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Steffen Q. Mueller, Patrick Ring, Maria Fischer 

Excited and aroused: The predictive importance of 

simple choice process metrics* 

Abstract: We conduct a lottery experiment to assess the predictive importance of simple choice process met-

rics (SCPMs) in forecasting risky 50/50 gambling decisions using different types of machine learning algo-

rithms as well as traditional choice modeling approaches. The SCPMs are recorded during a fixed pre-decision 

phase and are derived from tracking subjects’ eye movements, pupil sizes, skin conductance, and cardiovas-

cular and respiratory signals. Our study demonstrates that SCPMs provide relevant information for predicting 

gambling decisions, but we do not find forecasting accuracy to be substantially affected by adding SCPMs to 

standard choice data. Instead, our results show that forecasting accuracy highly depends on differences in 

subject-specific risk preferences and is largely driven by including information on lottery design variables. As 

a key result, we find evidence for dynamic changes in the predictive importance of psychophysiological re-

sponses that appear to be linked to habituation and resource-depletion effects. Subjects’ willingness to gam-

ble and choice-revealing arousal signals both decrease as the experiment progresses. Moreover, our findings 

highlight the importance of accounting for previous lottery payoff characteristics when investigating the role 

of emotions and cognitive bias in repeated decision-making scenarios. 

Key words: Repeated decision making; Eye-tracking; Psychophysiological responses; Machine learning; Fore-

casting 
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1 Introduction 

Tracking choice process data (CPD) often allow a better understanding to be reached of the relevant 

decision factors and reasoning steps underlying a resolution procedure that cannot be derived only 

from standard choice data  (Bernheim, 2009; Fehr & Rangel, 2011; Krajbich et al., 2014; Nicholas, 

2009). For instance, eye-tracking data can be used to identify distinct attention patterns during the 

information acquisition process (Reutskaja et al., 2011) and detect the emergence of competing be-

havioral strategies (Knoepfle et al., 2009; Schulte-Mecklenbeck et al., 2011). Similarly, emotions and 
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visceral factors can substantially influence the decision-making process (Bellemare et al., 2019; 

Heilman et al., 2010; Kliger et al., 2012; Levav & McGraw, 2009; Loewenstein, 1999), and a growing 

number of studies demonstrate that tracking CPD linked to emotional and cognitive states can yield 

novel insights into economics research (Adam et al., 2015; Breaban & Noussair, 2018; Daly et al., 

2009; Hattke et al., 2019; Hobson et al., 2012; Hytönen et al., 2014).  

There is an increasing interest in evaluating the predictive importance of CPD in modeling economic 

decisions (Clithero, 2018b; Huseynov et al., 2019; Krol & Krol, 2017; Sundararajan et al., 2017). As an 

example, Imai et al. (2019) show that accounting for hypothetical purchase lookup patterns can 

improve out-of-sample predictions for real purchases. Likewise, neurological CPD have been 

demonstrated to reveal consumer preferences in passive product viewing and non-choice experi-

ments (Lusk et al., 2016; Smith et al., 2014). However, the vast majority of studies that evaluate out-

of-sample choice predictions using CPD includes information that is not accessible before a decision 

has been executed (Clithero, 2018a; Huseynov et al., 2019; Krol & Krol, 2019; Sundararajan et al., 

2017) or focus on individual but often complex types of CPD that are expensive to collect, such as 

neuroimaging measures (Knutson et al., 2007; Levy et al., 2011).  

In contrast to existing research, in this study, we investigate the feasibility of predicting real deci-

sions on the basis of simple choice process metrics (SCPMs) that we derive from various types of 

CPD that are recorded during a fixed pre-decision phase. To this end, we conduct a simple lottery 

experiment and evaluate conventional choice modeling approaches in addition to various machine 

learning (ML) methods for forecasting risky gambling decisions on the basis of combinations of the 

following input categories: lottery design variables, socioeconomic characteristics, past gambling 

behavior, and SCPMs derived from tracking gaze-path, pupil size, blood volume pulse, heart rate, 

respiration, skin temperature, and skin conductance responses.  

First, we employ a descriptive and regression-based analysis and test different hypotheses linked to 

gambling behavior, lotteries’ payoff structures, attention, and emotional arousal. In the second 

step, we investigate different statistical and ML methods’ out-of-sample choice forecasting capa-

bilities, including linear (e.g., elastic net regression), non-linear (e.g., artificial neural networks), and 

tree-based ensemble algorithms (e.g., random forest), and compare the models’ forecasting perfor-

mances for selected SCPM distributions to further investigate the hypotheses that we test in the 
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first step. Last, to complement our analysis, we examine the extent to which choice-revealing infor-

mation associated with individual SCPMs may already be covered by standard behavioral econom-

ics data.  

Forecasting human decisions is difficult; not only can risk preferences considerably differ across in-

dividuals (Kliger & Levy, 2002), but numerous factors can impact choices in various and interde-

pendent ways (Kleinberg et al., 2018; Loewenstein, 1999; Makridakis & Taleb, 2009). Many studies 

that analyze economic decisions focus on in-sample-based hypotheses tests and often use (gener-

alized) linear parametric models that require non-linear effects and variable interactions to be ex-

plicitly specified. Conversely, in this paper, we focus on out-of-sample predictions, and based on the 

complex relationship between decision making, CPD, and emotional and cognitive processes (Alós-

Ferrer, 2018; Giacomantonio et al., 2018; Hytönen et al., 2014), we investigate different ML algo-

rithms that can be applied in high-dimensional data structures, automatically select important pre-

dictors, and account for the potential existence of higher-order interactions and non-linear depend-

encies without the need for pre-specification. In addition to often yielding more accurate out-of-

sample predictions than conventional parametric approaches (Mullainathan & Spiess, 2017), these 

abilities make ML methods promising tools to evaluate behavioral models of choice because they 

can aid in identifying relevant decision factors (Camerer, 2018) and provide upper bounds for eval-

uating the predictive power of a theory (Peysakhovich & Naecker, 2017).  

Similar to, e.g., Peysakhovich & Naecker (2017), Kleinberg et al. (2018), and Camerer (2018), we posit 

that using data-driven ML techniques to analyze systems that are complex by nature, such as the 

link between cognitive and emotional processes, can yield valuable insights into systematic pat-

terns in human decision making. In particular, we aim to stimulate the existing discussion on using 

CPD to develop improved economic models of decision making and choice prediction (Bernheim, 

2009; Camerer et al., 2018; Clithero, 2018a; Fehr & Rangel, 2011; Huseynov et al., 2019; Imai et al., 

2019; Krol & Krol, 2019; Lo & Repin, 2002) and novel ways for eliciting preferences that do not rely 

on standard choice data or observing real decisions (Chen & Fischbacher, 2016; Lusk et al., 2016; 

Pozharliev et al., 2015; Smith et al., 2014; Telpaz et al., 2015). Furthermore, by investigating the ex-

tent to which previous choices and their outcomes affect subsequent gambling decisions, our study 

contributes to the broad literature on behavioral bias and affective processes in repeated decision 

making  (e.g., Coricelli et al., 2005; Guryan & Kearney, 2008; Hytönen et al., 2014; Kostek & 

Ashrafioun, 2014; Rabin & Vayanos, 2010; Schneider et al., 2016; Thaler & Johnson, 1990). 
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Comprehensive choice data and information on individuals’ reasons for their behavior are often 

non-existent or not publicly available for analysis, and traditional market research can mislead as a 

result of consumers’ biased perceptions and memories (Poels & Dewitte, 2006). As an example, 

people tend to alter their verbal responses when reflecting on their purchases to rationalize their 

behaviors (Reczek et al., 2018), although their decisions are often driven by (subconscious) emotions 

(Fisher Gardial et al., 2016). Consequently, tracking CPD linked to attentional focus and emotional 

states is highly valuable to consumer and marketing research (Venkatraman et al., 2015; Wang & 

Minor, 2008), and various businesses compete on how to best collect and exploit such data to pre-

dict and manipulate human behavior (Economist, 2017; Guardian, 2019; Reutskaja et al., 2011).  

Our empirical results demonstrate that pre-decision SCPMs provide relevant information for fore-

casting risky gambling decisions; however, we do not find forecasting accuracy to be substantially 

affected by adding SCPMs to the set of conventional choice predictors. Instead, our results show 

that forecasting accuracy is largely driven by including information on lotteries’ payoff structures 

and highly depends on differences in individual risk-taking behavior. Specifically, our findings sug-

gest that a large fraction of the choice-revealing information linked to typical arousal measures is 

already provided by lottery design variables and socioeconomic characteristics, thereby highlighting 

the existence of complex dependencies associated with SCPMs. As a main result, we find a decreas-

ing willingness to accept lotteries throughout the experiment to be linked to dynamic changes in 

the predictive power of typical arousal measures as well as cardiovascular and respiratory signals, 

indicating the presence of habituation and resource-depletion effects.  

The remainder of this paper is structured as follows: Chapter 2 describes the experimental design. 

In Chapter 3, we survey relevant CPD literature and motivate and describe our hypotheses, variable 

specifications, and employed methods. Chapter 4 summarizes the results of our descriptive analy-

sis. Chapter 5 shows the results from our regression-based hypotheses tests, and Chapter 6 presents 

the results of our forecasting analysis of gambling choices and SCPMs. Chapter 7 concludes the 

study.  

2 Experimental setup 

Our gambling experiment covers 44 subjects that each played 200 lotteries, thereby resulting in a 

total of 8800 observations. In each lottery, participants were offered a simple 50/50 gamble that 
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involves a potential gain and a potential loss, and they could decide to either accept or reject the 

offered lottery. Across lotteries, we manipulated the potential gain and loss (range of gains: +1 EUR 

to +20 EUR; range of losses -1 EUR to -10 EUR; both in 1 Euro steps; see Appendix, Table A4 for an 

overview of all considered win-loss-value combinations). During the experiment, subjects were no-

tified when they reached the 67th and 133rd trial and subsequently rested for 30 seconds before con-

tinuing with the experiment. The order of the lotteries and the arrangement of the payoff boxes 

and decision buttons on the screen were randomized for each participant.  

Figure 1. Sequence of events and screens for one round of lottery gambling by time 

 
Notes: Sequence of events and screens for one round of lottery gambling by time (seconds). The content of the displayed 

screens is resized for better readability. A Figure showing the pictures in correct proportions is included in the Appendix, 

Section 2.1.  

The first picture (left) shows a fixation cross and indicates that a lottery will be shown soon. The 

second picture shows the newly offered lottery for three seconds (pre-decision phase). The third 

picture shows the arrows that are displayed for a maximum of ten seconds in the decision phase 

and must be pressed to accept or reject the previously displayed lottery. After a decision has been 

executed, the realized outcome is displayed; for rejected gambles, the fourth screen is omitted. 

All subjects started with an endowment of 10 EUR. At the end of the experiment, one trial was ran-

domly selected for the final payout. If the subject rejected the selected lottery, she kept the initial 

endowment of 10 EUR. If the subject accepted the lottery, its outcome was realized and added to 

[subtracted from] the initial endowment for a win [loss]. Detailed descriptions of the experimental 

design and employed CPD tracking devices are included in the Appendix, Section 2.1. 

3 Hypotheses, data, and methods  

3.1 Investigated hypotheses  

During the experiment, we manipulate the sizes of the potential gains and losses of the displayed 

lotteries and keep winning and losing probabilities fixed at 50%. This feature allows us to identify 
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the effect of a marginal increase in the potential win [loss] on gambling acceptance. In the prospect 

theory framework, the value of a lottery is assumed to be concave [convex] for gains [losses] and is 

generally steeper for losses than for gains (Kahneman & Tversky, 1979). We investigate these as-

sumptions by testing the following two hypotheses. 

H1a: Individuals are more likely to accept [reject] a gamble when the potential win [loss] increases.  

H1b: The effect of losses is larger than the effect of gains. 

Many studies find a strong link between attentional shifts, information processing, learning, stra-

tegic behavior, and choice outcomes. Precisely, attention allows for a focus on specific information 

at the cost of ignoring other information and, in general, people tend to choose the options that 

receive most of their attention (“gaze bias”) (Brocas et al., 2014; Fiedler & Glöckner, 2012; Knoepfle 

et al., 2009; Reutskaja et al., 2011).  

Pachur et al. (2018) show that individual risk parameters (loss-aversion, outcome-sensitivity, and 

probability-sensitivity) are correlated with the allocation of attention during pre-decisional lottery 

information processing. Important to our analysis, they find loss-aversion to be associated with the 

relative attention allocated to potential losses and gains. In our simplified framework involving only 

50/50 gambles, these findings translate into the following hypothesis.  

H2: Individuals are more likely to accept [reject] a lottery when they allocate more attention toward 

the potential gain [loss]. 

