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Abstra
t

Intera
tions of heavy Majorana neutrinos in the thermal phase of the early universe

may be the origin of the 
osmologi
al matter-antimatter asymmetry. This me
h-

anism of baryogenesis implies stringent 
onstraints on light and heavy Majorana

neutrino masses. We derive an improved upper bound on the CP asymmetry in

heavy neutrino de
ays whi
h, together with the kineti
 equations, yields an upper

bound on all light neutrino masses of 0.1 eV. Lepton number 
hanging pro
esses at

temperatures above the temperature T

B

of baryogenesis 
an erase other, pre-existing


ontributions to the baryon asymmetry. We �nd that these washout pro
esses be-


ome very eÆ
ient if the e�e
tive neutrino mass em

1

is larger than m

�

' 10

�3

eV.

All memory of the initial 
onditions is then erased. Hen
e, for neutrino masses

in the range from

q

�m

2

sol

' 8 � 10

�3

eV to

p

�m

2

atm

' 5 � 10

�2

eV, whi
h is

suggested by neutrino os
illations, leptogenesis emerges as the unique sour
e of the


osmologi
al matter-antimatter asymmetry.



1 Introdu
tion

The explanation of the 
osmologi
al baryon asymmetry is a 
hallenge for parti
le physi
s

and 
osmology. In an expanding universe, whi
h leads to departures from thermal equilib-

rium, C, CP and baryon number violating intera
tions of quarks and leptons 
an generate

dynami
ally a baryon asymmetry [1℄. The possible realization of these 
onditions has �rst

been studied in detail in the 
ontext of grand uni�ed theories [2, 3℄.

The pi
ture of baryogenesis is signi�
antly 
hanged by the fa
t that already in the

standard model of parti
le physi
s baryon (B) and lepton (L) number are not 
onserved

due to quantum e�e
ts [4℄. The 
orresponding non-perturbative �B = 3 and �L = 3

pro
esses are strongly suppressed at zero temperature. However, at temperatures above

the 
riti
al temperature T

EW

of the ele
troweak transition they are in thermal equilibrium

[5℄ and only the di�eren
e B � L is e�e
tively 
onserved.

During the past years data on atmospheri
 and solar neutrinos have provided strong

eviden
e for neutrino masses and mixings. In the seesaw me
hanism [6℄ the smallness

of these neutrino masses m

�

is explained by the mixing m

D

of the left-handed neutrinos

with heavy Majorana neutrinos of mass M , whi
h yields the light neutrino mass matrix

m

�

= �m

D

1

M

m

T

D

: (1)

Sin
e m

D

= O(v), where v ' 174 GeV is the ele
troweak s
ale, and M � v, the neutrino

masses m

�

are suppressed 
ompared to quark and 
harged lepton masses. CP violating

intera
tions of the heavy Majorana neutrinos 
an give rise to a lepton asymmetry and,

via the �B = 3 and �L = 3 sphaleron pro
esses, to a related baryon asymmetry. This

is the simple and elegant leptogenesis me
hanism [7℄.

Leptogenesis is a non-equilibrium pro
ess whi
h takes pla
e at temperatures T �M

1

.

For a de
ay width small 
ompared to the Hubble parameter, �

1

(T ) < H(T ), heavy

neutrinos are out of thermal equilibrium, otherwise they are in thermal equilibrium. A

rough estimate of the borderline between the two regimes is given by �

1

= H(M

1

) (
f. [8℄).

This is equivalent to the 
ondition that the e�e
tive neutrino mass em

1

= (m

y

D

m

D

)

11

=M

1

equals the `equilibrium neutrino mass'

m

�

=

16�

5=2

3

p

5

g

1=2

�

v

2

M

pl

' 10

�3

eV ; (2)

where we have used M

pl

= 1:2� 10

19

GeV and g

�

= 434=4 as e�e
tive number of degrees

of freedom. For em

1

> m

�

( em

1

< m

�

) the heavy neutrinos of type N

1

are in (out of)

thermal equilibrium at T = M

1

.
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It is very remarkable that the equilibrium neutrino mass m

�

is 
lose to the neutrino

masses suggested by neutrino os
illations,

p

�m

2

sol

' 8 � 10

�3

eV and

p

�m

2

atm

' 5 �

10

�2

eV. This suggests that it may be possible to understand the 
osmologi
al baryon

asymmetry via leptogenesis as a pro
ess 
lose to thermal equilibrium. Ideally, �L = 1

and �L = 2 pro
esses would be strong enough at temperatures above M

1

to keep the

heavy neutrinos in thermal equilibrium and weak enough to allow the generation of an

asymmetry at temperatures below M

1

.

An analysis of solutions of the Boltzmann equations shows that this is indeed the


ase if light and heavy neutrino masses lie in an appropriate mass range. In general,

the �nal baryon asymmetry is the result of a 
ompetition between produ
tion pro
esses

and washout pro
esses whi
h tend to erase any generated asymmetry. Unless the heavy

Majorana neutrinos are partially degenerate,M

2;3

�M

1

�M

1

, the dominant pro
esses are

de
ays and inverse de
ays of N

1

and the usual o�-shell �L = 1 and �L = 2 s
atterings.

The �nal baryon asymmetry then depends on just four parameters [9℄ : the mass M

1

of

N

1

, the CP asymmetry "

1

in N

1

de
ays, the e�e
tive neutrino mass em

1

and, �nally, the

sum of all neutrino masses squared, m

2

= m

2

1

+ m

2

2

+ m

2

3

, whi
h 
ontrols an important


lass of washout pro
esses. Together with the two mass squared di�eren
es �m

2

atm

and

�m

2

sol

, the sum m

2

determines all neutrino masses. Using an upper bound on the CP

asymmetry "

1

[10, 11℄, an upper bound on all light neutrino masses of 0.2 eV has re
ently

been derived [12℄.

In this paper we extend the previous analysis in two dire
tions. We derive an improved

upper bound on the CP asymmetry whi
h leads to a more stringent upper bound on light

neutrino masses. In addition, we study in detail the washout of a pre-existing B � L

asymmetry, whi
h yields a lower bound on the e�e
tive neutrino mass em

1

. In this way

we obtain a window of neutrino masses for whi
h leptogenesis 
an explain the observed


osmologi
al baryon asymmetry, independent of initial 
onditions.

The paper is organized as follows. In Se
tion 2 we derive an improved upper bound

on the CP asymmetry "

1

and illustrate how it 
an be saturated for spe
i�
 neutrino

mass matri
es. Theoreti
al expe
tations for the range of neutrino masses are dis
ussed

in Se
tion 3. In Se
tion 4 we then derive upper bounds on the light neutrino masses in

the 
ases of normal and inverted hierar
hy, and we dis
uss the stability of these bounds.

