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Abstrat

Interations of heavy Majorana neutrinos in the thermal phase of the early universe

may be the origin of the osmologial matter-antimatter asymmetry. This meh-

anism of baryogenesis implies stringent onstraints on light and heavy Majorana

neutrino masses. We derive an improved upper bound on the CP asymmetry in

heavy neutrino deays whih, together with the kineti equations, yields an upper

bound on all light neutrino masses of 0.1 eV. Lepton number hanging proesses at

temperatures above the temperature T

B

of baryogenesis an erase other, pre-existing

ontributions to the baryon asymmetry. We �nd that these washout proesses be-

ome very eÆient if the e�etive neutrino mass em

1

is larger than m

�

' 10

�3

eV.

All memory of the initial onditions is then erased. Hene, for neutrino masses

in the range from

q

�m

2

sol

' 8 � 10

�3

eV to

p

�m

2

atm

' 5 � 10

�2

eV, whih is

suggested by neutrino osillations, leptogenesis emerges as the unique soure of the

osmologial matter-antimatter asymmetry.



1 Introdution

The explanation of the osmologial baryon asymmetry is a hallenge for partile physis

and osmology. In an expanding universe, whih leads to departures from thermal equilib-

rium, C, CP and baryon number violating interations of quarks and leptons an generate

dynamially a baryon asymmetry [1℄. The possible realization of these onditions has �rst

been studied in detail in the ontext of grand uni�ed theories [2, 3℄.

The piture of baryogenesis is signi�antly hanged by the fat that already in the

standard model of partile physis baryon (B) and lepton (L) number are not onserved

due to quantum e�ets [4℄. The orresponding non-perturbative �B = 3 and �L = 3

proesses are strongly suppressed at zero temperature. However, at temperatures above

the ritial temperature T

EW

of the eletroweak transition they are in thermal equilibrium

[5℄ and only the di�erene B � L is e�etively onserved.

During the past years data on atmospheri and solar neutrinos have provided strong

evidene for neutrino masses and mixings. In the seesaw mehanism [6℄ the smallness

of these neutrino masses m

�

is explained by the mixing m

D

of the left-handed neutrinos

with heavy Majorana neutrinos of mass M , whih yields the light neutrino mass matrix

m

�

= �m

D

1

M

m

T

D

: (1)

Sine m

D

= O(v), where v ' 174 GeV is the eletroweak sale, and M � v, the neutrino

masses m

�

are suppressed ompared to quark and harged lepton masses. CP violating

interations of the heavy Majorana neutrinos an give rise to a lepton asymmetry and,

via the �B = 3 and �L = 3 sphaleron proesses, to a related baryon asymmetry. This

is the simple and elegant leptogenesis mehanism [7℄.

Leptogenesis is a non-equilibrium proess whih takes plae at temperatures T �M

1

.

For a deay width small ompared to the Hubble parameter, �

1

(T ) < H(T ), heavy

neutrinos are out of thermal equilibrium, otherwise they are in thermal equilibrium. A

rough estimate of the borderline between the two regimes is given by �

1

= H(M

1

) (f. [8℄).

This is equivalent to the ondition that the e�etive neutrino mass em

1

= (m

y

D

m

D

)

11

=M

1

equals the `equilibrium neutrino mass'

m

�

=

16�

5=2

3

p

5

g

1=2

�

v

2

M

pl

' 10

�3

eV ; (2)

where we have used M

pl

= 1:2� 10

19

GeV and g

�

= 434=4 as e�etive number of degrees

of freedom. For em

1

> m

�

( em

1

< m

�

) the heavy neutrinos of type N

1

are in (out of)

thermal equilibrium at T = M

1

.
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It is very remarkable that the equilibrium neutrino mass m

�

is lose to the neutrino

masses suggested by neutrino osillations,

p

�m

2

sol

' 8 � 10

�3

eV and

p

�m

2

atm

' 5 �

10

�2

eV. This suggests that it may be possible to understand the osmologial baryon

asymmetry via leptogenesis as a proess lose to thermal equilibrium. Ideally, �L = 1

and �L = 2 proesses would be strong enough at temperatures above M

1

to keep the

heavy neutrinos in thermal equilibrium and weak enough to allow the generation of an

asymmetry at temperatures below M

1

.

An analysis of solutions of the Boltzmann equations shows that this is indeed the

ase if light and heavy neutrino masses lie in an appropriate mass range. In general,

the �nal baryon asymmetry is the result of a ompetition between prodution proesses

and washout proesses whih tend to erase any generated asymmetry. Unless the heavy

Majorana neutrinos are partially degenerate,M

2;3

�M

1

�M

1

, the dominant proesses are

deays and inverse deays of N

1

and the usual o�-shell �L = 1 and �L = 2 satterings.

The �nal baryon asymmetry then depends on just four parameters [9℄ : the mass M

1

of

N

1

, the CP asymmetry "

1

in N

1

deays, the e�etive neutrino mass em

1

and, �nally, the

sum of all neutrino masses squared, m

2

= m

2

1

+ m

2

2

+ m

2

3

, whih ontrols an important

lass of washout proesses. Together with the two mass squared di�erenes �m

2

atm

and

�m

2

sol

, the sum m

2

determines all neutrino masses. Using an upper bound on the CP

asymmetry "

1

[10, 11℄, an upper bound on all light neutrino masses of 0.2 eV has reently

been derived [12℄.

In this paper we extend the previous analysis in two diretions. We derive an improved

upper bound on the CP asymmetry whih leads to a more stringent upper bound on light

neutrino masses. In addition, we study in detail the washout of a pre-existing B � L

asymmetry, whih yields a lower bound on the e�etive neutrino mass em

1

. In this way

we obtain a window of neutrino masses for whih leptogenesis an explain the observed

osmologial baryon asymmetry, independent of initial onditions.

The paper is organized as follows. In Setion 2 we derive an improved upper bound

on the CP asymmetry "

1

and illustrate how it an be saturated for spei� neutrino

mass matries. Theoretial expetations for the range of neutrino masses are disussed

in Setion 3. In Setion 4 we then derive upper bounds on the light neutrino masses in

the ases of normal and inverted hierarhy, and we disuss the stability of these bounds.