Arousal is hypothesized as playing a central role in gambling (Baudinet & Blaszczynski, 2013). 

Scitovsky (1976) attributes the purchase of lottery tickets to people’s search for optimal arousal and 

considers freely chosen risk as potentially arousing. In line with this hypothesis, Ladouceur et al. 

(2003) find that the act of gambling is arousing, especially when expecting to win money. Similarly, 

recent field evidence suggests that lottery participation itself yields utility in advance of observing 

the outcome as feelings of joy and excitement irrespective of whether the lottery ticket was free or 

had to be purchased (Burger et al., 2020). These findings motivate our last hypothesis. 

H3: High [low] levels of arousal are an indicator of lottery acceptance [rejection].  



HCED 67 – Excited and aroused: The predictive importance of simple choice process metrics 

 

7/35 

 

3.2 Description and motivation of variable specifications  

The following section motivates and describes the different sets of predictor variables that we con-

sider in this paper: lottery design variables (L), socioeconomic characteristics (S), past gambling be-

havior (G), SCPMs derived from psychophysiological signals (P), and SCPMs derived from eye move-

ments as measures of visual attention (A). A concise overview of all of the variables and their em-

pirical specifications is presented at the end of this section in Table 1. 

Lottery design variables  

We consider several standard economic decision drivers: a lottery’s potential win and loss value and 

a binary variable to indicate whether the EV is negative. Moreover, deciding on a large number of 

repeated gambling decisions can be cognitively draining; however, the evidence is mixed and pre-

vious research has found both increasing (Bruyneel et al., 2009) and decreasing (Kostek & 

Ashrafioun, 2014) risk preferences in response to cognitive depletion. During the experiment, sub-

jects were informed when reaching the 67th and 133rd trial. In addition to specifying lottery trial as 

an integer variable, we include two dummy variables that indicate the corresponding resting peri-

ods to capture potential resource-depletion effects. Furthermore, people tend to prefer options dis-

played on the left side when choosing between two alternatives located next to each other. To ac-

count for such a potential “left-hand side” (Lusk et al., 2016) bias, we specify two binary variables 

that indicate whether the potential win is displayed in the right box (vs. left box) and whether the 

right arrow (vs. left arrow) has to be pressed to accept the gamble.  

Socioeconomics characteristics 

We use binary variables to account for the impact of subject-specific effects and socioeconomic 

characteristics that have frequently been identified as relevant sources of heterogeneity in decision 

making: gender, age, income, educational background, and highest degree. Women have been 

found to systematically respond differently to risk than do men; most prominently, women are of-

ten reported as having more risk-averse behavior (Croson & Gneezy, 2009). Likewise, various age-

related factors exist that can impact risk attitudes (Besedeš et al., 2014); perhaps the most fre-

quently reported age-related stylized fact is that we become more conservative and risk-averse as 

we age (Ahlfeldt et al., 2019).  
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The literature on poverty and decision making suggests that people with low relative incomes and 

education levels may engage in conspicuous consumption behavior to compensate for their lower 

social status (Veblen, 1899). As an example related to gambling behavior, Haisley et al. (2008) find 

that lotteries are more attractive to low income households because they provide the rare oppor-

tunity to substantially increase their wealth and social status in a short period. Moreover, from a 

different perspective on social comparison mechanisms, a recent gambling experiment finds that 

people with higher incomes take higher risks than people with lower incomes, but only if the ine-

quality in relative income levels is known to the participants (Schmidt et al., 2019). 

Gambling behavior 

We account for previous gambling choices and outcomes by specifying interaction terms between 

the last preceding five gambling decisions and positive and negative lottery outcomes. Precisely, 

when considering a sequence of repeated or path-dependent gambling decisions, players’ subse-

quent gambling decisions are likely affected by their previous choices and experiences. As a promi-

nent example, Thaler & Johnson (1990) find that prior gains can increase risk-taking behavior be-

cause people seem to treat potential losses differently when facing a recent gambling surplus 

(“house money effect”); similarly, people tend to take higher risks when they have the chance to be 

compensated for previous losses (“break-even effect”).  

In addition, gambling behavior can also be affected by different cognitive sampling biases in the 

judgment of a series of random process outcomes. In particular, evidence exists that people tend to 

falsely expect that a sequence of positives [negatives] is proceeded by another positive [negative] 

outcome (“hot hand fallacy”) (Gilovich et al., 1985). In similar ways, spurious positive autocorrelation 

in observed gambling outcomes may also be attributed to good luck [bad luck] (Guryan & Kearney, 

2008). On the other hand, people tend to overestimate the statistical representativeness of small 

samples and, consequently, often believe that a random sequence should exhibit systematic pat-

terns of reversal after observing a streak of similar outcomes (“gambler’s fallacy”) (Laplace, 1820; 

Rabin & Vayanos, 2010).  

Last, previous studies also show that emotions can substantially impact risk-taking behavior in re-

peated decision scenarios. For instance, according to the “mood maintenance hypothesis,” a posi-

tive affective state decreases the willingness to take risks, whereas a negative affective state in-

creases risk-taking behavior in an attempt to shift toward a more positive affective state (Schneider 
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et al., 2016). Likewise, the experience of winning [losing] can induce positive [negative] emotions 

that likely affect subsequent gambling decisions (Coricelli et al., 2005).  

Psychophysiological reactions and arousal 

The different types of psychophysiological reactions analyzed in this study all share established re-

lations with emotional arousal; however, in addition to representing biological health indicators, 

these variables can also provide information on various other affective and deliberative states. For 

a general overview on choice process techniques and measures for emotion detection and cognitive 

process analysis, see, e.g., Kreibig (2010), Schulte-Mecklenbeck et al. (2011), and Potter & Bolls (2012). 

Except for skin conductance measures, all of the psychophysiological SCPMs are related to CPD 

type-specific minimum, maximum, mean, and differences between the minimum and maximum 

values within the pre-decision phase. Whereas predicting discrete emotions or deriving more com-

plex measures from CPD can provide various information that cannot be derived only from pre-

decision SCPMs (Kreibig, 2010), CPD signals can exhibit substantial noise (Sundararajan et al., 2017), 

emotion detection software can provide misleading information because emotional expressions 

can vary across a large number of cultural and individual factors (Barrett et al., 2019), and precise 

measurements often require expensive tracking devices and careful sensor calibration under a con-

trolled (laboratory) environment (Schulte-Mecklenbeck et al., 2011). As a result, no clear consensus 

exists on the validity and reliability of alternative choice process techniques (Halko & Sääksvuori, 

2017; Wang & Minor, 2008). 

Skin conductance responses. Skin conductance response (SCR) measures are considered one of the 

most useful sources of information on sympathetic arousal because electrodermal activity is as-

sumed to be mostly unaffected by parasympathetic influences, in contrast to other psychophysio-

logical reactions (Mauss & Robinson, 2009). Examples for the predictive information associated 

with SCR data are as follows: SCRs can systematically differ between loss and gain frame decisions 

(Ring, 2015), evidence exists that SCRs can indicate cheating intentions, such as tax evasion behavior 

(Coricelli et al., 2010), and SCRs can provide information on the stress level experienced during bu-

reaucratic procedures (Hattke et al., 2019) and signal emotional arousal during auction betting 

(Astor et al., 2013).  
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Similar to, e.g., Hattke et al. (2019), Adam et al. (2015), and Coricelli et al. (2010), we include in our 

analysis information on the number of significant (above threshold) SCRs and the sum of their am-

plitudes (SCRA) (in microsiemens). Furthermore, SCRs have a delay of approximately one second, 

and we adjust the time window accordingly (Boucsein, 2012). The remaining CPD considered in our 

analysis are measured with respect to the first three seconds of lottery information processing.  

Cardiovascular and respiratory measures. Changes in the heart rate (HR), blood flow, and respiration 

can reflect both sympathetic and parasympathetic activity. Activation of the sympathetic nervous 

system (“fight or flight”) usually increases the respiration rate (RSR), HR, blood volume pulse (BVP), 

and blood pressure. In contrast, a decrease in these measures, in addition to low heart rate variabil-

ity (HRV), is mainly associated with parasympathetic activity (“rest or digest”) (Mauss & Robinson, 

2009). However, HR and HRV are affected by different physiological responses, such as respiration 

and blood pressure. Likewise, body temperature (BT) is regulated by the cardiovascular, integumen-

tary (e.g., skin and sweat glands), respiratory, and muscular systems (Kreibig, 2010). 

Both cardiovascular and respiratory signals have been found to provide relevant information on 

economic behavior. For instance, Ladouceur et al. (2003) find that HR increases before and during 

gambling trials with high winning expectations. Moreover, there is evidence that HR patterns can 

reveal emotional states of stress and arousal in competitive environments (Buckert et al., 2017; 

Halko & Sääksvuori, 2017). Specifically, Adam et al. (2015) find that HR (and SCR) patterns are rele-

vant in understanding the ”auction fever” phenomenon—a state of high emotional arousal associ-

ated with irrational bids and upward biased auction prices. Likewise, Daly et al. (2009) find HRV and 

blood pressure to be related to systematic differences in financial discounting patterns, and the 

findings of Falk et al. (2018) suggest that unhealthy HRV patterns can be related to unfair payment. 

As one of the few existing examples of economics studies that exploit a larger mix of physiological 

measures, Lo & Repin (2002) provide evidence for a strong link between emotions, SCRs, HR, BVP, 

BT, RSRs, and stock trading behavior.  

We include SCPMs for HR (in beats per minute). Thus, our specification of HR variables also implicitly 

captures information on HRV. Moreover, similar to Lo et al. (2002), in addition to specifying BVP (as 

a % change), we include individual SCPMs for BVP amplitude (BVPA) that we derive from the BVP 

raw signals (in millivolts). Precisely, BVP measures changes in blood volume in the arteries and ca-

pillaries, and BVPA indicates relative blood flow. Similarly, in addition to specifying RSR (in beats per 
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minute), we include information on subjects’ chest or abdominal respiration depth (RSD) (raw sig-

nal, in millivolts) that is used to compute RSR. Last, we include SCPMs for finger temperature (in C°) 

as BT variables. 

Pupil dilation and constriction. Another widely used measure of arousal can be derived from tracking 

changes in pupil size (PS), which correspond to either sympathetic (dilation) or parasympathetic 

(constriction) activity. Precisely, PS adapts to differences in light conditions, luminance, and bright-

ness to optimize information capacity while protecting the retina; moreover, pupils can also dilate 

in response to various physiological phenomena, including stress, mental effort, arousal, and pain 

(Wang et al., 2010). As examples, pupil dilation can indicate deceptive and dishonest behaviors in 

sender-receiver games (Hochman et al., 2016; Wang et al., 2010), PS has been found to be correlated 

with the expected values of risky gambling offers (Fiedler & Glöckner, 2012), and pupil dilation can 

signal product purchases (Huseynov et al., 2019). Similar to, e.g., Wang et al. (2010), Fiedler & 

Glöckner (2012), and Huseynov et al. (2019), we include SCPMs for the mean of both pupils’ sizes (in 

mm).  

Eye movements and attention 

Eye- and mouse-tracking are the most predominant process techniques for assessing visual atten-

tion, but other CPD, such as SCRs, PS, and cardiovascular measures, can also provide information on 

attention (Poels & Dewitte, 2006; Potter & Bolls, 2012; Venkatraman et al., 2015). Yet, attention is 

affected by both somatic (voluntary) and autonomic activity, and psychophysiological processes are 

linked to various emotional and cognitive states. Consequently, it is important to acknowledge the 

existence of different potential sources of variations in CPD when analyzing alternative measures 

of attention and arousal. Therefore, many researchers argue for combining different types of CPD 

to improve the identification and interpretation of emotional and cognitive responses (Daly et al., 

2009; Kreibig, 2010; Mauss & Robinson, 2009; Potter & Bolls, 2012). 

Simple lookup pattern metrics, such as gaze-dwell time and the number of fixations per option, 

have frequently been identified as relevant choice predictors (Fiedler & Glöckner, 2012; Imai et al., 

2019; Krajbich et al., 2010; Krol & Krol, 2019; Stewart et al., 2016). In addition, tracking more subtle 

measures, such as the tempo, duration, and latency of rapid eye movements (saccades), can provide 

further exploitable information on choice processes and their outcomes (Schulte-Mecklenbeck et 
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al., 2011). However, identifying relevant saccade changes requires eye-tracking devices with appro-

priately high sampling rates. Conversely, standard web and smartphone cameras—which can be 

used to record eye movements, facial expressions, as well as cardiovascular and respiratory 

measures—record at video sampling frequencies of 30 fps. Analogously, in this study, we record 

subjects’ eye movements and PS with 30 Hz (for details, see Appendix, Section 2.1). As a result, we 

derive all of the attention variables from unprocessed eye-position data and do not attempt to an-

alyze differences in saccades and fixations. Furthermore, because we conduct a simple and repeti-

tive 50/50 gambling task, we desist from investigating more complex metrics, such as distance and 

similarity measures between individual gaze-paths.  