Se
tion 5 deals with the washout of a large initial B � L asymmetry, and a summary of

our results is given in Se
tion 6.
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2 Bounds on the CP asymmetry

Given the masses of heavy and light Majorana neutrinos the CP asymmetry "

1

in the

de
ays of N

1

, the lightest of the heavy neutrinos, satis�es an upper bound [10, 11℄. In

the following we shall study under whi
h 
onditions this upper bound is saturated and

how it depends on the e�e
tive neutrino mass em

1

whi
h plays an important role in the

thermodynami
 pro
ess of leptogenesis.

The standard model with right-handed neutrinos is des
ribed by the lagrangian,

L

m

= h

ij

l

Li

�

Rj

�+

1

2

M

ij

�




Ri

�

Rj

+ h:
: ; (3)

where M is the Majorana mass matrix of the right-handed neutrinos, and the Yukawa


ouplings h yield the Dira
 neutrino mass matrix m

D

= hv after spontaneous symmetry

breaking, v = h�i. We work in the mass eigenstate basis of the right-handed neutrinos

where M is diagonal with real and positive eigenvalues M

1

� M

2

� M

3

. The seesaw

me
hanism [6℄ then yields the light neutrino mass matrix

m

�

= �m

D

1

M

m

T

D

; (4)

whi
h 
an be diagonalized by a unitary matrix U

(�)

,

U

(�)y

m

�

U

(�)�

= �

0

B

�

m

1

0 0

0 m

2

0

0 0 m

3

1

C

A

; (5)

with real and positive eigenvalues satisfying m

1

� m

2

� m

3

.

It is 
onvenient to work in a basis where also the light neutrino mass matrix is diagonal.

In this basis the Yukawa 
ouplings are

~

h = U

(�)y

h : (6)

As a 
onsequen
e of the seesaw formula the matrix 
,




ij

=

v

p

m

i

M

j

~

h

ij

; (7)

is orthogonal, 



T

= 


T


 = I [13℄. It is then easy to show that the CP asymmetry "

1

[14℄-[16℄ is given by (
f., e.g., [9℄)

"

1

=

3

16�

M

1

v

2

X

i 6=1

�m

2

i1

m

i

Im

�

~

h

2

i1

�

�

~

h

y
~

h

�

11

; (8)
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where �m

2

i1

= m

2

i

�m

2

1

.

The CP asymmetry "

1

is bounded by the maximal asymmetry "

max

1

[12℄,

j"

1

j � "

max

1

=

3

16�

M

1

v

2

(�m

2

atm

+�m

2

sol

)

m

3

: (9)

As we will now show, this bound holds for arbitrary values of m

2

, i.e. for normal and for

inverted hierar
hy, and it is saturated in the limit m

1

! 0.

Consider the normalized Yukawa 
ouplings

z

i

=

~

h

2

i1

(

~

h

y
~

h)

11

= x

i

+ iy

i

; (10)

with

0 � jz

i

j � 1 ;

X

i

jz

i

j = 1 : (11)

The orthogonality 
ondition (


T


)

11

= 1 yields the additional 
onstraint

X

i

em

1

m

i

z

i

= 1 : (12)

In the new variables the CP asymmetry reads

"

1

=

3

16�

M

1

v

2

�

�m

2

21

m

2

y

2

+

�m

2

31

m

3

y

3

�

: (13)

Sin
e m

3

> m

2

, one also has �m

2

31

=m

3

> �m

2

21

=m

2

. This suggests that the maximal CP

asymmetry is rea
hed for maximal y

3

.

Suppose now that 1 � y

3

= O(�). Be
ause of Eqs. (11) this implies y

2

, y

1

and all x

i

have to vanish in the limit �! 0. The orthogonality 
ondition (


T


)

11

= 1 yields

y

1

m

1

+

y

2

m

2

+

y

3

m

3

= 0 ; (14)

em

1

m

1

x

1

+

em

1

m

2

x

2

+

em

1

m

3

x

3

= 1 : (15)

Sin
e m

2

> 0, these 
onditions are satis�ed for maximal y

3

, if y

2

= x

2

= x

3

= 0 and

m

1

; y

1

/ � ; (16)

em

1

/ �

a

; x

1

/ �

1�a

; 0 � a < 1 : (17)

Note that in the limit �! 0, N

1


ouples only to l

3

�. For a > 0, N

1

de
ouples 
ompletely,

sin
e

~

h

2

i1

= (

~

h

y

~

h)

11

z

i

and (

~

h

y

~

h)

11

/ em

1

.
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An expli
it example, whi
h illustrates this saturation of the CP bound, is given by the

following orthogonal matrix,


 =

0

B

�

A 0 �B

0 1 0

B 0 A

1

C

A

; (18)

with

B

2

= i

v

2

m

3

M

1

b�

a

; A

2

= 1�B

2

; b > 0 : (19)

The 
orresponding Yukawa 
ouplings squared are

�

~

h

2

i1

�

=

�

m

1

M

1

v

2

� i

m

1

m

3

b�

a

; 0; ib�

a

�

: (20)

One obviously has x

2

= x

3

= y

2

= 0, and y

3

! 1, x

1

; y

1

! 0 in the limit � ! 0. The

matrix of Yukawa 
ouplings,

~

h =

0

B

B

�

q

m

1

M

1

v

2

� i

m

1

m

3

b�

a

0

q

i

m

1

M

3

m

3

M

1

b�

a

0

p

m

2

M

2

v

0

�

p

ib�

a

0

q

m

3

M

3

v

2

� i

M

3

M

1

b�

a

1

C

C

A

; (21)

be
omes diagonal in the limit � ! 0 for a > 0. Hen
e, in this basis, the large neutrino

mixings are due to the 
harged lepton mass matrix.

This example illustrates that em

1


an be arbitrary in the limit m

1

! 0. It approa
hes

b

2

v

2

=M

1

for a = 0, while it goes to 0 for a > 0. Hen
e, the maximal CP asymmetry

(9) 
an be rea
hed for arbitrary values of m

2

and em

1

. For a given CP asymmetry, the

maximal baryon asymmetry is rea
hed in the limit em

1

! 0, assuming thermal initial N

1

abundan
e. The 
orresponding, model independent lower bound on the heavy neutrino

mass M

1

was determined in [9℄ to be M

1

> 4 � 10

8

GeV. If the Yukawa 
ouplings

~

h are

restri
ted, a more stringent lower bound on M

1


an be derived [17℄.

