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Abstract 

We comment on several incorrect results given in a recent paper by Erko9 and 
Sever {ES). In particular, it is pointed out that thei~ path integral formula 
for the one-dimensional Mie-Lennard-Jones potential is wroug, since a quantum 
correction proportional to ~2 - which is a consequence of the stochastic nature 
of the Feynman paths - has been overlooked. The correct expression can be ob­
tained from a general path integral formula, which we have derived in a previous 
paper. For the particular potential discussed in detail by ES,. we give a complete 
path integral treatment, which allows us to derive the energies and normalized 
wave functions of the discrete spectrum. 
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In a recent paper Erkoq and Sever1 (hereafter referred to as ES) studied the 
Feynman path integral for a particle moving in the one-dimensional Mie-Lennard­
Jones potenti~l ( ( 2f 1 't' )-potential) 

2 
• 3 

W~> a ~y l (.~p·- 2 (f)'] l X'> 0 (11 

( V01 oft 1 '{ '> 0 ) • For a particle described by the one-dimensional 

Hamiltonian H = p 2 /2 + V(x) (if= m = 1) the time evolution from "state a" at 
time t

6 
to "state b 11 at time tb is determined by the Feynman kernel K, which 

has the following phase-space path integral representation {T = tb - t "> D, 

~ = dx/dt) 4 6 

T 

K(T;x.,><c..IV) ... r ~(w.,p) exp f l S.._~( pi<- ~-V6<>1) J 0 2 
(21 

with boundary conditions x(t
8

) 

transformation 

x
8

, x(tb) ~· Applying the point canonical 

Q
4/'(; 

X -6" ) p - !. o:-•lt '.f ,Q;.o 

and introducing the new path-dependent "time11 s defined by 

( 
.. ..-2./'i 

c:Ls • ~) Q · clt-

ES obtained the relation (Q = dQ/ds) 5 

. e- . C'>o -t/:1 
l<(e.<)( . IV) 6 f clli -• eT s , ., ( .,,_~Q•/(-~) T s~<•, l(._ .. "i" ) ~ e. ... ., Q• ._ • _.. . 

(31 

(41 

(51 

• )~(Q,'f)a.p\c!J.s[1Q-r-~ (i)(1 Q~~-,.-Qit-J)+E(~)Q11N1} 
Here the path integration has to be 

Q(t
8

1 = Q
8 

= (x
8
/C It , Q(tbl = Qb 

carried out with the boundary conditions 
t" (x,l.,. I 
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Performing the trivial Gaussian path integration over the momentum pin eq. (2), 

we obtain for the one-dimensional kernel the configuration-space path integral 

representation 

><(~·l·~- T' 

l< (T; "•,l<o.l V) - ) ~)( ~><p ~ i ).it- [ ~ z- V (x )11 
• 

(6) 

)({-f;a)•X._ 

In a previous paper6 I derived a relation similar to eq. (5) for a class of 

nonlinear transformations (equivalent to the transformations (3}, (4)) in the 

radial path integral. For three-dimensional quantum systems described by the 

Hamiltonian H = ~/2 + V with spherically symmetric potentials V = V(r), 

r = l'"t'l '> 0, the Feynman kernel can be expanded into "partial. waves" (see 

eq, (1) in Ref, 6), where the kernel K1 (with fixed angular momentum~) is 

given by the radial path integral (ra = lt(tall, rb = li'ttbll ) 

1<,. (T; r., r.l V) 

~<* .. l•l"._ r -r •• 
- \ :tl'r exr~ i ~.ttl';. 

0 

.t(t+A) V(r)]1. (71 
2.r-a J 

r("-.)•t"-.. 

Here the "measure" .r,,.. is identical to the 11 measure" ~ )l of eq. ( 6), since the 

one-dimensional motion is restricted to the half-line x > 0. A comparison of 

eqs, (6) and (7) shows that the one-dimensional kernel K is identical to the 

S-wave ( )e = 0) radial kernel K0 (with the trivial identifications V(x)~V(r), 

(xa,~)~(ra,rb)). This implies that relation (5) derived by ES must be a special 

case of cur mere general transformation formula derived in Ref. 6. 

