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i In a recent paper Erkog and Sever ({hereafter referred to as ES) studied the

Feynmen path integral for a particle moving in the one-dimensional Mie-Lennard-

Jones potentisl ((2",'r')—pot’.errt.:lal)2‘3

. . . ) y ¥
Comment on "Path integral solution for a Mie—type potential" V [ '3 - (£ ] (1
W‘"“‘i’f (%) -2(%)] , x>0

( Vs, &, Y » © ). For a particle described by the one-dimensional

Hamiltonian H = p?/2 + V(x) (M = m = 1) the time evolution Ffrom Mstate a" at
time ¢, to "state b" at time t, is determined by the Feynman kernel K, which
has the followmg phase-space path integral representation {T = t

P. Steiner b
= dx/dt )

. T
KX o lV) = go‘b(%m) exple Soelpn - E;—W»oﬂ ' (2)
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with boundary conditions x{ta) = Xg» x(tt'l) = %, Applying the point cancnical

transformation

4/ -4/7¥
X-GQ ,P-.—.Q ? )QPO (3}
and introducing the new path-dependent "time" s defined by

Abstract ds m (.‘f_) zwd_-b S ()

We comment.on several incorrect results given in a recent paper by Erkoc snd .
& paper by Briog FS obtained the relation (& = dQ/ds)’
Sever (E3). In particular, it is pointed out that their path integral formula

for the one-dimensional Mie-Lennard-Jones potential is wropg, since a quantum

. oo
ES
correction proportional to M2 - which is a consequence of the stochastic nature K( (T’K'blx‘-‘v>= g{g dI‘EI",‘ SLET S&S‘ ( Nl ‘.R-‘.) L {5)
of the Feynman paths - has been overlooked. The correct expression can be ob~ -
tained from a general path integral formula, which we have derived in a previous g
paper. For the particular potential discussed in detail by ES,. we give a complete . . T_" 1{8-‘&' /=3 ZN- ]
path integral treatment, which allows us to derive the energies and normalized * g(:b(aa?)“f’[l“ g*‘ ['20' - E—- (.S)( _Q )
wave functions of the discrete spectrum. ° '
Rere the path integration has to be carried out with the boundary conditions

Qty) = q, = (x /8%, alty) =q = (x/a ) .



Performing the trivial Gaussien path integration over the momentum p in eq. (2},

we obtain for the ome~dimensional kernel the configuration-space path integral

representation
*fh, 1wy
{6)
KTkl V) = § ngt‘S“ £-vealf .
*G‘J'xg,

In a previous paper6 I derived a relation similar to eq. {5) for a class of
nonlinear transformations {equivalent to the transformations (3}, (4)) in the
radial path integral. For three-dimensional quantum systems described by the

Hamiltonian H = P2/2 + V with spherically symmetric potentials V = v(r),

r = |¥|%» 0, the Feynman kernel can be expanded into "partial waves" {see
eq, (1) in Ref, 6}, where the kernel Kg {with fixed angular momentum £ ) is
given by the radial path integral (r& = I-J?(t&)l s Ty T rﬂtb)l }
ri)er,
, F? . !,+A
K‘(T;h.,ﬁ{\/)ugﬁr ur‘itgd,t[ ( D W )]‘i
rlta)siy,

Here the "measure" M is identical to the "measure" X of eq. (), since the
cne-dimensional motion is restricted to the helf-line x » 0. A comparison of
eqs. (6} and {7) shows that the one-dimensional kernel K is identical to the
S-wave { £ = 0) radial kernel Ko {with the trivial identifications V{x)}=—eV(r},
(xa,xb)—v(r&,rb)). This implies that relation (5} derived by ES must be a special

case of our more general transformetion formula derived in Ref. 6.