The above dis
ussion 
an easily be extended to derive the maximal CP asymmetry in

the 
ase of arbitrary em

1

. Sin
e m

3

> m

2

> m

1

, one again has x

3

= x

2

= y

2

= 0. From

Eqs. (14),(15) one then 
on
ludes

y

1

= �

m

1

m

3

y

3

; x

1

=

m

1

em

1

: (22)

Together with the 
onstraint (
f. (11)),

p

x

2

1

+ y

2

1

+ jy

3

j = 1, these 
onditions determine

jy

3

j as fun
tion of m

1

, m

3

and em

1

. Inserting the result into Eq. (13) yields the improved

upper bound

"

max

1

=

3

16�

M

1

m

3

v

2

"

1 �

m

1

m

3

�

1 +

m

2

3

�m

2

1

em

2

1

�

1=2

#

: (23)

6



For m

1

= 0 the result 
oin
ides with the previous bound (9). For 0 < m

1

� em

1

the

new bound is more stringent. In parti
ular, "

max

1

= 0 for em

1

= m

1

. Note that a

ording

to Eq. (23) the only model independent restri
tion on the e�e
tive neutrino mass is

em

1

� m

1

. The improved upper bound on the CP asymmetry implies also a bound on the

light neutrino masses whi
h is more stringent than the one obtained in [12℄. This will be

dis
ussed in Se
tion 4.

3 Range of neutrino masses

At present we know two mass squared di�eren
es for the light neutrinos, whi
h are dedu
ed

from the measurements of solar and atmospheri
 neutrino 
uxes. In addition we have

information about elements of the mixing matrix U in the leptoni
 
harged 
urrent. Sin
e

U 
ould be entirely due to mixings of the 
harged leptons, this does not 
onstrain the light

neutrino mass matrix in a model independent way. The light neutrino masses m

1

< m

2

<

m

3


an be either quasi-degenerate or hierar
hi
al, with m

2

� m

1

� m

3

� m

2

(`normal

hierar
hy') or m

3

�m

2

� m

2

�m

1

(`inverted hierar
hy'). The best information on the

absolute neutrino mass s
ale 
omes from neutrinoless double �-de
ay, whi
h yields an

upper bound on the light Majorana neutrino masses of about 1 eV [18, 19℄.

A 
ru
ial quantity for thermal leptogenesis is the e�e
tive neutrino mass em

1

whi
h is

always larger than m

1

[20℄, as one easily sees from the orthogonality of 
 (
f. (7)),

em

1

=

v

2

M

1

X

i

j

~

h

2

i1

j =

X

i

m

i

j


2

i1

j

� m

1

X

i

j


2

i1

j � m

1

X

i

Re(


2

i1

) = m

1

: (24)

As we saw in the previous Se
tion, the maximal CP asymmetry is rea
hed for m

1

= 0,

su
h that m

2

'

p

�m

2

sol

and m

3

'

p

�m

2

atm

.

There is no model independent upper bound on em

1

. However, if there are no strong


an
elations due to phase relations between di�erent matrix elements, one has

em

1

� m

3

X

i

j


2

i1

j � m

3

j

X

i




2

i1

j = m

3

: (25)

Hen
e, the natural range for the e�e
tive neutrino mass is m

1

� em

1

. m

3

. In fa
t, we

are not aware of any neutrino mass model where this is not the 
ase.

It is instru
tive to examine the range of em

1

also in the spe
ial 
ase j"

1

j = "

max

1

. As we

saw in the previous se
tion this 
ase is realized for y

2

= x

2

= x

3

= 0, 
orresponding to

7



Re(


2

21

) = Re(


2

31

) = Im(


2

21

) = 0. The orthogonality 
ondition then implies Im(


2

11

) =

�Im(


2

31

) and Re(


2

11

) = 1. Hen
e, for maximal CP asymmetry one has

em

1

= m

1

q

1 + Im(


2

31

)

2

+m

3

jIm(


2

31

)j ; (26)

showing that the value of em

1

is tuned by just one quantity. For Im(


2

31

) = 0, one

has em

1

= m

1

, while the 
ase em

1

� m

3


orresponds to a �ne tuned situation in whi
h

jIm(


2

31

)j = jIm(


2

11

)j � Re(


2

11

) = 1.

If the observed large mixing angles in the leptoni
 
harged 
urrent originate from the

neutrino mass matrix, whi
h appears natural sin
e their Majorana nature distinguishes

neutrinos from quarks, the masses m

1

and em

1

are related to m

2

and m

3

. The seesaw

me
hanism together with leptogenesis then also 
onstrains the heavy Majorana neutrino

masses.

Large mixing angles are naturally explained if neutrino masses are quasi-degenerate

[23℄. One then has em

1

� m

1

� m

2

� m

3

> 0:1 eV. However, as shown in [9, 12℄ and

further strengthened in the following Se
tion, quasi-degenerate neutrinos are strongly

disfavored by thermal leptogenesis. A possible ex
eption is the 
ase where also the heavy

Majorana neutrinos are partially degenerate. One then gets an enhan
ement of the CP

asymmetry whi
h allows one to in
rease the neutrino masses and still have su

essful

leptogenesis. Models with �M

21

=M

1

= (M

2

�M

1

)=M

1

< 5 � 10

�2

and �M

21

=M

1

=

5 � 10

�7

have been 
onsidered in refs. [25℄ and [26℄, respe
tively. Note, however, that in

these examples the light neutrino masses are not quasi-degenerate. We shall pursue this


ase further in Se
tion 4.3.

The neutrino mass pattern with inverted hierar
hy has also re
eived mu
h attention in

the literature. There is, however, the well known diÆ
ulty of this s
enario to �t the large

angle MSW solution [27, 28℄. We also do not know any model with inverted hierar
hy

whi
h in
orporates su

essfully leptogenesis, and we shall therefore not pursue this 
ase

further.

We are then left with the 
ase of neutrino masses with normal hierar
hy. There are

many neutrino mass models of this type with su

essful leptogenesis. The mass hierar
hy

is usually 
ontrolled by a parameter �� 1. For the e�e
tive neutrino mass one 
an then

have, for instan
e, em

1

� m

2

(
f. [26, 29℄). A simple and attra
tive form of the light

neutrino mass matrix, whi
h 
an a

ount for all data, is given by [30, 31℄,

m

�

�

0

B

�

�

2

� �

� 1 1

� 1 1

1

C

A

v

2

M

3

; (27)

8



where 
oeÆ
ients O(1) have been omitted. This form 
ould follow from a U(1) fam-

ily symmetry [32℄ or a relation between the hierar
hies of Dira
 and Majorana neutrino

masses [33℄. In the se
ond 
ase one has m

1

;m

2

� �m

3

and em

1

� m

3

, whi
h is 
ompatible

with leptogenesis. The stru
ture of the mass matrix (27) as well as predi
tions for the


oeÆ
ients O(1) 
an be obtained in seesaw models where the ex
hange of two heavy Ma-

jorana neutrinos dominates [34℄. In all these examples the range of the e�e
tive neutrino

mass is m

1

� em

1

. m

3

.