Setion 5 deals with the washout of a large initial B � L asymmetry, and a summary of

our results is given in Setion 6.
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2 Bounds on the CP asymmetry

Given the masses of heavy and light Majorana neutrinos the CP asymmetry "

1

in the

deays of N

1

, the lightest of the heavy neutrinos, satis�es an upper bound [10, 11℄. In

the following we shall study under whih onditions this upper bound is saturated and

how it depends on the e�etive neutrino mass em

1

whih plays an important role in the

thermodynami proess of leptogenesis.

The standard model with right-handed neutrinos is desribed by the lagrangian,

L

m

= h

ij

l

Li

�

Rj

�+

1

2

M

ij

�



Ri

�

Rj

+ h:: ; (3)

where M is the Majorana mass matrix of the right-handed neutrinos, and the Yukawa

ouplings h yield the Dira neutrino mass matrix m

D

= hv after spontaneous symmetry

breaking, v = h�i. We work in the mass eigenstate basis of the right-handed neutrinos

where M is diagonal with real and positive eigenvalues M

1

� M

2

� M

3

. The seesaw

mehanism [6℄ then yields the light neutrino mass matrix

m

�

= �m

D

1

M

m

T

D

; (4)

whih an be diagonalized by a unitary matrix U

(�)

,

U

(�)y

m

�

U

(�)�

= �

0

B

�

m

1

0 0

0 m

2

0

0 0 m

3

1

C

A

; (5)

with real and positive eigenvalues satisfying m

1

� m

2

� m

3

.

It is onvenient to work in a basis where also the light neutrino mass matrix is diagonal.

In this basis the Yukawa ouplings are

~

h = U

(�)y

h : (6)

As a onsequene of the seesaw formula the matrix 
,




ij

=

v

p

m

i

M

j

~

h

ij

; (7)

is orthogonal, 



T

= 


T


 = I [13℄. It is then easy to show that the CP asymmetry "

1

[14℄-[16℄ is given by (f., e.g., [9℄)

"

1

=

3

16�

M

1

v

2

X

i 6=1

�m

2

i1

m

i

Im

�

~

h

2

i1

�

�

~

h

y
~

h

�

11

; (8)
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where �m

2

i1

= m

2

i

�m

2

1

.

The CP asymmetry "

1

is bounded by the maximal asymmetry "

max

1

[12℄,

j"

1

j � "

max

1

=

3

16�

M

1

v

2

(�m

2

atm

+�m

2

sol

)

m

3

: (9)

As we will now show, this bound holds for arbitrary values of m

2

, i.e. for normal and for

inverted hierarhy, and it is saturated in the limit m

1

! 0.

Consider the normalized Yukawa ouplings

z

i

=

~

h

2

i1

(

~

h

y
~

h)

11

= x

i

+ iy

i

; (10)

with

0 � jz

i

j � 1 ;

X

i

jz

i

j = 1 : (11)

The orthogonality ondition (


T


)

11

= 1 yields the additional onstraint

X

i

em

1

m

i

z

i

= 1 : (12)

In the new variables the CP asymmetry reads

"

1

=

3

16�

M

1

v

2

�

�m

2

21

m

2

y

2

+

�m

2

31

m

3

y

3

�

: (13)

Sine m

3

> m

2

, one also has �m

2

31

=m

3

> �m

2

21

=m

2

. This suggests that the maximal CP

asymmetry is reahed for maximal y

3

.

Suppose now that 1 � y

3

= O(�). Beause of Eqs. (11) this implies y

2

, y

1

and all x

i

have to vanish in the limit �! 0. The orthogonality ondition (


T


)

11

= 1 yields

y

1

m

1

+

y

2

m

2

+

y

3

m

3

= 0 ; (14)

em

1

m

1

x

1

+

em

1

m

2

x

2

+

em

1

m

3

x

3

= 1 : (15)

Sine m

2

> 0, these onditions are satis�ed for maximal y

3

, if y

2

= x

2

= x

3

= 0 and

m

1

; y

1

/ � ; (16)

em

1

/ �

a

; x

1

/ �

1�a

; 0 � a < 1 : (17)

Note that in the limit �! 0, N

1

ouples only to l

3

�. For a > 0, N

1

deouples ompletely,

sine

~

h

2

i1

= (

~

h

y

~

h)

11

z

i

and (

~

h

y

~

h)

11

/ em

1

.
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An expliit example, whih illustrates this saturation of the CP bound, is given by the

following orthogonal matrix,


 =

0

B

�

A 0 �B

0 1 0

B 0 A

1

C

A

; (18)

with

B

2

= i

v

2

m

3

M

1

b�

a

; A

2

= 1�B

2

; b > 0 : (19)

The orresponding Yukawa ouplings squared are

�

~

h

2

i1

�

=

�

m

1

M

1

v

2

� i

m

1

m

3

b�

a

; 0; ib�

a

�

: (20)

One obviously has x

2

= x

3

= y

2

= 0, and y

3

! 1, x

1

; y

1

! 0 in the limit � ! 0. The

matrix of Yukawa ouplings,

~

h =

0

B

B

�

q

m

1

M

1

v

2

� i

m

1

m

3

b�

a

0

q

i

m

1

M

3

m

3

M

1

b�

a

0

p

m

2

M

2

v

0

�

p

ib�

a

0

q

m

3

M

3

v

2

� i

M

3

M

1

b�

a

1

C

C

A

; (21)

beomes diagonal in the limit � ! 0 for a > 0. Hene, in this basis, the large neutrino

mixings are due to the harged lepton mass matrix.

This example illustrates that em

1

an be arbitrary in the limit m

1

! 0. It approahes

b

2

v

2

=M

1

for a = 0, while it goes to 0 for a > 0. Hene, the maximal CP asymmetry

(9) an be reahed for arbitrary values of m

2

and em

1

. For a given CP asymmetry, the

maximal baryon asymmetry is reahed in the limit em

1

! 0, assuming thermal initial N

1

abundane. The orresponding, model independent lower bound on the heavy neutrino

mass M

1

was determined in [9℄ to be M

1

> 4 � 10

8

GeV. If the Yukawa ouplings

~

h are

restrited, a more stringent lower bound on M

1

an be derived [17℄.

