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Abstract

In the first part of the paper, we give analytic, approximate results for
dyon-fermion binding energies and wave functions, valid for large values of A =
4Z[eglx, where & is the extra magnetic moment. In the second part, more
general results are obtained for the same problem that are valid when either A
is large or the binding is weak. Numerical results for the binding energy are
tabulated and compared, The case of very strong binding is also discussed.

* Work supported in part by the U.S. Department of Fnergy Grant No. DE-
FG02-84-ER40158 with Harvard University.
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1. Imtroduction

In an earlier paper (paper I) [1], we investigated some properties of the
dyon-fermion bound system, as deseribed by the Hamiltonian 12]

§ _ kgpa.?

H=af(p—ZeA)+,8M-—r —W, (11)

where the notation is that of refs. [1) and (2]. The mumerical method given in
(1] yields highly accurate resuits.

Since it is also useful to have formulas that are approximate but more
explicit, the limit of weak binding

M—E< M, (1.2)

has been investigated fn paper II [3]. The results there were derived under the
assumption that A is neither small nor large,

1
|A+ Z[ = 0(1), (L3)
where
= 2#lgl. (1.4)

For the monopole problem {¢ == 0), approximate, explicit results have also
been obtained in paper I [4] for a different limiting case, namely, that of large
A. In Part A of the present paper, we shall generalize these results of paper
HI to the case of the dyon. Furthermore, in Part B we construct a covering
approximation [4] which is valid in both cases, i.e., when either {1.2) holds or
when A is large. Indeed, the structure of this paper is very similar to that of
paper IIL.



2. Eigepvalue Problem

With the Kazama-Yang decomposition [5] of the bound-state wave functions

for states of minimum angular momentum § = |¢| — 4, the eigenvalue problem
Hy =Ey (2.1)

leads to the following coupled differential equations for the radial functions

ECL'__.(A..B_%_l)F’

dp »

(2.2)
P =(are+i-2e,
dp A

where the notation is still that of ref. [1]. In particular, B is the eigenvalue

parameter
L =AE[M. (2.3)
These are the differential equations to be treated here.

Equation (2.2) is invariant under
FeG, B——B, and ¢—— (2.4)
In this paper, unless explicitly stated otherwise, we shall assume A > 0, so that

§=2g.

Part A. WKB Approximation

3. Wave Function between Turning Points

The WKB treatment of the radial equations is somewhat different for the
present dyon case as compared with the monopole case of paper L There are two

reasons for this dilference. First, we have not been able to obtain for the
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dyon a second-order differential equation with only singularities at p = 0 and
p = co. Thus it is more natural to investigate directly the coupled first-order
equations {2.2). Secondly, even for the monopole, the WKB apprexzimations for
F and G, as given by (I11.3.9), are simpler than that of T = F — @G, as given
by (I.3.8). This is another indication that the second-order equation is less

natural.

With the variable 7 defined by

= pAl/?, (3.1)
{2.2) are
4G _ qpf) _E_AJ
ar A (1 V=777 F,
(3.2)
LISV ¢_1
T a1yt i- e
where
y=BlA (3.3)
and
¢ =¢/VA. (3.4)

From {3.2), the turning points are determined by the roots of the quadratic

equations
¢ 1
PR S ©9)
and
¢ 1
_4_



Since |y| < 1, each of these two guadratic equations has one positive and one

negative root. Explicitly, the roots of (3.5) are

6= 2{—¢+{F® + 41— y)]'/2}1 >0, (3.7)

d=2{—¢— " +4(1—-y}'?)' <o, (3.8)
whereas those of (3.6) are

b=2{i + & + 401+ )2 >0, (3.9)

e=2{i — [+ 41+ )2} <0, (3.10)

Note that ¢ = b if and only if y = —¢, and ¢ = d if and only if y == ¢.

By the symmetry (2.4), it is sufficient to consider the case
¥y —. {3.11)
When y > —¢, the ordering of the four roots is as follows:

a>6>0>c¢>d My>§ (3.12)

a>b>0>d>¢ ify <y {3.13)
In both cases, the wave functions F' and G are oscillatory for

b<r<a {3.14)

In the range (3.14), the WKB approximation to ¥ and G is

F~ F‘o(r)e“m"(’) + c.c.,
(3.15)
G e Co(r)eAY 80 e,

- 5-—

s, - . .

where

.2 1/2
el SR ) . (3.16)

¢
= [ gr{ — 5 _ =
o= [ ar(~14 4l 201
The amplitudes Fy{r) and G¢(r) can be determined in a similar way as in paper
III: We substitute (3.15) into (3.2) and demand that terms of order A/2 vanish.
We are thus led to the equations

Golr} = in(r)Fo(r), (3.17)
d d
A1) Fo(r) + == A7) Fo(r)) = 0, (3.18)
“where
2 1/2
1yt S+ |
Hr)= ff 11’ . (3.19)
ttvti-a

Solving (3.18) and substituting for (r), we find

Fo(r) = Co(r) ™2

f 1 1/4
QR S T
—c 2| (3.20)

—1tytie g

The phase of C' (up to nr) is determined by the boundary condition that

F—0, G — 0, (3.21)

as 7 — oo. Approximation through the Airy integra! then gives

-8 ~



—1/4 t/4
F‘uC[——(Aans——lz)} (A+B+5—l2)
PP PP

A3y 5 52 1/2
. 2 2 1
- eXp 1A1f2.£ dr(—1+y2+_§£+_";_§__;&.) ]—!—c.c.,

and (3.22)

/4 —1/4
' )| (ars+i- )
GeiCl—{A—B— 2 —. A+B+2— =
l[( p P + +p »”

Al, - .2 1/2
. - 41/2 f _ 2 2 2+ 1
exp [1.4 A dr( 14y 4+ . + p 1_4 ~+c.c,
with
C = |Clef*/4, (3.23)
The normalization condition is
[+ o]
[ aarr 1o = mya (3.24)
which we approximate as
AlfAg
2 2y
[y @0 UPR (G = M/A (3.25)

Substituting (3.22) into (3.25), we find

A”aa

3ic? f dp [—(A— g—f_ i)]_m(A +B+ L~ l)m
A3y P P2 p P

¢ 1)]1/2( ¢ 1 —1f2
—\A—B—>— = A+B+ 1~ =
+[ ( I + +p

= M/A, (3.26)

aor

—1/2

ic) = 148 f o (P* +¢p/B)dp
2| M Jaun {[14¢p— (A— B)e*ll(A+ B)p? + ¢p— 1]}1/2

(3.27)

4. Wilson-Sommerfeld Quantization

Similar to the monopole case [4], when A is large, the binding energy can

be determined approximately by the Wilson-Sommerfeld quantization condition
6]

A2 [8(a) — $(0)) = n. (4.1)
When A is positive, the right-hand side of (4.1) is nx for the reason already
discussed in paper III.