In this comment I would like to point cut that relation (5) is incorrect for 

{ t 1, since a quantum correction proportional to~ 2 - which has to be added 

to the action in eq, (5) -has not been taken into account byES. In Ref. 6 I 

derived a closed expression for this quantum correction from a careful treatment 

of the path integral using Feynman's time lattice subdivision process, The 

additional term is a direct consequence of the stochastic nature of the Feynman 

paths, The correct version of eq. (5) will be given below, 

------- -A.------
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Since for general~ no path integral solution for the path integral in eq. {5) 

is known, ES considered the particular case '( = 1 as a check of relation ( 5). 

Fortunately enough, eq. (5) is correct for f = 1, since the missing quantum 

correction vanishes in this case (being proportional to ( 1 -'()), Unfortunately, 

ES rely in their evaluation on an incorrect identification of the eigenfunctions 

and of the quantum number n, such that the resulting energy eigenvalues and wave 

fW1ctions { eqs. ( 29-31 ) of ES) are wrong. Moreover, we shall see that relation ( 5) 

for ~ = 1 is nothing else than a complicated rewriting of a simple scaling 

relation which relates the kernel K to itself. Thus relation (5) cannot be used 

in the case 'f 
and eigenvalues, 

1 for a genuine path integral determination of the eigenfunctions 

A complete path integral treatment of potential ( 1) with ( = 1 in the three­

dimensional case has been carried out for arbitrary angular momentum in our 

recent paper7 on the path integral treatment of the hydrogen atom. Specializing 

to S-waves, we shall obtain the complete solution for the one-dimensional 

potential ( 1). 

Let us start by casting the rather complicated expression (5), derived byES, in 

a more compact form by following the procedure already used in our earlier 
6 . paper • For th1s purpose we introduce the time-independent 

8 Feynman kernel 

"" . ~ LET 
.{(E;><.,>< .. IV) -.: ~.t.-T e. k(T;K.,>< ... !V) 

0 

and Lhe new potential 

,. r ~ 
VCG.)- A Q .. 

0.=-l.f.-~ 
¥ A- cr•V 
~ 
2. '( J 

~a-~ l 8 
Qo.-2 

,g=.so.E 
¥2. 

Ue then obtain from (5) the equivalent relation 

·-~ G>c> ,cE~) . g =.... r ~ ( ]! "' 
~ (E;x..,x.,IV)~.L6 ("•><..)2. )ciS'K(S;(';), ~~ V) 

~ 0 

• A-

J 

: 3) 

I 91 

( 10) 
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which connects the time-independent kernel of the original system with potential 

V(x} (given by { 1)) to the time-dependent kernel of a new system with potential 

V(Q) (given by (9)), 

Relation (10) can be compared with our transformation formula for the radial 

kernel (eq. (22) in Ref. 6) 9 

~=1 ... 

~_.( e;x.,l(.,\V)-i. .,.r(X.l(.,.) .. )ci.S I(L.( S1 (l(·~ ,(~)Y I W) 
lf 0 ... 

( 11) 

which is valid for transformations (3) 1 (4) with CJl>O, Eq. (11) connects the 

time-independent radial kernel k£ (with angular momentum ~ ) of the original 

quantum system with arbitrary potential V(x) to the time-dependent radial kernel 

K
1 

of a new quantum system with the new potential 

W(Q) .. (~) Q"'t·!l [V(orQ•'Y)- E] 

and with effective angular momentum 

L -L(.t,y)- 2..t+A -y 
2.y 

( 12) 

( 13) 

As already stated after eq. {7), the kernel k~ coincides for i = 0 with the 

one-dimensional kernel k which we are looking for. For Je = 0 we get for the 

radial kernel on the r.h.s. of eq. (11) 

Kt. ( S; (.c;)~.(~Jiw)- k (S';(~)y•(ll,::) 1 W + 'U.) 
... 

(L •L(O,'f) ( 1 - f)/2 f), where the quantum correction is given by 10 

,., "' 'U.(Q) • L(L-t-A) 
2 Q,2. 

