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Abstract 

In the first part of the paper, we give analytic, approximate results for 
dyon-fermion binding energies and wave functions, valid for large values of A= 
!ZJegJ~, where ~ is the extra magnetic moment. In the second part, more 
general results are obtained for the same problem that are valid when either A 
is large or the binding is weak. Numerical results for the binding energy are 
tabulated and compared. The case of very strong binding is also discussed. 

'Work supported in part by the U.S. Department of Energy Grant No. DE­
FG02-84-ER40158 with Harvard University. 
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1. Introduction 

In an earlier paper (paper I) )1), we investigated some properties of the 
dyon-fermion bound system, as described by the Hamiltonian [2) 

H = a· (p- ZeA) + f3M _ f._ ~qf3iJ · 1 
r 2Mr3 ' (1.1) 

where the notation is that or refs. )1) and )2). The numerical method given in 
[1) yields highly accurate results. 

Since it is also useful to have formulas that are approximate but more 
explicit, the limit or weak binding 

M-E<M, (1.2) 

has been investigated in paper IT [3). The results there were derived under the 
assumption that A is neither small nor large, 

where 

IA+~I=0(1), 

1 
A= -~Jq). 

2 

(1.3) 

(1.4) 

For the monopole problem (( = 0), approximate, explicit results have also 
been obtained in paper m [4) for a different limiting ease, namely, that or large 
A. In Part A of the present paper, we shall generalize these results of paper 
ill to the case of the dyon. Furthermore, in Part B we construct a covering 
approximation [4) which is valid in both cases, i.e., when either (1.2) holds or 
when A is large. Indeed, the structure of this paper is very similar to that of 
paper m. 
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2. Eigenvalue Problem 

With the Kazama-Yang decomposition [5] or the bound-state wave functions 

for states of minimum angular momentum j = ]q]- ~'the eigenvalue problem 

H,P=E.P (2.1) 

leads to the following coupled dil!'erential equations for the radial functions 

dG ( - 1) 
dp = A-B-~- p2 F, 

(2.2) 

dF = (A+B+ L ..!..)a, 
dp p p2 

where the notation is still that of ref. [1]. In particular, B is the eigenvalue 

parameter 

B=AE/M. (2.3) 

These are the dlll'erential equations to be treated here. 

Equation (2.2) is invariant under 

F ++ G, B- -B, and ~- -~. (2.4) 

In this paper, unless explicitly stated otherwise, we shall assume A > 0, so that 

r = ~-

Part A WKB Approximation 

3. Wave Function between Turning Points 

The WKB treatment of the radial equations is somewhat dill'erent for the 

present dyon case as compared with the monopole case or paper m. There are two 

reasons for this dilference. First, we have not been able to obtain for the 

- s-

dyon a second-order differential equation with only singu1arities at p = 0 and 

p = oo. Thus it is more natural to investigate directly the coupled first-order 

equations (2.2). Secondly, even for the monopole, the WKB approximations for 

F and G, as given by (Ill.3.9), are simpler than that ofT= F- G, as given 

by (Ill.3.8). This is another indication that the second-order equation is less 

natural. 

With the variable T defined by 

T = pA'f2, (3.1) 

(2.2) are 

da ,,.( r 1) -=A 1- y- -- - F, 
dr r r2 

(3.2) 

dF =A''2(I+Y+ L i-)a, 
dr r T 

where 

y=B/A (3.3) 

and 

'=~f-./A. (3.4) 

From (3.2), the turning points are determined by the roots of the quadratic 

equations 

and 

' 2. = 0 1-y-;:-T2 

' 1 1+Y+-- -=0. 
T T2 

-4-

(3.5) 

(3.6) 



Since htl < 1, each of these two quadratic equations has one positive and one 

negative root. Explicitly, the roots of (3.5) are 

a=2{-?+!?2 +4(1- y)j 112)-1 > o, 

d = 2{-?- [?2 + 4(1- y)j 112 )-1 < o, 

whereas those or (3.6) are 

b = 2{? + !?2 + 4(1 + y)J112)-1 > o, 

c = 2{?- [?2 + 4(1 + y)J'f2)-1 < 0. 

Note that a= b if and only if y =-(,and c = d if and only if y = (. 

By the symmetry (2.4), it is sulllcient to consider the case 

Y ~ -r. 

When y > - i, the ordering of the four roots is as follows: 

a > b > 0 > c > d if y > ?; 

a > b > 0 > d > c if y < ?. 

In both cases, the wave functions F and G are oscillatory for 

b < r <a. 

In the range (3.14), the WKB approximation to F and G is 

F"' Fo(r)eiA'''•(') + c.c., 

G "' Go( r)eiA ''';(') + c.c., 
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(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

where 

¢(r) = J dr(-t+ i + 2yf + 2 + ?2- !..)1/2 
r r2 r"' (3.18) 

The amplitudes F0(r) and G0(r) can be determined in a similar way as in paper 

ill: We substitute (3.15) into (3.2) and demand that terms of order A 112 vanish. 

We are thus led to the equations 

Go(r) = i'y(r)Fo(r), (3.17) 

d d 
-y(r)d

1
Fo(r)+ dr('t(r)F0(r)] = 0, (3.18) 

where 

-y(r)=(-1+v+f+ 1 )112 r 1 2 

1 +v+f_!._ 
r 1 2 

(3.19) 

Solving (3.18) and substituting for -y(r), we find 

Fo(r) = C-y(r)-1/2 

( 

? 1 1/4 

t+v+---) = C r r2 

-t+v+f+!.. r r2 

(3.20) 

The phase of C (up to mr) is determined by the boundary condition that 

F-+ 0, G-+ 0, (3.21) 

as r - oo. Approximation through the Airy integral then gives 
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[ ( 
I 1 )]-

1/4( I )1/4 
F""C-A-B-p-p2 A+B+~-P2 

' 2y? 2 + ?2 I 1 2 
· exp iA112 

{ dr(-1 + y2 +- + --- -) + c.c., 
[ 

A
''' I ] 

la r r2 r4 

and (3.22) 

[ ( 
1 )]1/4( I )-1/4 

G "" iC - A- B- ~ - p2 A+ B + ~ - p2 

· exp iA112 dr -I + y2 + _!!5_ + --1-- - + c.c., [ 1A'
1
'P ( 2 • 2+ ·2 1 )1/2] 

a 1 r2 r• 

with 

C = [Cie;•/4 • (3.23) 

The normalization condition is 

loo dp (!FI2 + IGI2) = M/A, (3.24) 

which we approximate as 

At/lla 

1 dp ([FI2 + IGI2
) = M/A. 

Al/116 
(3.25) 

Substituting (3.22) into (3.25), we find 

1A'
1
'• {[ ( I 1 )]-1/2( I 1 )1/2 2IC12 dp - A- B- --- A+B+ ---

A~ p ~ p ~ 

[ ( 
1 )]

1/2( I 1 )-1/2} +- A-B-~- p• A+B+-p- p2 

=M/A, (3.26) 
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or 

C _I AB • (p2 + IP/B)dp [ A'~ ]-1~ 
I I - 2 M L,., {II+ IP- (A- B)p21[(A + B)p2 + IP- lj}l/2 

(3.27) 

4. Wilson-Sommerfeld Quantization 

Similar to the monopole case [4], when A is large, the binding energy can 

be determined approximately by the Wilson·Sommerfeld quantization condition 

{6] 

A1f2[¢(a) _¢(b)]= n1r. (4.1) 

When A is positive, the right-hand side of (4.1) is n1r for the reason already 

discussed in paper m. 