In the general dyon-fermion case, there are two distinet possibilities. Let
Ki{p) and Ko(p) denote the two factors appearing on the right-hand sides of
(2.2):

¢ 1

Ki(p)=A—B— -y (4.2)
¢ 1

Kz(ﬂ)=A+B+;'— el (4.3)

The two possibilities are:

(i) K vanishes at one turning point, while K> vanishes at the other. Then
the right-hand side of the Wilson-Sommerfeld quantization condition is n, as
given by {4.1).

(ii) K1 or K> vanishes at both turning points. Then the right-hand side of
the Wilson-Sommerfeld quantization condition is {rn 4 )7. Since p > 0 at both

-8 -



turning points, case (ii) requires

A—B<0 {4.4)
or
A+ B <O (4.5)
Therefore,
A0 for case (ii). (4.6)

Furthermore, in this case (ii), at both turning points Ki{p) = 01if { < 0 f{ie.,
¢ > 0} and Ko(p) = 0if { > 0{i.e, ¢ < 0). On the other hand, by a similar

consideration,
A>0 for case (i). (4.7)

Here the zeroes of K;(p) and Ky{p) are given by (3.7}(3.10).

By (3.16), eq. {4.1) can be written as
AY21{y,¢) = nn, (4.8)

‘where

Iy, 0= f: dr [—~(1 —y— %- —)(H— + S_2 )]1/2. (4.9)

This integral can be expressed in terms of elliptic integrals of the first and second
kinds. Note the similarity between this integral and the corresponding one for
the monopole case, {II1.4.12). However, the present integrand is less symmetric,

and the resulting elliptic integrals are not complete.

In order to recognize the integral in terms of elliptic integrals, we first

factorize the integrand,
¢ b c AR
B == (1 — 421142 _ 8 _r _t _k .
o5 =0 -2 [ dr[ (1 1)(1 T)(l 7)(1 T)]
(4.10)

-0 -

We shall proceed to evaluate I{y,{) under the assumption that y > ¢ so that
(3.12) holds, and subsequently show that the result is valid also for y < ¢.

The first step is to take out a factor 7= so that the square root is that of a
fourth-order polynomial in 7 (rather than in 7—1). Next we integrate [ drr—2

by parts to make the square root appear in the denominator,

Iy, &) = (1— y*)}/?

_ /’ * 4 =27+ $atbted)r — (abact-ad-be-bd—cd)
4 (e — 77 — b)(r — c)(r — d)}'/2 '

(411)

This integral may now be expressed in terms of the following three basic
integrals [7]:

dr
o= = gK(K), _
0 fa (6 — )7 — b)(r — eXr — d)]!/2 gK (k) (4.12)
G a—T 1/2
Iy =[ [(1’-— N — o = d)] dr
=(a— b)g ~[K(k}+ (o — 1) TI{o?, k)], (4.13)
— —_ C}(T— d} 1/2
f f [(a—- )7 — b}] ar

- _%g%@f“—l)[ 2E(K) + (K2 — oK (k)

+ (202 — o — k) Ko, k)], (4.14)

where K (k), E(k), and I1{o?, &) are complete elliptic integrals of the first, second,

- 10 ~



ard third kind, respectively. In these formulas,

_[la—b)e— d)]‘”
k= GToe=al (4.15)
a—b 1/2
a_(a——c) s (4.16)
and
2
g= . (4.17
(e — e)b— a)]i/2 :
In terms of Iy, Iy, and [, we have
Iy,§)=(1— yz)"“’{-—% - %(3:: +3b—c—d),
+ %(3aa+ab——3ac——3ad—- 2bc—2bd+2cd)lo}, (4.18)
or, in terms of the complete elliptic integrals K, E, and II:
I(y,3) = (1 — ¥ %[(a — )b — )]}/
- {(—ac—2ad—be— 20d+-c2cd)K (k)
— 2a—cHb—d)E(K) + (—cXa+-btct-d) I ?‘E:- k).
(4.19)

The complete elliptic integral of the third kind can be expressed in terms
of incomplete elliptic integrals F(8, k') and E(8, k') of the first and second kind

(7}

I(a?, k) = K(k) + af(o® — k?)(1 — a?)]~1/2
. {12'-— [E(k)_K(k)’F(ask')—'K(k)E(B,k')}, (4.20)

-~ 11 -

where

- e _ [(b=c)e = &)]'/*
B == (1— k%) /2__[(;:-5”] , (4.21)
and
. 1—a?\?  fp— a2
smﬂ:( " ) z(a—-d) . (4.22)

Using the relation (4.20}, we find for the phase integral
H0,8) = (1= 2 a = oo — 02
- {[—2a{c-+d) + blat+b—c—d)]K (k) — 2a—c)b—d)E(k)}

+ (a+b+c+d){§ — [E(k) — K(RIF(6, ) — K(R)E®, k')}). (4.23)

This formula is discussed further in appendix A.

The normalization constant (3.27) can also be evaluated using the integrals
(4.12)+{4.14). With Ju(y,¢) defined by

10T = SIAY2y(1 — )M I, I, (4.24)

we find
In(y,8) = [(a — c}{b— a)]'/2E(k)

28

Fle— )b~ d)r‘ﬂ[
2

+ ;(1_—!‘,‘,){’r (E(k)— K(K)F(, &) — K(k)E(e,k')}. (4.25)

7=
We close this section with a discussion of the limit ¢ —+ 0. Then ¢ — —a,
d - —b, and

ga—b

s (4.26)

kifgn = ky =

- 12 -



The phase integral then reduces to
Iy, 0) = 201 — 9" /*(a + b)[K (ko) — E(ko)), (427)

which we wish to compare with (IH.4.21). Since the argument used for the elliptic

integrals in paper II,

is related to kg by a Gauss transformation {7),

_ 1kl

= ¥Ry
it- follows that (4.27) above is eéual to (IIL.4.21). Similarly, for ¢ = 0 the

normalization integral (4.25) reduces to (1 — y)~/2E(km) and |C] reduces to
(I0.4.23).

ko (4.29)

Part B. Covering Approximation

5. Wave eti

In this Part B, we generalize the covering approximation of paper III, where
¢ =0, to the dyon case. This approximation is valid for both the weak-binding
case of paper II and the WKB case of Part A. We are therefore forced to impose
the restriction (I1.8.21) on ¢:

Kgl/AY? <« 1. (5.1)
The underlying reason for this restriction is that, even for the special case A =
B, (2.2) cannot be solved explicitly in terms of known functions.