--1-¥2. 
9 'i"' 

-1 
Q2. 

( 14) 

( 15) 

and K on the r.h.s. of (14) denotes the one-dimensional Feynman kernel. We thus 

obtain from eq. (11) the transformation formula for the one-dimensional Feynman 

kernel on the half-line 
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-.:1 ... 
-f.(E;>~.,>(._\V)- ~ .s-1

(>(.t.,)" )<lSI<(S;(~i.(~'fi'W+'tL). (16l 
0 

Relation (16) holds for an arbitrary potential V(x), x > 0. For potential (1} 
A A 

we derive from eq. (12) W(Q) = V(Q), where Vis defined in eq, (9}. We are then 

led to the relation 

•::1. Oo 

~(E;l(.,l( .. IV) • .L(S'"4 (><.'(.) z. )ci.S' K(S;(~f, (%j~ I v -+tl). ( l7) 
¥ 0 

Eq. (17) represents the correct transformation formula for potential ( 1) in the 

case of transformations {3), (4). 

A comparison of our relation {17) with relation (10), derived byES, shows that 

the two relations are different due to the quantum correction U, which is_ missing 

in relation ( 10). Since the potential_ .?(Q), eq. { 15), does not .vanish for '( :J 1, 

we conclude that relation ( 10) is not correct for t + 1, i.e. k(ES) + k for 

t + 1. 

Now let us consider the special value lf = 1, In this case the quantum correction 

U vanishes identically, and relations (17) or (10) yield the transformation 

formula 

0.. 

~(E.;lC.,l< ... l V..) -1. ~ )c~..s K(S; )(_;.,~I'/. ) ( 18) 

0 

A 
Here the potentials v 1 and v1 are defined as follows 

v_c ... ) ::VCI()ji·• ,.. tS .. V. [ .1_ _ k..l 
2. X 2. 6' ><. 

Jx-,.o ( 19) 

A A I 
V.,(Q)• V(Q) ~·• - <5'"~· [ ~ .. - ~ =j -- 6'" E 

(20) 

e V/(G..) -t5'"' E ) Q >o 
Obviously, the new potential.~1 is identical to the original potential v

1
- apart 

from trivial modifications. Thus nothing has been gained by applying transformations ( 3), 
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• {4), since the kernel K(••• I v 1) in eq. (18) has a path integral representation 

(2) or (6) which is as complicated as for the original kernel K( •••lV 1). Indeed, 

for "( = 1 relations { 17) or ( 10) are essentially trivial identities. This is 

clear from transformations (3), (4), which for '( = 1 are mere scaling trans­

formations 

)(•<S"QJ 

With (20) we obtain 

p- .L T 
cr ' 

cls= ~ clt 
(;" 

K (S'; ~,~IV.)- e'~·es I<(S'; ~·~IV.') 

and relation (18) yields the scaling relation 

~(E;ll~o,xAIV.) = s- .f<(cs'"E:~ ,~IV..') 

(21 I 

(221 

(231 

(Here we used relation (8)), The inverse Fourier-transform of (8) gives for the 

time-dependent kernel 

KC-r;.:.,x .. .IV.) = ..Lk(T ;)(,. ,x~lv.') 
<5 OS".. <$ cr • 

With the spectral decomposition 11 

"" * K (T;>4.,ll ... l v.) = L cr .. (><.) ¢> ... ex.) ..... 
we obtain from (24) the scaling relations 

E .... =-~­<5""2. ~ 

I 
¢ .. (x.)- ~ <? ... (~) 

-cE T e ... 