In the general dyon-fermion case, there are two distinct possibilities. Let 

K 1(p) and K 2(p) denote the two factors appearing on the right-hand sides of 

(2.2): 

K1(P)=A-B-{_2_ 
p p2' 

r 1 
K2(p)=A+B+-- -. p p2 

The two possibilities are: 

(4.2) 

(4.3) 

(i) K1 vanishes at one turning point, while K2 vanishes at the other. Then 

the right-hand side of the Wilson-Sommerfeld quantization condition is mr, as 

given by (4.1). 

(ii) K 1 or K 2 vanishes at both turning points. Then the right-hand side of 

the Wilson-Sommerfeld quantization condition is (n + ~)1r. Since p > 0 at both 
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turning points, ease (ii) requires 

A-B<O (4.4) 

or 

A+B < 0. (4.5) 

Therefore, 

A< 0 for ease (ii). (4.6) 

Furthermore, in this case (ii), at both turning points K 1(p) = 0 iff < 0 (i.e., 

f > 0) and K2(p) = 0 if~ > 0 (i.e., f < 0). On the other hand, by a similar 

consideration, 

A>O for case (i). (4.7) 

Here the zeroes of K 1(p) and K2(p) are given by (3.7)-(3.10). 

By (3.16), eq. (4.1) can be written as 

A112J(y, r) = mr, (4.8) 

where 

1• [ ( · 1 )( • 1 )]'/
2 

I(y, () = , dr - I- Y- ~- 12 I+ Y + ~-
1
o · (4.9) 

This integral can be expressed in terms of elliptic integrals of the first and second 

kinds. Note the similarity between this integral and the corresponding one for 

the monopole case, (ill.4.12). However, the present integrand is less synometric, 

and the resulting elliptic integrals are not complete. 

In order to recognize the integral in terms of elliptic integrals, we first 

factorize the integrand, 

/(y,f)= (1- y2)'12 f dr [-(1- ;)(~- ~)(~- ~)(1- ~)r 
(4.10) 

- 9 -

We shall proceed to evaluate l(y, ~) under the assumption that y > ~ so that 

(3.12) holds, and subsequently show that the result is valid also for y < ~. 

The first step is to take out a factor ,.-• so that the square root is that of a 

fourth-order polynomial in r (rather than in ,.-• ). Next we integrate J dr ,.-2 

by parts to make the square root appear in the denominator, 

I(y, f)= (I- y2)1/2 

1• d -2r2 + ~(a+b+c+d)r- (ab+ac+ad+bc+bd-cd) ( ) 
· • r [(a- r)(r- b)(r- c)(r- d))l/2 · 

4
·
11 

This integral may now be expressed in terms of the following three basic 

integrals [7): 

lo = 1" dr 
' [(a- r)(r- b)(r- c)(r- d)]l/2 

1.[ a-r ]'/
2 

/ 1 = dr 
' (r-b)(r-c)(r-d) 

1 
=(a- b)g0 [K(k) + (a2

- l)ll(a2,k)], 
a 

1. [< )( >J'/2 T-C 1-d 
I.= dr 

' (a-r)(r-b) 

gK(k), 

= _.!_g<b- c)(b- d)[o2E(k) + (k2 - a2 )K(k) 
2 o2(o2 I) 

+ (2a2
- o•- k2)IT(o2 ,k)], 

(4.12) 

(4.13) 

(4.14) 

where K(k), E(k), and IT(o2 , k) are complete elliptic integrals o!the first, second, 
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and third kind, respectively. In these formulas, 

k = [<•- b)(c- d)]1/2 
(a c)(b- d) • 

a=(~)1/2 
a- c ' 

and 

2 
g 

[(a- c)(b- d)]'/2 

In terms of lo, /1, and h, we have 

J(y,?) = (1- y2)112[-2/2 - ~(3a +3b- c- d)I, 

+ ~ (3a 2+ab-3ac-3ad-2bc-2bd+2cd)Io]. 

or, in terms of the complete elliptic integrals K, E, and II: 

I(y,?) =(I- y2)112[(a- c)(b- d)j-1/2 

· {(-ac-2ad-bc-2bd+c2+cd)K(k) 

a-b 
- 2(a-c)(b-d)E(k) + (b-c)(a+b+c+d)II(-,k)}. 

a-c 

(4.15) 

(4.16) 

{4.17) 

{4.18) 

{4.19) 

The complete elliptic integral of the third kind can be expressed in terms 

of incomplete elliptic integrals F(D, k1) and E(D, k1) of the first and second kind 

[7) 

II(a2,k) = K(k) + a[(a2 - k2)(1- a 2)]-112 

· { i- [E{k)- K(k))F(B, k')- K(k)E(D,k')}, (4.20) 

-11-

where 

k 1 =(I- k2)112 = [(b- c)(a- d)l1/2 
(a c)(b-d) ' 

(4.21) 

and 

. ('_"2)1/2 (b-d)1/2 smO= --- = -- . 
k'2 a-d 

(4.22) 

Using the relation (4.20), we lind for the phase integral 

J(y, ?) = (1- y2)1/2([(a _ c)(b _ d))-112 

· {[-2a(c+d) + b(a+b-c-d))K(k)- 2(a-c)(b-d)E(k)} 

+ (a+b+c+dl{i- [E{k)- K(k})F(D, k 1
)- K(k)E(D,k'J}). (4.23) 

This formula is discussed further in appendix A. 

The normalization constant (3.27) can also be evaluated using the integrals 

{4.12)-{4.14). With JN(Y, r) defined by 

we find 

ICI = ~~A1f2y(!- y21-112 M-1 JN(y, rJJ-112, 
2 

JN(y,?) =[(a- c)(b- d)j112E(k) 

+ [(a- c)(b- d)J- 112[y{l ~ y2) b- ab- cd]K(k) 

+ ( 2? 2){~- [E(k)- K(k))F(D,k')- K(k)E(D,k')}. 
y 1-y 2 

(4.24) 

(4.25) 

We close this section with a discussion of the limit~-+ 0. Then c-+ -a, 

d--b, and 

a-b 
k),_, = ko = a+ b · 

- 12-

(4.26) 



The phase integral then reduces to 

l(y,O) = 2(1- y2)112(a + b)[K(ko)- E(ko)], ( 4.27) 

which we wish to compare with (ill.4.21 ). Since the argument used for the elliptic 

integrals in paper m, 

krn = (~)1/2 - ( b2 )1/2 
1+y - 1 -.2 

is related to ko by a Gauss transformation [7], 

1- k/n 
ko = 1+klu' 

b 
k' =­m a (4.28) 

(4.29) 

it follows that (4.27) above is equal to (ill.4.21). Similarly, for ~ = 0 the 

normalization integral (4.25) reduces to (1- y)- 112E(km) and JCI reduces to 

(ill.4.23). 

Part B. Covering Approximation 

5. \\'ave Function 

In this Part B, we generalize the covering approximation of paper m, where 

~ = 0, to the dyon case. This approximation is valid for both the weak-binding 

case of paper ll and the WKB case of Part A. We are therefore forced to impose 

the restriction (ll.8.21) on r: 

id/A112 < 1. (5.1) 

The underlying reason for this restriction is that, even for the special case A = 
B, (2.2) rannot be solved explicitly in terms of known functions. 

With ~ f' 0, the inversion symmetry [8] is lost, and thus it is necessary to 

consider separately the regions of small and large values of p. The interior and 

- 18 -

the exterior regions are defined respectively by [eqs. (ll.8.3) and (ll.8.6)[: 

and 

p< min1J~J- 1 ,(A-B)-1f2J 

P > A-1/2. 