With ¢ #£ 0, the inversion symmetry {8] is lost, and thus it is necessary to

consider separately the regions of small and large values of p. The interior and

- 18 —

the exterior regions are defined respectively by [egs. (11.8.3) and (IL.8.6)):
p < minfle] ™, (A~ BT/ (52)
and
g A2, (5.3)

In the limit of weak binding with A not too large,

A—-B
A

(2.2) can, in the interior region, be approximated as

€1, A=0(1), (5.4)

di__ 2B 1,
4 A+Bg

(5.5)
dj 1Y.

because of (5.1). The coefficient 28/(A + B) in the first equation is determined
from the requirement that, in the limit {5.1), it be the same as that of F in (2.2)
at the turning point p = A!/25, In the weak-binding approzimation

p=1,
F(p) = J(#), (5.6)
G(p) = ##)-

We shall modify (5.5) and (5.6) such that they are valid whenever (5.1) is satisfled,
even if

A» L (5.7

Equation (5.5) makes no reference to ¢. In fact, applying the inversion
symmetry to (III.5.3), we obtain (5.5) of the present paper. Thus, for the dyon

..u.,.



case the covering approximation for the interior region is the same as for the

monopole case. Omitting an overall constant, we have in the interior region

Falp) 5
F
(p) = X }f( i),

(5.8)

G(p) = f"((")’g( )

where

m+m&+w—qm

FO(p)=[1+§P—(A—B)ﬂ2

174

(A +B)i 2—1]} ,

TOCEL

(5.9)

Golp} = iFo(p) ™7,
o) = ifo(@)?
Here 4 is related to p by
hi{py = Ia(#), (5.10)

where I, and I, are “complementary” to the Iy and I3 of paper I in the sense
that we integrate from the Jower turning point:

- p ‘ — — u— p—
B= [ 40 A+ B4co™ 4o ™AL Bt gt — AP,
(5.11)

2 i | 2B _,—2 512 172
) — ! i i
B0 = [,y [0 A+ B

- 15—

Furthermore, the solution to (5.5) is given by
§(i) = 27K p(3),

(5.12)
- A+BN'Y? 4 .
fin=(41E)" Lk,
with
/2
NER
A+B !
(5.13)
1 1/2
p=(28-3)
. We note that

Flp)=~f(7) and  G(p)= §(7) (5.14)

at the lower turning point and that the approximation {5.8) reduces to (5.6)
in the weak-bindirng limit, and to the WKB solution when A is large [but [¢|
restricted by (5.1)].

We next cousider the exterior region, In the limit (5.4), eq. (2.2) can then
be approximated as

dg ( ¢ 1)
A—B— 21— 1,
dn 7 52 !

(5.15)
df
i 2Bg.

In this exterior region we write the solution in the covering approximation as
F o
Flo) = 24 1,

{5.16)

Gylp)
gofn)

- 16 -
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with Fo(p) and Go(p) given by (5.9}, and

2B 2 174
foln) = 7 =1,
14¢n—(A— By
(5.17)
go(n) = ifo(n)™".
The relation between p and % is now determined by
ni(p) = Inln), (5.18)

where

Al/3g
I(p)= [ dp'(—A+ B+ + 0" A+ B+ o' — o T,

(5.18)
(A—g)—3/3 . "
()= | i’ [~ A+ B+ g’ o/ eB),
Finally, the solution to {5.15) is given by [compare paper II, sect. 3]
f(n) = W5,ip(2),
(5.20)
A—BY/d
gln)= (W) - Wasp(2),
with WA ip(2) 3 Whittaker function,
&= 2[2B(A— B))'/*p,
(5.21)

1/ 28 /2
x=—(——-) :
NA—B

and p given by (5.13).

— 1 -

6. Whittaker Fupction

In paper HI (sect. 6) we obtained an approximation for K,p(z) that holds
when

21, (6.1)
and when
p>za»l. (6.2)

That formula will here be used for the interior region. For the exterior region
we need a corresponding formula for the Whittaker function. Sech a formula

will be obtained in this section.

When (6.1) holds, then [9]

I{—2ip)z**

Wt e[ =

+ c.c.], (6.3)

whereas when {6.2) holds, the WKB approximation to the Whiitaker equation
[compare (5.15)] gives

1. A, p?\"
Wi ip(2) == cu»m;t.(—Z + 2 + 3_2)

. 1 Y p;2 1/2
-3111[—/-(—4--%;—%—2—2) dzl, (6.4)

with
1\1/2
P =eai=(+]) ©5)

Evaluating the integral we find [10]

- 18 -



12 —l/4
WA ip(2) o const_(-.l + A + _?’_2)
4 F4 ¥4

2 tipt2 — 1 a2y1/2
sin|p'1n 2p""+rz+2p'(p +>1~/f:2 $2%)
z(p'® +22)

(ST
(pl2+)‘2)llz + R2 + 4’1|' ’ (66)

where the constant of integratior has been determined by demanding that in the

—(p"rz—122)2 4 2sin~?

Airy approximation W5, 4 has the correct behaviour cutside the turning point.

‘We rewrite the logarithm in terms of an arccosh, and deflne

12
Iw(p',2) = p' cosh™" E%-—:—;—;;j—z— — (" 2z — §22)/2
P z
4 Asin~! —g2+ A ar 67)

(p’2 + )\2)1/ 2 2
Expression (6.6) can then be written as
12

1 Y p —1/4 ) '
Waiplz) = const.| — 2+ — + sin{Jw(p', 2} + 7).  (6.8)

We note the similarity between the amplitude (—% + Mz 4+ p'2/22)~ /4 and
Jo(n} of eq. {(5.17). The expression (6.8) for W), ;p corresponds to the expression
(6.6} of paper HI for K;p.

In the covering approximation, a formula is needed for the Whittaker func-
tion W5, ;p(2) that reduces to (6.3) when (6.1) is satisfled, and to (6.8) when (6.2)
is satisfled. This is accomplished by the Ansatz

12\ —1/4
W)= dw( =3+ 2+ 22) o/ Mwls', )+ Bl (69

- 19 -

We determine the amplitude 4 and the phase &y by expanding (6.9) for z €
p, and comparing with {6.3). Thus, we find

p''%]_T(1+ 2ip)
Aw = — 1, (6.10
A TPy )
Pw = arg ['(1 4 2ip) — arg T(4 — X +ip)
4p' )4 [ -1 A 7"}
- phh—--— — =Xtan” " =+ —|. 6.11
’ (p'2+x2)'/2+p ' P (6-10)
If we use the Legendre duplication foermula, and let \ —+ 0, we find that
@wl—»ﬂ &y of paper I, {6.12)
as one should expect. Moreover,
p; 1/2
Aw — (—) [sinh(rp)]~1/?, (6.13)
A0 P
and
Iw(p', z))\—»0 Ix(p',2/2)  of paper Il (6.14)
Thas, the relation [9]
2 1/2
Wou(e)=(2) " Kila2) (6.15)

is satisfled by the appropriate limit of (8.9) of the present paper and (6.7) of
paper III.