( 24 I 

( 25 i 

( 26a) 

( 26bl 

- 7 -

I 

where E 1 and cf> (Q) denote the eigenvalues and eigenfunctions,respectively, of 

the Ham~l toni an 1 ~' 13 H; '5 P2 /2 + V~ ( Q), The scaling relations ( 26a, b) represent 
. ( I 14 the essent1.al content of eqs, 27a.,b of ES • 

If we rewrite potential v 1 , eq. (19), in the following form C3-e f$a.Vo/2 J 

e!!!(.rV.)'• ).s·.~• 

'/. (x) = ~ 
e. ... )(. > 0 

( 271 

X 

we observe from eq, (20) that potential Vj(Q) is obtained from v1(Q) by the 

simple transformation g-.g, e ..... cr112e, i.e. the two potentials differ only 

by the strength of the Coulomb potential. With E:n 5 f
0 

( g ,e) this implies 

8~ = f
0

(g, e- 112
e), and we infer from (26a) fn(g,e) = f5 - 2

fn(g,6"
1

/
2
e), which 

yields for <I"= 1/e 2 

Similarly, 

from (26b) 

E...,= e,. ~ ... (~,-!) ( 281 

we obtain with Gb (x) 11 
-1/2n 

g
0

(x;g,e) =C5 gn(x/<S 

q:>.._(K) = e 

cpl 1/2 
g (x;g,e) and (x) = g (x;g, cr e) 

n 12 n n 
;g, <S 1 e), which leads for 6 = 1/e 2 to 

:;} ... Ce. .. ><.;~,-1). ( 291 

Eq. (28) determines the complete e-dependence of the energy eigenvalues En' 

whereas eq. (29) tells us that- apart from a factor e in the normalization 

constant of the wave functions - the e-dependence of the eigenfunctions ~n(x) 

enters only in the combination ~ 1ae 2x. 

We have discussed in detail the (!On sequences of the scaling .relations ( 26a,b) in 

order to illustrate that these relations contain some useful information on the 

eigenvalue problem of the Hamiltonian H1. It is clear, however, that relations 

(26) do not allow to construct "a path integral solution for the Mie-type 

potential (27)" as claimed by ES, since a complete solution requires a full 

knowledge of E~ and cf>1n(x) -but the latter are again solutions of the very 

same potential {27) with g_.g, e-..f; 1/ 2e! Of course, if one takes 8 1 and""'' (x) 
n 'I' n 

from a solution of the Schr6dinger equation - as done by ES -, one must obtain 

the correct results for E and ..+.. (x). But one should be aware of the fact that n '+'n 
the results obtained along these lines are nothing more than a reformulation of 

the scaling relations (28), (29). Unfortunately, the results given byES (their 
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eqs, (29), (30)) are wrong, because of several mistakes, which we shall enumerate 

at the end of this note. But before that we would like to point out that a genuine 

path integral treatment of potential V1(x) is possible and has already been 

presented by us in Ref. 7 .' 

Actually, in Ref. 7 we treated the more general case of the radial kernel k~ 

defined by the radial path integral (7) with potential v 1{r), From our trans­

formation formula (11) a.nd eq. (13) we obtain for '( = 1/2, f5" = 1 

0.. 

~ (E;r.,r ... l V,)- 2.t (r.r...)'+ \clS 1<2.-t+</o. (fidr.,vr .. l W) 
0 

Eq. ( 12) gives for the new potential 

W(Q)-~ - '+e .. + .!2. .. Qa. 
Q2. 2. 

.52- 2. V-2.E ) 

which leads to a complete factorization of the dependence on the coupling 

constant e2 

~<"u ..... , .. cs,. vr:.,fr .. l W)- e.<'+e .. S 
ose 

I<_ Cs<;.f;.,vr: ... ) 
It 

( 30) 

( 31) 

(32) 

Here r is defined by r (I+ 1} = { 2 .L + 1/2)(2 L + 3/2) + 8g, and osc refers 

to a harmonic oscillator with frequency .,S2. , We thus obtain from ( 30) the relation 

o ) 11'+- ,psc .. ( 33l ~/E; r.,r.._l V, -2.(rbr._') --f(.E (4-e; vr.1 Vr.._). 

Since the radial path integral for the three-dimensional isotropic harmonic 

oscillator can be carried out, relation (33) offers a genuine path integral 

solution for potential v 1(r). Inserting the path integral solu~ion for the 

harmonic oscillator, we derived from eq, (33) in Ref. 7 the discrete spectrum 
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E.R. ... , 
e'+ -- ---=----::-2.. 