In the limit of weak binding with A not too large, 

A-B < 1, 
A 

A= 0(1), 

(2.2) can, in the interior region, be approximated as 

dg 2B 1 -
d~ =-A+B -:;;!, 

~ 

df =(A+B- _1
2
)g, 

dij ~ 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

because of (5.1). The coefllcient 2B/(A +B) in the ftrst equation is determined 

from the requirement that, in the limit (5.1), it be the same as that ofF in (2.2) 

at the turning point p = A 112 b. In the weak-binding approximation 

p = ij, 

F(p) = f(ij), 

G(p) = g{ij). 

(5.6) 

We shall modify (5.5) and (5.6) such that they are valid whenever (5.1) is satisfied, 

even if 

A> I. (5.7) 

Equation (5.5) makes no reference to ~· In fact, applying the inversion 

symmetry to (ill.5.3), we obtain (5.5) of the present paper. Thus, for the dyon 

-4-



case the covering approximation for the interior region is the same as for the 

monopole ease. Omitting an overall constant, we have in the interior region 

where 

F(p) = ~o(PJ Jm. 
foU!J 

G( ) = Go(P)nt') 
p -(')"'q, Uo q 

Fo(P) =[(A+ B)p2 + ~p- 1]1/< 
1+tp-(A-B)p2 ' 

- {A+ B }1/4 tom= 28r<A+BJij2 -1J , 

Go(P) = iFo(P)- 1
, 

u,(ijJ = ;J,m-•. 

Here ~ is related to p by 

i,(p)=io(~), 

(5.8) 

(5.9) 

(5.10) 

where i 1 and i 2 are "complementary" to the It and 12 of paper ill in the sense 

that we integrate from the lower turning point: 

i t(P) = 1' dp' [(-A+ B + ~p•- 1 + p'-2 )(A + B + ~P,-1 _ p'-2)]1/2, 
Al/2~ . 

(5.11) 

i 2(~) = f" dij 1 [~ ij1- 2(A + B- ~ 1-2 )]
112

. 
(A+B)->1• A+ B 
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Furthermore, the solution to (5.5) is given by 

um = z112 K,,(zJ, 

- - (A+ B)l/2 _rl,.r•I/2K,,(zJJ, !(~) = 2B dz 

with 

.i = (~)1/2 --A+B q 1, 

( )
1/2 

p= 2B- ~ . 

We note that 

F(p > "" t< r!) and G(p)"" g(q) 

(5.12) 

(5.13) 

(5.14) 

at the lower turning point and that the approximation (5.8) reduces to (5.6) 

in the weak-binding limit, and to the WKB solution when A is large [but It I 
restricted by (5.1)]. 

We next consider the exterior region. In the limit (5.4), eq. (2.2) can then 

be approximated as 

dg =(A- B- f.-_!_)!, 
dq ~ q2 

df = 2Bg. 
dq 

(5.15) 

In this exterior region we write the solution in the covering approximation as 

F(p) = Fo(p) f(q), 
!o(~) 

G(p) = Go(P) g(q), 
Uo(q) 

- 16-

(5.16) 



with Fo(P) and Go(P) given by (5.9), and 

2 ]''4 2Bq 
/o(q)=[1+1n (A B)q2 ' 

(5.17) 

uo(n) = ifo(n)- 1
. 

The relation between p and q is now determined by 

r,(p) = I2(q), (5.18) 

where 

All~ a 

It(P) = /, dp 1 [(-A+ B + IP'-1 + p'-2)(A+ B + rp'-1 - p1- 2)j1/2, 

(5.19) 
(A-B)-11:.~ 

I2(q)= £ dq'[(-A+B+rn'-1 +n'-2)(2B)J112. 

Finally, the solution to (5.15) is given by [compare paper II, sect. 3] 

f(q) = w,,,,(z), 
(5.20) 

(
A- B)1

/
2 

d 
g(q) = -w- dz Wx,;p(z), 

with Wx,;p( z) a Whittaker function, 

z = 2[2B(A- B)J112q, 

(5.21) 

~ = ~(__E!_)1/2 
2 A-B 1, 

and p given by (5.13). 

- 17-

6. Whittaker Function 

In paper III (sect. 6) we obtained an approximation for K;p(z) that holds 

when 

z < 1, (6.1) 

and when 

p>z>l. (6.2) 

That formula will here be used for the interior region. For the exterior region 

we need a corresponding formula for the Whittaker function. Such a formula 

will be obtained in this section. 

When (6.1) holds, then [9] 

Wx,;p(z) c, ,112[ f(-2ip)z'P l f('-~-ip) +c.c., (6.3) 

whereas when (6.2) holds, the WKB approximation to the Whittaker equation 

[compare (5.15)] gives 

with 

( 
I ~ 12)-1/4 

w,,,,(z) c, const. - 4 + z + ~2 

[ !( 1 ~ p'2)1/2 ] 
·sin- - 4+;+ 7 dz, 

P1 = (2B)1/2 = (p2 + ~)'/2. 

Evaluating the integral we Jlnd [10] 

- 18 -

(6.4) 

(6.5) 



( 
1 A 12)-114 

w,,,.(z)"" const. --+-+E., 
4 z z 

• SID p 1 In 2...--'...:.:.::._=.~--'--';7;;-'-'-'--. [ 2p 12+Az+2p1(p'2+Az-tz2)112 

z(p'2 + A2)'/2 

-(p12+Az-tz2)112 + Asin- 1 -~z +A +A.'!:+~ .. ], (6.6) 
(p'•+A•)''• 2 4 

where the constant of integration has been determined by demanding that in the 

Airy approximation WA,ip has the correct behaviour outside the turning point. 

We rewrite the logarithm in terms of an arccosh, and define 

- 2p12 + AZ 2 I Iw(P 1
, z) = p1 cosh 1 

- (p 1 + AZ- tz2)1 2 
(p'2 + A2)I/2z 

+Asin-1 -2z+A +A.'!:. 
(p'2 + A2)'/2 2 

(6.7) 

Expression (6.6) can then be written as 

( 
1 A 12)-114 

Wx,;p(z)"" const. - 4 + z + ~2 sin[lw(p1,z)+ f1T]. (6.8) 

We note the similarity between the amplitude (-t + A/z + p12fz2)-114 and 

/o(~) of eq. (5.17). The expression (6.8) for Wx,ip corresponds to the expression 

(6.6) of paper ill for Kop· 

In the covering approximation, a formula is needed for the Whittaker func~ 

tion Wx,;p(z) that reduces to (6.3) when (6.1) is satisfied, and to (6.8) when (6.2) 

is satisfied. This is accomplished by the Ansatz 

( 
1 A 12)-1/4 

Wx,ip(z)"" Aw -4 + z + pz2 sin[(pfp')Iw(p 1
, z) + il>w]. (6.9) 

- 19-

We determine the amplitude Aw and the phase il>w by expanding (6.9) for z <. 

p, and comparing with (6.3). Thus, we find 

p'''2i f(1 + 2ip) I· 
Aw = -P- r(~- A+•P) 

il>w = arg f(1 + 2ip)- arg f(~- A+ ip) 

4p'2 p [ _, A "] -pin +p--Atan -+-. 
(p'2 + A2)I/2 p' p' 2 

If we use the Legendre duplication formula, and let A - 0, we find that 

il>w- ii>K 
x~o 

of paper m, 

as one should expect. Moreover, 

(
p' )''2 Aw ,:::. P {sinh(1Tp)]-1/2, 

and 

Iw(p',z)- IK(p',z/2) 
x~o 

of paper m. 

Thus, the relation {9] 

( )

1/2 
Wo,;p(z) = ; K;p(z/2), 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

(6.15) 

is satisfied by the appropriate limit of (6.9) of the present paper and (6.7) of 

paper m. 

