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Abstract -----

In the first part of the paper, we give analytic, approximate results 

for the Kazama-Yang monopole-fermion binding energies and wave functions, 

valid for large values of A= I Z !eg!K , where K is the extra magnetic 

moment. In the second part, more general results are obtained for the 

same problem that are valid when either A is large or the binding is 

weak. Numerical results for the binding energy are tabulated and compared. 
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1. Introduction 

The monopole-fermion bound states ~"ere first investigated by Kazama 

and Yang [t]. Later, additional results have been given (2,3]. The monopole 

is assumed to be infinitely heavy, and the Hamiltonian for the fe-rmion of 

spin i is [t) 

1-l = ~·("F- ZeA) .. ~M- K't~ 0'.-r /(.?.Mr') ( 1. 1) 

where the notation is that of refs. [1, 2] 1 and (3]. 

While the direct numerical approach of paper I [3] leads to very accurate 

results, it is also useful to have approximate, more explicit formulas. So 

far, the limiting case that has received most attention is that of weak 

binding 

M - E << M ( 1 .2) 

for the lowest angular momentum j : lqj - ~· Results in this case have been 

given in ref. (2) for the monopole and in paper II [4] generalized to the 

dyon. In paper II, it is assumed that A is neither large nor small, \o.'here 

1 
A "2 K fqf · ( 1. 3) 

A second limiting case of interest is 

A>> 1. ( 1 . 4) 

This case is of possible relevance for a description of monopole-nucleus 

-·- ·- ,._ 
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interactions at large distances. In Part A of this paper, consisting of 

Sects. 3 and 4, this case (1.4) is treated by the WKB approximation for 

bound states of the lowest angular momentum. 

It is then natural to raise the question whether the two approximations, 

the one in reference [2] for the case ( 1. 2) and the one in Part A for ( 1 .4), 

can be combined. In other words, is it possible to find an approximation 

that covers both cases, i.e,, is valid whenever either ( 1, 2) _£E { 1 .4) holds? 

This turns out to be the case, and in Part B of this paper such an approxirua-

tion is presented, together with numerical results for comparison with those 

from Part A and refs. (1 ,2]. 

2. Eigenvalue problem 

With the standard decomposition for bound states of the lowest angular 

momentum (1-4], the eigenvalue problem 

H'J'"E'f' (2. 1) 

reduces to t~~o coupled ordinary differential equations 

J.G = ( A - !:) - 1. ) F I 

(2.2) cA 9 ~ 

l£~ (A-+ 'B -_l,)c;., 
J. ~ ~ 

where ~, B, F, and G are defined in refs. [1-4). LetS{~) and T{~) be the 

sum and difference of F and G 

S "' F + G 
(2.3) 

T F - G, 
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then 

( /
9 

- A + ~~ ) S = - b T 
(2.4) 

( f
9 

+ A - ~,_ ) T = b S 

Thus S(~) and T(~) each satisfy a second-order ordinary differential equation 

with irregular singularities at 0 and I)() 

~:2. 

[ .l.f 
and 

d..'2. 

[ 19' 

(A,_-'b,_- 2A ~ 
-+-
~· ~3 

(K--P/- 1-A 
9" 

:<. 
9" 

+ _!_ )] s = 0 
9" 

+-
1 )]T=0 9" . 

These are the equations to be treated here. 

PART A. HKB APPROXIMATION 

3, W~ve function between turning points 

(2.5) 

(2.6) 

Under the assumption (1.4) of large A, (2.5) and (2,6) may be solved by the 

WKB approximation. By (2.4), it is sufficient to solve one of these two 

equations; we choose to solve (2.6}. 

It is clear that the important scale for ? . -1/2 . 1 
~sA , Accordingly, et 

? = -c A-•J.,_ (3. 1) 

In tern1s of the varinble 7:, the differential cqu•ttion (2.6) is 

f'T 
kc~ 

+[A(-.l+ 
IS,_ 
-+ 
A"" 
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_2_ 
-z:2 

i 
y_¥ 

) + A·!~ ;,} T = 0. 

It is the presence of the last term that makes it necessary to modify 

slightly the standard WKB procedure. The function T is oscillatory in the 

range 

or 

-J.+ _K+ 
A' 

2 

7:' 

( 
'8 - •/-,_ 

{+A) <T< 

i 
-z:" 

) 0 I 

( { - ..]_ )- y,._ 
A J 

where ~Te have chosen, without loss of generality, B to be positive. 

(3 .2) 

(3.3) 

(3 .4) 

[From (2.2), negative values of B can be covered by interchanging F and G.] 

