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Abstract

In the first part of the paper, we give analytic, approximate results

for the Kazama-Yang monopole-fermion binding energies and wave functions,
valid for large values of A = % Z leglK , where K is the extra magnetic
moment. In the second part, more general results are obtained for the
same problem that are valid when either A is large or the binding is

weak, Numerical results for the binding energy are tabulated and compared.



1. Introduction

The monepole-fermion bound states were first investigated by Kazama
and Yang [1}. Later, additional results have been given {2,3]. The monopole
is assumed to be infinitely heavy, and the Hamiltonian for the fermion of

spin % is [ﬂ
He R (F-ZeA) » pM - xqpTF/(2Mr3) | (1)

where the notation is that of refs.[1, ﬂ, and ﬁ]-

While the direct numerical approach of paper I [3] leads to very accurate
results, it is also useful to have approximate, more explicit formulas., Seo
far, the limiting case that has received most attention is that of weak

binding
M-E «£ ¥ (1.2}

for the lowest angular momentum j = [ql - %. Results in this case have been

given in ref. [2] for the monopole and in paper II {4} generzlized to the

dyon. In paper II, it is assumed that A is neither large nor smail, where

A=%K|q|. (1.3}

A second limiting case of interest is
> (1.4}

This case is of possible relevance for a description of moncpole-nucleus

interactions at large distances. In Part A eof this paper, coasisting of
Sects. 3 and 4, this case (!1.4) is treated by the WKE approximation for

bound states of the lowest angular momentum.

It is then natural to rzise the question whether the two approximatiocns,

the one in reference [2] for the case (1.2) and the one in Part A for ¢1.4),

can be combined. In other words, is it possible to find an approximation

that covers both cases, i.e., is valid whenever either (1.2} or (1.4) holds?

This turns out to be the case, and in Part B cof this paper such an approxima-~
tion is presented, together with numerical resuits for comparison with those

from Part A and refs. [1,2].

2. Eigenvalue problem

With the standard decomposition for bound states of the lowest angular

momen tum [l*&], the eigenvalue problem

{1\P - B4 (2.1)

reduces to two coupled ordinary differential equations

4G
d9

a2 -4)G
gy = (A ¢ G

where 9, B, F, and G are defined in refs. ﬁ—&]. Let S(?) and T(?) be the

i
=(A-B- %) F,
( ?)

(2.2)

sum and difference of F and G

(2.3)



then
(—A‘“A+ —;)S = -3BT
(z.4)
(-d‘--+A“ —1,:)T='BS

dq )

Thus S(?) and T(?) cach satisfy a second-order ovdinary differential equation

with irregular singularities at 0 and £0:

S

- (A 2A

?2

-+

[~

2 {
1—;;. -B - +—§;)]S_—_O (2.5)

<

and

l

...d: _ ’“_'1-~%A —E'—+—i— T’—‘O_ 2.6
[491 (A B ?2. 93 Qq):l : (2.6)

These are the equarions to be treated here.

PART A. WEB APPROXTMATTION

3, Wave function between turping points

Under the assumption {1.4) of large A, {2.5) and (2.6} may be sclved by the
WKB approximation. By (2.4), it is sufficient to solve one of these two

equations; we choose to solve (2.6)}.

1/2

1t is clear that the important scale for ? is A % Accordingly, let

o= AJ/Q'. (.0

In terms of the variable T, the differential cquation (2.6) is

47 +[A(-1+§d+u2_§-__f..)+Al/’“__2]-r:o- (3.2)

It is the presence of the last term that makes it necessary to modify
slightly the standard WKB procedure. The function T is oscillatory ia the

range

pX)

—{+-Bf+

Ac g - _téji > () (3.3)

/

cr

A

%
(1+2) "< :

£ ({ ——%—)_ (3.4

o

where we have chosen, without loss of generality, B to be positive.
[From (2.2), negative values of B can be covered by interchanging ¥ and G.]
In this range {3.4), the WKB approxzimation to T 13

e
T =T, & ¥

(3.3)
o + c.C, 5

where

2 Vo
¢(T)=J\JT(—1+%+~§—1*~#) . (3.8)

In order to determine ib(t), (3.5) is substituted inte (3.2}, and the sum of

1/2

the resulting terms of order A is equated to zero. This gives the first



order equation for TO(T),

Jb

$'() T () +24'e) Ty (%) - ST (t)=0. G

Therefore

T =36 ] Zaﬁjm]