The SCPMs that we derive from tracking subjects’ eye movements during lottery information ac-

quisition include the time that they spent looking at the win and loss boxes. In addition, we include 

several variables to account for simple lookup pattern characteristics: the number of times that a 

subject switched between looking at the win and loss boxes (integer) and two binary variables to 

indicate whether a subject looked first at the win box and at the left box. 
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Table 1. Description of included predictor variables 

# Vs Lottery design (L)  

2 Potential win and loss value (EUR) 

1 Expected value < 0 (binary) 

1 Lottery trial (integer) 

3 Lottery trial: 1 to 67, 68 to 133, and 134 to 200 (binary) 

1 Potential win is displayed on the right box (binary) 

1 Accept the displayed lottery by pressing the right arrow (binary) 

# Vs Socioeconomic (S)  

44 Subject-specific effects (binary) 

5 Highest education: GCSE, Vocational baccalaureate diploma, A-levels, Bachelor, Master or higher (binary) 

4 Educational background: Psychology, Economics, NA, other (binaries) 

3 Income level: income ≤ 800 EUR, 800 EUR < income ≤ 1200 EUR, 1200 EUR < income (binary) 

3 Age group: age ≤ 25, 25 > age < 33, age ≥ 33 (binary) 

1 Gender: female (binary) 

# Vs Gambling behavior (G)  

5 Interaction terms between lagged decisions: 1, 1x2, …, 1x2x3x4x5 (binary) 
5 Interaction terms between lagged decision and positive outcome: 1, …, 5 (binary) 

5 Interaction terms between lagged decision and negative outcome: 1, …, 5 (binary) 

# Vs Psychophysiological reactions (P)  

1 Significant skin conductance responses (SCRs) (integer) 

1 Sum of SCR-amplitudes of significant SCRs (microsiemens) 

4 Blood volume pulse (as % change)  

4 Blood volume pulse amplitude (millivolts) 

4 Chest or abdominal breathing depth (millivolts) 

4 Respiration rate (breathes per min) 

4 Heart rate (beats per min) 

4 Finger temperature (°C) 

4 Pupil size (mm) 

# Vs Attention (A)  

2 Time spent on fixating win [loss] box (sec)  

2 Looked first at left [win] box (binary)  

1 Number of times switched between boxes (integer)  

Notes: This table shows the number (# Vs) and descriptions of all included predictor variables. Except for skin conductance 

data, all physiological (P) variables relate to minimum, maximum and mean values and the difference between minimum 

and maximum values. We aggregate several age, educational and income groups because there is not much variation in 

the data.  

We encode factor variables as dummy variables and specify 119 predictors. Then, we exclude the 

most frequently observed level for each category as the corresponding reference group. This encod-

ing results in a total of 112 predictors: 36 numeric and 76 binary variables. In our data cleaning pro-

cess, we exclude 220 observations because they include information on past gambling behavior and 

82 observations because of missing eye-tracking data, which can occur when the recording device 

loses track of the eyes. The final dataset includes 8498 records. A detailed description of the empir-

ical specifications and summary statistics are presented in the Appendix, Section 2.  
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3.3 Description of forecasting methods  

The different model types that we evaluate in the course of our forecasting analyses correspond to 

four general modeling frameworks: naïve, generalized linear, non-linear, and tree-based ensemble 

methods. Specifically, in addition to two simple benchmark models, logistic regression and linear 

elastic net regression (Elastic net) (Zou & Hastie, 2005), we evaluate several popular ML methods 

that can automatically account for potentially complex non-linear dependencies and higher-order 

interactions without the need for pre-specification: support vector machines (SVM) (Cortes & 

Vapnik, 1995), feed-forward artificial neural networks (ANN) (Rosenblatt, 1961), random forests (RF) 

(Breiman, 2001), and tree-based gradient boosting machines (GBM) (Friedman, 2002). 

The ML and forecasting literature mainly focuses on model generalizability and primarily judges the 

predictive capabilities of algorithms based on how well they perform on unseen or future observa-

tions (test data). To this extent, ML algorithms include model-specific hyperparameters that control 

the trade-off between functional flexibility and over-fitting on the training data (“bias-variance 

trade-off”) by minimizing a model’s out-of-sample prediction error with respect to some loss func-

tion. We follow standard practice and determine sensitive hyperparameter values using a cross-

validation-based systematic grid-search using 80% of the observations for model training. The re-

maining 20% of the observations are used as test data for the model evaluation (see Section 6.1 for 

details). A general overview of ML concepts is provided by, e.g., Mullainathan & Spiess (2017) and 

Varian (2014). For detailed information on the ML techniques employed in this study, see, e.g., Hastie 

et al. (2009).  

Elastic net is an algorithm that performs both regularization and variable selection by combining 

the lasso and ridge regression penalty terms to constrain the size of the estimated predictor varia-

bles’ coefficients. Elastic net is especially useful when confronted with a large set of potentially rel-

evant predictor variables because it can automatically identify less important predictors and shrink 

their coefficients toward or near zero (Zou & Hastie, 2005). However, in contrast to the other ML 

methods evaluated in our analysis, the linear Elastic net framework requires explicitly specifying 

variable interaction effects and non-linear functional relationships. 

The standard SVM for binary classification tasks partitions the parameter space by attempting to 

find optimal hyperplanes for linearly separable patterns that maximize the margin between two 
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classes in a local area and simultaneously minimize the total error under tolerance. In addition, us-

ing the kernel trick allows the SVM to account for relevant non-linear dependencies and variable 

interactions by transforming the data to higher-dimensional spaces (Cortes & Vapnik, 1995; Hastie 

et al., 2009). In our analysis, we use a radial basis function kernel (squared exponential kernel) that 

is often considered to be more flexible than, e.g., polynomial kernels, because its function space can 

provide a greater variety of high-dimensional transformations (Efron & Hastie, 2016).  

The functioning of ANN resembles the idea of how neural neurons process and exchange infor-

mation. In general, an ANN can be described as a highly parameterized model that is built from 

different layers of neurons (nodes) connected with each other. Each node receives an input, per-

forms a computation that typically involves weighting signals obtained from its connections with 

nodes from the previous layer, and transmits signals to nodes in the next layer. The last (output) 

layer of the ANN finally combines the received signals to derive a prediction. The learning and pre-

diction process of a neural network involves mapping the predictors to the outcome by a series of 

simple data transformations and evaluation of feedback signals, which allows an ANN to identify 

and learn the form of highly complex decision boundaries (Hastie et al., 2009). In this study, we use 

non-linear sigmoid activation functions to construct a basic multi-layer perceptron ANN comprised 

of one input, one hidden, and one output layer.  

The general idea of the RF ensemble method is to train many deep decision trees (complex models) 

and reduce the variance associated with each of the trees by averaging their predictions. A core 

element of RF is that the individual decision tree models are decorrelated by growing them on the 

basis of different bootstrap samples of the training data (“bagging”). In addition to bagging, the RF 

method further decorrelates the individual trees by only selecting a random subset of predictors as 

potential candidate variables any time a node is split in the tree-building process (Breiman, 2001). 

In this study, we evaluate RFs grown from standard classification and regression trees (CART) and 

use the Gini entropy measure as the evaluation metric in the RF training process. 

In contrast to the RF technique, boosting is an ensemble method that creates a complex model from 

a number of weaker models (e.g., shallow decision trees) in a sequential way. Precisely, boosting 

methods first train a series of models in an iterative process in which each consecutive model learns 

from the prediction errors made by the previous one and then combine the individual models’ esti-

mates to derive a final prediction. However, similar to bagging, we employ a generalized boosted 
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modeling framework using decision trees as base learners that are grown from different random 

samples of the training data (Friedman, 2002).  

In addition to automatically accounting for the potential existence of complex non-linear func-

tional relationships and higher order interactions, RF and GBM are considered to be less sensitive to 

variable transformations, robust to the inclusion of non-relevant predictors, require little hyperpa-

rameter tuning, and perform well in high-dimensional data settings (Hastie et al., 2009). As a result, 

these “off-the-shelf” methods have frequently been found to yield accurate out-of-sample predic-

tions in numerous classification and regression problems (Efron & Hastie, 2016; Kleinberg et al., 

2018; Lessmann & Voß, 2017; Mueller, 2020).  

Furthermore, simple heuristics and statistical decision rules can often explain a large share of the 

heterogeneity in individual decision making and have been demonstrated to outperform advanced 

and knowledge-intensive methods in various forecasting domains (Goldstein & Gigerenzer, 2009). 

Similar to Stahl (2018), who evaluates lottery choices on the basis of judgmental heuristics, we dis-

cuss our empirical findings relative to two simple decision rules. The first predicts all test records as 

the most frequent class observed in the training data (not-played). We describe this naïve forecast 

as a risk-averse decision rule (RDR) because the most risk-averse behavior is to reject all lotteries to 

receive the 10 EUR endowment as a final payout. The second benchmark can be described as a sim-

ple statistical decision rule (SDR) that classifies gambling decisions according to a lottery’s expected 

value (EV). According to this SDR, we predict lotteries with EV < 0 as not-played and lotteries with 

EV ≥ 0 as played, thereby maximizing the final expected payout. 

4 Descriptive analysis  

In this chapter, we summarize the main findings from our descriptive analysis and present selected 

pieces of analysis. The comprehensive results are provided in the Appendix, Section 3. 

4.1 Gambling choices, lottery payoff structure, and socioeconomic characteristics  

Figure 2 shows the relative share of the number of played lotteries for each of the 44 individual 

subjects for all 200 lotteries: 155 lotteries with positive expected values (EV ≥ 0) and 45 lotteries 
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with negative expected values.1 The mean EV over all lotteries is 2.50 EUR (SD=3.30), the mean EV 

for negative expected value lotteries (NEVL) is –1.90 EUR (Min=–4.50, Max=–0.50, SD=1.20), and 

the mean EV for positive expected value lotteries (PEVL) is 3.80 EUR (Min=0.00, Max=9.50, 

SD=2.50). 

Figure 2. Share of played lotteries by subject and lotteries’ expected values 

  
Notes: This figure shows the share of played lotteries by subject and the lotteries’ expected values (EV) and is based on 

8800 gambling decisions. Each of the 44 subjects decided on 200 lotteries: 155 with positive expected values (PEV) and 45 

with negative expected values (NEV). Subjects that play five or more NEV lotteries are highlighted (bold). Dashed lines 

correspond to mean shares of played lotteries by EV. Subjects are ordered according to the highest share of the played 

lotteries (All). 

The mean subject plays 48% of all lotteries, but there is high heterogeneity in the individual shares 

of played lotteries across subjects and within and between NEVL and PEVL. Twenty-one subjects do 

not play any NEVL, and 14 subjects play one to four NEVL. The remaining nine subjects play five or 

more NEVL. In contrast to an average share of played NEVL of 6%, the average share of played PEVL 

is 60%, and no strict decision boundary is identified that can be used to classify subjects as risk 

averse for playing PEVL. The distribution of the share of played PEVL is much smoother across indi-

viduals compared with NEVL. On average, though, subjects are more inclined to accept a gamble as 

its expected value increases for both NEVL and PEVL. The mean difference in predicted probabilities 

                                                             

1  There are ten lotteries with an EV = 0. In our analysis, we distinguish between negative and non-negative 

EV lotteries. For clarity, in the further course of this paper, we refer to the lotteries with an EV≥ 0 as positive 

EV lotteries. 
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that we derive from fitting a simple logistic regression is 7.26% per one Euro increase in a lottery’s 

EV (see Appendix, Section 3.1).  

Although we do not find a significant difference between the mean share of accepted gambles 

across all lotteries by men (48.3%) and women (46.8%), women play approximately 50% more NEVL 

as men (7.6% and 5%), and men play slightly more PEVL than women (60.9% and 58.2%). Likewise, 

we do not find large differences between the share of accepted lotteries among the three income 

groups across all lotteries (48.8% vs. 47.6% vs. 45.6%). However, the highest income group plays the 

smallest share of PEVL (56.4 vs. 60.1% and 61.1%) and the largest share of NEVL (8.2% vs. 6.4% and 

4.6%). Hence, for NEVL [PEVL], we find a positive [negative] correlation between income and the 

share of accepted lotteries. Because a large intersection exists between income and age groups, the 

differences in risk-taking preferences between members of the lower and higher income groups are 

similar to the differences between younger and older subjects (see Appendix, Section 3.2).  