In this range (3.4), the WKB approximation toT is 

. •h. 
T "' \ (-r) e" A <P !-z:) + c.c. 

J 

(3.5) 

where 

cPiT) = [J-r (-1+ -p,• + _.?::... _ _ L /"-
A' r• r" 

(3.6) 

In order to determine T
0

(-z;), (3.5) is substituted into (3.2), and the sum of 

the resulting terms of order A
112 

is equated to zero. This gives the first 
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order equation for r
0 

('t), 

<P"(-r) 'o (-c)+~ cp'(-c) la '(r)- ~~ lo (-c) = 0 . 
Therefore 

I 

- { ) [ ' "-:;: [ J h 10 -r = </> {-c)l up '- r' <P (z:) J 

- .!. J. .!. 
[ . ,l'{r o 1 ]". "8 i]"} =wst <j>{-c)j ["(~-A -1) +~[i+A-r 

1. !. 

[ [ B 1 )] " [ 13 i ]- " = CoiUt - ( {- A- r• { -r A- -c'-

- 1 I 

[ 13 L )] " [ "B /. J'i 1 +i.-(L-7\-"? i·t-A--c' . 

The required WKB solution then follows from (2.3), (2.4) and (3.8): 

F [ l ]-~ [ l ] t ""c -(A-13- -p:.J A+E- v· 
A'l~f 

r '"f 13'" ;;. l •J,_] · "'f Lifi do(- L -r ---;: + -,_ - --.; ) + c. c. 
{l-13'/A'"f~ A " r. 

J._ l 
L ~"[ ! -'i G "'.c.e [-(A-iS- r)J A+-s- D'"] 

'Ia. r 
'IJA p -p, .,_ 2. i •;,_ -~,r[•A' d-r(-L+-+----) 

L A2 -z:' lq 
(Hi'IA'f q 

] +c. c. 

Here C is a complex coefficient, and we have chosen the phase of F to be 

zero at the geometric av~rage of the two turning points. 

(3. 7) 

(3 .8) 

(3. 9) 
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The phase of this complex coefficient can be determined by the following 

symmetry [z]: 

- L 
~---'> (A"'-- t;'")., ft, 

J._ 

F __,. ±( t~ )" G 
J 

I 

G-- ±(~~~)~F. 
It follows from (3.9) and (3.10) that 

or 

+ * iC = - C , 

C = Ne =t: i.:rr./1/ 
' 

where N is the real normalization constant. 

The r.ormalization is determined by 

"" fJ9 ( F2.+ G'") = M/A 
0 

which may be approximated by 

L 
(A-llf z 

f dp(F'+C?/J=HIA 
lA• or~ 

The substitution of (3.9) into (3.14) then gives 
- L 

IA-"8) "- _ 1 { k 
;n('· J &p{[-(A-"8- -4:)] "-(A+"B- yd 

(A+llf l, f 
1 ~ 

(3. 10) 

(3.11) 

(3. 12) 

(3. 13) 

(3.14) 

(3. 15) 

{ "-[ J. ]-2.1 +[-(A-13- f)] A+13- 7 =M/A1 
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or 
- k 

CA-il) . 
1 

_1 

~"' H AM'B S &r 9'-f[i-(A--s)?~[<A+B)f-i]f"" ] "" 
_l 

(A+"B) 2 

As we shall see in sect. 4, the integral can be expressed by an elliptic 

integral of the second kind. 

4. Wilson-Sommerfeld quantization 

(3. 16) 

When A is large, the binding energy can be determined approximately by the 

Wilson-Sommerfeld quantization condition [s} 

-~ A1
'" { <P[( 1-~1 ] cp[(l+~f! J } = nn, 

where <P is defined by (3.6) and 

Y = B/A. 

It should be noted that the right-hand side here is n~ , ~ot the usual 

( 4. 1) 

(n + t)lt This shift of a half is related to the presence of the sub­

asymptotic terms 2/?~ in eqs. (2.5) and (2.6), and to the boundary con­

ditions. We can see this by considering the WKB approximations to eqs. (2.5) 

and (2.6), 

A1
'- [ <Pil (TSI) - <Ps ( Ts1) ] = ( ns + k h, (4 .3) 

- 9 -

lh_ J A [<Pr(rTl)- <Pr(rr:J ~ (nT+ ~)Tl, (4.4) 

where 

13 2 __2:._ - ____2:__ - _!_ tf ... 
tPs ( r) = J dr (- 1 + A2 + <:'" r" Av.. r" ) ' (4.5) 

and 

i" 7.. 2 i •/,. 1\ (r) ~ J d:r ( -1 + A'-+ ? + -c' A'l•- ? ) (4. 6) 