From (6.7)-(6.11), the desired approximation to the Whittaker function is 
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W;,;p(z)"" p't/21 f(l + 2ip) I(-! ~ p'•)-t/4 
P r(!- A+ ip) 4 + z + 7 

. [ h-1 2p'
2 + AZ · sm pcos 

112 (p•• + A•) z 

p ( ,. p' P + >-z _ tz•)t/2 

+A P, sin-1 
- !z + ~ 

10 
+ arg r(l + 2ip) 

p (p•• + A•) 

4p'2 
- arg r(!- A+ ip)- pln (p'2 + A2)''• 

p . -1 ' A ] + p- A p' SlD (p•• + A•)l/2 (6.16) 

which is ~id when either (6.1) or (6.2) is satisfied. 

7. Energy Levels 

We determine the energy eigen~ues by matching the interior solution (5.8) 

with the exterior solution (5.16). Let us match F(p), 

c i(ii) - c !(~) 
1 
io(ii)-

2 fo(~)' 
(7.1) 

where c, and C2 are constants. The lett-hand side is given by (5.9) and (5.12), 

{ }-1/4( )1/2 c, A~ B [(A+ B)i)• - I) . A:;/ :. [zt/2 K;p(z)), (7.2) 

with K;p(z) given in the covering approximation by (ill.6.15). In particular, the 

above derivative is given by (ill.7.5)-{ill.7.8) as 

,-tf2(p12 - z2 )'''sin[(pfp')1K(p1,i) + lfoK- !JIB)· (7.3) 
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We now invoke (5.!3), and write the left. hand side of (7.1) as 

(A+B)'I' 1 1 -
C11.K 2B sin[(p/p )IK(P , z) + lfoK- ¢B)· (7.4) 

Substituting for i in terms of ii [eq. (5.13)), and comparing (ill.6.8) with (B.3) 

of appendix B, we obtain 

I - - -
lK(P ,z)=l•(~). (7.5) 

Using further (5.10) and (B. I), we can write (7.4) as 

(A+B)'/' Cti.K 2B sin{(pfp')VA[¢(VAp)- ,P(b)]+lfoK- ¢B}. (7.6) 

The right-hand side of (7.1) is given by (5.17), (5.20), and (6.9), 

[ 
2B~2 1-t/<( I A p'2 )-t/4 

C2Aw --+-+-
! + r~ - (A- B)~2 j 4 z z2 

· sin[(pfp')Iw(p', z) +/low]. (7.8) 

Because of (5.21), we can rewrite this as 

( A B)''' v'2C2Aw :; sin[(pfp')Iw(p',z)+lfow), (7.9) 

i.e., the amplitude factor is again independent of the radial variable. The 

matching will thus be a matching of phase. 

We next relate Iw(p1,z) to 12 (~). using (6.7) and (B.5), 

Iw(p',z) = I2(~). (7.10) 

with [cf. (5.18) and (B.4)] 

I2(~) = 11(p) = VA[¢(a)- <P(VAp)J. (7.11) 
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Thus, the right-hand side of (7.1) can be written 

(
A- B)'/4 

p 
-V2C2Aw ~ sin{p

1
VA[-¢(aJ+¢(VAp))-4>w). (7.12) 

The p-dependence is here the same as for the interior region [expression (7 .6)], 

so the two regions can be matched provided the phases are the same, 

- P, VA¢(b) + 4>K- !/Jn =- P, VA¢(a)- 4>w + mr, 
p p 

or, with 4>wKB =¢(a)- ¢(b), 

Lv'A4>wKB +4>w + 4>K- !/JB = mr. 
p' 

(7.13) 

(7.14) 

This is the equation for the energy eigenvalue, as determined in the covering 

approximation. 

8. Numerical Results 

Numerical results for the binding energy f =(A- B)/A= (M- E)/M 

are given in table I for ~ = -a and +a, in table 2 for ~ = 0.1 and 0.5, and 

in table 3 for ~ = 1.0 and 5.0. For a set of A-values ranging from 0.5 to 100, 

we compare the accurate results of paper I [1) and those of the weak-binding 

approximation of paper ll [3) with those of the WKB method (part A of this 

paper) and with those of the covering approximation (part B of this paper). 

Five levels are considered, n = I to 5. [We do not include the n = 0 state for 

which the binding is very strong.) 

For Jarge values or A, where the WKB method applies, it gives excellent 

results. The results or the covering approximation are excellent for practically 

all A and ~· When the binding is weak, they are comparable with, or even 

better than the results of the weak-binding approximation. When A is large, 
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they are comparable with the results of the WKB method. Even when (5.1) is 

violated, the covering approximation in many cases remains excellent. The only 

ease where we have found it to break down is the almost trivial one, where p 

becomes imaginary [cf. (5.13)), i.e., for 

I 
B =A( I- <) ~ -. 

8 
(8.1) 

Likewise, the WKB approximation has some validity beyond the range of param­

eters for which it was derived. With A = 0(1), it is still good, provided the 

binding is strong (compare table 3). 

We close with some remarks on the spectrum. For a fixed value of ~, and 

for A (or~) sulllciently large, the binding energy increases with increasing A (or 

~). However, as is seen from table 3, for sufficiently small values of A (or~), the 

binding energy increases with decreasing A (or 4 This is further illustrated in 

fig. I, where we have plotted E/ M vs. log A, for ~ = 1.0, n = 0, I, 2, 3, and A 

ranging from w-• to 100. 

The maxima observed in fig. I can be roughly understood aa follows. At 

large r the magnetic-moment interaction is just like the angular-momentum 

interaction for hydrogen-like atoms, with -~Jq)(M +E)/2M corresponding to 

I( I+ 1). Thus, at larger, a positive~ amouuts to an attraction. On the other 

hand, at short distances the wave functions behave like exp[-(l/r)(J~q)/2M)); 

in this sense the magnetic-moment interaction is repulsive at short distances. If 

now the wave function is concentrated at larger, where the magnetic-moment 

interaction is attractive, increasing tr. will increase the binding. H, however, the 

wave function is concentrated at small r, where the magnetic-moment interaction 

is effectively repulsive, decreasing K. will increase the binding. It follows that 

there is some intermediate" (which depends on~ and n) for which the energy 

has an extremum with respect to variations in J~Z. 

ForK. < 0, these extrema appear to be absent. As follows from the argument 
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of the last paragraph, the magnetic-moment interaction is then repulsive for 

small and large values of r. In fig. 2 we have plotted E/M vs. log(-A) for 

r = 1.0, n = 1,2,3, and A ranging from -10-3 to -100. It is seen to change 

monotonically with A. 

9. Maximal Binding 

AJ, is clear from figs. 1 and 2, there are sets of parameters A and f for which 

the binding becomes maximal, 

EB:: M -E=2M, or B= -A. (9.1) 

For a given 1, we shall refer to a value of A for which this occurs as A.,,u. Beyond 

this point, which is similar to the case of Z = 137 for hydrogen-like atoms [11], 

the one-particle description presumably makes no sense. This critical value can 

be determined as the eigenvalue A of eq. (2.2) forB= -A, 

dG ( - 1 ) 
dp = 2A-~- p2 F, 

(9.2) 

dF =(L ..!:..)a 
dp p p2 ' 

by the method of paper l Solutions are shown in fig. 3 for values off up to 10. 