The above disussion an easily be extended to derive the maximal CP asymmetry in

the ase of arbitrary em

1

. Sine m

3

> m

2

> m

1

, one again has x

3

= x

2

= y

2

= 0. From

Eqs. (14),(15) one then onludes

y

1

= �

m

1

m

3

y

3

; x

1

=

m

1

em

1

: (22)

Together with the onstraint (f. (11)),

p

x

2

1

+ y

2

1

+ jy

3

j = 1, these onditions determine

jy

3

j as funtion of m

1

, m

3

and em

1

. Inserting the result into Eq. (13) yields the improved

upper bound

"

max

1

=

3

16�

M

1

m

3

v

2

"

1 �

m

1

m

3

�

1 +

m

2

3

�m

2

1

em

2

1

�

1=2

#

: (23)
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For m

1

= 0 the result oinides with the previous bound (9). For 0 < m

1

� em

1

the

new bound is more stringent. In partiular, "

max

1

= 0 for em

1

= m

1

. Note that aording

to Eq. (23) the only model independent restrition on the e�etive neutrino mass is

em

1

� m

1

. The improved upper bound on the CP asymmetry implies also a bound on the

light neutrino masses whih is more stringent than the one obtained in [12℄. This will be

disussed in Setion 4.

3 Range of neutrino masses

At present we know two mass squared di�erenes for the light neutrinos, whih are dedued

from the measurements of solar and atmospheri neutrino uxes. In addition we have

information about elements of the mixing matrix U in the leptoni harged urrent. Sine

U ould be entirely due to mixings of the harged leptons, this does not onstrain the light

neutrino mass matrix in a model independent way. The light neutrino masses m

1

< m

2

<

m

3

an be either quasi-degenerate or hierarhial, with m

2

� m

1

� m

3

� m

2

(`normal

hierarhy') or m

3

�m

2

� m

2

�m

1

(`inverted hierarhy'). The best information on the

absolute neutrino mass sale omes from neutrinoless double �-deay, whih yields an

upper bound on the light Majorana neutrino masses of about 1 eV [18, 19℄.

A ruial quantity for thermal leptogenesis is the e�etive neutrino mass em

1

whih is

always larger than m

1

[20℄, as one easily sees from the orthogonality of 
 (f. (7)),

em

1

=

v

2

M

1

X

i

j

~

h

2

i1

j =

X

i

m

i

j


2

i1

j

� m

1

X

i

j


2

i1

j � m

1

X

i

Re(


2

i1

) = m

1

: (24)

As we saw in the previous Setion, the maximal CP asymmetry is reahed for m

1

= 0,

suh that m

2

'

p

�m

2

sol

and m

3

'

p

�m

2

atm

.

There is no model independent upper bound on em

1

. However, if there are no strong

anelations due to phase relations between di�erent matrix elements, one has

em

1

� m

3

X

i

j


2

i1

j � m

3

j

X

i




2

i1

j = m

3

: (25)

Hene, the natural range for the e�etive neutrino mass is m

1

� em

1

. m

3

. In fat, we

are not aware of any neutrino mass model where this is not the ase.

It is instrutive to examine the range of em

1

also in the speial ase j"

1

j = "

max

1

. As we

saw in the previous setion this ase is realized for y

2

= x

2

= x

3

= 0, orresponding to

7



Re(


2

21

) = Re(


2

31

) = Im(


2

21

) = 0. The orthogonality ondition then implies Im(


2

11

) =

�Im(


2

31

) and Re(


2

11

) = 1. Hene, for maximal CP asymmetry one has

em

1

= m

1

q

1 + Im(


2

31

)

2

+m

3

jIm(


2

31

)j ; (26)

showing that the value of em

1

is tuned by just one quantity. For Im(


2

31

) = 0, one

has em

1

= m

1

, while the ase em

1

� m

3

orresponds to a �ne tuned situation in whih

jIm(


2

31

)j = jIm(


2

11

)j � Re(


2

11

) = 1.

If the observed large mixing angles in the leptoni harged urrent originate from the

neutrino mass matrix, whih appears natural sine their Majorana nature distinguishes

neutrinos from quarks, the masses m

1

and em

1

are related to m

2

and m

3

. The seesaw

mehanism together with leptogenesis then also onstrains the heavy Majorana neutrino

masses.

Large mixing angles are naturally explained if neutrino masses are quasi-degenerate

[23℄. One then has em

1

� m

1

� m

2

� m

3

> 0:1 eV. However, as shown in [9, 12℄ and

further strengthened in the following Setion, quasi-degenerate neutrinos are strongly

disfavored by thermal leptogenesis. A possible exeption is the ase where also the heavy

Majorana neutrinos are partially degenerate. One then gets an enhanement of the CP

asymmetry whih allows one to inrease the neutrino masses and still have suessful

leptogenesis. Models with �M

21

=M

1

= (M

2

�M

1

)=M

1

< 5 � 10

�2

and �M

21

=M

1

=

5 � 10

�7

have been onsidered in refs. [25℄ and [26℄, respetively. Note, however, that in

these examples the light neutrino masses are not quasi-degenerate. We shall pursue this

ase further in Setion 4.3.

The neutrino mass pattern with inverted hierarhy has also reeived muh attention in

the literature. There is, however, the well known diÆulty of this senario to �t the large

angle MSW solution [27, 28℄. We also do not know any model with inverted hierarhy

whih inorporates suessfully leptogenesis, and we shall therefore not pursue this ase

further.

We are then left with the ase of neutrino masses with normal hierarhy. There are

many neutrino mass models of this type with suessful leptogenesis. The mass hierarhy

is usually ontrolled by a parameter �� 1. For the e�etive neutrino mass one an then

have, for instane, em

1

� m

2

(f. [26, 29℄). A simple and attrative form of the light

neutrino mass matrix, whih an aount for all data, is given by [30, 31℄,

m

�

�

0

B

�

�

2

� �

� 1 1

� 1 1

1

C

A

v

2

M

3

; (27)

8



where oeÆients O(1) have been omitted. This form ould follow from a U(1) fam-

ily symmetry [32℄ or a relation between the hierarhies of Dira and Majorana neutrino

masses [33℄. In the seond ase one has m

1

;m

2

� �m

3

and em

1

� m

3

, whih is ompatible

with leptogenesis. The struture of the mass matrix (27) as well as preditions for the

oeÆients O(1) an be obtained in seesaw models where the exhange of two heavy Ma-

jorana neutrinos dominates [34℄. In all these examples the range of the e�etive neutrino

mass is m

1

� em

1

. m

3

.