In this comment I would like to point out that relaticn (5) is incorrect for

¥ %+ 1, since a quantum correction proportional te #1? - which has to be added
to the actlon in eq. {5) ~ has not been taken into account by ES, In Ref., & I
derived & closed expression for this quantum correction from a careful trestment
of the path integral using Feyrman's time lettice subdivision process. The
additional term is & direct consequence of the stochastic nature of the Feynman

paths, The cerrect version of eq. (5) will be given below,

TR N e i B o Y VPO

Since for generel ¥~ no path integrel solution for the path integral in eq. {5)
is known, ES considered the particular case Y = ! as & check of relation {5).
Fortunately enough, eq. (5) is correct for X' = 1, since the missing quantum
correction vanishes in this case (being proportional to (1 -X')). Unfortunetely,
ES rely in their evaluation on an incorrect identificaticn of the eigenfunctions
and of the quantum aumber n, such that the resulting energy eigenvalues and wave
functions {eqs. (29-31) of ES) are wrong. Morecver, we shall see that relation (5)
for ¥ = 1 is nothing else than a complicated rewriting of a simple scaling
relation which relates the kernel K to itself. Thus relation (5) cannot be used
in the cese ¥ = 1 for & genuine path integral determination of the eigenfunctions

and eigenvalues.

A complete path integral treatment of potential (1) with X' = 1 in the three-
dimensional case has been carried out for arbitrary angular momentum in our
recent paperT on the path integral treatment of the hydrogen atom. Speciaelizing
to 8-waves, we shall obtein the complete solution for the one-dimensional

potential (1).

Let us start by casting the rather complicated expression (5), derived by ES, in
a more compact form by following the procedure already used in our earlier

\ . . . 8
papere. For this purpose we introduce the time-independent Feynman kernel

o0 .
VET .
‘&(E:*-.Xal\/)-igu“e, K(Ti% % | V) 8)
°
and the new potential

2 B
(Q bl A - o= - -
V ) ( Q ! Q ‘ (9}

a=i-2 A-f:; ,13:6;5

We then obtain from {5) the equivalent relation

A ety (it las K108 (451 0)



which connects the time-independent kernel of the original system with potential
v{x} (given by (1)) to the time-dependent kernel of a new sysbtem with potential
~ -

v{g) (given by (9)).

Relation {10) can be compared with our transformaticn formula for the radial
kernel {eq. (22) in Ref. 6)9

=%

'&,(E;Xu,&.lV)-% e""(x,xm) S\CLS'K (S, (x..) (_g_) 1w) (1)

which is valid for transformations (3), (L) with €,{> 0. Eq. (11) connects the
time-independent radial kernel k’_ {with angular momentum £ ) of the original
quantum system with arbitrary potential V(x) to the time-dependent radial kernel

KL of & rew quantum system with the new potential

Wi =(g5 @ [Vlea™) - €]

and with effective angular momentum

L=bL{ty) = .?_‘.':'_"!'_. . (3

As already stated after eq. (7}, the kernel k‘ coincides for A = 0 with the

one-dimensional kernel k which we are looking for,., For £ =0 ve get for the
radial kernel on the r.h.s. of eg. (11)

Ky (8500 (4Yiw) = K(S‘;_(’f-.’.‘—-)*'(’-‘-;-ﬁ' Iw=+w) ow

A B . . s 10
(L ‘L(O,Y) = {1 ~-¥)/e )"), where the guantum correction is given by

:f-_C_t'_"Lil e S (15)
U = 2Q* sy Q%

and K on the r.h.s. of (14) denotes the one-dimensional Feynman kernel. We thus

obtain from eq. {11) the transformation formula for the one-dimensional Feynman
kernel on the half-line

.1
de (E;xty XalV) = —-6 ¥ (xaay Sas K(S; (&Y, (aY Iw+W), ¢o

Relation {16) holds for an arbitrary potential V(x), x » 0. For potential (1)

A i~
we derive from eq. (12) W{Q)} = V(q), where V is defined in eq. {9). We are then
led to the relation

A=y % .
AEnalV) = ko ) ® 48 KE Y (1 U)o

Bq. (17) represents the correct trensformation formuls for potential {1) in the

case of transformations (3), (4}.