Thermal leptogenesis also leads to a lower bound on M

1

, the smallest of the heavy

neutrino masses [35, 11℄. In the minimal s
enario, where the heavy neutrinos are not

degenerate, one obtains the lower bound M

1

> 4�10

8

GeV [9℄. It is rea
hed for maximal

CP asymmetry (m

1

= 0), minimal washout (em

1

! 0), and assuming thermal initial N

1

abundan
e. The bound be
omes more stringent for restri
ted patterns of mass matri
es

[17℄. It 
an be relaxed if the heavy neutrinos are partially degenerate [24, 25, 26℄.

4 Improved upper bounds on neutrino masses

4.1 Maximal asymmetry and CMB 
onstraint

It is useful to re
ast the maximal CP asymmetry (23) in the following way,

"

max

1

(M

1

; em

1

;m) = 10

�6

�

M

1

10

10

GeV

�

m

atm

m

0

�(em

1

;m) ; (28)

where m

atm

=

p

�m

2

atm

+�m

2

sol

, m

0

= (16�=3) (v

2

=10

10

GeV) ' 0:051 eV, and

�(em

1

;m) =

�

m

3

�m

1

q

1 +

m

2

atm

em

2

1

�

m

atm

� 1 : (29)

The maximal value, � = 1, is obtained for m

1

= 0. Note, that m

atm

= m

0

for the

best �t values extra
ted from the KamLAND data [22℄, �m

2

sol

= 6:9� 10

�5

eV

2

, and the

SuperKamiokande data [21℄, �m

2

atm

= 2:5 � 10

�3

eV

2

.

We will 
al
ulate parti
le numbers and asymmetries normalized to the number of

photons per 
omoving volume before the onset of leptogenesis at t

?

[9℄. For zero initial

B � L asymmetry, i.e. N

i

B�L

= 0, the �nal B � L asymmetry produ
ed by leptogenesis

is given by

N

f

B�L

= �

3

4

"

1

�

f

; (30)

where �

f

is the `eÆ
ien
y fa
tor'. In the minimal version of thermal leptogenesis one


onsiders initial temperatures T

i

& M

1

, where M

1

is the mass of the lightest heavy

9



neutrino N

1

. In this 
ase �

f

� 1, and the maximal value, �

f

= 1, is obtained for thermal

initial N

1

abundan
e in the limit em

1

! 0. The heavy neutrinos N

1

then de
ay fully out of

equilibrium at temperatures well belowM

1

, produ
ing a B�L asymmetry whi
h survives

until today sin
e all washout pro
esses are frozen at temperatures T �M

1

.

In the 
ase of general initial 
onditions and arbitrary values of em

1

, the eÆ
ien
y fa
tor

�

f

has to be 
al
ulated by solving the Boltzmann equations [36, 37, 38, 39, 9℄,

dN

N

1

dz

= �(D + S) (N

N

1

�N

eq

N

1

) ; (31)

dN

B�L

dz

= �"

1

D (N

N

1

�N

eq

N

1

)�W N

B�L

; (32)

where z = M

1

=T . There are four 
lasses of pro
esses whi
h 
ontribute to the di�erent

terms in the equations: de
ays, inverse de
ays, �L = 1 s
atterings and pro
esses mediated

by heavy neutrinos. The �rst three all modify the N

1

abundan
e. Denoting by H the

Hubble parameter, D = �

D

=(H z) a

ounts for de
ays and inverse de
ays, while S =

�

S

=(H z) represents the �L = 1 s
atterings. The de
ays are also the sour
e term for

the generation of the B � L asymmetry, the �rst term in Eq. (32), while all the other

pro
esses 
ontribute to the total washout term W = �

W

=(H z) whi
h 
ompetes with the

de
ay sour
e term.

We take into a

ount only de
ays of N

1

, negle
ting the de
ays of the heavier neutrinos

N

2

and N

3

. These de
ays produ
e a B � L asymmetry at temperatures higher than M

1

.

As we shall see in Se
tion 5, the washout pro
esses at T � M

1

very eÆ
iently erase

any previously generated asymmetry. Even in the 
ase of very small mass di�eren
es the

de
ays of N

2

and N

3

do not 
hange signi�
antly the bound on the light neutrino masses,

whi
h is our main interest. This will be dis
ussed in Se
tion 4.3.

The baryon to photon number ratio at re
ombination, �

B

, is simply related to N

f

B�L

by �

B

= (a=f)N

f

B�L

, where a = 28=79 [40℄ is the fra
tion of B � L asymmetry whi
h is


onverted into a baryon asymmetry by sphaleron pro
esses, and f = N

re





=N

?




= 2387=86

a

ounts for the dilution of the asymmetry due to standard photon produ
tion from the

onset of leptogenesis till re
ombination. �

max

B

, the �nal baryon asymmetry produ
ed by

leptogenesis with maximal CP asymmetry, i.e. "

1

= "

max

1

), is given by

�

max

B

' 0:96 � 10

�2

"

max

1

�

f

: (33)

This quantity has to be 
ompared with measurements of the CMB experiments

BOOMerANG [41℄ and DASI [42℄,

�

CMB

B

= (6:0

+1:1

�0:8

)� 10

�10

: (34)

10



The CMB 
onstraint then requires �

max

B

� �

CMB

B

, and we will adopt for �

CMB

B

the 3�

lower limit, (�

CMB

B

)

low

= 3:6� 10

�10

.

In [9℄ we showed that �

max

B

depends just on the three parameters em

1

;M

1

and m.

Thus, for a given value of m, the CMB 
onstraint determines an allowed region in the

(em

1

;M

1

)-plane. It was also shown that there is an upper bound for m above whi
h no

allowed region exists. In [12℄, based on the bound (9) for the CP asymmetry,m < 0:30 eV

was derived as upper bound on the neutrino mass s
ale. In the following we shall study

the allowed regions in the (em

1

;M

1

)-plane for di�erent parameters m using the improved

bound on the CP asymmetry (23) and in this way determine a new improved bound on

m.

4.2 Numeri
al results

The neutrino masses m

1

and m

3

depend in a di�erent way on m in the 
ases of normal

and inverted hierar
hy, respe
tively. Hen
e, also the dependen
e of the fun
tion � on m is

di�erent for these two mass patterns. This leads to di�erent maximal baryon asymmetries

�

max

B

, and therefore to di�erent upper bounds on m, in the two 
ases whi
h we now study

in turn.

For neutrino masses with normal hierar
hy one has

m

2

3

�m

2

2

= �m

2

atm

; m

2

2

�m

2

1

= �m

2

sol

; (35)

and the dependen
e on m is given by

m

2

3

=

1

3

�

m

2

+ 2�m

2

atm

+�m

2

sol

�

; (36)

m

2

2

=

1

3

�

m

2

��m

2

atm

+�m

2

sol

�

; (37)

m

2

1

=

1

3

�

m

2

��m

2

atm

� 2�m

2

sol

�

: (38)

These relations are plotted in Fig. 1. Note that there is a minimal value of m, 
orrespond-

ing to m

1

= 0, whi
h is given by m

min

=

p

�m

2

atm

+ 2�m

2

sol

' 0:051 eV.