In (4.3) and (4,4), TSI and T$2. are the larger and smaller positive zeroes 

of the integrand in (4.5), while rTl and t:'rz are those in (4.6). Since 

~72 is a higher-order term in the integrands,qb is given to the leading 
?:A 
order by 

cp{r) = H <Ps (z:) + <PT (-c)] · 

We recall that the presence of the half on 

(4.4) is. due to the fact that [ c:P~ (z:) J:t. 
at the turning points. 

The point now is that 

nT "" n
8 

+ 1 (modulo 2), 

the right-hand sides 

and [ 4>~ (!) J'" 

(4.7) 

of (4.3) and 

van~sh linearly 

( 4 .8) 

as can be seen from the boundary conditions: An analysis of eq. (2.4) for 

small p shows that 



_f_ 
T 

~ 

p~o 
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113 p~ 
;/. J (l •. 9) 

i.e., with B>O, SandT have for small p opposite signs. A corresponding 

analysis of eq. (2.4) for large f shows that 

__s_ 
T 

~ 

p.., oo 

i 
'B [A- VA'- B2 ] (4.10) 

Thus, with A and B positive, S and T will for large y have the same sign. 

It follows from these results (4.9) and (4.10) that if S has an even number 

of zeros, then T has an odd number of zeros and vice versa. This proves 

eq. (4.8). 

Eqs. (4.1) and (4.8) give immediately the desired result (4.1), with no half 

on the right-hand side. 

By (3.6), (4.1) io 

A1/2I(y) nlt, 

where 

-k 
(1-'t) 1.. 

1(~)= J h: [- (l-t- .- 2 )(l+~-c-1.) r 
- 1 

(l+lj) 1 

The task here is to evaluate this integral. 

This integral can be expressed in terms of complete elliptic integrals of 

(4.11) 

(4.12) 
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the first and second kinds. The answer can be obtained in a number of 

different ways. For example, one way is to- recognize that the right-hand 

side of (4.12) is a special case of the hypergeometric function, and then 

to reduce this special case to elliptic integrals. Here we prefer to follow 

a more elementary procedure. 

The first step is to take a factor r-2 out so that the square root is 

that of a fourth-order polynomial in 'f., Integrating J J.r: 1:-l. by parts 

so that the square root appears in the denominator, we get 

I(y) 

where 

k 

2(1+y)- 112 K(k) + r
1
(y), 

1/2 
(3.L) 

1+y 

K(k) is the complete elliptic integral of the first kind, and 

I -i 
I1 (~J~ -(1-f)" f J-n"{[U-~F 1-c'][c'-U+~f 1 ]} , 

c 

(4. 13) 

( 4. 14) 

( 4. 15) 

-1/2 -1/2 
with the contour C around the branch cut from (1+y) to (1-y) in the 

clockwise direction. Deformation of this contour to the imaginary axis gives 

an alternative form for I
1

: 

I 1 (y) 
2 1/2 

( 1-y ) 
"" f dt { t

2 

-QO 

[ 
1 2]-1/2 [ 1 ']-1/2 

(1-y)- + t (1+y)- + t -

where the last term comes from the semi-circle at large distances in the 

complex plane. The change of variable 

1}, 
(4 . 16) 
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t (1+yJ-
112 tan9 

then yields 

I 1 (y) -2(1-y)(l+y)-1/"K(k) + I2(y)' 

where 

1l. 
L ~ 

I~!~)= (1-~) ~ J Je sec~e 
1 - ~ [ ( t ~ ) 'i ( {- k~ sin' e) 

-l!. .. 
Another integration by parts gives 

~ 
I2(y) 

-3/2 f •e . 2!, 2 . 29 -3/2 
-2y(1-y)(1+y) 0. s~n 1.7 (1-k s1n ) • 

-Jt .. 

(4.17) 

( 4. 1 8) 

1 ]. (4. 19) 

(4.20) 

This integral on the right-hand side of (4.20) is recognized as the derivative 

of K(k). Since this derivative can be expressed in terms of the complete 

elliptic integrals K(k) and E(k), the final answer for l(y) is a linear com-

bination of these two integrals: 

I (y) 2(1+y)-
1

/
2 

[K(k) - (1+y)E(k)]. 