Thermal leptogenesis also leads to a lower bound on M

1

, the smallest of the heavy

neutrino masses [35, 11℄. In the minimal senario, where the heavy neutrinos are not

degenerate, one obtains the lower bound M

1

> 4�10

8

GeV [9℄. It is reahed for maximal

CP asymmetry (m

1

= 0), minimal washout (em

1

! 0), and assuming thermal initial N

1

abundane. The bound beomes more stringent for restrited patterns of mass matries

[17℄. It an be relaxed if the heavy neutrinos are partially degenerate [24, 25, 26℄.

4 Improved upper bounds on neutrino masses

4.1 Maximal asymmetry and CMB onstraint

It is useful to reast the maximal CP asymmetry (23) in the following way,

"

max

1

(M

1

; em

1

;m) = 10

�6

�

M

1

10

10

GeV

�

m

atm

m

0

�(em

1

;m) ; (28)

where m

atm

=

p

�m

2

atm

+�m

2

sol

, m

0

= (16�=3) (v

2

=10

10

GeV) ' 0:051 eV, and

�(em

1

;m) =

�

m

3

�m

1

q

1 +

m

2

atm

em

2

1

�

m

atm

� 1 : (29)

The maximal value, � = 1, is obtained for m

1

= 0. Note, that m

atm

= m

0

for the

best �t values extrated from the KamLAND data [22℄, �m

2

sol

= 6:9� 10

�5

eV

2

, and the

SuperKamiokande data [21℄, �m

2

atm

= 2:5 � 10

�3

eV

2

.

We will alulate partile numbers and asymmetries normalized to the number of

photons per omoving volume before the onset of leptogenesis at t

?

[9℄. For zero initial

B � L asymmetry, i.e. N

i

B�L

= 0, the �nal B � L asymmetry produed by leptogenesis

is given by

N

f

B�L

= �

3

4

"

1

�

f

; (30)

where �

f

is the `eÆieny fator'. In the minimal version of thermal leptogenesis one

onsiders initial temperatures T

i

& M

1

, where M

1

is the mass of the lightest heavy

9



neutrino N

1

. In this ase �

f

� 1, and the maximal value, �

f

= 1, is obtained for thermal

initial N

1

abundane in the limit em

1

! 0. The heavy neutrinos N

1

then deay fully out of

equilibrium at temperatures well belowM

1

, produing a B�L asymmetry whih survives

until today sine all washout proesses are frozen at temperatures T �M

1

.

In the ase of general initial onditions and arbitrary values of em

1

, the eÆieny fator

�

f

has to be alulated by solving the Boltzmann equations [36, 37, 38, 39, 9℄,

dN

N

1

dz

= �(D + S) (N

N

1

�N

eq

N

1

) ; (31)

dN

B�L

dz

= �"

1

D (N

N

1

�N

eq

N

1

)�W N

B�L

; (32)

where z = M

1

=T . There are four lasses of proesses whih ontribute to the di�erent

terms in the equations: deays, inverse deays, �L = 1 satterings and proesses mediated

by heavy neutrinos. The �rst three all modify the N

1

abundane. Denoting by H the

Hubble parameter, D = �

D

=(H z) aounts for deays and inverse deays, while S =

�

S

=(H z) represents the �L = 1 satterings. The deays are also the soure term for

the generation of the B � L asymmetry, the �rst term in Eq. (32), while all the other

proesses ontribute to the total washout term W = �

W

=(H z) whih ompetes with the

deay soure term.

We take into aount only deays of N

1

, negleting the deays of the heavier neutrinos

N

2

and N

3

. These deays produe a B � L asymmetry at temperatures higher than M

1

.

As we shall see in Setion 5, the washout proesses at T � M

1

very eÆiently erase

any previously generated asymmetry. Even in the ase of very small mass di�erenes the

deays of N

2

and N

3

do not hange signi�antly the bound on the light neutrino masses,

whih is our main interest. This will be disussed in Setion 4.3.

The baryon to photon number ratio at reombination, �

B

, is simply related to N

f

B�L

by �

B

= (a=f)N

f

B�L

, where a = 28=79 [40℄ is the fration of B � L asymmetry whih is

onverted into a baryon asymmetry by sphaleron proesses, and f = N

re



=N

?



= 2387=86

aounts for the dilution of the asymmetry due to standard photon prodution from the

onset of leptogenesis till reombination. �

max

B

, the �nal baryon asymmetry produed by

leptogenesis with maximal CP asymmetry, i.e. "

1

= "

max

1

), is given by

�

max

B

' 0:96 � 10

�2

"

max

1

�

f

: (33)

This quantity has to be ompared with measurements of the CMB experiments

BOOMerANG [41℄ and DASI [42℄,

�

CMB

B

= (6:0

+1:1

�0:8

)� 10

�10

: (34)
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The CMB onstraint then requires �

max

B

� �

CMB

B

, and we will adopt for �

CMB

B

the 3�

lower limit, (�

CMB

B

)

low

= 3:6� 10

�10

.

In [9℄ we showed that �

max

B

depends just on the three parameters em

1

;M

1

and m.

Thus, for a given value of m, the CMB onstraint determines an allowed region in the

(em

1

;M

1

)-plane. It was also shown that there is an upper bound for m above whih no

allowed region exists. In [12℄, based on the bound (9) for the CP asymmetry,m < 0:30 eV

was derived as upper bound on the neutrino mass sale. In the following we shall study

the allowed regions in the (em

1

;M

1

)-plane for di�erent parameters m using the improved

bound on the CP asymmetry (23) and in this way determine a new improved bound on

m.

4.2 Numerial results

The neutrino masses m

1

and m

3

depend in a di�erent way on m in the ases of normal

and inverted hierarhy, respetively. Hene, also the dependene of the funtion � on m is

di�erent for these two mass patterns. This leads to di�erent maximal baryon asymmetries

�

max

B

, and therefore to di�erent upper bounds on m, in the two ases whih we now study

in turn.