Fig. 2 shows the lines of 
onstant maximal baryon asymmetry �

max

B

= (�

CMB

B

)

low

(thi
k

lines) and �

max

B

= 10

�10

(thin lines) in the (em

1

;M

1

)-plane for di�erent 
hoi
es of m and

assuming zero initial N

1

abundan
e. The allowed regions (the �lled ones) 
orrespond to

the 
onstraint �

max

B

� (�

CMB

B

)

low

. The largest allowed region is obtained for m = m

min

,

sin
e in this 
ase the CP asymmetry is maximal, i.e. � = 1 for any value of em

1

, and the

washout is minimal. Note that a di�erent 
hoi
e for the initial N

1

abundan
e would have

a�e
ted the �nal baryon asymmetry only for em

1

< m

�

. The 
ase of an initial thermal

11
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Figure 1: Neutrino masses as fun
tions of m for normal hierar
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(thin lines) and �
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max
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are the allowed regions from CMB. There is no allowed region for

m = 0:20 eV.
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abundan
e has been studied in [9℄. When m in
reases di�erent e�e
ts 
ombine to shrink

the allowed region until it 
ompletely disappears at some value m

max

.

We have determined this value with a numeri
al un
ertainly of 0:01 eV. From Fig. 2

one 
an see that there is a small allowed region for m = 0:19 eV, whereas we found no

allowed region for m = 0:20 eV. Hen
e, the value of m

max

is somewhere in between and

we 
an 
on
lude that in the 
ase of normal hierar
hy,

m < 0:20 eV : (39)

Using the relations (36)-(38), one 
an easily translate this bound into upper limits on the

individual neutrino masses (
f. Fig. 1),

m

1

;m

2

< 0:11 eV ; m

3

< 0:12 eV : (40)

The 
ase of an inverted hierar
hy of neutrino masses 
orresponds to

m

2

3

�m

2

2

= �m

2

sol

; m

2

2

�m

2

1

= �m

2

atm

; (41)

and the relations between the neutrino masses and m are

m

2

3

=

1

3

�

m

2

+ �m

2

atm

+ 2�m

2

sol

�

; (42)

m

2

2

=

1

3

�

m

2

+ �m

2

atm

��m

2

sol

�

; (43)

m

2

1

=

1

3

�

m

2

� 2�m

2

atm

��m

2

sol

�

: (44)

We have plotted these relations in Fig. 3. The minimal value of m, 
orresponding to

m

1

= 0, is now m

min

=

p

2�m

2

atm

+�m

2

sol

' 0:072 eV.

The 
urves of 
onstant �

max

B

are shown in Fig. 4 for di�erent values of m. The largest

allowed region is again obtained for m = m

min

. One 
an see that this time there is a tiny

allowed region for m = 0:20 eV and no allowed region for m = 0:21 eV. Therefore, in the


ase of inverted hierar
hy the upper bound is slightly relaxed,

m < 0:21 eV : (45)

Using the relations (42)-(44) one 
an again translate the bound on m into bounds on the

individual neutrino masses,

m

1

< 0:11 eV ; m

2

;m

3

< 0:12 eV : (46)

Let us now dis
uss the di�erent e�e
ts whi
h 
ombine to shrink the allowed region

when the absolute neutrino mass s
ale m in
reases, thus yielding the upper bound. The

13
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Figure 5: The CP asymmetry global suppression fa
tor �

max

for normal and inverted hierar
hy.

�rst e�e
t is that away from the hierar
hi
al neutrino 
ase, for m > m

min

and m

1

> 0, the

maximal CP asymmetry redu
es 
onsiderably. This 
an be seen in terms of the fun
tion

� (
f. (29)) whi
h is 
onveniently expressed in the form

� = �

max

(m) f(em

1

;m) : (47)

The �rst fa
tor, �

max

= (m

3

� m

1

)=m

atm

= m

atm

=(m

3

+ m

1

), is the maximal value of

� for �xed m; �

max

de
reases / 1=m for m � m

min

(
f. Fig. 5). This implies that for

in
reasing m there is an overall suppression of the maximal baryon asymmetry in the

whole (em

1

;M

1

)-plane [11℄. In parti
ular the lower limit on M

1

be
omes more stringent.

The fa
tor f(em

1

;m) = 1, for any value of em

1

, if m = m

min

(m

1

= 0). In the 
ase

m > m

min

(m

1

> 0) it vanishes for em

1

= m

1

and grows monotoni
ally to 1 with in
reasing

em

1

(
f. Fig. 6). Thus for m

1

> 0 the fun
tion f gives a further suppression of the CP

asymmetry, in addition to the one from �

max

< 1. This suppression is strong for em

1

& m

1

and disappears for em

1

� m

1

. Hen
e the de
rease of the maximal CP asymmetry for

m > m

min

shrinks the allowed region most at small em

1

& m

1

and at smallM

1

. Note that

the di�eren
e between the allowed regions for normal and inverted hierar
hy is a

ounted

for by the di�erent values of � for a given value of m. In the 
ase of inverted hierar
hy

� is larger for any value of em

1

and m � m

inv

min

(
f. Figs. 5,6). The e�e
t is maximal for

m = m

inv

min

where �

inv

= 1 while �

nor

' 0:6. For larger values of m � m

inv

min

, and also
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1

; m = 0:15 eV) for normal (inverted) hierar
hy. It is de�ned for

em

1

� m

1

' 0:08 (0:07) eV.

em

1

� m

nor

1

, the ratio �

inv

=�

nor

be
omes very 
lose to 1. This situation is realized when

m approa
hes its upper bound. This explains why the upper bound on m is only slightly

relaxed in the 
ase of inverted hierar
hy.

The se
ond e�e
t, whi
h shrinks the allowed region when m in
reases, is the enhan
e-

ment of washout pro
esses. In [9℄ we showed how the total washout rate 
an be written

as the sum of two terms, (W ��W ) / em

1

and �W /M

1

m

2

. The �rst term is respon-

sible for the redu
tion of the allowed region at large em

1

. The se
ond term leads to the

boundary at large M

1

. The 
ombined e�e
t shrinks the allowed region with in
reasing m

at large M

1

and at large em

1

.