Therefore, for large positive A, the energy En Of the n+1 bound state is 

given approximately by the transcendental equation 

?o{A v H~E. [ f<( v ~:~~) -( M~.~!)) E ( v ~:£.) l = YlTC 

( 4. 21) 

( 4. 22) 
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This result can be rewritten in a number of equivalent ways using the trans-

formation properties of the complete elliptic integrals. 

It also follows from (3.16), (4.12), (4.13), (4.15), and (4.21) that the 

normalization N is given by 

N "-l: (A1/2(1+y)-1/2y(1-y)-1M-1E(k)r1/2, (4.23) 

where y and k are given by (4.2) and (4.14). 

PART B. COVERING APPROXIMATION 

5. Wave function 

In this Part B, we present an approximation that covers both the weak-binding 

case (2] and the lfKB case of Part A. In the absence of an obvious name, we 

shall call it the covering approximation. However, it should be immediately 

obvious that the procedure is far from being unique, and many similar but 

distinct methods can be devised. 

Because of the inversion symmetry [2] of the differential equations (2.2), it 

is sufficient to consider the region 

? ;,; (A'- 'B') 
! • 

In the limit of weak binding with A not too large 

A-B«1, 
A 

A 

(2.2) can b0 approximated by 

0( 1) ' 

(5. 1) 

(5. 2) 



L<J: = 
J-7 

il:: 
J.7 
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( A - '8 - ~' ) f ' 
(5. 3) 

:n> '3' 

The reason for using the coefficient 2B in the second equation, instead of 

A+B or 2A, is the desire to keep this coefficient the same as that for G in 

(2.2) at the turning point r == (A-B}·-
1

/
2

, In the v..Teak-binding approxi~lalion 

~ = 7 (5.4) 

J='(pl= f(~) (5.5a) 

and Gl~l= ~J(1). (S..ob) 

The covering approximation consists of modifying (5.4) and (5.5) such that 

they are valid when either (5.2} or (1 .4) holds. 

A most straightforward way of achieving this modification is to compare the 

WKB approximations to (2.2) and (5.3). For this purpose, (3.9) is not convt•nit•nt. 

Instead, let J~ and :J2,. be the \,IJ(B phases (see the Appendix), 

-i 
(A-'B) 1 

J~ ( 9) = J d p' [ (-A+ E + (
2

) (A+ 'B - (
2

) ] -;: 
(5. 6) 

v 
and 

-k 
(A-1\) . 

J~J1) ~ f J7' [(-A+'B+1'-~)(?.1l) ]>. ('. 7) 

1 
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Li.'t us relate ~ and t1 by 

J,(p) = j,_ h) (5.8) 

This is the generalization of (5.4). With (5.8}, it is seen from (3.9) that 

the two WKB approximations differ only Ly the amplitude factors. Therefore 

the covering approximation is, omitting an over a 11 constant factor, 

where 

and 

Fo (p) 
F(?)= fol1) f(1) 

G(?) = ~o.hl 
'to(~) ~(7)) 

I 

A + T, - r'- ) i1 ~(?)~(_A+B+o-" , 

2'8 * fa(~)= (:A+B-:;r) 

Gol?l= j_ ~(9ri, 
t.l~l = i. fo(1f

1 
. 

This apvroximation (5.9) reduces to (5.5) in the lveak-binding limit, and 

to the 1-/KB solution when A is large. 

For completeness we write d01m explicitly f(1) and g(1) from (5.3): 

f (~) 1/2 K. (z), 
z 1p 

g(1) 
A-IJ1/2d[!/2 l 
c~, J ~d z K. (z) , _, z 1 p 

(5.9) 

( 5. 1 0) 

( 5. 11) 
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where 

z = (2n(A-B)] 112 '1_, 

and P " (2B - 1_) 1/2 
4 

Note that 

F(~) = f(']_) and G(~) = g('[) 

at the turning point ~"' '1 "' (A-B) -l /Z, 

6. Bessel fu~ction 

( 5. 12) 

(S. 13) 

(S. 14) 

In studying the energy levels in the weak-binding approximation, the series 

expansion of K. (z) is usee\ (2,4]. Since the present approximation holds when 
<P 

either (5.2) or (1.4) ap;:>lies, it is necessary to use an appropriate formula 

for K. {z) that holds when 
<P 

z <.~ 1. 

and when 

P> z')'> 1. 

(6. 1) 

(6.2) 

In this section, we obtain this required formula since it does not seem to be 

available in the literature. 

, holds, tbcn (6) When (6 \) 

, . ("fr 
I(F(I)"' -•1C [ ?.. 