For neutrino masses with normal hierarhy one has

m

2

3

�m

2

2

= �m

2

atm

; m

2

2

�m

2

1

= �m

2

sol

; (35)

and the dependene on m is given by

m

2

3

=

1

3

�

m

2

+ 2�m

2

atm

+�m

2

sol

�

; (36)

m

2

2

=

1

3

�

m

2

��m

2

atm

+�m

2

sol

�

; (37)

m

2

1

=

1

3

�

m

2

��m

2

atm

� 2�m

2

sol

�

: (38)

These relations are plotted in Fig. 1. Note that there is a minimal value of m, orrespond-

ing to m

1

= 0, whih is given by m

min

=

p

�m

2

atm

+ 2�m

2

sol

' 0:051 eV.

Fig. 2 shows the lines of onstant maximal baryon asymmetry �

max

B

= (�

CMB

B

)

low

(thik

lines) and �

max

B

= 10

�10

(thin lines) in the (em

1

;M

1

)-plane for di�erent hoies of m and

assuming zero initial N

1

abundane. The allowed regions (the �lled ones) orrespond to

the onstraint �

max

B

� (�

CMB

B

)

low

. The largest allowed region is obtained for m = m

min

,

sine in this ase the CP asymmetry is maximal, i.e. � = 1 for any value of em

1

, and the

washout is minimal. Note that a di�erent hoie for the initial N

1

abundane would have

a�eted the �nal baryon asymmetry only for em

1

< m

�

. The ase of an initial thermal

11
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abundane has been studied in [9℄. When m inreases di�erent e�ets ombine to shrink

the allowed region until it ompletely disappears at some value m

max

.

We have determined this value with a numerial unertainly of 0:01 eV. From Fig. 2

one an see that there is a small allowed region for m = 0:19 eV, whereas we found no

allowed region for m = 0:20 eV. Hene, the value of m

max

is somewhere in between and

we an onlude that in the ase of normal hierarhy,

m < 0:20 eV : (39)

Using the relations (36)-(38), one an easily translate this bound into upper limits on the

individual neutrino masses (f. Fig. 1),

m

1

;m

2

< 0:11 eV ; m

3

< 0:12 eV : (40)

The ase of an inverted hierarhy of neutrino masses orresponds to

m

2

3

�m

2

2

= �m

2

sol

; m

2

2

�m

2

1

= �m

2

atm

; (41)

and the relations between the neutrino masses and m are

m

2

3

=

1

3

�

m

2

+ �m

2

atm

+ 2�m

2

sol

�

; (42)

m

2

2

=

1

3

�

m

2

+ �m

2

atm

��m

2

sol

�

; (43)

m

2

1

=

1

3

�

m

2

� 2�m

2

atm

��m

2

sol

�

: (44)

We have plotted these relations in Fig. 3. The minimal value of m, orresponding to

m

1

= 0, is now m

min

=

p

2�m

2

atm

+�m

2

sol

' 0:072 eV.

The urves of onstant �

max

B

are shown in Fig. 4 for di�erent values of m. The largest

allowed region is again obtained for m = m

min

. One an see that this time there is a tiny

allowed region for m = 0:20 eV and no allowed region for m = 0:21 eV. Therefore, in the

ase of inverted hierarhy the upper bound is slightly relaxed,

m < 0:21 eV : (45)

Using the relations (42)-(44) one an again translate the bound on m into bounds on the

individual neutrino masses,

m

1

< 0:11 eV ; m

2

;m

3

< 0:12 eV : (46)

Let us now disuss the di�erent e�ets whih ombine to shrink the allowed region

when the absolute neutrino mass sale m inreases, thus yielding the upper bound. The
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Figure 5: The CP asymmetry global suppression fator �
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for normal and inverted hierarhy.

�rst e�et is that away from the hierarhial neutrino ase, for m > m

min

and m

1

> 0, the

maximal CP asymmetry redues onsiderably. This an be seen in terms of the funtion

� (f. (29)) whih is onveniently expressed in the form

� = �

max

(m) f(em

1

;m) : (47)

The �rst fator, �

max

= (m

3

� m

1

)=m

atm

= m

atm

=(m

3

+ m

1

), is the maximal value of

� for �xed m; �

max

dereases / 1=m for m � m

min

(f. Fig. 5). This implies that for

inreasing m there is an overall suppression of the maximal baryon asymmetry in the

whole (em

1

;M

1

)-plane [11℄. In partiular the lower limit on M

1

beomes more stringent.

The fator f(em

1

;m) = 1, for any value of em

1

, if m = m

min

(m

1

= 0). In the ase

m > m

min

(m

1

> 0) it vanishes for em

1

= m

1

and grows monotonially to 1 with inreasing

em

1

(f. Fig. 6). Thus for m

1

> 0 the funtion f gives a further suppression of the CP

asymmetry, in addition to the one from �

max

< 1. This suppression is strong for em

1

& m

1

and disappears for em

1

� m

1

. Hene the derease of the maximal CP asymmetry for

m > m

min

shrinks the allowed region most at small em

1

& m

1

and at smallM

1

. Note that

the di�erene between the allowed regions for normal and inverted hierarhy is aounted

for by the di�erent values of � for a given value of m. In the ase of inverted hierarhy

� is larger for any value of em

1

and m � m

inv

min

(f. Figs. 5,6). The e�et is maximal for

m = m

inv

min

where �

inv

= 1 while �

nor

' 0:6. For larger values of m � m

inv

min

, and also
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� m
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' 0:08 (0:07) eV.

em

1

� m

nor

1

, the ratio �

inv

=�

nor

beomes very lose to 1. This situation is realized when

m approahes its upper bound. This explains why the upper bound on m is only slightly

relaxed in the ase of inverted hierarhy.

The seond e�et, whih shrinks the allowed region when m inreases, is the enhane-

ment of washout proesses. In [9℄ we showed how the total washout rate an be written

as the sum of two terms, (W ��W ) / em

1

and �W /M

1

m

2

. The �rst term is respon-

sible for the redution of the allowed region at large em

1

. The seond term leads to the

boundary at large M

1

. The ombined e�et shrinks the allowed region with inreasing m

at large M

1

and at large em

1

.