4.2 Sequential gambling choices and lottery outcomes 

Figure 3 panel A shows the mean share of accepted NEVL and PEVL by trial. Panel B shows subjects’ 

individual expected final payoffs with respect to all 200 lottery decisions, incorporating all previous 

choices and outcomes at each trial, and assuming that all subsequent lotteries are rejected. For both 

NEVL and PEVL, subjects’ willingness to gamble decreases as the experiment progresses, though, all 

subjects could increase their final expected payout to exceed the initial 10 Euro endowment.  
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Figure 3. Expected payout and relative share of subjects that played lotteries by lottery trial 

 
Notes: Panel A shows the mean share of played positive and negative expected value (EV) lotteries across subjects by 

lottery trial. The experiment includes data on 44 subjects who decided on 200 lotteries: 155 with EV≥0 and 45 with EV<0. 

Panel B shows subjects’ expected final payouts (solid gray lines) with respect to all 200 lottery decisions, including all 

previous choices and outcomes at each lottery trial and assuming that all subsequent lotteries are rejected. Solid black 

lines correspond to weighted logistic (panel A) and simple linear (panel B) regression curves. 95% confidence intervals are 

indicated by gray-shaded areas. Dashed lines indicate the 67th and 133rd trials. 

First, we consider the impact of the last accepted lottery outcome on subjects’ next consecutive 

choice across all lotteries. In line with the break-even and house-money effects, subjects are more 

inclined to gamble after a prior loss or win than after a prior lottery rejection. On the other hand, in 

contrast to prior losses or small to moderate wins, large prior wins appear to decrease the willing-

ness to accept the next gamble beyond 50%. Taking into account a prior lottery’s EV, we find that 

subjects’ motivation to gamble increases by the amount they won in previously accepted NEVL, 

whereas losing NEVL and PEVL or winning PEVL decreases a subject’s propensity to accept the next 

lottery in proportion to the amount that was lost/won. Hence, having previously won NEVL seems 

to particularly stimulate consecutive gambling activity. Although it is unclear why subjects engage 

in such gambling behavior, this phenomenon may be attributed to the resulting excitement and 

arousal experienced by winning unfavorable lotteries (NEVL). In contrast, a decreased propensity to 

gamble after larger losses may be attributed to negative emotions in reaction to losing and regret-

ting the previous gamble. In line with this potential explanation, the effect of losing unfavorable 

lotteries is twice as large as the effect of losing favorable lotteries.  

Regarding sequential choice behavior, we find gambling [non-gambling] streaks to increase the 

probability to accept [reject] the next lottery. Substantiating previous evidence on the hot hand 
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effect and the gambler’s fallacy, both positive and negative outcome streaks increase the willing-

ness to accept the next consecutive lottery. The detailed results of our analysis of sequential choices 

and previous outcomes are presented in the Appendix, Section 3.3.  

4.3 Lottery design, lookup patterns, and psychophysiological responses 

Subjects first look at the left box in 73.0% across all lotteries and accept 48.5% [45.6%] of the trials 

during which they first looked at the win [loss] (Table A14). Hence, accounting for the location of 

the win box also captures information on subjects’ tendency to play a higher share of lotteries for 

which they first looked at the win. However, we do not find strong evidence for a “left-hand side” 

bias. Furthermore, subjects looked at least once at each payoff box in 98% of all trials, and subjects 

switched between looking at the win and loss boxes 2-3 times in approximately 67% of all trials (see 

Appendix, Section 3.4.). 

An analysis of SCPM correlations reveals complex dependencies across and within different types 

of CPD, and we find PS and several A SCPMs to significantly correlate with lottery payoff variables 

(see Appendix, Sections 3.5 and 3.6). Moreover, we use OLS to regress lottery trial on individual 

SCPMs (standard errors clustered at the subject level) and find that typical indicators of arousal, 

such as the number of significant SCRs and PS responses, are alleviated over time. This finding indi-

cates that subjects become habituated to the gambling experience. Conversely, we find significant 

positive coefficient estimates for BT and many cardiovascular and respiratory SCPMs (Table A16). 

Consequently, we also find that several SCR and PS metrics are negatively correlated with BT, and 

many PS SCPMs are negatively correlated with several cardiovascular and respiratory measures (Fig-

ure A5).  

5 Multiple regression-based hypothesis tests 

In this section, we use the binary gambling choice 𝑦 as the outcome (𝑦 = 1 for played) and summa-

rize the results of logistic regression models that account for subject fixed effects. Precisely, each 

model includes subject-specific dummy variables, and we cluster standard errors at the subject 

level. Detailed results are presented in the Appendix, Section 4.  

H1: On the basis of the L data, we find that larger potential gains increase subjects’ willingness to 

gamble (β = 0.33, p < 0.01, Table A17). The average marginal effect across potential win values is 

0.037; i.e., if the win value increases by 1 Euro, the predicted probability for lottery acceptance on 
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average increases by 3.7%. The reverse holds true for losses (β = –0.68, p < 0.01, Table A17). The 

corresponding average marginal effect is –0.078; thus, the effect is significantly larger for losses 

than for gains (p < 0.01). In line with our hypothesis linked to lottery payoff characteristics, extend-

ing the L data by the set of SGPA variables does not change these results; the win and loss value 

coefficients remain highly significant and are of near identical magnitude (Table A19). 

H2: We evaluate individual A SCPMs regressions and find that the propensity to accept a displayed 

lottery significantly increases in the time that subjects allocate to the win (β = 0.37, p < 0.01, Table 

A17). Conversely, when using the full set of A variables or controlling for the LSGP variables, the ef-

fect becomes insignificant (p > 0.1, Tables A17 and A19). In contrast, the effect of losses is signifi-

cantly different from zero for both A (β = –0.43, p < 0.01, Table A17) and LSGPA (β = –0.31, p < 0.05, 

Table A19). 

H3: Estimating separate regressions for assessing the effect of individual P SCPMs on gambling de-

cisions reveals that most SCR and PS variables show significant and positive coefficient estimates, 

whereas the estimates for minimum, maximum, and mean BT are significantly negative (Table A18). 

However, on the basis of the LSGPA data, the only significant P coefficients are the number of sig-

nificant SCRs (β = 0.12, p < 0.1, Table A19) and subjects’ mean PS (β = 1.55, p < 0.01, Table A19).  

When interpreting these results, it is important to acknowledge that several A and P SCPMs are 

significantly correlated with the set of lottery design variables, and our evaluation of different 

model specifications shows that controlling for the LSG variables can substantially affect individual 

SCPM coefficient estimates. As an example, subjects’ BT increases during the experiment; thus, 

both a lottery trial and BT can capture subjects’ decreasing willingness to accept gambles over time 

(see Table A20). Precisely, a lottery trial can provide information on cognitive depletion associated 

with extended periods of gambling, and higher ambient and body temperatures have also been 

linked to resource-depletion effects and decreasing risk preferences. For instance, Cheema & Patrick 

(2012) find that warmer temperatures increase heuristic information processing and decrease a 

subject’s willingness to accept complex lottery gambles. Likewise, our descriptive analysis shows 

that PS and SCRs are negatively correlated with lottery trial; therefore, we expect their estimated 

effects to be more [less] pronounced during the earlier [later] lottery trials. Comparing individual 

regressions for the first and second half of the trials supports this hypothesis: the coefficient esti-
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mate (SD in parentheses) for the PS mean decreases from 2.00 (0.416) to 1.85 (0.497), and the esti-

mated effect of the number of significant SCRs decreases from 0.19 (0.078) to 0.07 (0.069) (Table 

A20). 

Furthermore, similar to the inherent dependency between BT regulation and the cardiovascular and 

respiratory systems and the correlations between P SCPMs and lottery design variables, our findings 

show that a lottery’s potential win [loss] is positively correlated with the time that subjects spent 

looking at it and, in general, spending more time looking at the win [loss] decreases the time that 

subjects can spend looking at the loss [win]. As a result, the coefficient for the time allocated to the 

win becomes statistically significant when excluding the win value and/or the time that subjects 

look at the loss but is insignificant otherwise (Table A17). In contrast, the win and loss value esti-

mates derived from various logistic model specifications are all highly significant and of similar 

magnitude. 

6 Out-of-sample performance evaluation 

6.1 Forecasting risky gambling choices 

For our algorithmic modeling approach, let us consider a function 𝑓𝑖(·) that relates the gambling 

choice Y to a predictor-set 𝐷𝑖 with i = {P, A, LSG, LSGPA}. The objective is to identify well-approxi-

mating functional relationships that relate the specified predictor-sets to the decision outcome by 

learning and identifying systematic choice patterns from the training data. In the following, we fo-

cus on a visual inspection and discussion of selected forecasting results. Detailed results for hy-

perparameter tuning and out-of-sample performance are included in the Appendix, Section 5. 

We use subjects as strata in both randomly selecting 80% of the cleaned data as a training sample 

and tuning models’ hyperparameters via 10-fold stratified cross validation (CV) on the basis of the 

training sample. The remaining 20% of the data are used as a hold-out test set to produce reasona-

ble accuracy estimates. This sampling procedure utilizes 6810 observations for model training and 

1688 observations for model testing. Moreover, we include subject-specific dummy variables in 

each of the evaluated data sets (P, A, LSG, LSGPA), and since the average share of played lotteries is 

relatively balanced, we use classification accuracy to assess models’ predictive capabilities in the 

model training process. Furthermore, we set the cut-off value for classifying a record as played to a 
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predicted probability of 50%, and we separately center and scale all numeric predictors with respect 

to the corresponding 10 training CV fold-sets and the test records.  

For all of the results reported in this study, we set the models’ hyperparameters to the values that 

yield the highest mean CV accuracies. Figure 4 shows the out-of-sample classification accuracy for 

the 1688 records included in the test data.  

Figure 4. Out-of-sample classification accuracy for playing a 50/50-gamble 

 

Notes: Out-of-sample accuracy for playing a 50/50 gamble. Test [training] data consist of 1688 [6810] records and the 

models’ hyperparameters are chosen as the values that yield the highest mean 10-fold CV accuracy using subjects as 

strata. We evaluate logistic (Logistic) and penalized regression models (Elastic), support vector machines (SVM), artificial 

neural networks (ANN), random forests (RF), and gradient boosting machines (GBM) on the basis of psychophysiological 

(P) and attention (A) choice-process data; lottery design, socioeconomic characteristics, and information on past gambling 

behavior (LSG); and a full model that is comprised of all input categories (LSGPA). The error bars correspond to 95% confi-

dence intervals. The solid line is a naïve forecast that yields a test data accuracy of 52% by predicting all records as not-

playing, and the dashed line is a second naïve forecast that results in an accuracy of 66% by predicting a lottery choice 

with EV<0 as not-playing and with EV≥0 as played. 

The solid [dashed] line indicates the RDR [SDR] forecast that results in a test accuracy of 52% [66%]. 

The best out-of-sample accuracy for P is observed with 62% (Logistic), for A with 63% (SVM, ANN, 

RF, GBM), for LSG with 87% (SVM, ANN, GBM), and for LSGPA with 87% (GBM). Hence, forecasting 

accuracy is largely driven by including information on standard choice predictors, such as lotteries’ 

payoff structures, and we do not find the additional P and A SCPMs to significantly affect forecast-

ing accuracy when added to the LSG variables. Precisely, for the Elastic net and RF and GBM models, 

the LSGPA results are slightly more accurate than the corresponding LSG results; the reverse holds 

true for the Logistic, SVM, and ANN models. Moreover, we do not find a dominant approach among 

the linear, non-linear, and tree-based ML algorithms. Comparing forecasting accuracy in terms of 

different predictive measures and evaluating subject-model-specific accuracy results further sub-

stantiate these findings (see Appendix, Section 5.4).  



HCED 67 – Excited and aroused: The predictive importance of simple choice process metrics 

 

24/35 

 

Concerning the predictions derived from the P data, all models yield very similar CV accuracy results. 

However, when considering the out-of-sample P data evaluation, the SVM, RF, and GBM perform 

significantly worse, the Elastic net and ANN test accuracy results do not differ much from their CV 

results, whereas the standard logistic regression accuracy improves by 2 %-points. Hence, it appears 

that the more data-driven ML methods tend to overfit on the P SCPM patterns observed in the train-

ing data, and these methods are likely to require a larger training data set to appropriately capture 

and approximate the complex relationships between gambling choices, lottery design, and SCPMs.  