,?.sir.h(i1p) rl~->il 
- c. C.] , (6. 3) 
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whereas wlH:n (6,2) holds, one has [6] 

1 - 1 . L 

K ( ) .r.:-: - ;p1( ( 1 ) q . [ -I( p) ( ) ~ } l •r l " V.Zll e ·I r- l
2 

S•n peosh 1f - f- )!
1 

+ q1l . (6.4) 

For the present purpose, hm1cver, this form (6 .4) -is not convenient, The 

reason is that, in the WKB approximation, as seen from (5.7) or more explicitly 

(A. 7), it is necessary to usc 

p' = ( 2B)1/2 = (p2 + 1)1/2 
4 

instead of p. Therefore, instead of (6.4), >ve shall usc the alternative, 

equivalent asymptotic expansion 

-;t 1( t. 2 4 l -l l ,1. 1. "'i J f; 
I _1 J 

k'.:p(")"' 1t e ~ (p-- z) sin[p cosl, ({)-(p -2) +~·J!] 
-t 

(6.5) 

(6.6) 

Note the similarity between the amplitude (p'"'- 22.) and the £ 0 (~) of 

(5. 10). 

In the covering approximation, a formula is needed for the Bessel function 

K. (z) that reduces to (6.3) when (6.1) is satisfied, and to (6.6) when (6.2) 
<P 

holds. This is accomplished by the Ansatz 

-4 
K.:p(<)"'AK((-1 2

) Sin[tJh',t)+ PK], 
where 

JJr', 1) ~ p' cosh- 1 
( -r;-) 

L 
( p' 2- 1o ~ ) ~ 

It will be seen in sect. 7 that (6,7) has precisely the required form. 

Clearly, JiK lus to satisfy. 

(6. 7) 

(6.8) 
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AK ~(a;' e-~prr for p }> 1. (6.9) 

It is uniquely determined by a comparison with eq. (6.3), the right-hand-

side of which we rewrite as 

7( j 
Sinh (np) 

7
) r""c'-1--.i.p""'J I Si'J[-rln t + ar:~ rU+.i.p) J. (6. 10) 

Evaluating now (6.7) for z~.( p, and comparing with (6.10), we find 

l .!.. 
'"[ 7( ];2. j/K "' ( t) Sinhf1!P) ' 

(6.11) 

where we have also used 

L 

" I rU-<p)l ~ Lintt:.rp) ] (6.12) 

The expression (6.11) is seen to be consistent with (6.9). 

In order to detennine the phase cpK , we expand the argument of the sine in 

(6.7) for z<~ p. This gives 

p Ln 2f - f + PK (6. 13) 

Comparing with (6.10), we find 

PK = a.r:~ rU+ip)- pQn p' + p . (6. J !1) 

As p """>(X) , this approaches -i-n:, in agreement with (6.6). The desired 
" 

approximation to the Bessel function is thus 

- 19 -

I L 
' k [ 1( ]" -q l{p(:~c)o:(ip) s;niT;lp) (r,-:t,) 

J 

. Sin [ F cosr'( -f)- t(r•'-- il.f +ar1 r(l+it)- r Pn p' + f] 
(6. 15) 

valid when either (6.1) or (6.2) is satisfied. 

7. Ene:gy levels 

The energy eigenvalues can for exalllple be determined using the inversion 

symmetry [ 2 ], 

1/4 
F(o) = (-l)n+l ("'!'.) G(D) 

) A-B J ' 
(7. 1) 

where ~ and y are two points whose geometric mean is the synunetry point, Ps, 

? ? = ?; (A 2 - 82)-1/2, (7. 2) 

and 1vith n labelling the levels. 

The way we determine the energy is to compare two expressions for F(~), one 

obtained directly from (5.9), and one from (7,1), From eqs. (5.9), (5.10), 

(5.11), and (6.7), we have 

.!. I 

F (vl"' F0 i?)JtK (~-::)"sin ( y 0/U:!.'tl(A-B)]
2 7) + cPK] (7.3) 

We note that this expression, because of the approximation used for thl' Ressel 

function, is not valid ~rouud the turning poinl, ? = (A-B)-
112

• On the other 
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hand, ~e shall see that it is crucial for an accurate determination of 

the energy that the radial variable ~ (or ·1 ) appears only in F 
0 
(~) and 

in the argument of the sine. This has been achieved through the introdt:~~-i1'm 

of p' in sect. 6. 