From (6.7)-{6.11), the desired approximation to the Whittaker function is

- 80 -



/2

P

P

Wi, ipl2) =

T(1 + 2ip) ( 1, A p'g)_lh
4 ]

MG—tmi\ 1Tz 77

12
- sin | peosh™? WA 1(?'2 + Xz~ ‘}32)1/2
(p’2+}\2)l/22 pl

—4z4 )
(p,z + )\2)1/2

4+ xf—:’T sin~! + arg F(1 + 2ip)

12

, 4
~arg (4 — A+ ip)— pln 4 7z

(v )

A

+p—X 5— sin™? (6.16)

172 [

(p% +23)
which is valid when either (6.1) or (8.2) is zatisfied.

7. Energy Levels

‘We determine the energy eigenvalues by matching the interior solution (5.8)
with the exterior solution {5.16). Let us match F(p),

¢, 18 _ ¢, S0} (7.1)
fol®) foln)
where C and C; are constants. The left-hand side is given by (5.9) and (5.12),

—1/4 1/2 i
at+mit-u} " (AEE) Lkl )

A+ B
01{ 28

with K;;(2) given in the covering approximation by (IIL.6.15). In particular, the
above derivative is given by (IIL.7.5}TIL7.8) as

72(p? — 1) sinf(p/p ) Ik (8, 5) + & — ¥s). (7.3)

_ 91

We now invoke (5.13), and write the lefi~-hand side of (7.1) as

A

1/4 )
CMK(%{) sinf(p/p" ) Ixc(p’, 2) + ®x — ¥5). (7.4)

Substituting for 7 in terms of % [eq. (5.13)], and comparing (I11.6.8) with (B.3)
of appendix B, we obtain

Ix(p',2) = Ia(7). (7.5)

Using further (5.10) and {B.1), we can write (7.4) as

1/4
Cia(AEE) " inito/o WAGVAR ~ 40+ ¥ — v5). (10

The right-hand side of (7.1) is given by (5.17), (5.20), and (6.9),

237]2 ]-—1/4(_1 by p'2 —1/4
C”'W[l Fon— (A= By T ?2")
-sinf(p/p")w(p’, 2) + Swl. (1.8)

Because of (5.21), we can rewrite this as
A—R 1/4
Vst 222 saltos wte', )+ 2, (t9)

i.e.,, the amplitude factor is again independent of the radial variable. The
matching will thus be a matching of phase.

We next relate Tw(p’, z) to Jo(n), using (6.7) and (B.5),

IW(P', Z) = 12(’7): (7'10)
with [cf. (5.18) and (B .4)]
L(n) = 5L(p) = VAlp(a) — $(VAp)). (1.11)
- 99 _



Thus, the right-hand side of (7.1) can be written

] 1/4
VG aw[ A=BY sin( VA - dla)+ 6(VAD)] — Bw).  (T.12)
2B p’

The p-dependence is here the same as for the interior region {expression (7.6)],

so the two regions can be matched provided the phases are the same,
= LVA§0) + 0k — w5 =~ EVAs@) — tw tum, (113)
or, with ®wp = ¢(a) — ¢(b), |
J7VABwKs + 3w + & — Y5 = . (7.14)

This is the equation for the energy eigenvalue, as determined in the covering

approximation.

8. Numerical Results

Numerical results for the binding energy ¢ = (A— B)/A= (M — E){M
are given in table 1 for ¢ = —a and -+a, in table 2 for ¢ = 0.1 and 0.5, and
in table 3 for ¢ = 1.0 and 5.0. For a set of A-values ranging from 0.5 to 100,
we compare the accurate results of paper I [1] and those of the weak-binding
approximation of paper II [3] with those of the WKB method (part A of this
paper) and with those of the covering approximation {part B of this paper).
Five levels are considered, n = 1 to 5. [We do not include the n = 0 state for

which the binding is very strong.]

For large values of A, where the WKB method applies, it gives excellent
results. The results of the covering approximation are excellent for practically
all A and ¢. When the binding is weak, they are comparable with, or even
better than the results of the weak-binding approximation. When A is large,

- 23

they are comparable with the results of the WKB method. Even when (5.1) is
violated, the covering approximation in many cases remains excellent. The only
case where we have found it to break down is the almost trivial one, where p
becomes imaginary [ef. (5.13)], i.e,, for

L

B=Al-95 2 (8.1)

Likewise, the WKB approximation has some validity beyond the range of param-
eters for which it was derived. With A = O(1), it is still good, provided the
binding is strong {compare table 3).

We close with some remarks on the spectrum. For a fized value of ¢, and
for A (or k) sufficiently large, the binding energy increases with increasing A (or
k). However, as is seen from table 3, for sufficiently small values of A {or x), the
binding energy increases with decreasing A (or £). This is further illustrated in
fig. 1, where we have plotted E/M vs. logA, for ¢ = 1.0, =0,1,2,3, and A
ranging from 1072 to 100.

The maxima observed in fig. 1 can be roughly understood as follows. At
large r the magnetic-moment interaction is just like the angular-momentum
interaction for hydrogen-like atoms, with —x|g[{M + E)/2M corresponding to
(i -+ 1). Thus, at large 7, & positive £ amounts to an attraction. On the other
hand, at short distances the wave functions behave like exp{—(1/r){(jxgl/2M});
in this sense the magnetic-moment interaction is repulsive at short distances. If
now the wave function is concentrated at large r, where the magnetic-moment
interaction is attractive, increasing x will increase the binding. If, however, the
wave function is concentrated at small r, where the magnetic-moment interaction
is effectively repulsive, decreasing x will increase the binding. It follows that
there is some intermediate £ (which depends on ¢ and n) for which the energy

has an extremum with respect to variations in .

For £ < 0, these extrema appear to be absent. As follows from the argument
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of the last paragraph, the magnetic-tnoment interaction is then repulsive for
small and large values of r. In fig. 2 we have plotted E/M vs. log(—A) for
¢ =1.0,n=1,2,3, and A ranging from —10~% to —100. It is seen to change

monotonically with A,

9. Maximal Binding

As is clear from figs. 1 and 2, there are sets of parameters A and ¢ for which
the binding becomes maximal,
Ep=M-—-~E=2M, or B=-A. (8.1)

For a given ¢, we shall refer to a vatue of A for which this oceurs as A1, Beyond
this point, which is similar to the case of Z = 137 for hydrogen-like atoms {11},
the one-particle description presumably makes no sense. This critical value can
be determined as the eigenvalue A of eq, (2.2) for B= —A,

Ple] ¢ 1)
—=(24-2= S ]F,
dp ( pp

ar ¢ i
w=(-n)e

by the method of paper L Solutions are shown in fig. 3 for values of ¢ up to 10.