-% 15_ L (3.8
=cont [¢6] {[(1-B- L] s cfi0 B- 40
L L
7 i
st ([(1-B- L) [ B L
-4 i
i, B 49
+L["({“"AB"““52)] [““A—"";] }
The required WKB solution then follows from (2.3}, (2.4} and (3.8):
F e C[(AB“'?- [AB—?]%
KAL? T i
A (—1"":51{ —%—i)l]q-c.c.
UP[ (1J-B’"/A") RS
{ 51' { 'ZIF
GzLC[-(A-B' ‘P;_J] [A-‘-B“—Pa]
Aty Va
 exp [,;Af’f d-r(-iw“? "j?;*'i:;) ]*C'C- (3.9

L
a -
(1-B/AY ¥
Here C is a complex coefficient, and we have chosen the phase of F to be

zero at the geometric average of the two turning peints.

The phase of this complex coefficient can be determined by the following
symmetry [2]:
-L [
2 -
p— (A=) ¢
L
A+B)‘i
LY +m_,-__.__,,
F—:(23)°G,
—
6—=(A3) F.

It follows from {3.9) and (3.10)} that

*
ic=2¢,

Y]
or C = Ne N

where N is the real normalization constant,

The rormalization is determined by

fo(p (F*+6*) = M/A |

which may be approximated by

(A—B)"%
f , dp (F™+ G)=M/A
(A+B) &

The substitution of (3,9) into {3.14) then gives
(A-8) * -4
i 2
aN* [ apl[-(a-3- if)] Z[A+E~-P-;]
(A+B) &

Yo

L
i

(3.10)

(3.11)

(3.12)

(3.13)

{3.18)

(3.15)

+[“(A—B“—i;)] [A B"_“ } M/a,

p



(A-B) :
. -4 -4
N‘—"’:E[AT;&",Y df; 97”{[4.—(A-B)?1][(A+BJ9’“~1]} ] . 69
(A+B) 2

As we shall see in sect. 4, the integral can be expressed by an elliptic

integral of the second kind.

4, Wilson—-Sommerfeld quantization

When A is large, the binding energy can be determined approximately by the

Wilson-Sommerfeld quantization condition [5]

i
Z

' 4
A/L{CP[(}—%) ]-— ci:[(h—g,) J}=n11) (4.1

vhere @ is defined by (3.6) and

¥ = B/A.

It sho;1d be noted that the right-hand side here is ni , net the usual

(n + %)ﬂ . This shift of a half is related to the presence of the sub-
asymptotic terms 2/?'b in eqs. {2.5) and (2.6), and to the boundary con-
ditions. We can see this by considering the WKB approximations to eqs. (2.5)

and (2.6),

A‘/l H’s(fm) = Ps(T,) ] = (ng+ £, (4.3)

At/;L [(bT ('E.”) - 4)1'(’[1'3,)] = (n.r+ é)'][ (4.4)

where

qbs(f)f-fdf ('i+-B-+-—g—-~Z—’Z'A—.,L——i) (4.5)

and

3
B 2 2 { V2
(b«r (I) = fdt (—‘i + Aﬂ'+ ?‘f‘ “%'%“R‘,?z- ?{) . (4.6)
In (4.3) and (4.4), 'Zé’ and ?aﬁl are the larger and smaller positive zeroes

of the integrand in {4.5), while Z.

- and ‘CTZ are those in (5.6). Since

_— is a higher-order term in the integrands,#)is given to the leading
3,1/2

Ta

order by

blr)= L[ b (2) + & (] w.n

We tecall that the presence of the half on the right~hand sides of (4.3) and
t
and [42r (I) ] vanish linearty

P

(4.4) :'Ls. due to the fact that [d).;- [?:)]

at the turning points.

The point now is that

np = ng + 1 (modulo 2), (6.8)

as can be seen from the boundary conditions: An analysis of eq. {2.4) for

small P shows that



_10_

S -
T . Tz, .9
p->0
i.e., with B>0, S and T have for small P opposite signs. A corresponding

analysis of eq. {(2.4) for large ? shows that

LS_. ;;w %[A- m ] ) (4.10)

T

Thus, with A and B positive, $ and T will for large ? have the same sign.
It follows from these results (4.9} and (4.10) that if S has an even number

of zeros, then T has an odd number of zeros and vice versa. This proves

eq. {4.8).