A comparison of our relation {17} with relation (10), derived by ES, shows that
the two reletions are different due to the gquantum correction U, which is missing
in relation (10). Since the potential U(Q), eq. (15), does not .vanish for AT
we conclude that relation (10) is not correct for “‘ ¥1, i.e. (ES) % k for

¥t

Now let us consider the special value Y = 1. In this case the quantum correction

U vanishes identically, and relations (17) or {10) yield the tranaformation

formula

R(ExXalV, Y mis Sa.s' K(s;

; e_l;%__)v) (16)

N
Here the potentials \J’1 and V1 are defined as follows

" ‘
V‘(x)E'V(x)l?_‘ 62 :(,_ 3%52 , x>0 , 9

V(o= V(@)lM - _‘l_[ 2]

{20}

=V,(a) ~s*E , @0 .

Obviously, the new potential .?1 is identiecal to the original potential V1 - apart

from trivial modificetions. Thus nothing has been gained by epplying transformations {3),



{4), since the kernel K(+»+ i\?1) in eq. {18) has a path integral representation
(2) or (6) which is as complicated as for the original kernel K{ s+» [V1). Indeed,
for ¥ = 1 relations {17) or {10} are essentially trivial identities, This is
clear from transformations -(3), (4}, which for x = t are mere scaling trans-

formaticns
X=s Q, P'%’T , d,s-:.%adt . (21)
With {20) we obtain

K(S;“b.%]f/‘ )_ecgzes

2

K(Si%a eV (22)

and relation (18) yields the scaling relation

| (EityxalV) =& &(G'E;%L:.,&GA_- ] \/4') . (23)

{Here we used relation (8)), The inverse Fourier-transform of (8) gives for the

time-dependent kernel

K(-r}"buxﬂlv4)=‘1é‘.'l<(%zi’(—;—,|x“ ‘V;) . (2x)

-3
With the spectral decomposition”

= * o -lE,T
KT XalV,) = g P ob e ™

we obtain from {2L) the scaling relations

4
E =4 (26a)
=i E

boto=d (%) -
<

t

where E1I1 and ¢ (Q) denote the eigenvalues and eigenfunctions,respectively, of
the Hamiltonian'©''3 H: © P?/2 + V:(Q). The scaling relations {26a,b) represent

. 1
the essential content of eqs. (27a,b) of ES ,

If ve rewrite potential V., eq. {19), in the following form (3,5 «* Vn./2 3
12 \AF,4b
e=(eVo) )

<
\/4(,(),_.;_)3:(_1__%_ , X >0 (27)
we observe from eq. {20) that potentisl V;(Q) is obtained from V](Q) by the
simple transformation g-—weg, e —-61/2e, i,e, the two potentials differ only
by the strength of the Coulomd potential. With B ® fn(g,e) this implies
A fn(g, o']/ee), and we infer from {26a) f‘n(g,e) = & —Efn(g,6'1/2e), which

yields for & = 1/e?

E. = £.(3,4) . (28)

1/2

.. . . !
Similarly, we obtain with ?n(x) = gn(x;g,e) and d)n(x) = gn(x;g,q' e)

from {26b) g,(xig,e) =g ! 2gn(x/6' -N 6'1/2e), which leads for & = 1/e? to

P = e I (€%;3,1) . (29)

Eq. {28} determines the complete e-dependence of the energy eigenvalues B
whereas eq. {29) tells us that - apart from & factor e in the normalization
constant of the wave functions - the e-dependence of the eigenfunctions ¢n(x)

enters only in the combination g'ue"’x.