AJ, f -+ 0, the eigenvalue of (9.2), A.,,;,, can be determined analytically by 

the method of paper IT (a derivation of which is given in appendix C). For A > 0, 

we find 

1 [ (n + tl" ] 
Acrit ~ -exp - 37, 

4f ' 
r< 1, (9.3) 

for n = 0, 1, 2, · · ·, and with"' = 0.577·· · Euler's constant. Similarly, when 

A< 0, we have 

A.,,"= -..!:..exp[ 4> 
(n ~ tl" _ 3"(]. 
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f < 1, (9.4) 

for n = 1, 2, 3, · · ·. Comparing now with (9.3), and considering the ground state, 

we can give the allowed regions of A for small r as 

1 [3" l A<--exp ---3"( 
41 4> ' 

(9.5a) 

or 

A> ..!:..exp[-.!.-3"1]· 
4> 4> 

(9.5b) 

When f > 1 and A > 0, A.,,;, can be determined from the following 

equation, derived in appendix D, 

Aodt = 
1
2(n + f)[n + "f- (n

2 + 2n"f)'/2] 
(n + "f+ (n2 + 2n"f)'/2(2 • '> 1, (9.6) 

with 

"f = f(1 + 8A";t/12
)'''· (9.7) 

For n = 0, this is explicit, A.,,u = r2 • At 1 = 10, (9.6) is good to 3% and 9% 

for n = 0 and 1, respectively. We note that 

Aerit - r2
, 

r-oo 
A>O. (9.8) 

When f > 1 and A < 0, the critical value of A is determined in appendix D as 

3 
A.odt =-i/ [-1 + 2n + (1 + 3f2)If2]-2, 

In contrast to (9.8), we note that 

A 1 2 
.ncrit --+ - -r , 

r-oo 8 
A< 0 . 

'> 1. 
(9.9) 

(9.10) 

In summary, we have given analytic results for dyon-fermion binding energies 

and wave functions approximately for two cases. The WKB approximation 

in Part A applies when A = ~Zieul~ > 1, and the covering approxima­

tion of Part B applies more generally when either A is large or the binding is 
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weak. The formulas for the binding energies are given in the WKB approxima· 

tion by (4.8) and (4.23), and in the covering approximation by (7.14). All the 

results apply only to the case of lowest angular momentum j = Z[eg[ - ~· 

Generalization to higher angular momentum states will be eonsidered in paper 

VI. 
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Appendix A. Symmetric Forms of the Elliptic Integrals 

In evaluating the phase integral l(y, rl [eq. (4.23)[, we assumed ? < yin 

order to secure c > d. We shall here show that the result is invariant under the 

interchange c +-> d. Let us recall 

k =[(a- b)(c- d)]'/2 
(a- c)(b- d) • 

k' =[(a- d)(b- c)]'/2 
(a- c)(b- d) • 

(A.l) 

and 

sinO= (b- d)'/2 

a-d . 
(A.2) 

The complete elliptic integrals K(k) and E(k) can be transformed into 

symmetric forms by a Gauss transformation [7]. Let 

1- k' 
k,=l+k' 

_ [(a- c)(b- d)J 1f 2 - [(a- d)(b- c)jl/2 
- [(a- c)(b- d)jl/2 + [(a- d)(b- c)J'/2' 

which is odd under c ... d. Then [7] 

K(k,} = I ~ k' K(k), 

E(k,) = I ~ k' [E(k) + k 1 K(k)]. 

(A.3} 

(A.4) 

(A.5) 

These are invariant under c ... d since they only depend on the square of the 

modulus, k¥. Solving for K(k) and E(k), we find 
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2 
K(k) = 

1 
+ k 1K(kt) 

= 2[(a- c)(b- d)[1/2{[(a- c)(b- d)j1/2 

+[(a- d)(b- c)]112)-1K(kt), 

E(k) = (1 + k 1)E(k1)-
1 
~~ 1 K(kt) 

=[(a- c)(b- d)]-112 ([(a- c)(b- d)]112 

+[(a- d)(b- c)] 112 )E(kt)- 2[(a- d)(b- c)] 112 

(A.6) 

. {[(a- c)(b- d)]112 +[(a- d)(b- c)]112) - 1 K(kt). (A. 7) 

In order to write the incomplete elliptic integrals F(O, k1) and E(O, k 1) in 

terms of symmetric ones, we shall perform an imaginary argument transforma­

tion followed by a Landen transformation [7]. By the imaginary argument trans­

formation [7], 

F(f/!,k) = iF(8,k 1
), 

E(¢, k) = i(F(O, k 1
)- E(O, k1

) +tan 8[1- k'2 sin2 8]112), 

with 

sinO= -itan ¢ = (b- d)1/2 
a-d · 

(A.8) 

(A.9) 

(A.IO) 

We next apply a Landen transformation [7], with k1 given by eq. (A.3) and 

. ~ (l+k')sin¢cos¢ 
sm'f'= 

[1 - k2 sin2 ¢]'/2 

= a~ b {[(a- c)(b- d)J 112 +[(a- d)(b- c)J112), (A.ll) 
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i.e., the new argument¢ is invariant under c- d. Then F(¢,k) and E(¢,k) 

transform as 

F(¢, kt) = (1 + k 1)F(¢, k), (A.12) 

2 1 1- k 1 
• 

E(¢,kt)= 
1
+k1 [E(¢,k)+k F(¢,k)]-

1
+k' sm¢, (A.13) 

and combining this with (A.8) and (A.9), we flnd 

F(O, k 1
) =-

1 
~ k' F(¢1, k1 ), (A.14) 

( )

1/2 
E(O,k')= ~=~ +i(-F(¢,kt}+~(l+k')E(¢,kt} 

+ ~(1- k1)sin¢). (A.15) 

Collecting then everything, i.e., using (A.4), (A.5), (A.14) and (A.15), we 

flnd that the WKB phase of eq. (4.23) can be written as 

I(y,?) = (1- y2)1/2 

. ( [-3(a+b)+c+dJ(c+d) + 4[(a-c)(b-d)(a-d)(b-c)J'I2 K(kt} 
[(a-c){b-d)]'/2 + [(a-d)(b-c)]'/2 

- 2{[(a-c)(b-d)J112 + [(a-d)(b-c)J112)E(k1) + ~1r(a+b+c+d) 

+ i(a+b+c+d)[E(kt)F(¢, kt)- K(kt)E(¢1, kt)]), 

which is seen to be symmetric under the interchange c- d . 
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(A.l6) 



Appendix B. Phase Integrals 

In this appendix we present a brief discussion of the phase integrals that 

appear in sect. 5. 

First, we note that i 1(p) of (5.11) can be written in terms of ¢(7) of (3.9), 

i 1(P) = VA]¢(VAp)- ¢{b)], (B. I) 

where¢ can he expressed by elliptic integrals. 

Second, i 2(ij) is related to the ! 2 defined in paper Ill. With x = l/q 1
, we 

have 

(A+B)l/2 

i,(ij)=(2B)112 1_, dx]x-2 -(A+B,-1]112. 
• 

(B.2) 

This Integral is related to that of (Ill.5.7) by the substitutions q --. ij- 1
, A­

B--. (A+B)-1 , 

i,(;i)=(2B)112{cosh-1(VA+Bii)-[l-
1 

]

1

'

2

}. (B.3) 
(A+Blii2 

For the phase integrals of the exterior region we proceed in a similar way. 

First, ! 1 (p) can be expressed in terms of¢ ]cf. (3.9) and (5.19)], 

! 1(pJ = v'Ai¢(aJ- ¢<v'ApJJ; (B.4) 

and 

!o(nl = (2B)112 _!!_ 11 + rn'- (A- Bln'2]112 1•• d I 

• q' 

= (2B)112{cosh-1 2 
+ (q ]I+ >n- (A- B)n2]112 

](2 + 4(A- B)]112n 

1 > -1 2(A- B)n- > } 
+ 2 (A- B)l/2 cos ](2 + 4(A- BJP/2 . (B.5) 

where 

q, = 2{->+ ]>2 + 4(A- B)]1f2)-1. (B.6) 
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Appendix C. Critical Value of A for ( < I 

\1\'ben ~ < 1, we can find approximate, analytic expressions for the value 

A= Acril that corresponds to maximal binding, EB =2M orB= -A. This is 

achieved hy solving (9.2) using the method of paper ll. A can be either positive 

or negative. 