2. [ ... , .. <12 + 'l! (.()) 

'lL c~)= N -x<tl+</1 -~t:~. 1= (-'ILr ~+2.~(-t). ") 
:.e.."M.,. ~"'-.. ~ e / J , > 

~ Jr( .... ,+H2.?t(.t)) 

r (-1 +2.?!(.el) ~~~... ! 
e 

N.-2-...,. = ....... •t2+~~t(.t.) (34) 

~ 
'2. e .. -r = _ ___.:::...::....:.--

11\., + • 12. +'It (t) 

~(.t) -I/ (.e+<f2. ) .. + 2.3--
(F(a,b;x) is the confluent hypergeometric function, and n = o, 1, 2, ,,, denotes 

r 
the radial quantum number). For the following discussion it is important to 

notice that 'J( ( r) is the reduced radial wave function defined by ')(.._( r) 5 rR( r), 

if the radial wave function R(r) is defined by the usual expression for the 

complete wave function in spherical coordinates, 1\.V(t"', e,cp) ='R(r) ~--(e/:.p). 
?l~nr(r) is a solution of the reduced radial SchrOdinger equation 

ri£..._..1= _.t(HA>-v.c .. )]IV (r)-o (35) L 2. ctr.. 'Jt'4- 2.1-.. • . f'-.{IM..~ 

with boundary condition ~n {0) = 0. From eq, (35) and the remarks after 
~nr 

eq, (7) it is obvious, that the one-dimensional eigenvalue problem for potential 

v 1(x) is a special case of the above problem, Putting l. = 0, n !5 nr + 1 = 1, 2, 

we get 

E..,. = Eo, .... --1 

(36) 

cl>...,<x.)= I)Co,'ll.-/x.) 

~le then obtain from ( 34) the final result 

1 \ ,._ 

E =- fS" Yo ..., 
2. ["<--1/2 +'X.)"-

( 37) 
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,..~., ( N ~+1t2. - ~ 12. F( ) 'i'"" x.) "' "" \ e. - ... +~ ,H2.'lt j '3 

N.., - {"iV. 
...__ 41>.+ 'lt 

2.e- Vo 

-1 (r( .... +2.'lt) 

r (-~+2.'lt) V . C"'--~) l 

X 
,_ 

""- -·1~ + 'X 

'X • 'df(o) -1 V -1 + 4-~2-V., 

( 38) 

For the one-dimensional Feynman kernel on the half-line we derive from (33) 

41'1- osc ,... ) ( 39) ..foe (e;x.,x..l v.) ,z(l<.X..) ~ ._(4-e-V.;vlC.,{,( .... 
-·tl&+4o-... 

Various useful representations of the r.h.s. of {39) can be found in Ref. 7 and 

will not be given here. It should be clear, by now, why it is advantageous for 

a study of the one-dimensional path integral on the half-line to work with the 

more general radial path integral for arbitrary angular momentum, 

Finally, let us comment on the results obtained by ES. A comparison between our 

eqs. (37-39) and eqs. (29-31) of ES shows that the results derived byES are 

incorrect, In eq. (30) of ES we find the following expression for the energy 

eigenvalues (-rt = m = 1 ) 

E(e:~) <~""' V ... 
J\4.. ~-_...!!.. 

2. ""2. 
(40) 

The factor 6 4 in ( 40) seems to be a misprint, since in eq, ( 28) of ES we find 

the correct factor 6 2 in accordance with our result ( 37). However, the factor 
-2 [ 1~ n is wrong and should be replaced by the factor n- 1/2 +'J(. of eq. (37). 