One 
an see how this se
ond e�e
t redu
es the allowed region, independent of the

maximalCP asymmetry de
rease, by 
omparing the two largest allowed regions for normal

and inverted hierar
hy; they 
orrespond to the two di�erent values of m

min

(
f. Fig. 2

and Fig. 4). Sin
e � = 1 in both 
ases, the entire di�eren
e is due to the di�erent

washout e�e
ts. They are larger in the 
ase of inverted hierar
hy be
ause m

min

is about

�

p

2 higher than in the normal hierar
hy 
ase. One 
an see how, for a �xed value of

em

1

, the maximal value of M

1

is approximately halved in the inverted hierar
hy 
ase.

Correspondingly, the maximal allowed value of em

1

is lower for inverted hierar
hy than for

normal hierar
hy.
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In summary, within the theoreti
al un
ertainties, leptogenesis 
annot distinguish be-

tween normal and inverted hierar
hi
al neutrino mass patterns. However, our new analysis


on�rms and strengthens the results of [9, 12℄ that quasi-degenerate neutrino masses are

strongly disfavored by leptogenesis, by putting the stringent upper bound of 0.12 eV on

all neutrino masses.

4.3 Stability of the bound

The numeri
al results 
an be very well reprodu
ed analyti
ally [43℄. This pro
edure is not

only able to yield the 
orre
t value of m

max

but also reveals some general features whi
h

in the numeri
al analysis may appear a

idental.

For m = m

max

, at the peak value of maximal asymmetry, su
h that �

max

B

= �

CMB

B

, one

has

em

1

j

max

= m

max

+O

�

m

2

atm

m

2

max

�

; (48)

M

1

j

max

' 1:6 � 10

13

GeV

�

0:2 eV

m

max

�

2

: (49)

The value of m

max

is slightly di�erent for normal and inverted hierar
hy, respe
tively,

(m

nor

max

)

2

= (m

0

max

)

2

�

1

8

m

2

atm

+O(m

4

atm

=m

4

max

) ; (50)

(m

inv

max

)

2

= (m

0

max

)

2

+

7

8

m

2

atm

+O(m

4

atm

=m

4

max

) ; (51)

where m

0

max

is the zero-th order approximation. This implies

(m

inv

max

)

2

� (m

nor

max

)

2

= m

2

atm

+O(m

4

atm

=m

4

max

) : (52)

Besides gaining more insight into the numeri
al results, the analyti
 pro
edure also

allows to �nd the dependen
e of the bound on the involved physi
al parameters and to

study in this way its stability.

Consider �rst the dependen
e on the experimental quantities �

CMB

B

, �m

2

atm

and �m

2

sol

.

Sin
e �m

2

sol

� �m

2

atm

, the dependen
e on �m

2

sol

is so small that it 
an be negle
ted,

yielding m

atm

'

p

�m

2

atm

. The analyti
 pro
edure shows that m

max

/ (m

2

atm

=�

CMB

B

)

1=4

.

From the numeri
al result, found for �

CMB

B

= 3:6�10

�10

and m

atm

= m

0

' 0:051 eV, and

one then obtains in general

m

0

max

' 0:175 eV

�

6� 10

�10

�

CMB

B

�

1

4

�

m

atm

m

0

�

1

2

: (53)
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Using Eq. (53) one immediately gets the 
entral value of m

max

. Note also that for

�

CMB

B

= 10

�10

and m

atm

= m

0

, one has m

0

max

' 0:275 eV. This is 
on�rmed by the

numeri
al results. We still �nd iso-lines �

CMB

B

= 10

�10

for m = 0:27 eV, whereas this is

not the 
ase anymore for m = 0:28 eV. From Eq. (53) one obtains as estimate for the

relative error,

Æm

max

=

1

4

�

Æ�

CMB

B

+ Æm

2

atm

�

: (54)

A

ording to Eq. (34) the 1� standard error on �

CMB

B

is about 15% while Æm

2

atm

' 25%

[21℄. We thus obtain Æm

max

' 10%, whi
h 
orresponds to the absolute error �m

max

'

0:02 eV. In the 
oming years the errors on �

CMB

B

and m

2

atm

will be greatly redu
ed by

the satellite experiments MAP [44℄ and Plan
k [45℄, and by the long baseline experiments

Minos [46℄ and CNGS [47℄, respe
tively, and 
onsequently the error on m

max

will be


onsiderably redu
ed.

Another important question 
on
erns the enhan
ement of the maximalCP asymmetry

when �M

21

= M

2

�M

1

, where M

1

and M

2

are the masses of the heavy neutrinos N

1

and

N

2

, be
omes 
omparable to or smaller than M

1

itself. As long as the mass splitting is

larger than the de
ay widths, the enhan
ement is given by [15, 16℄,

�(x) =

2

3

x

�

(1 + x) ln

�

1 + x

x

�

�

2� x

1� x

�

; (55)

where x = (M

2

=M

1

)

2

. Note, that � approa
hes 1 for x� 1. The value of m

max

in
reases

like �

1=4

[43℄, and it is therefore easy to see how the bound on m gets relaxed for small

values of the mass di�eren
e �M

21

.

In Fig. 7 we have plotted the enhan
ement ��1 and the 
entral value ofm

max

, together

with its 1� limits, as fun
tion of �M

21

=M

1

. For �M

21

=M

1

& 1 the bounds (39),(45) are

re
overed. Only for values �M

21

=M

1

. 0:1 the bound gets relaxed in an appre
iable

way. An in
rease of m

max

by a fa
tor � 3, allowing quasi-degenerate neutrino masses of

0.4 eV, whi
h 
ould be dete
ted with the KATRIN experiment [48℄, requires degenera
ies

�M

21

=M

1

;�M

31

=M

1

. 10

�3

.

In the regime �M

21

. M

1

also de
ays of N

2

have to be taken into a

ount. As we

shall see in the next se
tion, for larger mass splittings an asymmetry generated in N

2

de
ays would be washed out before T �M

1

, and it is then suÆ
ient to 
onsider only N

1

de
ays. However, even for �M

21

=M

1

. 0:1, it is easy to see that the e�e
t of su
h an

additional asymmetry on the bound is small 
ompared to the e�e
t of the CP asymmetry

enhan
ement des
ribed above. The largest e�e
t would be obtained for "

max

2

= "

max

1

and

em

2

� em

1

, 
orresponding to a doubled heavy neutrino abundan
e without any washout

enhan
ement. In this extreme 
ase the bound is relaxed at most by a fa
tor 2

1=4

' 1:2.
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Figure 7: The CP asymmetry enhan
ement �� 1 (short dashed line) and hm

0

max

i ��m

0

max

for

normal hierar
hy (solid and dashed lines) as fun
tions �M

21

=M

1

.

Even for three degenerate neutrinos, with both �M

21

=M

1

� 1 and �M

31

=M

1

� 1,

the e�e
t 
ould relax the bound not more than by a fa
tor 3

1=4

' 1:3. Hen
e, the CP

enhan
ement represents the dominant e�e
t and we 
an 
on
lude that the bound onm 
an

only be evaded in 
ase of an extreme degenera
y among the heavy Majorana neutrinos.