Let us assume 

]A]< (2 

(this will subsequently be justified) and take 

I 
X=-. 

p 

Then eq. (9.2) can be written 

Consider now 

da ( r 2A) -= 1+--- F, dx x z2 

dF =(I- t)a. 
dx x 

Region I: x> 2]A] 
( 

(i.e., "small" p). Equation (C.3) is then approximated by 

dG = (1 + t)F, 
dx x 

-= 1- i G. dF ( -) 
dx x 

This equation can be solved exactly. Let 

S=F+G, 

T=F-G, 
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(C.!) 

(C.2) 

(C.3) 

(C.4) 

(C.5) 

(C.6) 



the equations for which become 

d
2
S IdS ( 1 1

2
) -+--- 1+--- S=O dx2 x dx x z2 ' 

(C.7) 

T=H:-s). (C.&) 

The equation for S can be solved in terms of a Whittaker function (subject to 

the boundary condition S - 0, T -+ 0 as x - oo ), 

S(x) = N,x-'12W_,,2,ir(2x), 

with N 1 a constant. Using (C.8), (C.2) and expanding for 

p> 1, 

we find 

F ~Nt[f(-2i>)( i.~)(2)'' ] 
(p)- ,f2 f(l- ii) 1 + IAI p + c.c .. 

Consider next 

where (9.2) simplifies to 

With 

Region II: p > ,-•, 

-=2A-£F dG ( -) 
dp p ' 

dF _ ta. c;:;;- p 

z2 z2 

P = BA~ = 8IAii' 

- ss -

(C.9) 

(C.lO) 

(C.ll) 

(C.12) 

(C.13) 

(C.14) 

we find that F' must satisfy 

J2 F + ~ dF - (1 - 4i2) F = 0. 
dz2 z dz z2 

(C.15) 

The solution that satisfies the boundary condition F- 0 as z -... oo is a modified 

Bessel function, 

For 

we can expand 

F(p) = N2K2'<( VBIAiiP). 

1 
P< 4IAI' 

F(p) c. N~ [(21AiiP)-'< l 
f(l - 2;1) e.c. 

with N~ another constant. 

(C.16) 

(C.17) 

(C.18) 

It follows from (C.2), (C.4) and (C.12) that the two regions overlap when 

(C.l) is satisfied. In this region of overlap, the power expansions (C.ll) and 

(C.18) also overlap because 1 < 1. 

The matching of (C.ll) and (C.18) is then straightforward. For A> 0 the 

condition is 

(«i)'''e'•/2 [f(l- 2i>)]
2 

f(l + i>) _ 2ki• 
f(l + 2ii) f(l- ii)- e ' 

(C.19) 

with k an integer. Fori< 1 the above r-functions can be expanded as [121 

r(l +Iii)"" 1 - lin"" c"", (C.20) 

where 1 = 0.577· ··is Euler's constant. Equation (C.19) can then be explicitly 

solved for A= Acrit 1 

A.,,it c. ..!._ exp [- (n + i)1f 3')], 
4i i 

(C.21) 
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where k has been identified as -n. 

For A < 0, the matching condition similarly gives 

(1IAI~)•;,.-;.;• [f(l- 2i~)l
2 

f(l + i~) . 
( 

- e2m•"" 
r J+2i~) f(J- ill- , (C.22) 

with man integer. With the approximation (C.20) we now get 

1 [ (n-t)7r ] 
A.,,;, = - 4~ exp - ~ 3-r , (C.23) 

where m has been identified as -n. We note that (C.21) and (C.23) satisfy (C. I) 

for ~ < I. 
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Appendix D. Critical Value of A for ~ > I 

The asymptotic behaviour of Aerit for~> 1 can be determined analytically. 

With 

X= ~p, 

eq. (9.2) takes the form 

We rewrite this as 

with 

dG (2A A I I) 
dx = ~ ?"- IAI ;; - x• F, 

dF =~(~.!.-_!_)a. 
dx IAI x x2 

dG =-~(.!.-v)(.!.-v')F dx X X ' 

dF =-~(.!.-~).!.a 
dx x IAix' 

_I[ A 
y- 2 -IAI +(I+ &A)'I•], 

y' = H-~~~-(1+811)''·]. 
- A 
A=-

~2. 

(D.!) 

(D.2) 

(D.3a) 

(D.3b) 

(D.4) 

(D.5) 

Consider first A > 0. Then the right-hand sides of eqs. (D.3a) and (D.3b) 

vanish for x = y-1 and x = 1, respectively. Linearizing in x-1, we get 

dG (I ) dx = -~ ;- Y (y- y')F, 

(D.6) 

dF =-~(.!.-i)G. 
dx x 
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We shall solve this equation exactly. The boundary conditions that F and G 

vanish at the origin and at infinity yield an implicit equation relating A.:r!t to r. 

The first step is to symmetrize eq. (D.6) by the rescaling 

1 
" 1 = 2(1 + y)x, 

(D.7) 

F = (1 + 8A)-118F, G = (I + 8A)118 G, 

which yields 

dG =-~--I+< F, - ( 1 )-
dxt xl 

(D.8) 

dF -( 1 )--=-( --1-< G, 
dx1 X1 

with 

?"=((I+ BA)11', 

(D.9) 

'= (1 - y)/(1 + y). 

In terms of the sum and difference, 

S=F+G, 
(D.IO) 

T=F-G, 

eq. (D.8) takes the form 

ds = -~[(.!.. _ 1)s + .r], 
dxl XI 

(D.ll) 

dT -[ ( 1 )- -] dx
1 

= -1- :;-;--I T- <8. 

- 87-

'Vit.h A > 0, F and G have the same number of nodes, so that, for large ~, 

S tends to be small compared with T [1]. lolimination of S gives a Whittaker 

equation forT, 

with 

r = w,,(z), 

K = ~(! _ <2)-1/2' 1 
J1 = ?"- 2' 

z = 2~(1 _ ,2)112x1. 

(D.I2) 

(D.I3) 

(D.14) 

This solution satisfies the boundary condition of T- 0 at the origin provided 

~- K + J1 is a non-positive integer, (D.15) 

or 

?[! _ (!- ,2)-112] = -n, (D.16) 

where the right-hand side has been identified in terms of the quantum number n. 

The asymptotic behaviour A,,;, =A.,,;,((, n) is given by this condition. Using 

(D.9) and (D.4), we can write the above condition as 

A= A.,,;, = 
1
2 (n + f)[n + ~ (n2 + 2nf)1/2j 

with [cf. eq. (D.
9

)] [n + ( + (n
2 

+ 2nf)1/2]2 ' 
(D.17) 

f = ((! + BA,,;t/12)1/4. (D.18) 

For A < 0 the right-hand side of (D.3a) vanishes for x = y- 1 and for 

x = y1-
1

, whereas the right-hand side of (D.3b) has no zero for x- 1 > 0. We 

therefore replace x-1 in the second equation by ~(y + y1), 

dG ( - 1 1 ) -=1 -2A+--- F, dx x x2 

(D.19) 
dF 3 
dX =-:jiG, 
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with 

A= JAI/>2· 

We now get a Whittaker equation for F, 

with the solution 

,P. F 3 2( - I 1 ) -+-> -2A+--- F=O dx2 4 xx2 ' 

F = W.•.•(z), 

"' = .!.( 3 )1/2 2 
4 2JAI >, 

IJ I = ~(1 + 3)2)1/2, 

(
3 )1/2 

z= 2 2IAI •· 

(D.20) 

(D.21) 

(D.22) 

(D.23) 

Requiring an acceptable behaviour at the origin, we are again led to condition 

(D.l5), now in terms of"' and 1J 1
, 

I 1 ( 3 )
1

/
2 

1 
2- 4 2JAI >2 + 2(1 + 3>2)1/2 = -(n- 1). (D.24) 

Since n ~ 1 for A< 0, we have identified the non-positive integer as -(n -1). 