Without going into too much details, we give the following list of errata: 

i) In eqs. (20), (22b) and (28) of ES there is a term (2J,. + 1) 2 , which shoulC. 

be replaced by 1, since the one-dimensional problem corresponds to the 8-wave case, 

Jt = 0, of the three-dimensional problem. 
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ii) The quantity n used byES (see their eqs. (20), (21), (22c) and (28)) 

is not a natural number, but merely a convenient abbreviation, which is used in 

solving the SchrOdinger equation. In the solution for the eigenfunctions, n enters 

the hypergeometric function in the form F{- n + s + 1, ••• ; ,,,)(see eq. (21) of 

ES), where the quantity sis defined in eq, {22b) of ES. In order that the wave 

functions are normalizable, one must put- n + s + 1 55 - nr (nr = O, 1, 2, ••• ), 

which leads to the correct wave functions given in eq. (34) above. The correct 

quantum number to count the energy levels is, therefore, n- s = nr + 1, which 

is a natural number and has been named n by us {see eq, (36) above), but which 

is different from the quantity n of ES. 

iii) ES identify the one-dimensional wave functions on the half-line, 

..h (x), with the radial wave function R(x) rather than with the reduced wave ~n -------
function ')(.(x} as it should be done according to our eq. ( 36): Their wave functions 

show, therefore, a wrong "threshold behaviour" for x -..0. 

Footnotes and References 

2 

3 

4 

j. Erko~ and R. Sever, Phys, Rev. D30, 2117 {1984). 
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Potential ( 1) is used in the study of dynamical properties of rare gas solids 

with a preferred value of '( = 6. See, for example: "Rare Gas Solids", ed, by 

M.L. Klein and J.A. Venables (Academic Press, London, 1976), Vol. 1, 
16 p. 32, 37 and 88. For'(= 1, see , 

. .....( I . DxDp . We use the notat1on ~ x,p 1nstead of 
2

1C for the phase-space path 1ntegral 

"measure". 

5 In eq. (13) of ES K(ES) is denoted by K to indicate that relation (5) has 

been obtained (in a rather heuristic fashion) by taking a kind of "arithmetic 

mean of the integrands". -In eq, (5) we made the substitUtion E-.- E in 

order to agree with the standard definition (see eq. (8) below) of the 

time-independent Feynman kernel. 

6 F. Steiner, Phys. Lett. 106A, 356 (1984). 

7 F. Steiner, Phys, Lett. 106A, 363 ( 1984). 

8 A small positive imaginary part has to be added to E. 
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:L¥ -'1 1.-'2.'( 
In the notation of Ref, 6 we haver= x. R = Q, f(r) = 'ff '( t'" 1 

g(R) = #S R 1/'i', V = 2-2 '( . - In eq, ( 11) the radial kernel K
1 

is defined 

by the path integral ( 7), but with .1.. -1. 
In the three-dimensional case of the radial kernel, the potential U plays 

the r6le of an additional centrifugal barrier, which is present even for t = 0. 

Eq. (25) is valid for the discrete spectrum of the Hamiltonian 

H1 ~ p 2 /2 + v 1(x). Here (and in the following) we shall not discuss 

the continuous spectrum. 

ES use the notation 4'1
n = "f' n• Hj = H~ff' 

The scaling relations (26a.b} hold for any potential V(x}, where the 

quantities with a prime refer to a system described by the Hamiltonian 

H''E P2 /2 + f1 2 V(d"Q}j for e.g. V(x) =~x(\ , x"> 0, one obtains 

E~ = '). ._/(~+~) a..._ 
1 

')(..,. (~)- ').• /2.CP+O.) b., ('l.<l(~+~) X) 
1 

where an 

and bn(x) are independent of ~ , Scaling relations of this kind have been 

discussed by K. Symanzik (unpublished) and B. Simon, Ann. Phys. (NY) 2§, 

76 ( 1970). 

Note that the argument of c\>n in eq. (27b) of ES must read x instead of 

Q=x/<r. 

For the following considerations it is useful to regard g, e and <r as 

independent parameters, 

Until recently, potential (27) did not seem to have any physical signifi­

cance. In a recent paper 17 it is argued that potentials of the type (27) 

(with g a function of ~) may be used to interrelate the spectra of 

different atoms and ions showing evidence for a phenomenological super­

symmetry in atomic physics. 

V.A. KosteleckY and M.M. Nieto, Phys. Rev. Lett, 53, 2285 ( 1984). 
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