ]1. The static poteatial in a point { A=e0 ’@=2.3JR=0.3) below the
phase transition surface ('}"<Rq~)'

Fig. 12. The curves of constant renormalized gauge coupling { &) for A=eo
in the ( ﬂ,&)-plane. The lines were obtained from the potential fits given
in Table IV by a linear interpolation, The point P gives the position of the

phase transition at 9\'—'00, (3--—2..3 .

Fig. 13. Comparison of the static potential extracted from the expectation
values of Wilson-lcops and "chiral" leoops, All the points shown were obtained

from the ratio of loops with time—elongation T=3 and 5.

Fig. 14, The expected shape of the scaling region in the (?,ﬁw)-plane for
QCD with N%=3 degenerate quark flavours, P is the SU(3) gauge coupling and
is the quark mass parameter for Wilson-fermions. The shape of the RGT's for
small and large RG invariant quark mass Mq is shown, The meaning of the other
curves is explained in the text, A spectrum calculation with dynamical quarks
was performed in Ref, [_301 for ( B =543 P$=3.0675) and ((5 =5,3; /.lq/ =
2,.9762), These points are denoted, respectively, by A and B, The RGT's with
constant Mq and the critical line fj.c‘r((g) tend for (l—)co to l.qu:-.q
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Fig. 15. The schematic behaviour of the renormalization group trajectories
in the { {51){ }-plane for any A*const.)O . The phase transition line is
dashed-dotted, The fuil lines are the RGT's in the Higgs-like phase, The
dashed lines could be RGT's in the confinement-like phase, which tend to the

critical point below the phase transition line.
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