(9.2)

As ¢ —+ 0, the eigenvalue of {9.2), Aeris, ¢80 be determined analytically by
the method of paper II (a derivation of which is given in appendix C). For A > 0,
we find

Acrip o —exp|— — — 37], ¢, (9.3)

for n == 0,1,2,..., and with v = 0.577--- Euler’s constant. Similarly, when
A < 0, we have
(n—Pin

1
Ayt = — 4_5_' exp ['— c
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for n == 1,2,3, --. Comparing now with {9.3), and considering the ground state,
we can give the allowed regions of A for small ¢ as

1 Kis
——exp|—— — 9.5
AL " exp[ T 3'7], {9.5a)

1 T
— —_—— . 9.5b
A> 1 exp[ " 31] ( ]

When ¢ » 1 and A > 0, A.,y can be determined from the following

equation, derived in appendix D,

2(n + Dln 4§ — (n® + 2n7)1/?

mtit@ g 0 b 69

Agit = ¢

with
= ¢(1 + 8Ae /()11 (9.7)

For n = 0, this is explicit, Aery = ¢2. At ¢ = 10, (9.6) is good to 3% and 9%
for n = 0 and 1, respectively. We note that

Ag — ¢, A>0. {9.8)
§—00
When ¢ » 1 and A < 0, the critical value of A is determined in appendix D as
Aot = =31 20+ OH332, o310 (09)
In contrast to (9.8), we note that

1
Agip = — 3¢5, A<, {9.10)
=00 8

In summary, we have given analytic results for dyon-fermion binding energies
and wave functions approximately for two cases. The WKB approximation
in Part A applies when A = 4Z|egls > 1, and the covering approxima-
tior of Part B applies more generally when either A is large or the binding is
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weak., The formulas for the binding energies are given in the WKB approzima-
tion by (4.8) and (4.23), and in the covering approximation by (7.14). All the
results apply only to the case of lowest angular momentum § = Z|eg| — 1.

Generalization to higher angular momentum states will be considered in paper
VI
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Appendix A. Symmetric Forms of the Elliptic Integrals

In evaluating the phase integral I(y,¢) [eq. (4.23)], we assumed { < y in
order to secure ¢ > d. We shall here show that the result is invariant under the

interchange ¢ + d. Let us recall

_ [ta=8)c— @) _ [a—d)p—0)]?
k= [(a—c)b-—d) ' ”"[(a—c)(b—d)]' (A1)
and
1/2
sin8=(z:§) . (A2)

The complete elliptic integrals K(k} and E(k) can be transformed into

symmetric forms by a Gauss transformation [7]. Let

g W

which is odd under ¢ « d. Then [7]
K(ky) =1 g K k), (A4)
Eky) = 1o B+ HE B (A5)

These are invariant under ¢ + 4 since they only depend on the square of the
modulus, k%. Solving for K (k) and E(k), we find
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K (k) = ——=K(k1)

1 + k!
= 2[(a — c){b — d)*/2{{(a — )b — )/

+ [(a — )b — M2} K k), (A8)

E(k) = (1 + K )E(k1) — ———7K(k1)

1+Ic'
= [(a — c)(b — &) ~/2{l(a — e}b~ )*/?
+ (& — d)(b — )/} E(k,) — 2l(a — dXb — c)]/2

flla—c)b— AN+ (e — d)b — NV} TIK (R1).  (AT)

In order to write the incomplete elliptic integrals F(4, k') and E(6,%') in
terms of symmetric ones, we shall perform an imaginary argument transforma-
tion followed by a Landen transformation [7T]. By the imaginary argament trans-

formation [7],

F(y, k) = iF(8, k"), (A.8)
E(y, k) = i{F(8, k') — E(8, k") + tan 81 — k'* sin” §]'/2}, (A.9)
with
1/2
sinf = —itany = (%—:—Z—) . (A.10)

We next apply a Landen transformation [7], with &y given by eq. {A.3) and

(14 k')sinyrcosy

g = e 2 gl

= o {la= b — AP/ (G — db— ), (A1)
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i.e., the new argument ¢ is invariant under ¢ « d. Then F(y, k) and E(y, k)

transform as

F(¢, k1) = (1+ k"W (9, k), (A.12)
E(¢ k1) = 1+k’[E(¢’ J+ K F(y, R — 1+k’ smc&, (A13)

and combining this with {A.8) and (A.9), we find
F(8, k’) = — ——F{¢, k1), (A.14)

1+k’

1/2
m ) = (222) " it po, 1)+ 2o+ 000 00

+ %(1 — k')sing}. (A15)

Collecting then everything, i.e., using (A.4), (A.5), (A.i4) and (A.15), we
find that the WKB phase of eq. (4.23) can be written as

10,8 = (1~ )/

_ (i* 3(a+b)+-c+d)(c+d) + 4[(a— e} p—d)(a—d)(b— c)] /2
[(a—e)b—d)]*/2 + [(a—d)b—c)]!/2

K (k)
— 2{{(e—cXb—d)'/* + [(a—d)o— )/} Bllky) + gr(a+bFotd)

+ i(atbbe+ AE(RF(S, k) — K (k0)E(S, b )1). (A.16)

whick is seen to be symmetric under the interchange ¢ «~ d.
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Appendix B. Phase Jntegrals

In this appendix we present a brief discussion of the phase integrals that
appear in sect. 5.

First, we note that J1(p) of (5.11} can be written in terms of ¢(7) of (3.9),
I1(p) = VAIp(VAp) — #(0)], (B.1)
where ¢ can be expressed by elliptic integrals.

Second, J 2(h) is related to the Iy defined in paper II. With z =1 /r}', we

have

(A+E)l.fﬂ

L= [ sl -a+BTI (B

This integral is related to that of (I1.5.7) by the substitutions 5 — ', A —
B-{(A+ By,

12
Tali) = (2B)/*{ cosh™ (VA+ B#)—|1~ —--1---] . (B3
(A+ B

For the phase integrals of the exterior region we proceed in 8 similar way.
First, J1{p) can be expressed in terms of ¢ [ef. (3.9) and (5.19)),

Li(p) = VA{d(a) — §(VAp); (B.4)

and

s i
Iz(ﬂ)=(23)1/2_/’; %’1,—[1+m'—(A—JB)ﬂ’z]“’2

= 1/2 —1 244 _ gy a2
(2B) {cosh ¥ A B/ 14¢n—(A— B)p?
1 ¢ 1 _AA—Bh—¢
+ 2({A— B)!/2 cos™! 2+ 4(A — 3)11/2}' (B.5)
where
7 =2{—¢+[* + 44— B/ (B.6)
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Appendix C. Critical Value of Afor ¢ € 1

When ¢ <« 1, we can find approximate, analytic expressions for the value
A = A that corresponds to maximal binding, £ = 2M or B == —A. Thisis
achieved by solving (9.2) using the method of paper II. A can be either positive

or megative.