Eqs. (4.7) and {4.8) give immediately the desired result (4.1), with no half

on the right-hand side.

By (3.6), (4.1) is
T G.11)

where

b

U—«g)-
Iy)={ 42 ['(ifg,t—r'1)(l+gr~f1)]
“-Hg)-%'

The task here is to evaluate this integral.

i

(6.12)

This integral can be expressed in terms of complete elliptic integrals of

_11_

the first and secend kinds. The answer can be chtained in a number of
different ways. For example, one way is to recognize that the right-hand
side of (4.12) is a special case of the hypergeometric function, and then
to reduce this special case to elliptic integrals. Here we prefer to follaw

a mere elementary procedure,

The first step is teo take a factor 1:_2 out so that the square root is
-2
that of a fourth—-order polynemizl in T . Iutegrating ~rdt T by parts

so that the square root appears in the denominator, we get

1/

1) = 204 RGO + 1,0, 4.13)

where

k= (&, (4.18)

K(k) is the complete elliptic integral of the first kind, and

B~

IA'?{J.* ”(J—?’)ifd‘c Ii{[“—%ﬁ-—Iz][t’“—(.@?)-i ]}— , (4.15)
c

1/2 1/2

with the contour C around the branch cut from (1+y)_ to (1-y)— in the
clockwise direction. Deformation of this contour to the imaginary axis gives

an alternative form for 11:

oo

1/2 . ~1/2 _ -2
11(y) = (l—yz) Jﬂ dt{-tz [(I—y) LI t2] [(1+y) L t2] - I},
- (4.16)

where the last term comes from the semi-circle at large distances in the

complex plane. The change of variable



.-.12_

e = (o) 7 an © (4.17)

then yields

1/

1) = 200 G R+ 1,00, (4.18)

where

i L
i e\ B . Z
Iat%)""“‘ﬂ); 40 sec*0 [( {{.,.l;,) ({-k sin*B) -~ 4 ] . (4.19)

PR —

Another integration by parts gives

3/2

1,05 = ~2y(1-y) (14} 48 1220 (4 i 2, (4.20)

PR m

This integral on the right-hand side of (4.20) is recognized as the derivative
of K(k). Sinee this derivative can be expressed in terms of the complete
elliptic integrals K(k) and E(k), the final answer for I{y} is a linear com-

bination of these two integrals:

1) = 20149 2 [k - Qemo ], (4.21)

Therefore, for large positive A, the energy En of the n+1 bound state is

given approximately by the transcendental equation

ARV (KR ) - () E () ] =, o

_13_

This result can be rewritten in a number of equivalent ways using the trans-

formation properties of the complete elliptic integrals.

It also follows frem (3.16), {(4.12}, (4.13), (4.15), and (4,21} that the

normalization N is given by

1

N = % [A1/2(1+y)_1/2y(1~y}_ M_1E(k)]_1/2, (4,23)

where y and k are given by (4.2) and (4.14).

PART B. COVERING APPROXIMATION

5. Wave function

In this Part B, we present an approximation that covers both the weak-binding
case [2] and the WKB case of Part A. In the absence of an obvious pname, we
shall call it the covering approximation. However, it should be immediately
obvious that the procedure is far from being unique, and many similar but

distinct methods can be devised.

Because of the inversion symmetry [2] of the differential equations (2.2), it

is sufficient to consider the region

i

P = (A~ B*) " (.1

In the limit of weak binding with A not too large

Bl a1, a=o001), _ (5.2)

(2.2) can be approximated by



de i
Aff" (A-B - =5)f,

4
d’) - ;Z‘Eai? .

(5.3)

The reason for using the coefficient 2B in the second equation, instead of

A*B or 2A, is the desire to keep this coefficient the same as that for G in

-1/2

(2.2) at the turning point ? = {A-B) . In the weak-binding approximation

(5.4)

P=
{:’(P]z f("]) , {5.5a})

and 6(9) = %(r?) ) (5.5b)

The covering approximation consists of modifying (5.4} and (5.5) such that

they are valid when either (5.2) or (1.4) holds.