One an see how this seond e�et redues the allowed region, independent of the

maximalCP asymmetry derease, by omparing the two largest allowed regions for normal

and inverted hierarhy; they orrespond to the two di�erent values of m

min

(f. Fig. 2

and Fig. 4). Sine � = 1 in both ases, the entire di�erene is due to the di�erent

washout e�ets. They are larger in the ase of inverted hierarhy beause m

min

is about

�

p

2 higher than in the normal hierarhy ase. One an see how, for a �xed value of

em

1

, the maximal value of M

1

is approximately halved in the inverted hierarhy ase.

Correspondingly, the maximal allowed value of em

1

is lower for inverted hierarhy than for

normal hierarhy.

16



In summary, within the theoretial unertainties, leptogenesis annot distinguish be-

tween normal and inverted hierarhial neutrino mass patterns. However, our new analysis

on�rms and strengthens the results of [9, 12℄ that quasi-degenerate neutrino masses are

strongly disfavored by leptogenesis, by putting the stringent upper bound of 0.12 eV on

all neutrino masses.

4.3 Stability of the bound

The numerial results an be very well reprodued analytially [43℄. This proedure is not

only able to yield the orret value of m

max

but also reveals some general features whih

in the numerial analysis may appear aidental.

For m = m

max

, at the peak value of maximal asymmetry, suh that �

max

B

= �

CMB

B

, one

has

em

1

j

max

= m

max

+O

�

m

2

atm

m

2

max

�

; (48)

M

1

j

max

' 1:6 � 10

13

GeV

�

0:2 eV

m

max

�

2

: (49)

The value of m

max

is slightly di�erent for normal and inverted hierarhy, respetively,

(m

nor

max

)

2

= (m

0

max

)

2

�

1

8

m

2

atm

+O(m

4

atm

=m

4

max

) ; (50)

(m

inv

max

)

2

= (m

0

max

)

2

+

7

8

m

2

atm

+O(m

4

atm

=m

4

max

) ; (51)

where m

0

max

is the zero-th order approximation. This implies

(m

inv

max

)

2

� (m

nor

max

)

2

= m

2

atm

+O(m

4

atm

=m

4

max

) : (52)

Besides gaining more insight into the numerial results, the analyti proedure also

allows to �nd the dependene of the bound on the involved physial parameters and to

study in this way its stability.

Consider �rst the dependene on the experimental quantities �

CMB

B

, �m

2

atm

and �m

2

sol

.

Sine �m

2

sol

� �m

2

atm

, the dependene on �m

2

sol

is so small that it an be negleted,

yielding m

atm

'

p

�m

2

atm

. The analyti proedure shows that m

max

/ (m

2

atm

=�

CMB

B

)

1=4

.

From the numerial result, found for �

CMB

B

= 3:6�10

�10

and m

atm

= m

0

' 0:051 eV, and

one then obtains in general

m

0

max

' 0:175 eV

�

6� 10

�10

�

CMB

B

�

1

4

�

m

atm

m

0

�

1

2

: (53)

17



Using Eq. (53) one immediately gets the entral value of m

max

. Note also that for

�

CMB

B

= 10

�10

and m

atm

= m

0

, one has m

0

max

' 0:275 eV. This is on�rmed by the

numerial results. We still �nd iso-lines �

CMB

B

= 10

�10

for m = 0:27 eV, whereas this is

not the ase anymore for m = 0:28 eV. From Eq. (53) one obtains as estimate for the

relative error,

Æm

max

=

1

4

�

Æ�

CMB

B

+ Æm

2

atm

�

: (54)

Aording to Eq. (34) the 1� standard error on �

CMB

B

is about 15% while Æm

2

atm

' 25%

[21℄. We thus obtain Æm

max

' 10%, whih orresponds to the absolute error �m

max

'

0:02 eV. In the oming years the errors on �

CMB

B

and m

2

atm

will be greatly redued by

the satellite experiments MAP [44℄ and Plank [45℄, and by the long baseline experiments

Minos [46℄ and CNGS [47℄, respetively, and onsequently the error on m

max

will be

onsiderably redued.

Another important question onerns the enhanement of the maximalCP asymmetry

when �M

21

= M

2

�M

1

, where M

1

and M

2

are the masses of the heavy neutrinos N

1

and

N

2

, beomes omparable to or smaller than M

1

itself. As long as the mass splitting is

larger than the deay widths, the enhanement is given by [15, 16℄,

�(x) =

2

3

x

�

(1 + x) ln

�

1 + x

x

�

�

2� x

1� x

�

; (55)

where x = (M

2

=M

1

)

2

. Note, that � approahes 1 for x� 1. The value of m

max

inreases

like �

1=4

[43℄, and it is therefore easy to see how the bound on m gets relaxed for small

values of the mass di�erene �M

21

.

In Fig. 7 we have plotted the enhanement ��1 and the entral value ofm

max

, together

with its 1� limits, as funtion of �M

21

=M

1

. For �M

21

=M

1

& 1 the bounds (39),(45) are

reovered. Only for values �M

21

=M

1

. 0:1 the bound gets relaxed in an appreiable

way. An inrease of m

max

by a fator � 3, allowing quasi-degenerate neutrino masses of

0.4 eV, whih ould be deteted with the KATRIN experiment [48℄, requires degeneraies

�M

21

=M

1

;�M

31

=M

1

. 10

�3

.

In the regime �M

21

. M

1

also deays of N

2

have to be taken into aount. As we

shall see in the next setion, for larger mass splittings an asymmetry generated in N

2

deays would be washed out before T �M

1

, and it is then suÆient to onsider only N

1

deays. However, even for �M

21

=M

1

. 0:1, it is easy to see that the e�et of suh an

additional asymmetry on the bound is small ompared to the e�et of the CP asymmetry

enhanement desribed above. The largest e�et would be obtained for "

max

2

= "

max

1

and

em

2

� em

1

, orresponding to a doubled heavy neutrino abundane without any washout

enhanement. In this extreme ase the bound is relaxed at most by a fator 2

1=4

' 1:2.
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Figure 7: The CP asymmetry enhanement �� 1 (short dashed line) and hm

0

max

i ��m

0

max

for

normal hierarhy (solid and dashed lines) as funtions �M

21

=M

1

.

Even for three degenerate neutrinos, with both �M

21

=M

1

� 1 and �M

31

=M

1

� 1,

the e�et ould relax the bound not more than by a fator 3

1=4

' 1:3. Hene, the CP

enhanement represents the dominant e�et and we an onlude that the bound onm an

only be evaded in ase of an extreme degeneray among the heavy Majorana neutrinos.