This equation can be solved explicitly for .4.,,;1 = -JAJ, 

3 
A"" = - s>'l-1 + 2n +(I+ 3)2)1/2]-2. (D.25) 
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Table Captions 

Table I. Binding energies (E- M)/ M vs. A = ~lql~ for r = -a and a 

(fine-structure constant). 

Exact: Numerical results of paper I II]. 

WBA: Weak-binding approximation of paper ll 13]. 

WKB: Part A of this paper. 

CA: Covering approximation, Part B of this paper. 

Where no value is quoted, the state does not exist. 

Table 2. Binding energies (E- M)/ M vs. A= ~lql~ for r = 0.1 and 0.5. 

Exact: Numerical results of paper I II]. 

WBA: 

WKB: 

CA: 

Weak-binding approximation of paper ll [3]. 

Part A of this paper. 

Covering approximation, Part B of this paper. 

(For A = 2.0, r = 0.5, and n = 3, the two entries in the table in 

paper n are inadvertently interchanged.) 

Table 3. Binding energies (E-M)/ M vs. A= ~lql~ for r = 1.0 and 5.0. 

Exact: Numerical results of paper I [1]. 

WBA: Weak-binding approximation of paper ll [3]. 

WKB: Part A of this paper. 

CA: Covering approximation, Part B of this paper. 

When all four entries are missing, the state does not exist. When the 

entry is missing for WBA or CA, the approximation fails. For r = 5 

and A 5 5, the one-particle description used here presumably makes 

no sense [11]. 
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Figure Captions 

Fig. I. EfM vs. A= ~Kiql > 0 for dyon-fermion states of minimal angular 

momentum, j = lql- ~ and r = 1.0. The four lowest levels are shown, 

n = 0, 1, 2, and 3. 

Fig. 2. E f M vs. A < 0 for dyon-fermion states of minimal angular momen­

tum a.nd !: = 1.0. The three lowest levels are shown, n = 1, 2, and 3. 

(The quantum number n counts the maximum number of nodes of F 

or G, which is at least I for A < 0.) 

Fig. 3. Critical values Acrit for which the binding becomes maximal, EB = 
M-E= 2M, as a function of r. (a) .A,,it > 0. (b) .A,,it < 0. 

- 42-



Table I. Binding energies (E- M)/ M vs. A= ;lql~~: for 1 = -a and a Table 2. Binding energies (E- M)/ M vs. A= ;lql~~: for 1 = 0.1 and 0.5 

I= -a I= a I= 0.1 1 = 0.5 

A Method n=1 n=2 n=3 n=4 n=5 n = 1 n= 2 n = 3 n = 4 n = 5 A Method n=l n=2 n=3 n=4 n=5 n=l n=2 n=3 n=4 n=5 

Units 10-· 10-3 10-5 10-6 10-6 10-6 Units 10-2 w-3 w-4 w-• 10-· 10-1 10-2 10-2 10-3 10-3 

Exact 1.239 0.933 3.040 7.311 3.161 1.751 Exact 1.072 1.874 7.264 3.815 2.344 1.055 3.005 1.369 7.761 4.984 
0.5 WBA 1.238 0.933 3.040 7.311 3.161 1.751 0.5 WBA 1.070 1.872 7.255 3.811 2.342 0.988 2.863 1.319 7.531 4.860 

WKB 5.863 1.655 4.289 8.766 3.563 1.913 WKB 1.215 2.013 7.608 3.946 2.407 1.072 3.045 1.382 7.820 5.014 
CA 1.240 0.934 3.040 7.311 3.161 1.751 CA 1.080 1.880 7.277 3.820 2.346 1.079 3.043 1.380 7.810 5.009 

Units 10-3 10-3 10-4 10-5 10_, 10-6 Units 10-2 10-• 10-4 w-4 10-4 10-1 10-2 10-2 w-3 w-• 
Exact 4.604 6.403 1.464 1.740 5.523 2.628 Exact 2.029 2.819 9.496 4.640 2.733 1.151 3.258 1.456 8.148 5.186 

1.0 WBA 4.583 6.376 1.464 1.740 5.523 2.628 1.0 WBA 2.013 2.811 9.479 4.634 2.730 1.086 3.127 1.411 7.943 5.077 
WKB 5.948 7.837 1.964 2.092 6.188 2.846 WKB 2.201 3.008 9.912 4.785 2.799 1.167 3.300 1.470 8.210 5.218 
CA 4.613 6.417 1.464 1.740 5.523 2.628 CA 2.039 2.823 9.505 4.643 2.734 1.168 3.283 1.464 8.180 5.202 

Units 10-2 10-4 10-2 10-3 10-4 10-5 10-6 Units w-2 10-3 10-3 10-· 10-4 10-2 10-2 10-2 10-3 10-3 

Exact 2.236 6.809 2.487 1.190 0.931 1.659 5.616 Exact 4.202 5.507 1.519 6.535 3.563 1.357 3.861 1.667 9.077 5.667 
2.0 WBA 2.187 6.802 2.434 1.189 0.931 1.659 5.616 2.0 WBA 4.105 5.485 1.516 6.526 3.559 1.281 3.731 1.624 8.889 5.568 

WKB 2.398 8.329 2.651 1.368 1.091 1.868 6.092 WKB 4.367 5.794 1.580 6.725 3.642 1.370 3.906 1.683 9.145 5.702 
CA 2.244 6.811 2.497 1.190 0.931 1.659 5.616 CA 4.223 5.513 1.520 6.537 3.564 1.370 3.879 1.672 9.097 5.676 

Units 10-1 10-2 10-3 10-4 10-6 10-2 10-2 10-3 10-4 10-5 Units 1o-2 10-2 10-3 10-3 10-4 10-1 10-2 10-2 10-2 10-3 

Exact 7.794 1.008 1.230 1.216 2.394 8.071 1.114 1.621 2.646 5.419 Exact 9.873 1.834 4.554 1.569 7.100 1.843 5.732 2.379 1.223 7.270 
5.0 WBA 7.253 0.996 1.228 1.216 2.394 7.515 1.101 1.618 2.645 5.418 5.0 WBA 9.208 1.809 4.537 1.566 7.092 1.700 5.546 2.330 1.203 7.174 

WKB 7.907 1.046 1.314 1.361 4.054 8.184 1.152 1.711 2.835 5.820 WKB 9.981 1.875 4.677 1.608 7.244 1.851 5.775 2.398 1.231 7.312 
CA 7.825 1.009 1.230 1.216 2.394 8.103 1.115 1.621 2.646 5.419 CA 9.915 1.836 4.556 1.569 7.101 1.853 5.745 2.383 1.224 7.275 

Units 10-1 10-2 10-3 10-3 10-· 10-1 10-2 w-3 1o-3 w-4 Units w-t w-2 w-~ w-3 10-3 w-t w-2 w-2 w-2 w-2 

Exact 1.439 3.412 8.146 1.902 4.224 1.465 3.545 8.812 2.232 5.858 Exact 1.629 4.409 1.328 4.565 1.842 2.373 8.558 3.663 1.827 1.036 
10.0 WBA 1.271 3.291 8.063 1.896 4.221 1.294 3.419 8.722 2.226 5.854 10.0 WBA 1.444 4.253 1.313 4.547 1.839 2.107 8.175 3.579 1.799 1.024 