All ML model predictions derived from the 𝐴 data are more accurate than the predictions based on 

the 𝑃 data. In comparison to the generalized linear models (Logistic and Elastic), our results demon-

strate that the more data-driven ML methods (SVM, ANN, RF, and GBM) better utilize the infor-

mation provided by subjects’ individual lookup patterns (𝐴) and produce more accurate predictions 

on the basis of LSG and LGSPA. To further investigate potentially relevant interactions between in-

dividual A SCPMs, we evaluate the Elastic net model on the basis of an extended predictor-set. Us-

ing the standard A data, the Elastic net approach results in a test accuracy of 60.96%, and adding 

pairwise interactions between the A SCPMs and subject-specific interactions results in a test accu-

racy of 63.03%. This increase in forecasting accuracy suggests that relevant dependencies exist be-

tween the A SCPMs and subject-specific lookup patterns that, in addition to the more data-driven 

ML methods, can also be captured by linear penalized modeling approaches. 

H1: Regarding our hypotheses related to lottery payoff characteristics, in Figure 5, we separately 

present the GBM out-of-sample mean accuracy results for LSG (upper panel) and LSGPA (lower 

panel) by lotteries’ win, loss, and expected values for rejected (Not played) and accepted (Played) 

lotteries.2 Hence, for rejected [accepted] gambles, the reported mean accuracy results correspond 

to the mean specificity [sensitivity].  

 

 

 

                                                             

2  The predictor-set-specific forecasts are based on the models that show the highest test data classification accuracy. A 

general comparison of the different models’ forecasting results is provided in the Appendix, Section 5. 
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Figure 5. Out-of-sample classification accuracy by lottery design variables 

 
Notes: Out-of-sample mean accuracy results for playing a 50/50 gamble by lotteries’ win, loss and expected values for 
rejected and accepted lotteries. Predictions are derived from gradient boosting (GBM) classification based on lottery de-

sign variables, subjects’ socioeconomic characteristics and past gambling behavior (LSG) (upper panel) and on LSG ex-

tended by psychophysiological responses and attention metrics (LSGPA) (lower panel). Solid lines correspond to logistic 

regressions weighted by the number of observations per win, loss, and expected value. 95% confidence intervals are indi-

cated by grey-shaded areas. 

The solid lines in Figure 5 correspond to weighted logistic regressions that highlight the strong non-

linear relationship between gambling decisions and lotteries’ payoff structure: the higher [lower] a 

lottery’s win [loss] value, the more accurate the forecast becomes for games predicted as played 

[not played]. The same pattern holds for a lottery’s EV, and the corresponding logistic regression 

curves show a strong link between correct predictions and large [small] EVs for accepted [rejected] 

lotteries. Likewise, we do not observe many correct predictions for the share of rejected PEVL with 

an EV > 5 or the share of accepted NEVL. Although the forecasting accuracy for the GBM model only 

marginally improves when adding the PA SCPMs to the LSG data (see Figure 4), extending the set of 

standard choice predictors by the PA variables appears to worsen the GBM predictions for NEVL but 

slightly improves the GBM predictions for both rejected and accepted PEVL. 

H2: Continuing with our analysis of lookup patterns, in Figure 6, we show the GBM out-of-sample 

mean accuracy results based on A (upper panel) and LSGPA (lower panel) by the time that subjects 

look at the win and loss boxes and the number of box switches.  

 

 

 



HCED 67 – Excited and aroused: The predictive importance of simple choice process metrics 

 

26/35 

 

Figure 6. Out-of-sample classification accuracy by attention metrics 

 
Notes: Out-of-sample mean accuracy results for playing a 50/50 gamble by the time that subjects spent looking at a lot-

tery’s win and loss box, and the number of box switches for rejected and accepted lotteries. Predictions are derived from 

gradient boosting (GBM) classification based on attention metrics (A) (upper panel) and on A extended by lottery design 

variables, subjects’ socioeconomic characteristics, past gambling behavior, and psychophysiological response metrics 

(LSGPA) (lower panel). Solid lines correspond to logistic regressions weighted by the number of observations per time win, 

time loss, and box switches. 95% confidence intervals are indicated by grey-shaded areas.  

The predictions based on A (upper panel) substantiate the results from our in-sample-based analy-

sis: the longer [shorter] the time that subjects look at the win, and the shorter [longer] the time that 

subjects look at the loss, the more accurate the RF’s forecast becomes for games that are predicted 

as played [not played]. Furthermore, for accepted games, we do not find a strong relationship be-

tween the number of box switches and the mean accuracy results obtained from A when compared 

with the results for the time that subjects spent looking at the win and loss boxes, but we find that 

increasing numbers of box switches are associated with a decreasing share of correct predictions 

for rejected games. However, when comparing the A and LSGPA predictions (lower panel), the A 

predictors do not vary much with respect to the consistently high forecasting accuracy results ob-

tained from LSGPA.  

H3: Concerning gambling choices and arousal, in Figure 7, we present the logistic regression out-of-

sample mean accuracy results for P (upper panel) and LSGPA (lower panel) by mean PS and the num-

ber of significant SCRs and mean PS only for early lottery trials (trial ≤ 67).  
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Figure 7. Out-of-sample classification accuracy by arousal metrics 

 
Notes: Out-of-sample mean accuracy results for playing a 50/50 gamble by mean pupils size (PS) and the Nr. of significant 

skin conductance responses (SCRs) for rejected and accepted lotteries. Predictions are derived from logistic regression 

based on psychophysiological response metrics (P) (upper panel) and on P extended by lottery design variables, subjects’ 
socioeconomic characteristics, past gambling behavior, and attention metrics (LSGPA) (lower panel). Solid lines corre-

spond to logistic regressions weighted by the number of observations per PS mean and the number of significant SCRs. 

95% confidence intervals are indicated by grey-shaded areas. 

We find that forecasting accuracy increases with mean PS for accepted gambles for the early lottery 

trials of the experiment and decreases with mean PS for rejected gambles when considering all lot-

tery trials. In contrast, average accuracy does not vary much across mean PS for accepted lotteries 

across all trials and mean PS for rejected lotteries during earlier trials. Similar to PS changes, a higher 

[smaller] number of significant SCRs indicates higher [lower] forecasting accuracy. However, 

whereas PS changes and SCRs both decrease over time, the association between SCRs and forecast-

ing accuracy appears to persist throughout the entire experiment. Nonetheless, although forecast-

ing accuracy appears not to largely vary by PS, these results do not imply that PS data do not provide 

valuable information for predicting gambling choices. In particular, the coefficient estimates for the 

number of significant SCRs and PS mean derived from differently specified logistic effects regres-

sion models are all statistically significant and in line with our P CPD-related main hypothesis—

higher arousal levels signal upcoming lottery acceptance. 

For the LSGPA predictions (lower panel), forecasting accuracy does not vary much across SCRs when 

compared with the P forecast; however, we still find that forecasting accuracy increases with the 

number of significant SCRs. Moreover, we find a reversed pattern for the relationship between fore-

casting accuracy and PS for the early lottery trials and slightly decreasing mean accuracy results for 

increasing PS mean values for accepted lotteries.  
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6.2 Forecasting simple choice process data metrics  

In this section, we analyze the extent to which the choice-revealing information provided by the  A 

and P SCPMs may already be captured by lottery-design variables and socioeconomic characteristics 

because only marginal differences exist between the model-specific LSG und LSGPA forecasting re-

sults, and many of the A and P SCPMs significantly correlate with the LS data. To this end, we eval-

uate forecasting CPD type-specific mean values on the basis of the LS input categories using RF and 

Elastic net regression without including information on subjects’ gambling choices and outcomes.3 

The corresponding CV and out-of-sample results are reported in Table 2.  

Table 2. Choice process data metrics forecasting results 

Cross-validation results   Out-of-sample evaluation results  

Outcome  R2 - Elastic R2 - RF  Outcome  R2 - Elastic R2 - RF 

Time win 18.28% 34.43%  Time win 18.39% 35.27% 

Time loss 18.78% 35.14%  Time loss 16.49% 34.17% 

Nr. of switches 26.56% 30.31%  Nr. of switches 28.99% 33.40% 

HR mean 86.15% 89.23%  HR mean 86.88% 89.92% 

BVP mean 93.14% 93.83%  BVP mean 92.83% 93.58% 

BVPA mean 85.05% 91.02%  BVPA mean 85.47% 91.06% 

RSR mean 20.49% 20.97%  RSR mean 21.67% 21.01% 

RSD mean 99.10% 99.51%  RSD mean 99.14% 99.52% 

BT mean 76.90% 99.54%  BT mean 77.18% 99.62% 

PS mean 92.89% 94.56%  PS mean 93.58% 95.15% 

Notes: Accuracy reported in terms of R-squared values. Test [training] data consist of 1688 [6810] records, and the models’ 
hyperparameters are chosen as the values that yield the highest mean 10-fold CV accuracy in terms of RMSE using subjects 

as strata. We evaluate linear penalized regression models (Elastic) and random forest regression (RF) on the basis of lottery 

design and socioeconomic characteristics (LS) for predicting the time that subjects look at the win and loss, the Nr. of box 

switches, and mean values for subjects’ blood volume pulse (BVP), BVP amplitude (BVPA), respiration rate (RSR), respira-

tion depth (RSD), heart rate (HR), body temperature (BT), and pupil size (PS). 

Except for RSR, both Elastic net and RF produce fairly accurate forecasts for the mean P CPD values 

(BVP, BVPA, RSD, HR, BT, and PS) but low accuracy results for RSR mean. Similar to RSR, both models 

produce less accurate forecasts for the A SCPM; the corresponding Elastic net [RF] out-of-sample R-

squared results range from 16.5% [33.4%] to 29.0% [35.3]. RF outperforms Elastic net for each SCPM 

except the RSR mean, and the largest differences between the Elastic net and RF test data results 

                                                             

3  To regress individual P SCPMs on the LS predictor-set, we use the same model training procedure and set of hyperpa-

rameter values as for forecasting gambling choices, but instead of classification accuracy, we use the resulting root 
mean squared error (RMSE) to fit the models’ hyperparameter values. For the RF training process, we use the weighted 
variance measure as the splitting criterion.  
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are observed for mean BT (77.2% vs. 99.6%) and the time spent looking at the loss (16.5% vs. 34.2%) 

and the win (18.4% vs. 35.3%) boxes.  

A potential explanation for the rather low accuracy results for the A SCPMs is the likely existence of 

interdependent relationships between gambling choices, lookup patterns, and lottery attributes.4 

Moreover, we evaluate forecasting the number of significant SCRs using a multi-classification ap-

proach that distinguishes between 0, 1, and 2 or more significant SCRs: both the Elastic net and RF 

models yield 99.82% accurate predictions on the test data. Hence, in contrast to the simple lookup 

pattern metrics, RF and Elastic net produce highly accurate forecasts for the two arousal measures 

that we identified as relevant choice predictors: Mean PS and the number of significant SCRs.  

7  Conclusions 

This study demonstrates that pre-decisional attention and arousal metrics can effectively be used 

to forecast risky gambling decisions, but we do not find that SCPMs substantially impact forecasting 

accuracy when added to the standard choice-modeling data. In addition to subject-specific risk pref-

erences, we find that forecasting accuracy is mainly driven by including information on lottery de-

sign variables. In general, our study highlights the importance of accounting for various correlations 

and causal dependencies between gambling choices, lottery design, and A and P CPD. However, the 

existence of these complex relationships makes it difficult to isolate effects attributable to individ-

ual SCPMs, and our findings suggest that a large proportion of the choice-revealing information 

associated with simple arousal metrics can already be captured by standard choice predictors.  

One of our key results is that subjects’ decreasing willingness to accept lotteries throughout the 

experiment is linked to the predictive importance of typical indicators of arousal and cardiovascular 

and respiratory measures. For instance, we observe smaller PS changes and lower frequencies of 

significant SCRs in the later stages of the experiment; conversely, subjects show higher levels of 

arousal in the early stages of the experiment when the gambling experience is still new and excit-

ing. In addition to such habituation effects, we find that subjects’ skin temperature and their ten-

dency to reject lotteries consistently increases as the experiment progresses, thereby supporting 

                                                             

4  For a detailed discussion on interdependencies between eye movements and choices, see, e.g., Shimojo et al. (2003) 

and Stewart et al. (2016). 
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previous findings on potential resource-depletion effects. Furthermore, our analysis of subsequent 

gambling behavior highlights the importance of accounting for individual payoff characteristics of 

previously offered lotteries when investigating cognitive bias and the role of emotions in winning 

and losing in repeated gambling decision scenarios.  

As a final remark, albeit our data include 200 lottery decisions per subject, we emphasize that with 

44 subjects, our results are based on a rather limited sample of individuals. Consequently, in our 

forecasting analysis, we use information on all subjects in both the training and the test data. 

Whereas our findings provide new insights into the predictive importance of CPD, we conduct a 

simple and repetitive lottery gambling experiment and restrict our analysis to pre-decisional atten-

tion and psychophysiological SCPMs that are exclusively recorded using low-cost tracking devices. 