A further important issue is the e�et of supersymmetry on the bound. In this ase

the maximal CP asymmetry is about twie as large whih ould relax the bound by a

fator 2

1=4

� 1:2. However, washout proesses are also onsiderably enhaned [38℄. This

e�et goes into the opposite diretion and is atually stronger, so that one an expet a

slightly more stringent bound on m. A detailed alulation will be presented in [43℄.

We onlude that the leptogenesis upper bound on neutrino masses is very stable.

The essential reason is that, at m = m

max

, the peak value �

max

B

/ 1=m

4

max

. Hene, any

variation of the �nal asymmetry results into hange of m

max

whih is almost one order

of magnitude smaller. The same argument applies also to the theoretial unertainties.

Although the various orretions to the Boltzmann equations still remain to be alulated,

we do not expet a relaxation of m

max

by more than 20%. In fat, we expet that the

orretions will go in the diretion of lowering the predition on the �nal asymmetry,

whih will make the bound on m more stringent.

For partiular patterns of neutrino mass matries stronger bounds on the light neutrino
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masses an be obtained. For instane, one an study how the upper bound hanges if

M

1

is required to be smaller than some ut-o� value M

?

1

. For M

?

1

> M

1

j

max

' 10

13

GeV

(f. (49)) the bound does not hange. For smaller values of M

1

the bound beomes more

stringent. For example, from Figs. 2 and 4 one an see that the ut-o� M

1

< 5�10

12

GeV

leads to the bound m < 0:15 eV, whih orresponds to m

1

< 0:08 eV. For a restrited

mass pattern, and negleting �W / M

1

m

2

washout terms, less stringent bounds have

been found in [17℄ for the same ut-o� value of M

1

.

5 Dependene on initial onditions

A very important question for leptogenesis, and baryogenesis in general, is the dependene

on initial onditions. This inludes the dependene on the initial abundane of heavy

Majorana neutrinos, whih has been studied in detail in [9℄, and also the e�et of an

initial asymmetry whih may have been generated by some other mehanism. In the

following we shall study the eÆieny of the washout of a large initial asymmetry by

heavy Majorana neutrinos.

For simpliity, we neglet the small asymmetry generated through the CP violating

interations of the heavy neutrinos, i.e. we set "

1

= 0. The kineti equation (32) for the

asymmetry then beomes

dN

B�L

dz

= �W N

B�L

; (56)

where �N

B�L

is the number of lepton doublets per omoving volume. The �nal B � L

asymmetry is then given by

N

f

B�L

= !(z

i

)N

i

B�L

; (57)

with the washout fator

!(z

i

) = e

�

R

1

z

i

dz W (z)

: (58)

In Eq. (56) W (z) = �

W

(z)=H(z)z is the resaled washout rate, where H(z) is the

temperature-dependent Hubble parameter. �

W

reeives ontributions from inverse deays

(�

ID

), �L = 1 proesses (�

�;t

, �

�;s

) and �L = 2 proesses (�

N

, �

N;t

) (f. [9℄),

�

W

=

1

2

�

ID

+ 2

�

�

(l)

N

+ �

(l)

N;t

�

+ 2�

(l)

�;t

+

n

N

1

n

eq

N

1

�

(l)

�;s

: (59)

The inverse deay rate is given by

�

ID

=

n

eq

N

1

n

eq

l

�

D

; �

D

=

1

8�

�

h

y

h

�

11

M

1

K

1

(z)

K

2

(z)

; (60)
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where n

eq

N

1

and n

eq

l

are the equilibrium number densities of heavy neutrinos and lepton

doublets, respetively, and K

1;2

(z) are modi�ed Bessel funtions of the third kind. The

quantities �

(X)

i

are thermally averaged reation rates per partile X. They are related by

�

(X)

i

= 

i

=n

eq

X

to the reation densities 

i

[36℄. Our alulations are based on the redued

ross setions given in ref. [38℄.

It is very instrutive to onsider analytial approximations to the various washout

ontributions. Both, the inverse deay rate and the resonane part of �

(l)

N

(f. [9℄) are

proportional to K

1

(z),

�

(1)

W

=

1

2

�

ID

+ 2�

(l)

N;res

=

1

16��(3)

�

h

y

h

�

11

M

1

z

2

K

1

(z) : (61)

The integral in Eq. (56) an be analytially performed. The orresponding washout fator

an be written in the form

!

(1)

(z

i

) = exp

�

�

1

2�(3)

em

1

m

�

�

3�

2

+ z

3

i

K

2

(z

i

)�

3�

2

z

i

(K

2

(z

i

)L

1

(z

i

) + L

2

(z

i

)K

1

(z

i

))

��

;(62)

where m

�

is the equilibrium mass (2), and L

1;2

(z) are modi�ed Struve funtions [49℄.

Rather aurate approximations are, for small and large values of z

i

respetively,

!

(1)

(z

i

) =

8

>

<

>

:

exp

n

�

1

2�(3)

em

1

m

�

�

3�

2

�

1

3

z

3

i

+O(z

5

i

)

�

o

; z

i

< 1

exp

n

�

1

2�(3)

em

1

m

�

q

�

2z

i

e

�z

i

�

z

3

i

+

23

8

z

2

i

+

537

128

z

i

+

2253

1024

+O(

1

z

i

)

�o

; z

i

> 1 :

(63)

The non-resonant ontribution of N

1

exhange to the washout is proportional to m

2

,

�

(2)

W

= 2

�

�

(l)

N;nonres

+ �

(l)

N;t

�

=

1

�

3

�(3)

M

3

1

m

2

v

4

1

z

3

; (64)

whih yields the washout fator

!

(2)

(z

i

) = exp

�

�

8

�

2

�(3)

M

1

m

2

m

�

v

2

1

z

i

�

: (65)

Finally, we have to onsider N

1

-top satterings. The rate is dominated by t-hannel

Higgs exhange if the infrared divergene is ut o� by a Higgs mass m

�

� 1 TeV � T .