A most straightforward way of achieving this modification is to compare the

WKB approximations to {2.2) and {5.3). For this purpese, {3.9) is not convenient.

Instead, let J4 and Jl be the WKB phases (see the Appendix),

_4
(A-B)

34(9)'—' f AP'[("A+B+P'"2)(A+B—P"7“)] (5.6)

M~

and

Lol = [ dy [Chemeg™i(2m) ] -

Let us relate ? and q by

This is the generalization
the two WKB approximatiocns

the covering approximation

_.TS_

(Y]) _ (5.8)

of {5.4). With (5.8), it is seen from (3.9} that
differ only by the amplitude factors. Therefore

ig, omitting an overall constant factor,

(5.9)
G(gﬂ: Lole) %(n)
%b(q} U /
where
A+ B - % ) q
F;(?)=(_A +B o+ o )
23 (5.10)
4
J(o("])” ~A+ B+ N ) )
Golp)= 1 (o)
AV TIPS A
-1
and - ;
#,(n) = Lﬁ,(q) .
This approximation {5.9) reduces te (5.5) in the weak-binding limit, and
te the WKB solution when A is large.
For completeness we write down explicitly f(q) and g(q) frem {5.3):
o - Pk
L1 e
s = GBS [k el TR
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where
2= [zn(AﬁB)]UZrL, (5.12)
and  p = (2B - %)”2. (5.13)
Note that
F(?) = f(rl) and c(?) = sy {5.14)
. . ~o1/2
at the turning point ?= q = {(A-B) .

6. Bessel function

In studying the energy levels in the weak-binding approximation, the series
expansion of Kip(z) is used [2,&]. Since the present approximation helds when
either (5.2) or (1.4} appliies, it is necessary to use an appropriate formula

for Kip(z) that holds when

z 44 1, (6.1)
and when

py z % 1. (6.2)

In this section, we obtain this required formula since it does not seem to be

available in the literature.

Wwhen (6.1) holds, then [6]
z P

Vo AT 2 .c.]
ir(” T2 s;fmp)[ " (4-ip) ’ ’ o

whereas when (6.2) holds, one has [6 ]

X ' i
II(Pz_za,) sinl peosh” (&) - (- ) fhn] ww

HL? (Z) = 1[271 EIH;):P

For the present purpose, howcver, this form (6.4) is nct convenient, The
reason is that, in the WKB approximation, as seen from (5.7) or more explicitly

(A.7), it is necessary to use

/2 i,1/2

p=em' e ot e D (6.5)

instead of p. Therefore, instead of (6.4}, we shall use the alternative,

equivalent asymptotic expansion

i .
Hi})(z):ﬁ a":[iPK(PIz_ Zg_) 4 SM[PI Cosh-t('%lj' (P'l" 21)14'7:?'1[] - (6.6)

T4
%
Note the similarity between the amplitude Qf —-21) and the fo(q) of

(5.10).

In the covering approximation, a formula is needed for the Bessel function
Kip(Z} that reduces to (6.3} when (6.1} is satisfied, and to (6.6) when (6.2)

holds. This is accomplished by the Ansatz

4
K.{P(z) = ./QK (PIL* :zl) 4sin[—%rJK(P'J2) + (PK :] , (6.7

where

JK(F',I)'; p' wsh"(—%—) - (P'Iﬂ 1")% _ (6.8)

It will be seen in sect. 7 that (6.7} has precisely the required form.

Clearly, J%K has to satisfy



.18 -

)
~=bdil
JqKﬁUM e ZF for p> 1. (6.9)

It is uniquely determined by a comparison with eq. (6.3), the right—hand-

side of which we rewrite as

T {
sinh (rp) | "(1-ip)]

sin [-F.@n —% + arg F(]-H'.P) 1. (6.10)

Evaluating now (6.7} for 244 p, and comparing with (6.10), we find

o~

L
zZ

A=)

¥4
[Smh(qu) ] ’ (6.11)

where we have also used

o

| r“"‘f’)l = [ﬁf—w—)‘} . (6.12)

The expression (6.31) is seen to be consistent with (6.9).