Based on the numerous available CPD tracking methods, modeling strategies, and experimental 

designs, we consider our study to be one of many necessary pieces of research in the course of as-

sessing the relevance of CPD to better understand and predict human preferences and behaviors.  
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Excited and aroused: The predictive importance of 

simple choice process metrics  

Appendix 

1 Introduction 

This online appendix provides additional information on the experimental design and empirical 

specifications and complements the main text by providing detailed results for the descriptive anal-

ysis, our regression-based hypothesis tests, and our forecasting analysis of gambling choices and 

SCPMs. Furthermore, although this Appendix is not meant to stand alone, we note that it replicates 

some text and results from the main paper to ensure clarity. 

2 Data and experimental design 

In this section, we provide additional information on the experimental design, the data cleaning 

process, variable specifications, and summary statistics.  

2.1 Experimental design 

The experiment was conducted between 2018.07.23 and 2018.08.08 at the Psychology Department 

of Kiel University, Germany. After the experimenter instructed the subjects, they received docu-

ments including general information on the experimental design, informed consent, a worksheet 

to generate a personal code, and a survey that included questions on socioeconomic characteristics 

such as age, gender, educational background, and income levels. 

We recruited 44 participants (mean age=28 years, SD=4) from the general population of Kiel, Ger-

many, through online advertisements. All subjects gave written informed consent and could decide 

to discontinue participation at any time. The risk task consisted of 200 consecutive trials. In each 

trial, participants were offered a 50/50 gamble that involved a potential gain and a potential loss. 

Across lotteries, we manipulated the potential gain and loss (range of gains: +1 EUR to +20 EUR; 

range of losses –1 EUR to –10 EUR; both in 1 Euro steps). Participants could accept or reject the of-

fered lottery by pressing a button (left or right arrow) but could not execute their final gambling 

choices during the first three seconds that a lottery was displayed. Subjects received immediate 
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feedback about the outcome of a lottery if it was accepted. During the experiment, subjects were 

notified when they reached the 67th and 133rd trial and subsequently rested for 30 seconds before 

they continued with the experiment. The order of the lotteries and the arrangement of the payoff 

boxes and decision buttons on the screen were randomized for each participant. 

Figure A1. Sequence of events and screens for one round of lottery gambling by time 

 
Notes: Sequence of events and screens for one round of lottery gambling by time (seconds). All of the pictures of the 

screens are displayed in correct proportions.  

The first picture (left) shows a fixation cross and indicates that a lottery will be shown soon. The 

second picture shows the newly offered lottery for three seconds (pre-decision phase). The third 

picture shows the arrows that must be pressed to accept or reject the previously displayed lottery 

for a maximum of ten seconds in the decision phase. After a decision has been executed, the real-

ized outcome is displayed; for rejected gambles, the fourth screen is omitted. 

At the beginning of the experiment, subjects were seated in front of a 24” computer screen with a 

resolution of 1920 x 1080 (Acer XB240H), and different sensors were attached to their bodies. First, 

subjects were asked to place their heads in the corresponding headrest to adjust the eye-tracking 

sensors (Tobii Pro X2-30; Tobii AB) for recording gaze focus and pupils’ sizes via infrared light re-

flected by the cornea. Then, the remaining sensors were placed to assess different physiological 
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signals with a 16-channel bioamplifier (Nexus-16; Mind Media B.V.).1 At first, a breast strap was at-

tached to the thorax to assess breathing movement. Skin conductance was measured using two 

disposable electrodes that were attached to the distal phalange of the index and middle fingers of 

the non-dominant hand. Blood volume pulse (BVP) was measured using a photoplethysmographic 

sensor placed at the annular finger. Heart rate (HR) is computed from the BVP raw signal by detect-

ing and counting the peaks of the BVP waveform to determine the inter-beat interval. A thermistor 

was taped to the auricular finger to monitor skin temperature. Blood volume pulse was sampled 

with 128 Hz, and eye movements and pupil size were sampled at a rate of 30 Hz. All remaining CPD 

was recorded with 32 Hz. We used the software package Psychtoolbox-3 implemented in MATLAB 

R2016a (MathWorks Inc., United States) to present the visual stimuli. The software used to record, 

process, filter, and remove artifacts from the raw CPD signals are Biotrace (Mind Media B.V.), Le-

dalab, Tobii Pro Eye Tracker Manager, and Tobii Pro SDK (Tobii AB). 

The lottery gambling experiment started after we ensured a successful calibration of all sensors. 

The first screen was a welcome page. Again, subjects were presented with concise instructions for 

the lottery gambling experiment. Then, subjects were asked to start the experiment by pressing the 

space-bar and deciding on three test trials. After subjects were asked if they had any remaining 

questions, they were shielded from acoustic disturbances with ear protectors, and the actual exper-

iment started. After deciding on 200 lottery trials, the experiment was finished, sensors were re-

moved, and subjects received their final payouts. 

All subjects started with an endowment of 10 EUR. At the end of the experiment, one trial was ran-

domly selected for the final payout. If the subject rejected the selected lottery, she kept the initial 

endowment of 10 EUR. If the subject accepted the lottery, its outcome was realized and added to 

[subtracted from] the initial endowment in the case of a win [loss] outcome. 

2.2 Data cleaning and variable specifications 

From the total sample of 8800 observations, we discard the first five lottery decision for each of the 

44 subjects because we include information on preceding choices and outcomes. We also exclude 

                                                             

1  The bioamplifier and corresponding software make use of bandpass filters and noise reduction functions (e.g., 

rectification and smoothing), and automatically amplify the recorded physiological signals to maximize their 

informational content.  
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an additional 82 observations because of missing eye-tracking data, which can occur when the re-

cording device loses track of the eyes. The cleaned dataset includes 8498 records.  

In Table A1, we present the variables’ empirical specifications by predictor-set and groups, together 

with distributional summary statistics. Moreover, whereas the 𝑃 and 𝐴 predictor-sets do not con-

tain any information related to lottery design variables, such as displayed win and loss values, we 

note for 𝐴 that we implicitly include the side of the computer screen (left vs. right) on which a lot-

tery’s win and loss values are displayed in specifying subjects’ lookup patterns.
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Table A1. Predictor variable specifications and summary statistics  

Variable Predictor-set Variable group Description Min Max Mean SD 

played Outcome Economic decision Played vs. not played (binary) 0 1 0.47 0.5 

win_value LSG, LSGPA Win and loss values (L) Potential win (EUR) 1 20 10.49 5.77 

loss_value LSG, LSGPA Win and loss values (L) Potential loss (EUR) -10 -1 -5.51 2.86 

neg_exp_value LSG, LSGPA Win and loss values (L) Expected value < 0  0 1 0.23 0.42 

trial LSG, LSGPA Trial (L) Lottery trial (numeric) 6 200 102.79 56.18 

trial_D1_1_67 LSG, LSGPA Trial (L) Lottery trial 1 to 67 (binary) 0 1 0.32 0.47 

trial_D2_68_133* LSG, LSGPA Trial (L) Lottery trial 68 to 133 (binary) 0 1 0.34 0.47 

trial_D3_134_200 LSG, LSGPA Trial (L) Lottery trial 134 to 200 (binary) 0 1 0.34 0.47 

win_right LSG, LSGPA Left vs. right (L) Potential win is displayed on the right box (binary) 0 1 0.5 0.5 

accept_right LSG, LSGPA Left vs. right (L) Accept by pressing the right arrow (binary) 0 1 0.49 0.5 

quali_D1_abi* LSG, LSGPA Socioeconomic (S) Highest education: A-levels (binary) 0 1 0.43 0.5 

quali_D2_bach LSG, LSGPA Socioeconomic (S) Highest education: Bachelor (binary) 0 1 0.25 0.43 

quali_D3_real LSG, LSGPA Socioeconomic (S) Highest education: GCSE (binary) 0 1 0.11 0.32 

quali_D4_master LSG, LSGPA Socioeconomic (S) Highest education: Master or similar degree (binary) 0 1 0.16 0.36 

quali_D5_fachabi LSG, LSGPA Socioeconomic (S) Highest education: "Fachabitur" (binary) 0 1 0.04 0.2 

educ_D1_psy* LSG, LSGPA Socioeconomic (S) Educational background: Psychology (binary) 0 1 0.16 0.36 

educ_D2_eco LSG, LSGPA Socioeconomic (S) Educational background: Economics/Business (binary) 0 1 0.16 0.36 

educ_D3_na LSG, LSGPA Socioeconomic (S) Educational background: NA (binary) 0 1 0.09 0.29 

educ_D4_other LSG, LSGPA Socioeconomic (S) Educational background: Other (binary) 0 1 0.59 0.49 

income_D1 LSG, LSGPA Socioeconomic (S) Income level <= 800 EUR (binary) 0 1 0.36 0.48 

income_D2* LSG, LSGPA Socioeconomic (S) Income level > 800 EUR & < 1200 EUR (binary) 0 1 0.41 0.49 

income_D3**  LSG, LSGPA Socioeconomic (S) Income level >= 1200 EUR (binary) 0 1 0.23 0.42 

female_D1 LSG, LSGPA Socioeconomic (S) Gender: Male vs. Female (binary) 0 1 0.46 0.5 

age_D1_19_25 LSG, LSGPA Socioeconomic (S) Age group: 19 to 25 years (binary) 0 1 0.32 0.47 

age_D2_26_32* LSG, LSGPA Socioeconomic (S) Age group: 26 to 32 years (binary) 0 1 0.57 0.49 

age_D3_33_39 LSG, LSGPA Socioeconomic (S) Age group: 33 to 39 years (binary) 0 1 0.11 0.31 

played_lag_1* LSG, LSGPA Gambling behavior (G) lagged 1 played (binary) 0 1 0.48 0.5 
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Variable Predictor-set Variable group Description Min Max Mean SD 

played_lag_1_2 LSG, LSGPA Gambling behavior (G) lagged 1 x 2 played (binary) 0 1 0.25 0.43 

played_lag_1_2_3 LSG, LSGPA Gambling behavior (G) lagged 1 x 2 x 3 played (binary) 0 1 0.14 0.35 

played_lag_1_2_3_4 LSG, LSGPA Gambling behavior (G) lagged 1 x 2 x 3 x 4 played (binary) 0 1 0.09 0.28 

played_lag_1_2_3_4_5 LSG, LSGPA Gambling behavior (G) lagged 1 x 2 x 3 x 4 x 5 played (binary) 0 1 0.06 0.23 

lag1_pos_outcome  LSG, LSGPA Gambling behavior (G) Lag 1 positive outcome: played & won money (binary) 0 1 0.23 0.42 

lag2_pos_outcome  LSG, LSGPA Gambling behavior (G) Lag 2 positive outcome: played & won money (binary) 0 1 0.23 0.42 

lag3_pos_outcome LSG, LSGPA Gambling behavior (G) Lag 3 positive outcome: played & won money (binary) 0 1 0.23 0.42 

lag4_pos_outcome LSG, LSGPA Gambling behavior (G) Lag 4 positive outcome: played & won money (binary) 0 1 0.23 0.42 

lag5_pos_outcome LSG, LSGPA Gambling behavior (G) Lag 5 positive outcome: played & won money (binary) 0 1 0.23 0.42 

lag1_neg_outcome LSG, LSGPA Gambling behavior (G) Lag 1 negative outcome: played & lost money (binary) 0 1 0.24 0.43 

lag2_neg_outcome LSG, LSGPA Gambling behavior (G) Lag 2 negative outcome: played & lost money (binary) 0 1 0.24 0.43 

lag3_neg_outcome LSG, LSGPA Gambling behavior (G) Lag 3 negative outcome: played & lost money (binary) 0 1 0.24 0.43 

lag4_neg_outcome LSG, LSGPA Gambling behavior (G) Lag 4 negative outcome: played & lost money (binary) 0 1 0.24 0.43 

lag5_neg_outcome LSG, LSGPA Gambling behavior (G) Lag 5 negative outcome: played & lost money (binary) 0 1 0.25 0.43 

TTP_nSCR P, LSGPA Skin conductance (P) SCR No. of significant skin conductance responses (SCRs) (integer) 0 3 0.38 0.53 

TTP_AmpSum P, LSGPA Skin conductance (P) SCR Sum of the significant SCR amplitudes (microsiemens) 0 3.95 0.1 0.27 

BVP_max P, LSGPA Blood volume pulse (P) Blood volume pulse: maximum (relative (%) changes) -13.9 221.43 76.8 38.25 

BVP_min P, LSGPA Blood volume pulse (P) Blood volume pulse: minimum (relative (%) changes) -153.23 -14.61 -49.87 21.15 

BVP_mean P, LSGPA Blood volume pulse (P) Blood volume pulse: mean (relative (%) changes) -46.89 1.14 -16.66 9.46 