We have discussed in detnil the gonseguencesof the scaling relations (26a,b) in
order to illustrate that these relations contain some useful information on the
eigenvalue problem of the Hamiltonian H1. It is clear, however, that relations
(26) 4o not allow to construct "a path integral sclution for the Mie-type
potential {27)" as claimed by ES, since & complete sclution requires a full
knowledge of E! and ¢'n(x) -but the latter are again solutions of the very

1/2 . 1
261 op course, if one tekes B! and d)n(x)

same potential {27) with g=eg, e~@m &
from a solution of the Schrddinger egquation - as done by ES -, one must obtain
the correct results for En and Cbn(x) . But one should be aware of the fact that
the resultscbtained along these lines are nothing more than a refermulaticn of

the scaling relations (28}, (29). Unfortunately, the results given by ES {their



eqs. (29}, (30)) are wrong, because of several mistakes, which we shall enumerate
at the end of this note, But before that we would like to point out that a genuine
path integral treatment of potential V1(x) is possible and has already been

presented by us in Ref. T.

Actually, in Ref. T we treated the more general case of the redial kernel k}.
defined by the radial path integral (7) with potential V1(r). From cur trans-—
formstion formula (11} and eq. {13) we obtain for ¥ = 1/2, € =1

RGN W)-z»mm*Sm Ky SR RIW) .

BEq. {12) gives for the new potential

W(Q)= % = — he" +-‘§-_1Q1, S2=2y-2E | (31)

which leads to a complete factorization of the dependence on the coupling

constant e?
KMHI:.(SI r,\r \W)"E‘— fee’s l< (S‘ \r:,\ft:,_) . (32)

Here AL is defined by E(Z + 1) = { 28 + 1/2){2 £ + 3/2) + 8g, and 0SC refers

to a harmonic oseillator with frequency £2 . We thus obtain from (30) the relation

'ﬁﬂ(E; nralV, )=2Crb,;$/-’£;coféﬁ__mﬁl). (33)

Since the radial path integral for the three-dimensional isotropic harmonic
oscillator ecen be carried out, relation {33) offers a genuine path integral
solution for potential V1(r)‘ Inserting the path integral solution for the

harmonic oscillator, we derived from eq. (33) in Ref. T the disecrete spectrum

B, =— 2
A 2 (%, +4f2 R0

Vg =Ny, §OT 3 F (e 1422005 8)

N _ e 4 M (my+ 44+ 2923
i, = | (3L)
mp+alz +(LY T (A+29%(2)) Moy |
2¢er

9-:

M, 402 +R(L)

(L) w \ (e+4i2)* + 23

(F(a,bix} is the confluent hypergeometric funetion, and v, = 0" 1, 2, ... @enctes

the radial quantum number). For the following discussion it is important to
notice that 7/ (r} is the reduced radial weve function defined by ¥ (r}= rR(r),
if the radial wave function R{r) is defined by the usual expression for the

complete wave function in spherical coordinates, Ap(+, ©,@) —-’R(.—)Y (9)@)0)

{Xﬂn (r) is a solution of the reduced radial Schrédinger equation

' T

[1 d__ “Ep. 2@ 63 K (Fy= O (35)
2 dr? 2 p2 4 LMy -

with boundary condition yl (0} = 0. From eq. (35) and the remarks after

eq. (7) it is obvious, that the one-dimensional eigenvalue problem for potential

v,(x) is a special case of the above problem. Putting L=0,n= n,t =1, 2, ...

we get

E. = Eo,m.-d

(36)
¢w(){)z %o,m-a (x'> *
We then obtain from (34) the final result
-5
z
=l Vo {31)

e, =— 2
2 [m-12 +7)



_.10-

e = No T & T2 Flenrt 4422713)

N - 4 G‘VQ 1
"~

m-dh+ C4+29)

'g - .__2;‘_.\./3— % (38)
m —4fz + R

X wR=LV1+ue2y, .