A further important issue is the e�e
t of supersymmetry on the bound. In this 
ase

the maximal CP asymmetry is about twi
e as large whi
h 
ould relax the bound by a

fa
tor 2

1=4

� 1:2. However, washout pro
esses are also 
onsiderably enhan
ed [38℄. This

e�e
t goes into the opposite dire
tion and is a
tually stronger, so that one 
an expe
t a

slightly more stringent bound on m. A detailed 
al
ulation will be presented in [43℄.

We 
on
lude that the leptogenesis upper bound on neutrino masses is very stable.

The essential reason is that, at m = m

max

, the peak value �

max

B

/ 1=m

4

max

. Hen
e, any

variation of the �nal asymmetry results into 
hange of m

max

whi
h is almost one order

of magnitude smaller. The same argument applies also to the theoreti
al un
ertainties.

Although the various 
orre
tions to the Boltzmann equations still remain to be 
al
ulated,

we do not expe
t a relaxation of m

max

by more than 20%. In fa
t, we expe
t that the


orre
tions will go in the dire
tion of lowering the predi
tion on the �nal asymmetry,

whi
h will make the bound on m more stringent.

For parti
ular patterns of neutrino mass matri
es stronger bounds on the light neutrino
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masses 
an be obtained. For instan
e, one 
an study how the upper bound 
hanges if

M

1

is required to be smaller than some 
ut-o� value M

?

1

. For M

?

1

> M

1

j

max

' 10

13

GeV

(
f. (49)) the bound does not 
hange. For smaller values of M

1

the bound be
omes more

stringent. For example, from Figs. 2 and 4 one 
an see that the 
ut-o� M

1

< 5�10

12

GeV

leads to the bound m < 0:15 eV, whi
h 
orresponds to m

1

< 0:08 eV. For a restri
ted

mass pattern, and negle
ting �W / M

1

m

2

washout terms, less stringent bounds have

been found in [17℄ for the same 
ut-o� value of M

1

.

5 Dependen
e on initial 
onditions

A very important question for leptogenesis, and baryogenesis in general, is the dependen
e

on initial 
onditions. This in
ludes the dependen
e on the initial abundan
e of heavy

Majorana neutrinos, whi
h has been studied in detail in [9℄, and also the e�e
t of an

initial asymmetry whi
h may have been generated by some other me
hanism. In the

following we shall study the eÆ
ien
y of the washout of a large initial asymmetry by

heavy Majorana neutrinos.

For simpli
ity, we negle
t the small asymmetry generated through the CP violating

intera
tions of the heavy neutrinos, i.e. we set "

1

= 0. The kineti
 equation (32) for the

asymmetry then be
omes

dN

B�L

dz

= �W N

B�L

; (56)

where �N

B�L

is the number of lepton doublets per 
omoving volume. The �nal B � L

asymmetry is then given by

N

f

B�L

= !(z

i

)N

i

B�L

; (57)

with the washout fa
tor

!(z

i

) = e

�

R

1

z

i

dz W (z)

: (58)

In Eq. (56) W (z) = �

W

(z)=H(z)z is the res
aled washout rate, where H(z) is the

temperature-dependent Hubble parameter. �

W

re
eives 
ontributions from inverse de
ays

(�

ID

), �L = 1 pro
esses (�

�;t

, �

�;s

) and �L = 2 pro
esses (�

N

, �

N;t

) (
f. [9℄),

�

W

=

1

2

�

ID

+ 2

�

�

(l)

N

+ �

(l)

N;t

�

+ 2�

(l)

�;t

+

n

N

1

n

eq

N

1

�

(l)

�;s

: (59)

The inverse de
ay rate is given by

�

ID

=

n

eq

N

1

n

eq

l

�

D

; �

D

=

1

8�

�

h

y

h

�

11

M

1

K

1

(z)

K

2

(z)

; (60)
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where n

eq

N

1

and n

eq

l

are the equilibrium number densities of heavy neutrinos and lepton

doublets, respe
tively, and K

1;2

(z) are modi�ed Bessel fun
tions of the third kind. The

quantities �

(X)

i

are thermally averaged rea
tion rates per parti
le X. They are related by

�

(X)

i

= 


i

=n

eq

X

to the rea
tion densities 


i

[36℄. Our 
al
ulations are based on the redu
ed


ross se
tions given in ref. [38℄.

It is very instru
tive to 
onsider analyti
al approximations to the various washout


ontributions. Both, the inverse de
ay rate and the resonan
e part of �

(l)

N

(
f. [9℄) are

proportional to K

1

(z),

�

(1)

W

=

1

2

�

ID

+ 2�

(l)

N;res

=

1

16��(3)

�

h

y

h

�

11

M

1

z

2

K

1

(z) : (61)

The integral in Eq. (56) 
an be analyti
ally performed. The 
orresponding washout fa
tor


an be written in the form

!

(1)

(z

i

) = exp

�

�

1

2�(3)

em

1

m

�

�

3�

2

+ z

3

i

K

2

(z

i

)�

3�

2

z

i

(K

2

(z

i

)L

1

(z

i

) + L

2

(z

i

)K

1

(z

i

))

��

;(62)

where m

�

is the equilibrium mass (2), and L

1;2

(z) are modi�ed Struve fun
tions [49℄.

Rather a

urate approximations are, for small and large values of z

i

respe
tively,

!

(1)

(z

i

) =

8

>

<

>

:

exp

n

�

1

2�(3)

em

1

m

�

�

3�

2

�

1

3

z

3

i

+O(z

5

i

)

�

o

; z

i

< 1

exp

n

�

1

2�(3)

em

1

m

�

q

�

2z

i

e

�z

i

�

z

3

i

+

23

8

z

2

i

+

537

128

z

i

+

2253

1024

+O(

1

z

i

)

�o

; z

i

> 1 :

(63)

The non-resonant 
ontribution of N

1

ex
hange to the washout is proportional to m

2

,

�

(2)

W

= 2

�

�

(l)

N;nonres

+ �

(l)

N;t

�

=

1

�

3

�(3)

M

3

1

m

2

v

4

1

z

3

; (64)

whi
h yields the washout fa
tor

!

(2)

(z

i

) = exp

�

�

8

�

2

�(3)

M

1

m

2

m

�

v

2

1

z

i

�

: (65)

Finally, we have to 
onsider N

1

-top s
atterings. The rate is dominated by t-
hannel

Higgs ex
hange if the infrared divergen
e is 
ut o� by a Higgs mass m

�

� 1 TeV � T .