Let us assume
14] « ¢* (ca)

(this wili subsequently be justified) and take

1
T == =, (C.2
P )
Ther eq. {9.2) can be written
dG _ { 24
i (1 Tz~ —2) F
(C.3)
@ _ (1 - .f_)G
z
Consider now
Region I: A 4 2—?1 (C.4)
(i.e., “small” p). Equation {C.3) is ther approximated by
L (1 + S) F,
dz z
(C.5)
ar {
—=|1-=]G.
dz (1 z)
This equation can be solved exactly. Let
S=F+0G,
(C.6)
T=F-G,
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the equations for which become

2 2
g_:s_+1d5 (1 %_E—)S=0, _ (C.7)

dz2 ' zdz

z{dS
rei(5)

(C.6)

The equation for § can be solved in terms of a Whittaker funetion {subject to

the boundary condition $ = 0, T — 0 a5 2 — o),

8(2) = N1z~ AWy 42,i(22), {C.9)

with N a constant. Using (C.8), (C.2) and expanding for

> 1,

we find

Fp) = 2L [F—‘“g—‘l (1 + "“‘) (%

ZITC—\ " 4
Consider next
Region II: I3 N

where (9.2) simplifies to

%= C
With
22 22
P=ER T Ear
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(C.10)

ic
) +c.c.]. (C.11)
) (C.12)
(C.13)
(C.14)

we find that # must satisfy

@2F  1dF 4¢2
- — 2 \F=0. b
dz2 + z dz (1 z ) (C.15)

The solution that satisfies the boundary condition F' — 0 as 2 — oc is a modified

Plp) = NaKas (/8141 ). (c16)

Besse] function,

For
1
P m, {C.1T)
we can expand
2Alcp)y%
F(p) =~ Né[(r}—ll% - c.c.] (C.18)

with N} another constant.

It tollows from {C.2}, (C.4) and {C.12) that the two regions overlap when
(C.1) is satisfied. In this region of overlap, the power expansions (C.11) and
(C.18) also overlap because ¢ < 1.

The matching of (C.11) and (C.18) is then straightforward. For A > 0 the

condition is

2ig iz [D0L = 2O P T4 i6) _ 5pin
e | ) T = (G190

with £ an integer. For ¢ < 1 the above T-functions can be expanded as [12]
T4 lig) o 1 — lgy o 7457, (C.20)

where 4 = 0.577-- - is Euler’s constant. Equation {C.19) can then be explicitly

solved for A = Ayis,

(n+ b
Ay = :—g exp {——g— - 37], (c.21)

-84 -



wher: &k has been identified as —n.

For A < 0, the matching condition similarly gives

is ying2 [T = 2OT T+ 8) _ omix
O e R

with m an integer. With the approzimation (C.20} we now get

1 {n—{r
_Aﬂ.“ == —~4—§ exp [—T‘ -— 3’7], (023)

where m has been identified as —n. We note that {C.21) and (C.23} satisfy {C.1)
for¢ < 1.
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Appendix D. Critical Valucof Afor ¢ » 1

The asymptotic behaviour of A for ¢ 3> 1 can be determined analytically.
With

z=¢p, {D.1)
eq. {9.2) takes the form

(D.2)

‘We rewrite this as

) o0 I
(

dF 1 ANl
S=—s- m);G, (D.3b)
with
1 A /
y= -+ +eme]
(D.4)
A —V1/2
2[ a1+ ]
- .;%. (D5)

Consider first A > 0. Then the right-hand sides of egs. (D.3a) and (D.3b)

vanish for z = y—! and z = 1, respectively. Linearizing in 27, we get

(D.6)



We shall solve this equation exaetly. The boundary conditions that F and G

vanish at the origin and at infinity yield an implicit equation relating A to ¢.

The frst step is to symmetrize eq. (D.6) by the rescaling

= é‘(l + ¥)z,

(D7)
F={1+8A)"8F, @ ={1+8A}/5G,
which yields
dG 1 -
== (517
(D.8)
dF {1 =
=151~
with
¢ = ¢(1 -+ 8A)/*,
(D.9)
e=(1—-y)/(1+y).
In terms of the sum and difference,
§=F+G,
{D.10)
T=F~@,
eq. (D.8) takes the form
45 _ -'g'[(-!- - 1)§+ ET],
) 1
(D.11)

With A > 0, F and G bhave the same number of nodes, so that, for large ¢,
& tends to be small compared with T {1]. Elimination of § gives a Whittaker

equation for T,

T = Wieul2), (D.12)

with
S (D.13)
z = 2¢(1 — )12z, (D.14)
This solutior satisfies the boundary condition of 7 — 0 at the origin provided
% — K4y is a non-positive integer, (D.15)

or

T~ (1= &)y /2 = —p, (Das)

where the right-hand side has been identified in terms of the quantum number n.
The asymptotic behaviour Acrit = Aerit(¢, n) is given by this condition. Using
(D.9) and (D.4), we can write the above condition as

o (04Dl + 7 — (n® + 2712

A e = T T T (R T DA

with [cf. eq. (D.9)]

{D.17)

T = ¢(1 + 8Aui /)4, (D18)

For A < 0 the right-hand side of (D.3a) vanishes for + = y~! and for
z = y'~!, whereas the right-hand side of (D.3b) has no zero for z—! > 0. We
therefore replace z~! in the second equation by (y + y'),

dG -~ 1 1
T —‘(“2"*;— z—a)""’
(D.19)
aF 3
EZRr
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with
A=|Al/¢. (D.20)

We now get a Whittaker equation for F,

aF 3, -, 1 1
with the solution
F o= Wgr,(z2), {D.22)
:_5(_3_)1/22 .1 2y1/2
£ == ] ¢S wt=51+3%)75

(D.23)

1/2
= 2(§fAl) z.

Requiring an acceptable behaviour at the origin, we are again led to condition

(D.15), now in terms of x' and p',

Po1f 3 1/22 1 ni/2
_2._2 m ¢ +§(1+3§) =—(n—1). (D.24)

Since n > I for A < 0, we have identified the non-positive integer as —{r — 1).

This equation can be solved explicitly for A.y = —|A4],

Aci =~ g6 =14 2+ (14 3/ (D.25)
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Table 1.

Table 2.

Table 3.

Table Captions

Binding energies {E — M)/M vs. A = Mgl for ¢ = —o and o
{fine-structure constant).

Ezact: Numerical results of paper I [1].

WBA: Weak-binding approxzimation of paper II [3].

WKB: Part A of this paper.

CA: Covering approximation, Part B of this paper.
Where no value is quoted, the state does not exist.

Binding energies (E — M)/M vs. A= }|gjx for ¢ = 0.1 and 0.5.
Exact: Numerical results of paper I [1].
WBA: Weak-binding approximation of paper I [3).
WKB: Part A of this paper.
CA: Covering approximation, Part B of this paper.
(For A = 2.0, ¢ = 0.5, and n = 3, the two entries in the table in
paper II are inadvertently interchanged.)