We next turn to the evaluation of G(~} in the matching region. From (5.9), 

(5.10), (5.11) and (6.7), ~e have 

L 
G( )= .fJV (A-B)"-A 9 Fa(vl :tl) K 

I - ~ t {r."(p'"--;,') sin[ f.Jif',l)+ cpK n 
The differentiation yields 

L l: 
[••il(A-ll)] ~ 

(7 .4) 

L -h :t . 1 
£.,. (t-:e') g + .<,~·'-1') -1 ~~·-il.zi £"P[tJfp:1)+pK)+C.C (7.5! 

2 -1/4 
The second term, which arises from differentiating the factor (p'

2
-z ) , 

is small in either limit, (5.2) or (1.4), We therefore neglect it. The ex-

pression (7 .5) can then be re,,•-ritten as 

ii(t-z') ~ ~· { i d~-1'' -i-p} J~ £><p[tJJp<,z)+<f>K]+cc. 
(7. 6) 

'/·r:;:-::;, Here, the factor P Jp' -1- that appears in the curly bracket can be 

approximated by one. In the limit of ~.;reak binding, z
2<< p•

2 whereas in the 

limit (1.4), the second term, -ip, dominates anyway. With* 

.--Note that 

. ,, l . 
e-"''6 ,. -':t"---".!..F 

p' 

o/B is real because of (6.5). 

(7.7) 
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the expression (7.5) can then be ~ritten 

%- k (p'~- $~) h sin [ t JJp',:~)+ PK- 4'B ] , (7.8) 

and 

G(~)"' i( JAK(18B)tstn[t¥r:[:zB(A-13)]!~)+.PK-IJls]. (7.9) 

0 p 

By the inversion symmetry, eq. (7.1), ~e have 

_ n•l i (A+B)t . [ , ) F(?)<=(-J) F.()AK ;;!]) S•n tJ/f,l!)+cJ'>K-% , 
0 ? 

whereas evaluating (7 .3) at ? , we get 

1 

F{v)"' fo(9)J1K( ~"-p,'Bf sin(yJ/p',i)+ q,K) 

where 

!. 

:<= rn(A-tl)r~ 
t 

'i= [.:213(A-'B)1 7 

and with~ related to 1' through (5.8), Comparing the right-hand sides of 

eqs. (7,10) and (7.11) we shall obtain an equation for the eigenvalue B. 

(7. 10) 

(7.11) 

(7. 12) 
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Since [cf. eqs. (5.10) and (7,2)] 

l 

~ ( 9) Fo (?) = ( t ~ ) 'i ( 7. \3) 

we are left with the phase matching condition 

n+l ] 
(-J) Sin[ t Jb',:l) + <pK- lj!B 

(7. 1ff) 

=sin [ t J/f:i) + cpK] 

which we rewrite as 

t [Jif',:c) + Jir',i)] + ,:ZpK- lj!B = nlt. (7. 15) 

By construction, the phase function Jip',1) is related to J;z.J?) (cf. eqs. 

(5.12), (6.8), and (A.7)], 

J/f:&)= J"J.I'?) (7. \6) 

Further, using eqs. (5, 8) and (A. 13), we get 

Jif',:c)+J/)>','l) = J~ (p)+ Jl (p)"' pWkB (7. 17) 

and (7.15) can be written as 

-?.- .+. +2. <P - fs = , R . p' '±'wKB K (7. 18) 
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The matching condition is thus independent of ? . This has been achieved 

through the introduction of p' in the approximation to the Bessel function 

in sect. 6, and through the approximations involved in getting from (7.5) 

to (7.8). 

Eq. (7.18} determines the energy in the covering approximation. All quantities 

on the left-hand side depend on B. Written out explicitly, B is determined by 

l. l. l. l ./;iF 
.z( .z~~ • r A'" ( lB r [ ~<(, f!E)- A; -s nif}3B) 1 

+l[t~.rgr(i+;.1:~B-f)- ~2i3-Hnl:2B + i;zB- ~ ] 

- to.,..- 1 
[ 2. V :l B- t ] "' n 1t . 

When A becomes large, the left-hand side approaches cpl.fKB' and (7 .18) or 

(7.19) reduces to (4.22). Similarly, when B is close to A, we can expand 

the elliptic integrals and thus recover the weak-binding approximation of 

.ef. [z]. 