BVP_delta** P, LSGPA Blood volume pulse (P) Difference BVP min and max (relative (%) changes) 19.03 347.05 126.67 55.23 

BVP_Amp_max P, LSGPA Blood volume pulse (P) Blood volume pulse amplitude: maximum (millivolts) 14.33 247.1 104.19 43.74 

BVP_Amp_min P, LSGPA Blood volume pulse (P) Blood volume pulse amplitude: minimum (millivolts) 11.68 210.87 83.9 37.01 

BVP_Amp_mean P, LSGPA Blood volume pulse (P) Blood volume pulse amplitude: mean (millivolts) 13.36 229.88 94.16 40.47 

BVP_Amp_delta** P, LSGPA Blood volume pulse (P) Difference BVP amplitude max and min (millivolts) 1.23 85.29 20.3 10.03 

RSD_max P, LSGPA Respiration (P) Respiration depth: mean (mm) 910.29 1236.95 1065.77 69.31 

RSD_min P, LSGPA Respiration (P) Respiration depth: minimum (mm) 900.72 1223.58 1051.48 68.4 

RSD_mean P, LSGPA Respiration (P) Respiration depth: maximum (mm) 904.86 1230.71 1057.35 68.69 

RSD_delta** P, LSGPA Respiration (P) Difference: RSD max and min (mm) 0.8 124.09 14.29 10.92 

RSP_rate_max P, LSGPA Respiration (P) Respiration rate: maximum (breathes per min) 4.45 60 20.5 7.64 

RSP_rate_min P, LSGPA Respiration (P) Respiration rate: minimum (breathes per min) 4.28 58.18 16.12 4.46 
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Variable Predictor-set Variable group Description Min Max Mean SD 

RSP_rate_mean P, LSGPA Respiration (P) Respiration rate: mean (breathes per min) 4.45 58.18 18.32 5.6 

RSP_rate_delta** P, LSGPA Respiration (P) Difference: RSP rate max and min (breathes per min) 0 48.47 4.38 6.66 

HR_max P, LSGPA Heart rate (P) Heart rate: maximum (beats per min) 48.01 128.01 83.56 12.42 

HR_min P, LSGPA Heart rate (P) Heart rate: minimum (beats per min) 42.67 123.87 76.74 11.78 

HR_mean P, LSGPA Heart rate (P) Heart rate: mean (beats per min) 46.66 125.91 80.18 12.07 

HR_delta** P, LSGPA Heart rate (P) Difference: Heart rate max and min (beats per min) 0 39.1 6.82 4.07 

Temp_max P, LSGPA Body temperature (P) Finger temperature: maximum (°C) 32.02 36.78 35.81 0.65 

Temp_min P, LSGPA Body temperature (P) Finger temperature: minimum (°C) 32.02 36.77 35.8 0.65 

Temp_mean P, LSGPA Body temperature (P) Finger temperature: mean (°C) 32.02 36.77 35.81 0.65 

Temp_delta** P, LSGPA Body temperature (P) Difference: Finger temperature max and min (°C) 0 0.14 0.01 0.01 

t1_pupil_avg_lr_min P, LSGPA Pupil size (P) Average pupil size: minimum (mm) 1.36 3.97 2.48 0.35 

t1_pupil_avg_lr_max P, LSGPA Pupil size (P) Average pupil size: maximum (mm) 2.27 6.43 3.06 0.36 

t1_pupil_avg_lr_mean P, LSGPA Pupil size (P) Average pupil size: mean (mm) 1.95 4.11 2.77 0.33 

t1_delta_pupil_avg_lr** P, LSGPA Pupil size (P) Average pupil size: difference max min (mm) 0.17 4.4 0.58 0.26 

t1_time_none A, LSGPA Gaze (A) Time not spent on fixating boxes (sec) 0.03 2.82 1.06 0.57 

t1_time_win A, LSGPA Gaze (A) Time spent on fixating win (sec) 0.03 2.73 0.94 0.54 

left_box_first A, LSGPA Gaze (A) First box looked at: left box (vs. right box) (binary)  0 1 0.73 0.44 

win_box_first A, LSGPA Gaze (A) First box looked at: win box (vs. loss box) (binary) 0 1 0.55 0.5 

nr_switches A, LSGPA Gaze (A) Number of times switched between boxes (integer) 1 7 2.36 1 

Notes: Summary statistics are computed on the basis of the cleaned data sample that includes 8498 observations. We include subject-specific dummy variables in all predictor-sets 

that we evaluate in our forecasting analyses (summary statistics omitted for brevity).  Initially, we specify 119 predictor variables and encode factor variables as dummy variables. To 

this end, we exclude the most frequently observed level for each category as corresponding reference groups (indicated with *). This encoding results in a total number of 112 predic-

tors (36 numeric and 76 binary variables). ** indicates variables that we omit in our regression analyses because of multi-collinearity. For our forecasting analyses, we use QR decom-

position to control for multi-collinearity issues with respect to each of the individual four predictor-sets. Furthermore, the number of significant skin conductance response peaks 

(amplitude threshold of ≥ 0.01 microsiemens) and the sum of their amplitudes are computed from standard trough-to-peak (TTP) analysis (details can be found on www.ledalab.de). 
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3 Descriptive analysis 

In this section, we provide the detailed results of our descriptive analyses that are omitted from the 

main text for brevity.  

3.1 Gambling choices and lottery pay off structure 

Tables A2, A3, and A4 show the frequencies of the absolute and relative numbers of played lotteries 

by lotteries’ win and loss values, as well as by win-loss and expected value combinations. We find 

that the propensity to accept a displayed lottery increases for larger win values; conversely, the pro-

pensity to accept a gamble decreases as the loss value increases. The mean difference in the pre-

dicted probabilities derived from estimating simple logistic regressions of the playing decision on 

the displayed win [loss] value across all lotteries is 3.63% [–7.63%] per one Euro increase. Hence, the 

absolute magnitude of the effect of a one Euro increase in the loss value on accepting a lottery is 

more than twice as large (in absolute terms) as the effect of a one Euro increase in the win value. 

Similarly, we find that subjects’ propensity to accept a displayed lottery increases with its EV. The 

corresponding mean difference in predicted probabilities from a simple logistic regression for a one 

Euro increase in a lottery’s EV is 7.26%.  
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Table A2. Cross-tabulation for gambling decision by lotteries’ win and loss values 

Variable Played (=1) x Negative expected value (=1)    

 0.0 1.0  % played 0.1  1.1  % played Total  

Win         

   1 29 (1.1%) 15 (0.4%) 34.1% 376 (20.2%) 20 (16.4%) 5.1% 440 (5.0%) 

   2 57 (2.1%) 31 (0.8%) 35.2% 330 (17.8%) 22 (18.0%) 6.3% 440 (5.0%) 

   3 81 (2.9%) 51 (1.3%) 38.6% 292 (15.7%) 16 (13.1%) 5.2% 440 (5.0%) 

   4 109 (4.0%) 67 (1.6%) 38.1% 246 (13.2%) 18 (14.8%) 6.8% 440 (5.0%) 

   5 123 (4.5%) 97 (2.4%) 44.1% 207 (11.1%) 13 (10.7%) 5.9% 440 (5.0%) 

   6 135 (4.9%) 129 (3.2%) 48.9% 164 (8.8%) 12 (9.8%) 6.8% 440 (5.0%) 

   7 165 (6.0%) 143 (3.5%) 46.4% 122 (6.6%) 10 (8.2%) 7.6% 440 (5.0%) 

   8 191 (6.9%) 161 (4.0%) 45.7% 83 (4.5%) 5 (4.1%) 5.7% 440 (5.0%) 

   9 205 (7.5%) 191 (4.7%) 48.2% 38 (2.0%) 6 (4.9%) 13.6% 440 (5.0%) 

   10 214 (7.8%) 226 (5.6%) 51.4% 0 (0.0%) 0 (0.0%)  440 (5.0%) 

   11 208 (7.6%) 232 (5.7%) 52.7% 0 (0.0%) 0 (0.0%)  440 (5.0%) 

   12 191 (6.9%) 249 (6.1%) 56.6% 0 (0.0%) 0 (0.0%)  440 (5.0%) 

   13 165 (6.0%) 275 (6.8%) 62.5% 0 (0.0%) 0 (0.0%)  440 (5.0%) 

   14 157 (5.7%) 283 (7.0%) 64.3% 0 (0.0%) 0 (0.0%)  440 (5.0%) 

   15 142 (5.2%) 298 (7.3%) 67.7% 0 (0.0%) 0 (0.0%)  440 (5.0%) 

   16 141 (5.1%) 299 (7.3%) 68.0% 0 (0.0%) 0 (0.0%)  440 (5.0%) 

   17 125 (4.5%) 315 (7.7%) 71.6% 0 (0.0%) 0 (0.0%)  440 (5.0%) 

   18 120 (4.4%) 320 (7.9%) 72.7% 0 (0.0%) 0 (0.0%)  440 (5.0%) 

   19 105 (3.8%) 335 (8.2%) 76.1% 0 (0.0%) 0 (0.0%)  440 (5.0%) 

   20 88 (3.2%) 352 (8.7%) 80.0% 0 (0.0%) 0 (0.0%)  440 (5.0%) 

Loss         

   -10 344 (12.5%) 140 (3.4%) 28.9% 370 (19.9%) 26 (21.3%) 6.6% 880 (10.0%) 

   -9 377 (13.7%) 151 (3.7%) 28.6% 338 (18.2%) 14 (11.5%) 4.0% 880 (10.0%) 

   -8 366 (13.3%) 206 (5.1%) 36.0% 288 (15.5%) 20 (16.4%) 6.5% 880 (10.0%) 

   -7 365 (13.3%) 251 (6.2%) 40.7% 249 (13.4%) 15 (12.3%) 5.7% 880 (10.0%) 

   -6 341 (12.4%) 319 (7.8%) 48.3% 204 (11.0%) 16 (13.1%) 7.3% 880 (10.0%) 

   -5 253 (9.2%) 451 (11.1%) 64.1% 172 (9.3%) 4 (3.3%) 2.3% 880 (10.0%) 

   -4 215 (7.8%) 533 (13.1%) 71.3% 125 (6.7%) 7 (5.7%) 5.3% 880 (10.0%) 

   -3 187 (6.8%) 605 (14.9%) 76.4% 74 (4.0%) 14 (11.5%) 15.9% 880 (10.0%) 

   -2 175 (6.4%) 661 (16.2%) 79.1% 38 (2.0%) 6 (4.9%) 13.6% 880 (10.0%) 

   -1 128 (4.7%) 752 (18.5%) 85.5% 0 (0.0%) 0 (0.0%)  880 (10.0%) 

N 2751  4069   1858  122   8800  

Notes: Share of played lotteries by win and loss values. Each of the 44 subjects decided on 200 lotteries: 155 with pos-

itive expected values and 45 with negative expected values. 
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Table A3. Cross-tabulation for expected values and corresponding share of played lotteries 

Expected value Not played Played % played Total  

   -4.5 43 (0.9%) 1 (0.0%) 2.3% 44 (0.5%) 

   -4 83 (1.8%) 5 (0.1%) 5.7% 88 (1.0%) 

   -3.5 127 (2.8%) 5 (0.1%) 3.8% 132 (1.5%) 

   -3 170 (3.7%) 6 (0.1%) 3.4% 176 (2.0%) 

   -2.5 210 (4.6%) 10 (0.2%) 4.5% 220 (2.5%) 

   -2 251 (5.4%) 13 (0.3%) 4.9% 264 (3.0%) 

   -1.5 292 (6.3%) 16 (0.4%) 5.2% 308 (3.5%) 

   -1 324 (7.0%) 28 (0.7%) 8.0% 352 (4.0%) 

   -0.5 358 (7.8%) 38 (0.9%) 9.6% 396 (4.5%) 

   0 354 (7.7%) 86 (2.1%) 19.5% 440 (5.0%) 

   0.5 347 (7.5%) 93 (2.2%) 21.1% 440 (5.0%) 

   1 311 (6.7%) 129 (3.1%) 29.3% 440 (5.0%) 

   1.5 286 (6.2%) 154 (3.7%) 35.0% 440 (5.0%) 

   2 245 (5.3%) 195 (4.7%) 44.3% 440 (5.0%) 

   2.5 219 (4.8%) 221 (5.3%) 50.2% 440 (5.0%) 

   3 196 (4.3%) 244 (5.8%) 55.5% 440 (5.0%) 

   3.5 166 (3.6%) 274 (6.5%) 62.3% 440 (5.0%) 

   4 140 (3.0%) 300 (7.2%) 68.2% 440 (5.0%) 

   4.5 129 (2.8%) 311 (7.4%) 70.7% 440 (5.0%) 