Binding energies (E — M)/ M vs. A= }|g]« for ¢ = 1.0 and 5.0.
Exact: Numerical results of paper I [1]. _
WBA: Weak-binding approximation of paper II [3).
WKB: Part A of this paper.
CA: Covering approzimation, Part B of this paper.
When all four entries are missing, the state does not exist. When the
entry is missing for WBA or CA, the approximation fails. For ¢ = 5
and A < 5, the one-particle description used here presumably makes

no sense [11].
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Fig. 1.

Fig. 2.

Fig. 3.

Figure Captions

EfM vs. A = kxlg| > 0 for dyon-fermion states of minimal angular
momuntum, § == |g|— % and ¢ = 1.0. The four lowest levels are shown,
n=20,1, 2 and 3.

E/M vs. A < 0 for dyon-fermion states of minimal angular momen-
tum and ¢ = 1.0. The three lowest levels are shown, n =1, 2, and 3.
(The quantum number n counts the maximum number of nodes of F
or G, which is at least 1 for A < 0.)

Critical values Agy for which the binding becomes maxzimal, Fp =
M — E = 2M, as a function of ¢. (a) Aes > 0. (b) Ay <O.
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Table 1. Binding energies (£ — M)/M vs. A= djglcfor¢ =—aand o Table 2. Binding energies (E — M)/M vs. A= &|g|x for { = 0.1 and 0.5

{=—a (=a ¢=0.1 ¢=05

A Method| n=1n=2n=3n=4dn=5|n=1n=2n=3n=4n=3; A Method i n=1n=2n=3n=4n=5n=1n=2n=3In=4dn=3
Units | 10—¢ 10—% 10—% 10—% 10—% 10—° Units | 10—2 10—2% 10— 10—4 10—4% { 10~ 10—2 102 10—% 103
Exact | 1.239 0.933 3.040 7.311 3.161 1.751 Exact | 1.072 1.874 7.264 3.815 2.344 | 1.055 3.005 1.369 7.761 4.984

05) WBA | 1.238 0.933 3.040 T7.311 3.161 1.751 0.5 | WBA | 1.070 1.872 7.255 3.811 2.342 | 0988 2.863 1319 7.531 4.860
WKB | 5.863 1.655 4289 8.766 2.563 1.913 WKB | 1.215 2.013 7.608 3.946 2.407 | 1.072 3.045 1.382 7.820 5.014

CA 1.240 0.934 3.040 T7.311 3.161 L.751 CA 1.080 1.880 7.277 3.820 2.346 | 1.079 3.043 1.380 7.810 5.008

Units | 102 1% 104 10—% 10-% 10-¢ Units | 102 10—* 10—* 104 10—* | 10~! 10—2 10—2 10—% 102
Exact | 4.604 6.403 1.464 1.740 5.523 2.628 Exact | 2.020 2.819 9.496 4840 2.733 ! 1.151 3.258 1.456 8.148 5186

1.0] WBA | 4.583 6.376 1.464 1.740 5.523 2.628 1.0 ] WBA | 2013 2.811 09.479 4.634 2.730 | 1.086 3.127 1.411 7.943 5.077
WKB | 5.948 7.837 1.964 2.092 6.188 2.846 WKB | 2.201 3.008 9.912 4.785 2.799 | 1.167 3.300 1.470 8210 5.218

CA | 4613 6.417 1.464 1740 5.523 2.628 CA 2.030 2.823 9.505 4.643 2.734 | 1.168 3.283 1.464 8,180 5.202

Units | 10—2 10—4 10—2 10—% 10—% 10—5 10-¢ Units | 102 103 10—% 10—% t0—* | 102 10~2 10—2 10—% 103
Exact | 2.236 6.809 2487 1.190 0.931 1.859 5516 Exact | 4.202 5.507 1.519 6.535 3.563 | 1.357 3.861 1.667 9.077 5.667

2.0 WBA | 2.187 6.802 2.434 1,189 0.931 1659 5.616 201 WBA | 4105 5485 1.516 6.526 3.559 | 1.281 3.731 1.624 R.B80 5.568
WKB | 2.398 8.329 2,651 1.368 1.091 1.868 6.092 WKB | 4.367 5794 1.580 6.725 3.642 | 1.370 3.906 1.683 9.145 5.702

CA 2.244 6811 2.497 1.190 0.931 1.659 5.616 CA 4.223 5512 1.520 6.537 3.564 | 1.370 3.879 1.672 9.097 5.676

Units { 10— 10—2 10—% 10—* 10~% | 10—2 10~2 10~ 10—* 10—° Units | 1072 10—2 10—% 10—2 10—* | 10—! 10—2 10~2 102 10™2
Exact | 7.794 1.008 1.230 1.216 2.394 | 8071 1.114 1621 2.646 5.419 Exact | 9.873 1.834 4.554 1.569 7.100 | 1.843 5.732 2.379 1.223 7.270

501 WBA | 7.253 0996 1.228 1.216 2.8394 | 7.515 1.10I 1.618 2.645 5.418 50| WBA | 9.208 1.809 4.537 1.566 7.092 | 1.700 5.546 2.330 1.203 7.174
WKB { 7.907 1.046 1.314 1.361 4.054 | 8.184 1152 1.711 2.835 5.820 WKB | 9981 1.875 4677 1.608 7.244 | 1.851 5775 2.308 1.231 7.312

CA | 7.825 1.0090 1.230 1.216 2.304 | 8.103 1.115 1.621 2.646 5.419 CA | 9915 1.836 4.556 1.569 T.101 | 1.853 5745 2.383 1.224 7.275

Units | 10—% 10—2 10—* 10~3 10—% | 10—! 10—2 10—3 10~% 1p—* Units | 10=! 10~2 10=2 10~% 10~% | 10~! 102 10~2 10—2 10~2
Exact | 1.439 3.412 8.148 1.902 4.224 | 1.465 3.545 8.812 2.232 5.858 Exact | 1.629 4.409° 1.328 4.565 1.842 | 2.373 8558 3.663 1.827 1.036

100 WBA | 1.271 3.201 8.063 1.896 4221 | 1.204 3.419 8722 2.226 5.854 10.0 | WBA | 1.444 4.253 1.313 4.547 1.839 | 2.107 8.175 &.579 1.799 1.024
WKB | 1.446 8.451 8305 1.957 4.398 | 1.472 3.583 8.9T4 2.291 6.052 WEKB | 1.635 4.448 1.345 4.636 1.871 | 2.378 8.594 3.682 1.837 1.042

CA 1.444 3.416 8.140 1.902 4.224 | 1.470 3.549 8.816 2.233 5.358 CA 1.634 4.415 1.329 4.566 1.843 | 2.382 8572 3.666 1.828 1.037

Units | 10—! 10—2 102 10—2 10—2% | 10! 102 10—2 10—2 10~° Units | 10~! 10-2 10~2 10~2 10—2® | 10—! 10—! 102 10—2 102
Exact | 2.238 7.042 2905 1.063 3.866 | 2.260 8.087 2.991 1.116 4.191 Exact | 2.398 8.975 3.551 1.466 6.373 : 3.011 1.301 6.181 3.186 1.782