In order to determine the phase qﬁ( , we expand the argument cof the sine in

{(6.7) for z4£ p. This gives

Pﬂn%—P—J_Ff.@K . (6.13)

Comparing with (6,10}, we find

4)}( = arg F(I-H.P) - Fﬁn P' + P (6.14)

As p~» & , this approaches %1{, in agreement with (6.6). The desired

approximation to the Bessel funetion is thus

_19_

i

! é‘ __7_[__]3: " ‘#
K;P(i‘-):(j%) [Sinh ('RF) (P' - % )
Doy (6.15)
R -1 ! P z .
-sin [F cosh ('%:)‘ ‘};P.(P' —zl) +ar3F(!+xP)—rﬁnF’+P])
valid when either {6.1) or (6.2) is satisfied,.
7. Energy levels
The energy eigenvalues can for example be determined using the inversion
symmetry [2],
174
P = COMED o, .5

where ? and ? are two points whose geometric mean is the symmetry point, Ps,

2)—1/2 (7.2)

3

93 -l

and with n labelling the levels.

The way we determine the energy is to compare two expressions for F(?}, one
obtained directly from (5.9}, and one from (7.1). From eqs. {5.9), (5.10),

(5.11), and (6.7), we have

i

Fol=ReA (G on (a0 ool « 6] oo

We note that this expression, because of the approximation used for the Besscl

-1/2

function, is not valid arouud the turning point, ? = (A-B) . On the other
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hand, we shall see that it is crucial for an accurate determination of
the energy that the radial variable ? {orAq } appears only in Fo(?) and
in the argument of the sine. This has been achieved through the introduztion

of p' in sect. 6.

We next turn to the evaluation of G(?) in the matching region. From {5.%9),

(5.10), (5.11) and (6.7), we have

G(p)= %%%)) (%E;B)zﬂK

(7.4}

Hien

1
_j&_{}zi(’fl_f) 4sin[—§TJx(Pﬂ )+ CI)K ]}

2= [aB(AB)] Y

The differentiation yields

L
L A z* £ [ ) 4
Z 2 (P,z_ z7-) {i— +W - —-—Pg- p"-_'zz} H!xP[%JK(P:E)‘Q’@K]-PCC (7.5
-t/4
The second term, which arises from differentiating the factor (p' -z ) ,

is small in either limit, (5.2) or (1.4). We therefore neglect it. The ex-—

pression (7.5) can then be rewritten as

o) (e} £ elB qahed e

Here, the factor P'/VP”E-ZZ that appears in the curly bracket can be

approximsted by one. In the limit of weak binding, 22<Z p'z, whereas in Lhe

limit (1.4}, the second term, -ip, dominates anyway. With

(7.7

[ .
e S-ip
e‘!sﬁz' )

P

*
Note that qﬁsis real because of (6.5).

- 21-...
the expression (7.5) can then be written
L !
E(pt- 2)7 sin['%? Jg(p',z)-*@i(- Yy ] ) 7.8

and

L i
Glo)x 2= A (GB) om0 paml ) e -t | 0

By the inversion symmetry, eq. (7.1), we have

n+i + i’
F(@):(—i) é(?)AK(ARB_B) sin[-f}%JK(P’,zh@K»% ], 7.10)

whereas evaluating (7.3) at ?, we get
A-B ¥ '
Pl RElA(55) D)+ 1, 0

vhere

i ' j‘i_
x= [QB(A"B)] N, = [Q'B(A'B)] n (7.12)

and with ﬁ related Lo ? through (5.8). Comparing the right-hand sides of

eqs. (7,10} and (7.11) we shall obtain an equation for the eigenvalue B.
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Since [cf. eqs. (5.10) and (7.2)]
i
. N 7.
E)(?) Fo(-?-)=('%—:m%) 1

we are left with the phase matching condition

n

(1) Hsm[-lg.-JK(p',Z) + ‘?K - Yg ]

7

= sin [—%- JK(P','I‘) + (I)K ]
which we rewrite as

-% [JK(P"Z)"' JK(p’,i)] +2<§K— Y = ntt .

By comstructiom, the phase function JK(P',I) is related to J?.(?) [cf.

(5.12), (6.8), and (4.7)],

JK(f;z)-—- T (n).

Further, using eqs. (5.8) and (A.13), we get

JK(P";L!)-FJK(P',i) = J,( (P)+ J‘ (-p) = @WKB )

and (7,15} can be written as

_1;_'¢WKB+‘2@K—‘HUE = N .