8. Numerical results and discussion 

(7 .19) 

Some numerical results for the binding energy are given in table 1. For a set 

of A-values ranging from 0.5 to 100, we compare the accurate results of paper 

[3] and those of the weak-binding approximation [2] with those of the WKB 

method (part A of this paper) and with those of the covering approximation 

(part B of this paper). Five levels arc considered, n = 1 to S. 
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For large values of A, where the WKB method applies, it gives excellent 

results. They are best for the most strongly bound states. (It is amusing 

to note that the zero-energy level (n = O) is exactly given by the WKB 

resultJ We note that our analytic result for the WKB limit differs from 

that of ref. (1]. 

The results of the covering approximation are generally excellent for all A. 

When the binding is weak, they are comparable with, or even better than the 

results of the weak-binding approximation. Likewise, when A is large, they 

are comparable with the results of the WKB method. 

The basic idea of the covering approximation is to obtain a result that is 

valid under two or more distinct circumstances. In spirit it is related to 

the uniform approximation of Langer [7). It may have important applications 

in many branches of physics, and should be explored systematically. 
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Appendix. The phase integrals J
1 
(~) and J2 Crp 

For an evaluation of the wave function in the covering approximation, one 

needs the explicit phase integrals J
1 

and J
2 

defined by eqs. (5.6) and (5.7). 

Integrating by parts, we find 

1 

J~(9) = t{[-(A-E){+ i][(A+E)p'-1]} "-
J. 

(A-B)"-
dp' 

+lA I 
p {[-(A-"B)p'~+ Jj[(A+B)p"-l]fl~ 

p''" Jp' 
(A-B)k 

-'J..(l-r>'·)r 
{[-(A-B)p""+,l][(A:.:B)p•'"-1]}'1"" 

p 

(A.1) 

The two remaining integrals can be expressed in terms of incomplete elliptic 

integrals. With 

and 

k 
(2B 1/2 
A+ B) 

,in
28 ".!.,- [ 1-(A-Bl p 2 

] , 
k 

we find [s] 
1. 

J,lp)= ~{[-(A-B)p'+f][(A+i3)p'- i]f" 
1. I 

+ 2 fA [ ( A~ 'b t F ( e, k) - ( A; B ) ~ £ c e, k) ] 

(A.2) 

(A.3) 

(A.4) 
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where F and E are incomplete elliptic integrals of the first and seC'.ond 

kind, respectively. 

The integral J2 is elementary. t~ith a suitable char.ge of variable, 

t = [1 - (A-B) 11
'- r/2, we immediately get 

J 2(1) 
(28) 1/2 [ -l: 

1 + t 
ln ~~- max 1 - ,-~ 

max 

- t ] 
max ' 

where 

[ 
1/2 

t = 1 - (A-B) n2 ) 
max l 

Alternatively, we can write (A.5) as 

I j i 
J,_(7) = (;<Bl { cosh- 1

( -lA-B~) - [ l·- (A- B)7' r] 

Expanding the elliptic integrals for small values of e , we find 

J~ = 

where 

t/ ,r:,:; 1. o (B (A- e,)q 
1. 

""" 

-1/2 
x•(A-B) -~>o. 

Similarly, 

£ 
+ V( i, •)' 

J, ·1 fii (A-B)J/4 YJ/2 + 0<,-5/2), 

(A .5) 

(A.6) 

(A. 7) 

(A.B) 

(A. 9) 

(A. 10) 
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with 

y • (A-B)-
1/2 -7>0. 

Near the turning point, the condition (5.8) thus reduces to (5.4), as it 

should. 

Finally, we quote two useful properties of J
1 

that can be shown using 

properties of the elliptic integrals: 

(i) At the symmetry point, 
~' 

(A
, 2 -1/4 
-B ) ' 

J1 <p,l [ 
1/2 1/2 J 

A1/2 (~) K(k) - (A+B) E(k) 
MB A ' 

(A. 11) 

(A. 12) 

where. K and E are complete elliptic integrals of the first and second kind, 

respectively. 

(ii) The sur,l of the phase functions ;:)
1 

at two points y and ~ related by the 

inversion symmetry (7.2) is a constant, 

;)1 (?) + J 1 (~) • zJ1 (?
0

) • A
112

I(B/A) s <PwKB' (A. 13) 

where I is defined by eq. (4.21). 
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Table captlon 

Table 1. Binding energies (E-M)/M vs. 1 
A • z\q\K 

Exact: Numerical results of paper I [3], 

WBA: Weak-binding approximation of ref. [2], 

WKB: Part A of this paper, 

CA: Covering approximation, Part B of this paper, 

(Some entries are left blank because of limited computer accuracy.) 
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Table 1 