2006 | WBA | 1.863 7.368 2.814 1.049 3.845 | 1.883 7.408 2.898 1.102 4.168 200 | WBA | 2.005 8.331 3.440 1.446 6.335 | 2.540 1.206 5.954 3.121 1.758
WKB | 2.242 7.976 2.922 1.072 3.912 | 2.264 8115 3.009 1.126 4.238 WKB | 2.402 9.003 3.568 1.476 6.426 | 3.013 1.304 6.198 3.197 1.788

CA 2.244 T.0956 2.006 1.063 3.866 | 2.265 8.095 2,993 1.116 4.191 CA 2404 8.985 3.553 1.466 6.374 | 3.018 1.2303 6.185 3.188 1.782

Units | 10— 10—t 10—2 10—2 10—2 | 10—! 10—! 10—! 10—2 102 Units | 10—! 10—! 10—2 10—2 10—2 | 10—~! 10—! 10-! 10—2 10~?
Exact | 3.378 1.606 8.864 4692 2.492 | 3.394 1.708 8956 4.760 2.543 Exact | 3.496 1.785 0.542 5.198 2.863 | 3.940 2.128 1.215 T7.174 4.361

500 WBA | 2.595 1.460 8152 4.469 2.423 | 2.609 1.477 8.238 4.535 2473 50.0 | WBA | 2.697 1.547 8.785 4.95¢ 2.789 | 3.077 1.853 1.120 6.829 4.230
WKB | 3.37¢ 1.697 8.876 4.701 2.499 | 3.395 1.709 8.967 4.769 2.549 WKB | 3.497 1.787 ©.553 5.207 2.875 | 3.941 2.129 1.216 7.183 4.367

CA | 3.382 1.697 8.868 4.893 2.493 | 3.398 1.709 8960 4.761 2.543 CA 3.500 1.787 $.546 5.200 2.869 | 3.946 2.130 1.216 7.177 4.362

Units | 10=! 10=! jo—! 10—2 10—2 | 10! 10~ 10— 102 10—2 Units | 10—! 10—! 10—! 10—! 10—2 | 10— 10—! 10— 10—! 102
Fxact | 4.224 2.519 1.568 9.915 6.316 | 4.236 2,520 1.576 0.983 6.372 Exact | 4.314 2.504 1.629 1.042 6.726 | 4.651 2.875 1.862 1.233 B8.296
1000 WBA | 4530 2054 1.368 9.041 5932 | 4.542 2.063 1.3786 9.105 5.985 100.0 | WBA | 4618 2.119 1.424 0.951 6.320 | 4.945 3.420 1.633 1.128 T7.798
WKB | 4.224 2520 1.568 9.921 6.321 | 4.237 2.530 1.577 9.989 6.377 WKB | 4314 2.595 1.630 1.042 6731 | 4.651 2.875 1.862 1.234 8.300

CA 4,228 2.521 1.568 9.017 86.317 | 4.240 2.531 1.577 6.985 6.373 CA 4318 2.595 1630 1.042 6727 | 4.655 2.876 1.862 1.233 8.297




Table 3. Binding energies (E — M)/M vs. A= 4|g|x for ¢ = 1.0 and 5.0
§'=1.0 —5.0
A Method ([n=1n=2n=3n=4n=58|n=1n=2n=3n=4n=2>
Units | 10— 10—' 10—2 10—2 102
Exact | 3.320 1.106 5.268 3.041 1.969 1.188
05| WBA
WKB | 3.330 1.110 5.289 3.051 1.975 1.188
CA 3.331 1.110 5.284 3.048 1.973
Units § 10—! 10—! 102 10—2 10~%2 10—t
Exact [ 3.018 1.055 5.115 2976 1.937 >1.8! 1.196 8.040
10| WBA | 2,573 0.927 4.600 2730 1.800
WKB | 3.024 1.050 5.135 2986 1.942 1.195 8.030
CA 3.058 1.063 5144 2989 1.943 6.48
Units | 10— 10™! 10—2 10—2 10—2 10—! 10!
Exzact | 2.922 1.068 5.218 3.085 1.971 1.243 8.320 5.808
2.0 WBA | 2.580 0.970 4.823 2,841 1.863
WKB | 2929 1.072 5.238 35.045 1.977 1.242 8.312 5.804
CA 2.954 1,074 5240 3.045 1.976 7.452 5.532
Units | 10— 10— 10—2 102 10~2 10— 10— 107!
Exact | 3.077 1.215 5.979 3.435 2.198 1.222 8.194 35734 4.165
50| WBA | 2750 1.132 5659 3.281 2.113
WKB | 3.083 1.219 5.999 3.446 2.204 1.221 8.189 5.731 4.164
CA 3.008 1.219 5.992 3.441 2.201 7.048 5.879 4.143
Units | 10—! 10— 102 10—2 102 19—F 10—! 10! 10
Exact | 3.381 1.461 7.375 4.208 2.646 | 1.436 9.425 6.512 4.682 3.482
10.0| WBA | 2.967 1.365 7.038 4.056 2.565
WKB | 3.384 1.464 7.394 4.220 2.652 | 1.436 0.422 6.511 4.681 3.481
CA 3.305 1.464 T7.384 4.212 2.648 9,152 6.496 4.678 3.480
Units | 10— 10! 1072 10—2 102 10—t 10—t 10! 10!
Exact | 3.811 1.849 9.017 5764 3.600 | 1.155 7.807 5.548 4.085 3.097
200 WBA | 3.220 1.697 9.421 5.564 3.503 6.010 4.356 3.254
WKB  3.813 1.851 9.933 5775 3.607 | 1.155 7.808 5.548 4.085 3.098
CA 3.822 1.859 0.926 5.768 3.601 7.806 5.551 4.087 3.099
Units  10—1 10—! 10—1 102 162! 10—! 10—! 10! 10! 107!
Exzact | 4508 2.572 1.559 9.831 6.414 [ 9.506 6.709 4.955 3.766 2.929
500{ WBA | 3.554 2.243 1.433 9.304 6.178 5.472 4.165 3.226
WKB | 4508 2.573 1.560 9.839 6.420 | 9.505 6.709 4.955 3.767 2.929
CA 4.515 2574 1.560 9.834 6.416 | 9.504 6.716 4.050 3.763 2.930
Units } 10~ 10! 10—! 10~' 10—' | t0—! 10—! 10—! 10— 10t
Fxact | 5.077 3.233 2.160 1.481 1.035 | 8.680 6.364 4.856 3.794 3.018
1000 WBA | 5353 2,674 1.899 1.354 0.971 5.186 4.118 3.302
WKB | 5.078 2.233 2.161 1.482 1.036 | B.680 6.364 4.856 3.764 3.018
CA 5.082 3.235 2.161 1.482 1.035 | 8703 6.369 4.858 3.795 3.018
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