WKB 1.446 3.451 8.305 1.957 4.398 1.472 3.583 8.974 2.291 6.052 WKB 1.635 4.448 1.345 4.636 1.871 2.378 8.594 3.682 1.837 1.042 
CA 1.444 3.416 8.149 1.902 4.224 1.470 3.549 8.816 2.233 5.858 CA 1.634 4.415 1.329 4.566 1.843 2.382 8.572 3.666 1.828 1.037 

Units 10-1 1o-2 w-2 10-2 10-3 10-1 10-2 10-2 10-2 10-3 Units Io-t w-2 10-2 10-2 10-3 10-1 10-1 10-2 w-2 10-2 

Exact 2.238 7.948 2.905 1.063 3.866 2.260 8.087 2.991 1.116 4.191 Exact 2.398 8.975 3.551 1.466 6.373 3.011 1.301 6.181 3.186 1.782 
20.0 WBA 1.863 7.368 2.814 1.049 3.845 1.883 7.498 2.898 1.102 4.168 20.0 WBA 2.005 8.331 3.440 1.446 6.335 2.540 1.206 5.954 3.121 1.758 

WKB 2.242 7.976 2.922 1.072 3.912 2.264 8.115 3.009 1.126 4.238 WKB 2.402 9.003 3.568 1.476 6.426 3.013 1.304 6.198 3.197 1.788 
CA 2.244 7.956 2.906 1.063 3.866 2.265 8.095 2.993 1.116 4.191 CA 2.404 8.985 3.553 1.466 6.374 3.018 1.303 6.185 3.!88 1.782 

Units 10-1 10-1 10-2 10-2 10-2 10-1 10-1 10-1 10-2 10-2 Units w-t w-t w-2 10-2 w-2 w-t w-t 10-1 w-• 10-2 

Exact 3.378 1.696 8.864 4.692 2.492 3.394 1.708 8.956 4.760 2.543 Exact 3.496 1.785 9.542 5.198 2.868 3.940 2.128 1.215 7.174 4.361 
50.0 WBA 2.595 1.460 8.152 4.469 2.423 2.609 1.477 8.238 4.535 2.473 50.0 WBA 2.697 1.547 8.785 4.954 2.789 3.077 1.853 1.120 6.829 4.230 ' 

WKB 3.379 1.697 8.876 4.701 2.499 3.395 1.709 8.967 4.769 2.549 WKB 3.497 1.787 9.553 5.207 2.875 3.941 2.129 1.216 7.183 4.367 
CA 3.382 1.697 8.868 4.693 2.493 3.398 1.709 8.960 4.761 2.543 CA 3.500 1.787 9.546 5.200 2.869 3.946 2.130 1.216 7.177 4.362 

Units 10-1 10-1 10-1 10-2 10-2 10-1 10-1 10-1 1o-2 w-2 Units !0-1 10-1 w-t 10-1 10-2 10-1 10-1 10-1 10-1 10-2 

Exact 4.224 2.519 1.568 9.915 6.316 4.236 2.529 1.576 9.983 6.372 Exact 4.314 2.594 1.629 1.042 6.726 4.651 2.875 1.862 1.233 8.296 
100.0 WBA 4.530 2.054 1.368 9.041 5.932 4.542 2.063 1.376 9.105 5.985 100.0 WBA 4.618 2.119 1.424 0.951 6.320 4.945 3.420 1.633 1.128 7.798 

WKB 4.224 2.520 1.568 9.921 6.321 4.237 2.530 1.577 9.989 6.377 WKB 4.314 2.595 1.630 1.042 6.731 4.651 2.875 1.862 1.234 8.300 
CA 4.228 2.521 1.568 9.917 6.317 4.240 2.531 1.577 9.985 6.373 

. -- ·---L.-.. --
CA 4.318 2.595 1.630 1.042 6.727 4.655 2.876 1.862 1.233 8.297 

·-



Table 3. Binding energies (E- M)/M vs. A= ~lql• for~= 1.0 and 5.0 

:s:lrn 
~ = 1.0 ~ = 5.0 

A Method n=1 n=2 n=3 n=4 n=5 n=1 n=2 n=3 n=4 n=5 

Units 10-1 10-1 10-2 10-2 10-2 
Exact 3.329 1.106 5.268 3.041 1.969 1.188 

0.5 WBA 
WKB 3.330 1.110 5.289 3.051 1.975 1.186 

CA 3.331 1.110 5.284 3.048 1.973 ' 
' ' 

Units 10-1 10-1 10-2 10-2 w-2 10-1 
Exact 3.018 1.055 5.115 2.976 1.937 > 1.8! 1.196 8.040 

1.0 WBA 2.573 0.927 4.609 2.730 1.800 
WKB 3.024 1.059 5.135 2.986 1.942 1.195 8.030 I 

CA 3.058 1.063 5.144 2.989 1.943 6.48 1 

Units 10-1 w-1 10-2 10-2 10-2 w-1 10-1 ' 
Exact 2.922 1.068 5.218 3.035 1.971 1.243 8.320 5.808 

2.0 WBA 2.580 0.970 4.823 2.841 1.863 
WKB 2.929 1.072 5.238 3.045 1.977 1.242 8.312 5.804 

CA 2.954 1.074 5.240 3.045 1.976 7.452 5.532 
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Units 10-1 10-1 10-2 w-2 10-2 10-1 10-1 10-1 ' 
Exact 3.077 1.215 5.979 3.435 2.198 1.222 8.194 5.734 4.165 

5.0 WBA 2.750 1.132 5.659 3.281 2.113 
WKB 3.083 1.219 5.999 3.446 2.204 1.221 8.189 5.731 4.164 
CA 3.098 1.219 5.992 3.441 2.201 7.948 5.679 4.143 

Units ro- 1 10-1 10-2 10-2 10-2 10-1 10-1 w-1 10-1 
Exact 3.381 1.461 7.375 4.208 2.646 1.436 9.425 6.512 4.682 3.482 

10.0 WBA 2.967 1.365 7.038 4.056 2.565 
WKB 3.384 1.464 7.394 4.220 2.652 1.436 9.422 6.511 4.681 3.481 

CA 3.395 1.464 7.384 4.212 2.648 9.152 6.496 4.678 3.480 

Units 10-1 10-1 10-2 10-2 w-2 10-1 10-1 w-1 w-1 
Exact 3.811 1.849 9.917 5.764 3.600 1.155 7.807 5.548 4.085 3.097 

20.0 WBA 3.220 1.697 9.421 5.564 3.503 6.010 4.356 3.254 
WKB 3.813 1.851 9.933 5.775 3.607 1.155 7.806 5.548 4.085 3.098 

CA 3.822 1.852 9.926 5.768 3.601 7.806 5.551 4.087 3.099 

Units w-1 w-1 w-1 10-2 ro-2 w-1 w-1 w-1 w-1 10-1 
Exact 4.508 2,572 1.559 9.831 6.414 9.506 6.709 4.955 3.766 2.929 

50.0 WBA 3.554 2.243 1.433 9.304 6.178 5.472 4.165 3.226 
WKB 4.508 2.573 1.560 9.839 6.420 9.505 6.709 4.955 3.767 2.929 
CA 4.515 2.574 1.560 9.834 6.416 9.504 6.716 4.959 3.768 2.930 
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Units w-1 10-1 10-1 J0-1 10-1 w- 1 w-1 ro- 1 w-' w-' 0 
Exact 5.077 3.233 2.160 1.481 1.035 8.689 6.364 4.856 3.794 3.018 

100.0 WBA 5.353 2,674 1.899 1.354 0.971 5.186 4.118 3.302 
WKB 5.078 3.233 2.161 1.482 1.036 8.689 6.364 4.856 3.794 3.018 
CA 5.082 3.235 2.161 1.482 1.035 8.703 6.369 4.858 3.795 3.018 
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