F Method n ~ 1 n ~ 2 n ~ 3 11 - 4 n ~ 5 

Exact 4.8697·10 
4 

3.4447·10 
7 2.4337·10- 10 

0.5 
Wl3A 4.8757 ·10-4 3.4447·10-7 2.4336 ·10- 10 1.7!93·10- 13 1.2147-10- 16 

WKB 1 .0939 ·10 - 3 2.0439 ·10-6 3.8169·10-9 

CA 4.8715·10-4 3.4447·10-7 2.4336·10- 10 

5.4882·10 
3 

4.7757·10 
5 4.1337·10 

7 ~9 
3.0964·10 

11 Exact 3.5777•10 

WBA 5.5186·10-3 4.7762·10-5 4.1337·10- 7 3.5777·10-9 3.0964·10- 11 
1.0 

6.8793 ·10 - 3 8.1078·10-5 9.5370·10-7 ~s 
WKB 1.1217. 10 

CA 5.4991! ·10 
~3 

4.7759·10-5 4.1337·10-7 3.5777·10-9 

Exact 2.3610·10~ 2 9.2814·10-4 
3.6214·10 5 1.4118·10~6 5.5038 ·10~s 

2.3831 ·10-z 9.2902·10-
4 3.6216-10- 5 ~6 

5.5038·10-8 
2.0 

WBA 1 .4118 ·10 

2.5239·10-2 1.0939·10-3 4.7296·10-5 ~6 . 10-8 WKB 2.0439·10 8.83 

2.3698·10-2 9.2837·10-4 3.6215 ·10-5 ~6 
5.5038·10-·8 CA 1.4118·10 

Exact 7.9322 ·10-2 1.0610·10
2 

1.4227·10 
3 

1.9036 '10 
4 

2.5453-10 
5 

WBA 7. 9680 ·10 - 2 1.0652·10-2 1.4241·10-3 1.9039 ·10-4 ~5 

5.0 
2.5454·10 

8.0454·10-2 1.0990·10-2 1.5098·10-3 ~4 
2.8407 ·10-s WKB 2.0715 ·10 

7.9638·10-2 ~2 
1.4230·10-3 ~4 

2. 5453 ·1 0-5 
CA 1.0619-10 1.9036·10 

Exact 1. 4522· 10 -I 3.4786·10 
2 8.4778· 10-3 2.0656·10 

3 5.0275·10-4 

1.4374·10-l 3.4960·10-2 8.5026·10-3 ~3 
5.0294 ·10-4 

10.0 
WBA 2.0679·10 

1.4589·10-l 
~2 

8.6384·10-3 2.1227·\0-3 5.2119·10-4 
WKB 3.5169·10 

CA 1.4569·10-1 3.4824 ·10-2 
8.!!809·10 

~3 
2.0658 ·10 

~3 
5.0277 ·10-4 

2.2492· 10 
1 

8.0174·10 
2 

2.9480 ·10 
2 ~' 4 .0274· 10 J Exact 1.0895·10-

2.1726·10- 1 ~2 
2.9605 ·10-2 ~2 

4.0341·10-3 
20.0 

WBA 8.0199 ·10 1.0928·10 

2.2527·10- 1 8.0454·10-
2 ~2 ~2 ~3 

WKB 2.965!!·10 1.0990 ·10 1L0743 ·10 

2. 2545 ·10 -I 8.0256 ·10-
2 2.9494·10-2 ~2 4.027~ ·10-3 CA 1.0898·10 

Exact 3.3857·10 
1 1.7016·10 I 8.9098·10 

2 
4.7258-10 

2 2.5175·10-
2 

50.0 
WBA 3.1295·10-1 1.6683·10-l 8.8929 ·10- 2 4.7405·10-2 2.5270·10-2 

WKB 3.3871 ·10- 1 1.7030·10- 1 8.9214-10-2 4.7347·10-2 2.5239·10-2 

CA 3.3905 ·10 
~1 

1 . 7029' 10 
~1 

8. 9138 ·10 - 2 4.7271-10 
~2 

2.5180-10-2 

Exact 4.2299' 10 1 2.5244 ·10 
1 

1.5718·10 1 9.9489·10
2 6.31!40-10 

2 

100.0 
WBA 3.7606·10- 1 2.4110·10- 1 1.5457·10- 1 9.9093·10-2 6.3529·10-z 

WKB 4.2305·10-l 2.5251·10- 1 1.5725·10- 1 9.9550·10-z 6.3490·10-2 

4.2338·10-l 2.5257·10- 1 1.5724-10- 1 ~2 
6.3451·\0-2 CA 9.95~1_Q 

~. . - .-... -