(7.13)

(7.14)

(7.1%)

(7.16)

(7.17)

(7.18)

_23_

The matching condition is thus independent of ?. This has been achieved
through the introductien of P' in the approximation to the Bessel function
in sect. 6, and through the approximations involved in getting from (7.5)

te (7.8).

Eq. (7.18) determines the energy in the covering approximation. All quantities

on the left-hand side depend on B. Written out explicitly, B is determined by
Lt L i
2*55) w (s [KOE) - 452 E(T%) ]

+2[argM(1+if28-F)- {a8-§ £ Y25 + {28- § | (7.19)

- tart[2V2B-F | = nn.

When A becomes large, the left~hand side approaches 4)NKB’ and (7.18) or
(7.19) reduces to (4.22). Similarly, when B is close to A, we can expand

the elliptic integrals and thus recover the weak-binding approximation of

ref, [2].

8. Numerical results and discussion

Some numerical results for the binding energy are given in table 1. For a set
of A-values ranging from 0.5 to 100, we compare the accurate results of paper I
[3] and those of the weak-binding approximation [2] with those of the WKB
method (part A of this paper) and with those of the covering approximation

(part B of this paper). Five levels arec considered, n = 1 to S.
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For large values of A, where the WKB method applies, it gives excellent
results. They are best for the most strongly bound states. [It is amusing
to note that the zero—emergy level (n = 0) is exactly given by the WKB
result.l We note that our analytic result for the WKB limit differs from

that of ref. [1].

The results of the covering approximation are generally excellent for all A.
When the binding is weak, they are comparable with, or even better than the
results of the weak-binding approximation. Likewise, when A is large, they

are comparable with the results of the WKB method.

The basic idea of the covering approximation is to obtain a result that is
valid under two or more distinct circumstances. In spirit it is related to
the uniform approximation of Langer [7]. It may have important applicatioms

in many branches of physics, and should be explored systematically,
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Appendix. The phase integrals J!(Q) and Jz(q)

For an evaluation of the wave function in the covering approximation, one

needs the explicit phase integrals J. and 32 defined by eqs. (5.6) and (5.7).

1

Integrating by parts, we find

3= {[ AB)9+1][(A+BJP 11}

(A—B) €A.1)

do'
+24] {[-(A-B)p+ 1][(AB)p - 1]

(A ’a)‘i

p dﬂ

B

The two remaining integrals can be expressed in terms of incomplete elliptic

integrals. With

1/2
_
k = (Kxg) {(A.2)
and
2 1 2
sin“f = — [1-¢a-B) , (4.3
kz[ P ]
we find [8]

awﬁw%{Lovwf+uum8m%¢]}i

TR [ ) Flok) - (222)*E (o k) ]

(A.4)
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where F and E are incomplete elliptic integrals of the first and second

kind, respectively,

The integral 32 is elementary. With a suitable charge of variable,

= [1 - {(A-B) q'l ]1/2, we immediately get
1+t
Jap = @[ F g e ] .9
max
vhere
t/2
Cnax [‘ -~ {A-B) q2 ] . (A.6)

Alternatively, we can write (A.5) as

i

(r)) ZIB) {cosh ({{— )~[i--(A—B)rf]z}_ (4.7)

Expanding the elliptiec integrals for small values of e , we find

3
¥ Y
SV (-8) s ored) @y
where
x = (a-p) V2 p >0 (4.9
Similarly,
% {‘ (a-m¥* y3/2 + @(3‘5/2), (A 10)
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with
y = (a2 -9 >o0. (A.11)

Near the turning point, the condition {5.8) thus reduces te {5.4), as it
should.
Finally, we quote two useful properties of Ji that can be shown using

properties of the elliptic integrals:

7 9 -1/4
(i) At the symmetry point, ?s = (A"-B") .