In terms of the redued ross setion one has (f. [38℄),

�

(l)

�;t

=

M

1

z

2

96�

2

�(3)

Z

1

1

dx

p

x�̂

�;t

(x)K

1

(z

p

x) : (66)
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Figure 8: Washout fator as funtion of the initial temperature z

i

= M

1

=T

i

for di�erent

values of em

1

and M

1

= 10

8

GeV; N

1

-top satterings are negleted.

For small and large values of z

i

, respetively, analyti expressions are given by

!

(3)

(z

i

) =

8

>

<

>

:

exp

n

�

�

u

2�(3)

em

1

m

�

(ln (4a

�

) � 1)

o

; z

i

< 1

exp

n

�

�

u

2�(3)

em

1

m

�

q

2z

i

�

e

�z

i

�

ln

�

a

�

z

2

i

�

�

11

8

+ z

i

�

+

5

8

� z

i

�o

; z

i

> 1 ;

(67)

where �

u

= g

2

t

=(4�) and a

�

= M

2

1

=m

2

�

.

The total washout fator

!(z

i

) =

N

f

B�L

N

i

B�L

= !

(1)

(z

i

)!

(2)

(z

i

)!

(3)

(z

i

) (68)

depends exponentially on the parameters em

1

(!

(1)

,!

(3)

) and M

1

m

2

(!

(2)

). For not too

large M

1

and not too small z

i

(f. Figs. (8)-(10)), !

(2)

' 1 whereas !

(1)

reahes a plateau

for z

i

� 1 at

!

(1)

(z

i

) ' exp

�

�

3�

4�(3)

em

1

m

�

�

: (69)

At smaller values of z

i

, and orrespondingly higher temperatures T

i

, eventually !

(2)

de-

reases rapidly. When T

i

reahes M

2

, the mass of N

2

, a new plateau will be reahed. The

larger M

1

, the larger the value of z

i

where the derease of !

(2)

sets in. This behaviour is

22



Figure 9: Washout fator as funtion of the initial temperature z

i

= M

1

=T

i

for di�erent

values of em

1

and M

1

= 10

10

GeV; N

1

-top satterings are negleted.

Figure 10: Washout fator as funtion of the initial temperature z

i

= M

1

=T

i

for di�erent

values of em

1

and M

1

= 10

12

GeV; N

1

-top satterings are negleted.
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Figure 11: Washout fator as funtion of the initial temperature z

i

= M

1

=T

i

for di�erent

values of em

1

and M

1

= 10

14

GeV; N

1

-top satterings are negleted.

learly visible in Figs. (8)-(10). At very large M

1

, the derease of !

(2)

is e�etive already

at large values of z

i

(f. Fig. (11)).

The fator !

(3)

is very sensitive to the value of a

�

, i.e. the hoie of the infrared uto�

m

�

. For m

�

= 1 TeV, !

(3)

signi�antly improves the washout of !

(1)

!

(2)

, but it does

not hange the qualitative piture. This is illustrated by Fig. (12) where the ases with

and without N

1

-top satterings are ompared. On the other hand, for m

�

� M

1

, !

(3)

is

always negligible ompared to !

(1)

. The issue of the orret hoie of the infrared uto� is

theoretially not yet settled. There is a orresponding, though less important unertainty

in the generation of the baryon asymmetry for small values of em

1

[39℄. The washout

fators !

(1)

!

(2)

shown in Figs. (8)-(11) an be regarded as onservative upper bounds on

the full washout fators ! = !

(1)

!

(2)

!

(3)

.

It is remarkable that the washout of an initial asymmetry at z

i

� 1, i.e. T

i

� M

1

,

beomes very eÆient for em

1

� m

�

' 10

�3

eV. Sine the eÆieny inreases exponentially

with inreasing em

1

, already at em

1

= 5 � 10

�3

eV one has !(z

i

= 1) < 10

�4

. Hene,

for neutrino masses of order or larger than

p

�m

2

sol

, �L = 1 proesses are very likely

to erase any previously generated baryon asymmetry to a level below the asymmetry

produed by leptogenesis. As shown in [9℄, for these values of em

1

the �nal asymmetry is
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Figure 12: Comparison of the washout fators as funtion of z

i

= M

1

=T

i

without (full

line) and with (dashed line) N

1

-top satterings; M

1

= 10

10

GeV.

also independent of the initial N

1

abundane. Hene, a omplete independene of initial

onditions is ahieved.

6 Summary

We have extended our previous work on the minimal version of thermal leptogenesis where

interations of N

1

, the lightest of the heavy Majorana neutrinos, are the dominant soure

of the baryon asymmetry. Based on the seesaw mehanism, we have derived an improved

upper bound on the CP asymmetry "

1

, whih depends on M

1

, the mass of N

1

, the light

neutrino masses m

1

and m

3

, and the e�etive neutrino mass em

1

. Given the two mass

splittings �m

2

atm

and �m

2

sol

, the neutrino masses m

1

and m

3

an depend on the absolute

neutrino mass sale m in two ways, orresponding to normal and inverted mass hierarhy,

respetively.

From the numerial solution of the Boltzmann equations we have obtained an upper

bound on all light neutrino masses of 0.12 eV, whih holds for normal as well as inverted

neutrino mass hierarhy. This is about a fator of two below the reent upper bound of

0:23 eV obtained by MAP [50℄. The leptogenesis bound is remarkably stable with respet
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to hanges of �

CMB

B

, �m

2

atm

, the e�et of supersymmetry, and theoretial unertainties

of �

max

B

. Quasi-degenerate neutrinos are only allowed if the CP asymmetry is strongly

enhaned by a degeneray of the heavy Majorana neutrinos. For instane, in order to

relax the upper bound to 0.4 eV, degeneraies �M

21

=M

1

;�M

31

=M

1

. 10

�3

are required.

We have also studied the washout of a large, pre-existing B�L asymmetry. It is very

interesting that a washout by several orders of magnitude takes plae at temperatures

T lose to M

1

, if the e�etive neutrino mass em

1

is larger than the equilibrium mass

m

�

' 10

�3

eV. All memory of the initial onditions is then erased.

We onlude that for neutrino masses in the range from 10

�3

eV to 0.1 eV leptoge-

nesis naturally explains the observed baryon asymmetry, independent of possible other

pre-existing asymmetries. It is very remarkable that the data on solar and atmospheri

neutrinos indiate neutrino masses preisely in this range.
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