In terms of the redu
ed 
ross se
tion one has (
f. [38℄),

�

(l)

�;t

=

M

1

z

2

96�

2

�(3)

Z

1

1

dx

p

x�̂

�;t

(x)K

1

(z

p

x) : (66)
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Figure 8: Washout fa
tor as fun
tion of the initial temperature z

i

= M

1

=T

i

for di�erent

values of em

1

and M

1

= 10

8

GeV; N

1

-top s
atterings are negle
ted.

For small and large values of z

i

, respe
tively, analyti
 expressions are given by

!

(3)

(z

i

) =

8

>

<

>

:

exp

n

�

�

u

2�(3)

em

1

m

�

(ln (4a

�

) � 1)

o

; z

i

< 1

exp

n

�

�

u

2�(3)

em

1

m

�

q

2z

i

�

e

�z

i

�

ln

�

a

�

z

2

i

�

�

11

8

+ z

i

�

+

5

8

� z

i

�o

; z

i

> 1 ;

(67)

where �

u

= g

2

t

=(4�) and a

�

= M

2

1

=m

2

�

.

The total washout fa
tor

!(z

i

) =

N

f

B�L

N

i

B�L

= !

(1)

(z

i

)!

(2)

(z

i

)!

(3)

(z

i

) (68)

depends exponentially on the parameters em

1

(!

(1)

,!

(3)

) and M

1

m

2

(!

(2)

). For not too

large M

1

and not too small z

i

(
f. Figs. (8)-(10)), !

(2)

' 1 whereas !

(1)

rea
hes a plateau

for z

i

� 1 at

!

(1)

(z

i

) ' exp

�

�

3�

4�(3)

em

1

m

�

�

: (69)

At smaller values of z

i

, and 
orrespondingly higher temperatures T

i

, eventually !

(2)

de-


reases rapidly. When T

i

rea
hes M

2

, the mass of N

2

, a new plateau will be rea
hed. The

larger M

1

, the larger the value of z

i

where the de
rease of !

(2)

sets in. This behaviour is
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Figure 9: Washout fa
tor as fun
tion of the initial temperature z

i

= M

1

=T

i

for di�erent

values of em

1

and M

1

= 10

10

GeV; N

1

-top s
atterings are negle
ted.

Figure 10: Washout fa
tor as fun
tion of the initial temperature z

i

= M

1

=T

i

for di�erent

values of em

1

and M

1

= 10

12

GeV; N

1

-top s
atterings are negle
ted.
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Figure 11: Washout fa
tor as fun
tion of the initial temperature z

i

= M

1

=T

i

for di�erent

values of em

1

and M

1

= 10

14

GeV; N

1

-top s
atterings are negle
ted.


learly visible in Figs. (8)-(10). At very large M

1

, the de
rease of !

(2)

is e�e
tive already

at large values of z

i

(
f. Fig. (11)).

The fa
tor !

(3)

is very sensitive to the value of a

�

, i.e. the 
hoi
e of the infrared 
uto�

m

�

. For m

�

= 1 TeV, !

(3)

signi�
antly improves the washout of !

(1)

!

(2)

, but it does

not 
hange the qualitative pi
ture. This is illustrated by Fig. (12) where the 
ases with

and without N

1

-top s
atterings are 
ompared. On the other hand, for m

�

� M

1

, !

(3)

is

always negligible 
ompared to !

(1)

. The issue of the 
orre
t 
hoi
e of the infrared 
uto� is

theoreti
ally not yet settled. There is a 
orresponding, though less important un
ertainty

in the generation of the baryon asymmetry for small values of em

1

[39℄. The washout

fa
tors !

(1)

!

(2)

shown in Figs. (8)-(11) 
an be regarded as 
onservative upper bounds on

the full washout fa
tors ! = !

(1)

!

(2)

!

(3)

.

It is remarkable that the washout of an initial asymmetry at z

i

� 1, i.e. T

i

� M

1

,

be
omes very eÆ
ient for em

1

� m

�

' 10

�3

eV. Sin
e the eÆ
ien
y in
reases exponentially

with in
reasing em

1

, already at em

1

= 5 � 10

�3

eV one has !(z

i

= 1) < 10

�4

. Hen
e,

for neutrino masses of order or larger than

p

�m

2

sol

, �L = 1 pro
esses are very likely

to erase any previously generated baryon asymmetry to a level below the asymmetry

produ
ed by leptogenesis. As shown in [9℄, for these values of em

1

the �nal asymmetry is
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Figure 12: Comparison of the washout fa
tors as fun
tion of z

i

= M

1

=T

i

without (full

line) and with (dashed line) N

1

-top s
atterings; M

1

= 10

10

GeV.

also independent of the initial N

1

abundan
e. Hen
e, a 
omplete independen
e of initial


onditions is a
hieved.

6 Summary

We have extended our previous work on the minimal version of thermal leptogenesis where

intera
tions of N

1

, the lightest of the heavy Majorana neutrinos, are the dominant sour
e

of the baryon asymmetry. Based on the seesaw me
hanism, we have derived an improved

upper bound on the CP asymmetry "

1

, whi
h depends on M

1

, the mass of N

1

, the light

neutrino masses m

1

and m

3

, and the e�e
tive neutrino mass em

1

. Given the two mass

splittings �m

2

atm

and �m

2

sol

, the neutrino masses m

1

and m

3


an depend on the absolute

neutrino mass s
ale m in two ways, 
orresponding to normal and inverted mass hierar
hy,

respe
tively.

From the numeri
al solution of the Boltzmann equations we have obtained an upper

bound on all light neutrino masses of 0.12 eV, whi
h holds for normal as well as inverted

neutrino mass hierar
hy. This is about a fa
tor of two below the re
ent upper bound of

0:23 eV obtained by MAP [50℄. The leptogenesis bound is remarkably stable with respe
t
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to 
hanges of �

CMB

B

, �m

2

atm

, the e�e
t of supersymmetry, and theoreti
al un
ertainties

of �

max

B

. Quasi-degenerate neutrinos are only allowed if the CP asymmetry is strongly

enhan
ed by a degenera
y of the heavy Majorana neutrinos. For instan
e, in order to

relax the upper bound to 0.4 eV, degenera
ies �M

21

=M

1

;�M

31

=M

1

. 10

�3

are required.

We have also studied the washout of a large, pre-existing B�L asymmetry. It is very

interesting that a washout by several orders of magnitude takes pla
e at temperatures

T 
lose to M

1

, if the e�e
tive neutrino mass em

1

is larger than the equilibrium mass

m

�

' 10

�3

eV. All memory of the initial 
onditions is then erased.

We 
on
lude that for neutrino masses in the range from 10

�3

eV to 0.1 eV leptoge-

nesis naturally explains the observed baryon asymmetry, independent of possible other

pre-existing asymmetries. It is very remarkable that the data on solar and atmospheri


neutrinos indi
ate neutrino masses pre
isely in this range.
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