172 /2
Jipp =4 [(m) ke - &2 s ] (a.12)

where K and £ are complete elliptic integrals of the first and second kind,

respectively,

(ii) The sum of the phase functions 31 at two points ? and ? related by the

icversion symmetry (7.2) is a censtant,

Jip + @ = 20,090 - a1/ 5 By VWL

vhere I is defined by eq. (&.21).
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Table

Table

Exact:

WBA:
WKB:
CA:

(Some

caption
1.  Binding cnergies (E-M}/M vs. A = %[q]K .
Numerical results of paper I [3],
Weak~binding approximation of ref. [2],
Part A of this paper,
Covering approximation, Part B of this paper.
entrics are left blank because of limited computer

accuracy.)
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Table 1
A Method [n = 1 n=2 n=73 n =4 n =5
Exact ]4.8697-107%3.4467.107 | 2.4337 70710
. -4 -7 -10 -13 - 16
0.5 |WBA 4.8757-10_3 3.&4&7-10_6 2.4336-10_9 1.7193-107 71,2147 10
WKB 1.0939-10 "} 2.0439-10 "] 3.8163- 10
CA 4.8715-10 " 3.4447-1077| 2.4336 107 '
Bxact |5.4882107°}4.7757.107°|4.1337-1077 |3.5777-107° |3.0964-10" "
o |vma 5.5%86'10:2 4.?762-10:: 4.1337-1022 3.5777-10:: 3.0964.10 1!
WKB 6.8793-10 ~|8.1078-10 °|9.5370-16 ' [1.1217-10
cA 5.4994 1073] 4.7759-107°| 6. 13371077 | 3.5777-107°
Exact |2.3610-10 2] 9.2814-10 °|3.6214-10 2 | 1.4118.10 ° 15.5038 10 °
2.0 |WEA 2.3831-1072[9.2902 107" 3.6216-1073 | 1.4118-10™% [ 5.5038. 107"
WKB 2.5239-10 %] 1.0939 1073} 4.7296 107> | 2.0439-10"° [8.83 .1078
CA 2.3698-10 2[9.2837-10 *13.6215.107° | 1.4118.167° | 5.5038.107%
Exact |7.9322-10%]1.0610-10 %[ 1.4227 107 | 1.9036 107" | 2.5453-10 >
5.0 |uBA 7.9680~10:§ 1.0652-10:2 1.4241-10:3 1.9039-10:2 2.5454-10::
WKB 8.0454-10 °11,0990+10 “|1,5008-10 ° | 2,0715-10 ' | 2,8407 -10
CA 7.9638 10 21,0619 .10 2} 1.4230.10 > | 1.9036 10" | 2.5453-107°
Exact | 1.4522-10 1|3.4786-10 2| 8.4778-10 > § 2.0656-10 > | 5.0275-10""
0.0 |¥BA 1437610 '} 3. 4960 1072} 8.5026-1072 | 2.0679 1077 | 5.0294 107"
WKB 1.4589 107 | 3.5169 1072 8.6384-107% | 2.1227-107° [ 5.2119 -107%
cA 1.4569-10"'13.4824 -10 2 8.4809-107> | 2.0658 107> | 5.0277 107"
Exact |2.2492+107'[8.0174-10 2| 2.9480-10 % | 1.0895+107° | 4.0274- 107"
20.0 |WBA 2.1726-10" | 8.0199- 107 2| 2.9605 1072 | 1.0928-107% | 4.0341-107°
VKB 2,2527.10" "} 8.0454-107%| 2.9654- 107 | 1.0990 1077 | 4.0743 107
cA 2.2545 10" | 8.0256 -1072| 2.9454.10"° | 1.0898. 107" | 4.0278 107>
Exact [3.3857-107 ' [1.7016-107 '|8.9098107% | 4.7258-107% | 2.5175-1072
so.0 |HBA 3.1295-10:: 1.6683'%0:: 8.8929.10:2 4.7405-10:2 2.5270-10:2
WEB 3.3871-10 ' [1.7030-10° '§18.9214-10"° | 4.7347-10 ° | 2.5239-10
CA 3.3905.10 ' 1.7029.107'18.9138 .107% | 4.7271.107% | 2.5180.107%
Exact |4.2299.107'|2.5244.107 "] 1.5718. 107" | 9.9489-107% | 6.3440.1077
1000} 784 3.7606-307 [ 2.4110-10" '} 1.5457-107" | 9.9093-107% | 6.3529 1072
W8 [4.2305-107'|2.5251-10" [ 4.5725-107" | 9.9550-107 | 6.3490-1072
ca 4.2338-10" | 2.5257. 107 15724 107"  0.9514.107% | 6.3451-1072