For the one-dimensional Feynman kernel on the half-line we derive from (33)

& (E:x.,)(.,l V‘ ) =2 (X"K"SH. '&‘ifn-?.'x(%%f&n &n.) ( 39)

Various useful representations of the r.h.s. of {39) can be found in Ref. T and
will not be given here, It should be clear, by now, why it is advantageous for
a study of the one-dimensional path integral on the half-line to work with the

more general radial path integral for arbitrary angular momentum.

Finally, let us comment on the results obtained by ES, A comparison between our
eqs. {37-39) and egs. (29-31) of ES shows that the results derived by ES are
incorreet, In eq. {30) of ES we find the following expression for the energy

. .

)

eigenvalues (4 = m =

|'_1.
EEUE;) 1:-.5!——}2% . _ (Lo}
it m

The factor (ih in {40) seems to be a misprint, since in eq. (P8) of ES we find
the correct factor & 2 in accordance with our result {37). However, the factor
n_2 is wrong and should be replaced by the factor [n - /2 +1[] -2 of eq. (37).

Without geing into too much deteils, we give the following list of errata:

i} 1In egs. (20}, (22b) and {28) of ES there is a term {2 2 + 1)2, which should
be replaced by 1, since the one-dimensional problem corresponds to the S-wave case,

£ = 0, of the three-dimensional problem.

- 11 -

ii) The quantity n used by ES (see their eqs. (20), (21), (22c) and (28))
is not a natural number, but merely a convenient abbreviation, which is used in
solving the Schrédinger equation. In the solution for the eigenfunctions, n enters
the hypergeometric functicn in the form F(- n + 8 + 1, ...} ...){see eq. (21) of
ES), where the quantity s is defined in eq. {22b) of ES. In order that the wave
funetions are normalizable, one must put —n + s + 1 E - n. (nr =0, 1, 2, «0al,
which leads to the correct wave functiona given in eq. {3L) above. The correct
quantum numper to count the energy levele is, therefore, n - s = n, + 1, which
is a natural number and has been named n by us (see eq, (36) above}, but which

is different from the quentity n of ES.

iii) ES identify the one-dimensionsl wave functions on the half-line,
an(x), with the radial wave function R{x) rether than with the reduced wave
function "W ({x) as it should be done according to our eq. (36)., Their wave functions

show, therefore, & wrong "threshold behavicur" for x —e0.
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A small positive imaginary part has tc be added to E.
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: z - 2-1
In the notation of Ref., & we have r = x, R = Q, flr) = & ¢ X la r ¥ )
g{R) =& rV/¥ , WV =22¢ . - Ineqg (11) the radial kernel ¥ is defined

by the path integral (7), but with A —=L,

In the three-dimensional case of the radial kernel, the potential U plays

the r8le of an additional centrifugal barrier, whieh is present even for £ =o.

Eq. {25) is valid for the discrete spectrum of the Hamiltonian
1, | p3/2 + V1(x). Here {and in the following) we shall not discuss

the gontinuous spectrum.

. 1
ES use the notation cpn = 'L}Jn, HY = Héff..

The scaling relations (26a,b) hold for any potential V(x), where the
quantities with a prime refer to a system described by the Hamiltonian
H'® P2/2 + @ 2V(&Q); for e.g. Vix) =5 x’ , x> 0, one obtains

B <o B oo oS 2R b (IR ) inere o
and ‘on(x) are independent of 7 . Scaling relations of this kind have been
discussed by K. Symasnzik {unpublished} and B. Simon, Ann. Phys. (NY) 58,
76 (1970),

Note that the argument of q‘)n in eq. (27b) of ES must read x instead of
0= x/& .

For the following considerations it is useful to regard g, e and & as
independent parameters.

Until recently, potential (27) did not seem to have any physical signifi-

cance, In a recent pa.perw

it is argued that potentials of the type (27)
(with g a function of £ ) may be used to interrelate the spectra of
different atoms and ions showing evidence for a phenomenoclogicsl super-—

symmetry in atomic physies.
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