   5 107 (2.3%) 333 (7.9%) 75.7% 440 (5.0%) 

   5.5 93 (2.0%) 303 (7.2%) 76.5% 396 (4.5%) 

   6 58 (1.3%) 294 (7.0%) 83.5% 352 (4.0%) 

   6.5 40 (0.9%) 268 (6.4%) 87.0% 308 (3.5%) 

   7 26 (0.6%) 238 (5.7%) 90.2% 264 (3.0%) 

   7.5 14 (0.3%) 206 (4.9%) 93.6% 220 (2.5%) 

   8 12 (0.3%) 164 (3.9%) 93.2% 176 (2.0%) 

   8.5 4 (0.1%) 128 (3.1%) 97.0% 132 (1.5%) 

   9 2 (0.0%) 86 (2.1%) 97.7% 88 (1.0%) 

   9.5 2 (0.0%) 42 (1.0%) 95.5% 44 (0.5%) 

N 4609 (100%) 4191 (100%)  8800 (100%) 

Notes: Share of played lotteries by win and loss values. Each of the 44 subjects decided on 200 lotteries: 155 with pos-

itive expected values and 45 with negative expected values.  
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Table A4. Cross-tabulations for win and loss value combinations and corresponding share of played 

lotteries 

Win X Loss  Not played Played % played Total  

   1.-10 43 (0.9%) 1 (0.0%) 2.3% 44 (0.5%) 

   2.-10 40 (0.9%) 4 (0.1%) 9.1% 44 (0.5%) 

   3.-10 41 (0.9%) 3 (0.1%) 6.8% 44 (0.5%) 

   4.-10 42 (0.9%) 2 (0.0%) 4.5% 44 (0.5%) 

   5.-10 40 (0.9%) 4 (0.1%) 9.1% 44 (0.5%) 

   6.-10 43 (0.9%) 1 (0.0%) 2.3% 44 (0.5%) 

   7.-10 42 (0.9%) 2 (0.0%) 4.5% 44 (0.5%) 

   8.-10 41 (0.9%) 3 (0.1%) 6.8% 44 (0.5%) 

   9.-10 38 (0.8%) 6 (0.1%) 13.6% 44 (0.5%) 

   10.-10 40 (0.9%) 4 (0.1%) 9.1% 44 (0.5%) 

   11.-10 39 (0.8%) 5 (0.1%) 11.4% 44 (0.5%) 

   12.-10 38 (0.8%) 6 (0.1%) 13.6% 44 (0.5%) 

   13.-10 33 (0.7%) 11 (0.3%) 25.0% 44 (0.5%) 

   14.-10 34 (0.7%) 10 (0.2%) 22.7% 44 (0.5%) 

   15.-10 31 (0.7%) 13 (0.3%) 29.5% 44 (0.5%) 

   16.-10 27 (0.6%) 17 (0.4%) 38.6% 44 (0.5%) 

   17.-10 33 (0.7%) 11 (0.3%) 25.0% 44 (0.5%) 

   18.-10 24 (0.5%) 20 (0.5%) 45.5% 44 (0.5%) 

   19.-10 24 (0.5%) 20 (0.5%) 45.5% 44 (0.5%) 

   20.-10 21 (0.5%) 23 (0.5%) 52.3% 44 (0.5%) 

   1.-9 43 (0.9%) 1 (0.0%) 2.3% 44 (0.5%) 

   2.-9 43 (0.9%) 1 (0.0%) 2.3% 44 (0.5%) 

   3.-9 43 (0.9%) 1 (0.0%) 2.3% 44 (0.5%) 

   4.-9 44 (1.0%) 0 (0.0%) 0.0% 44 (0.5%) 

   5.-9 41 (0.9%) 3 (0.1%) 6.8% 44 (0.5%) 

   6.-9 42 (0.9%) 2 (0.0%) 4.5% 44 (0.5%) 

   7.-9 40 (0.9%) 4 (0.1%) 9.1% 44 (0.5%) 

   8.-9 42 (0.9%) 2 (0.0%) 4.5% 44 (0.5%) 

   9.-9 38 (0.8%) 6 (0.1%) 13.6% 44 (0.5%) 

   10.-9 39 (0.8%) 5 (0.1%) 11.4% 44 (0.5%) 

   11.-9 36 (0.8%) 8 (0.2%) 18.2% 44 (0.5%) 

   12.-9 36 (0.8%) 8 (0.2%) 18.2% 44 (0.5%) 

   13.-9 36 (0.8%) 8 (0.2%) 18.2% 44 (0.5%) 

   14.-9 33 (0.7%) 11 (0.3%) 25.0% 44 (0.5%) 

   15.-9 32 (0.7%) 12 (0.3%) 27.3% 44 (0.5%) 

   16.-9 33 (0.7%) 11 (0.3%) 25.0% 44 (0.5%) 

   17.-9 26 (0.6%) 18 (0.4%) 40.9% 44 (0.5%) 

   18.-9 26 (0.6%) 18 (0.4%) 40.9% 44 (0.5%) 

   19.-9 22 (0.5%) 22 (0.5%) 50.0% 44 (0.5%) 

   20.-9 20 (0.4%) 24 (0.6%) 54.5% 44 (0.5%) 

   1.-8 43 (0.9%) 1 (0.0%) 2.3% 44 (0.5%) 

   2.-8 42 (0.9%) 2 (0.0%) 4.5% 44 (0.5%) 

   3.-8 43 (0.9%) 1 (0.0%) 2.3% 44 (0.5%) 

   4.-8 41 (0.9%) 3 (0.1%) 6.8% 44 (0.5%) 

   5.-8 41 (0.9%) 3 (0.1%) 6.8% 44 (0.5%) 

   6.-8 38 (0.8%) 6 (0.1%) 13.6% 44 (0.5%) 

   7.-8 40 (0.9%) 4 (0.1%) 9.1% 44 (0.5%) 

   8.-8 38 (0.8%) 6 (0.1%) 13.6% 44 (0.5%) 

   9.-8 37 (0.8%) 7 (0.2%) 15.9% 44 (0.5%) 

   10.-8 38 (0.8%) 6 (0.1%) 13.6% 44 (0.5%) 

   11.-8 33 (0.7%) 11 (0.3%) 25.0% 44 (0.5%) 

   12.-8 33 (0.7%) 11 (0.3%) 25.0% 44 (0.5%) 

   13.-8 28 (0.6%) 16 (0.4%) 36.4% 44 (0.5%) 

   14.-8 35 (0.8%) 9 (0.2%) 20.5% 44 (0.5%) 

   15.-8 28 (0.6%) 16 (0.4%) 36.4% 44 (0.5%) 

   16.-8 24 (0.5%) 20 (0.5%) 45.5% 44 (0.5%) 

   17.-8 20 (0.4%) 24 (0.6%) 54.5% 44 (0.5%) 

   18.-8 21 (0.5%) 23 (0.5%) 52.3% 44 (0.5%) 
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Win X Loss  Not played Played % played Total  

   19.-8 17 (0.4%) 27 (0.6%) 61.4% 44 (0.5%) 

   20.-8 14 (0.3%) 30 (0.7%) 68.2% 44 (0.5%) 

   1.-7 43 (0.9%) 1 (0.0%) 2.3% 44 (0.5%) 

   2.-7 42 (0.9%) 2 (0.0%) 4.5% 44 (0.5%) 

   3.-7 41 (0.9%) 3 (0.1%) 6.8% 44 (0.5%) 

   4.-7 39 (0.8%) 5 (0.1%) 11.4% 44 (0.5%) 

   5.-7 43 (0.9%) 1 (0.0%) 2.3% 44 (0.5%) 

   6.-7 41 (0.9%) 3 (0.1%) 6.8% 44 (0.5%) 

   7.-7 38 (0.8%) 6 (0.1%) 13.6% 44 (0.5%) 

   8.-7 37 (0.8%) 7 (0.2%) 15.9% 44 (0.5%) 

   9.-7 37 (0.8%) 7 (0.2%) 15.9% 44 (0.5%) 

   10.-7 33 (0.7%) 11 (0.3%) 25.0% 44 (0.5%) 

   11.-7 33 (0.7%) 11 (0.3%) 25.0% 44 (0.5%) 

   12.-7 33 (0.7%) 11 (0.3%) 25.0% 44 (0.5%) 

   13.-7 23 (0.5%) 21 (0.5%) 47.7% 44 (0.5%) 

   14.-7 22 (0.5%) 22 (0.5%) 50.0% 44 (0.5%) 

   15.-7 20 (0.4%) 24 (0.6%) 54.5% 44 (0.5%) 

   16.-7 25 (0.5%) 19 (0.5%) 43.2% 44 (0.5%) 

   17.-7 16 (0.3%) 28 (0.7%) 63.6% 44 (0.5%) 

   18.-7 19 (0.4%) 25 (0.6%) 56.8% 44 (0.5%) 

   19.-7 19 (0.4%) 25 (0.6%) 56.8% 44 (0.5%) 

   20.-7 10 (0.2%) 34 (0.8%) 77.3% 44 (0.5%) 

   1.-6 41 (0.9%) 3 (0.1%) 6.8% 44 (0.5%) 

   2.-6 41 (0.9%) 3 (0.1%) 6.8% 44 (0.5%) 

   3.-6 42 (0.9%) 2 (0.0%) 4.5% 44 (0.5%) 

   4.-6 38 (0.8%) 6 (0.1%) 13.6% 44 (0.5%) 

   5.-6 42 (0.9%) 2 (0.0%) 4.5% 44 (0.5%) 

   6.-6 36 (0.8%) 8 (0.2%) 18.2% 44 (0.5%) 

   7.-6 38 (0.8%) 6 (0.1%) 13.6% 44 (0.5%) 

   8.-6 36 (0.8%) 8 (0.2%) 18.2% 44 (0.5%) 

   9.-6 36 (0.8%) 8 (0.2%) 18.2% 44 (0.5%) 

   10.-6 29 (0.6%) 15 (0.4%) 34.1% 44 (0.5%) 

   11.-6 29 (0.6%) 15 (0.4%) 34.1% 44 (0.5%) 

   12.-6 27 (0.6%) 17 (0.4%) 38.6% 44 (0.5%) 

   13.-6 20 (0.4%) 24 (0.6%) 54.5% 44 (0.5%) 

   14.-6 16 (0.3%) 28 (0.7%) 63.6% 44 (0.5%) 

   15.-6 15 (0.3%) 29 (0.7%) 65.9% 44 (0.5%) 

   16.-6 12 (0.3%) 32 (0.8%) 72.7% 44 (0.5%) 

   17.-6 14 (0.3%) 30 (0.7%) 68.2% 44 (0.5%) 

   18.-6 13 (0.3%) 31 (0.7%) 70.5% 44 (0.5%) 

   19.-6 11 (0.2%) 33 (0.8%) 75.0% 44 (0.5%) 

   20.-6 9 (0.2%) 35 (0.8%) 79.5% 44 (0.5%) 

   1.-5 44 (1.0%) 0 (0.0%) 0.0% 44 (0.5%) 

   2.-5 44 (1.0%) 0 (0.0%) 0.0% 44 (0.5%) 

   3.-5 42 (0.9%) 2 (0.0%) 4.5% 44 (0.5%) 

   4.-5 42 (0.9%) 2 (0.0%) 4.5% 44 (0.5%) 

   5.-5 34 (0.7%) 10 (0.2%) 22.7% 44 (0.5%) 

   6.-5 35 (0.8%) 9 (0.2%) 20.5% 44 (0.5%) 

   7.-5 31 (0.7%) 13 (0.3%) 29.5% 44 (0.5%) 

   8.-5 32 (0.7%) 12 (0.3%) 27.3% 44 (0.5%) 

   9.-5 24 (0.5%) 20 (0.5%) 45.5% 44 (0.5%) 

   10.-5 21 (0.5%) 23 (0.5%) 52.3% 44 (0.5%) 

   11.-5 19 (0.4%) 25 (0.6%) 56.8% 44 (0.5%) 

   12.-5 9 (0.2%) 35 (0.8%) 79.5% 44 (0.5%) 

   13.-5 9 (0.2%) 35 (0.8%) 79.5% 44 (0.5%) 

   14.-5 7 (0.2%) 37 (0.9%) 84.1% 44 (0.5%) 

   15.-5 5 (0.1%) 39 (0.9%) 88.6% 44 (0.5%) 

   16.-5 9 (0.2%) 35 (0.8%) 79.5% 44 (0.5%) 

   17.-5 4 (0.1%) 40 (1.0%) 90.9% 44 (0.5%) 

   18.-5 6 (0.1%) 38 (0.9%) 86.4% 44 (0.5%) 

   19.-5 5 (0.1%) 39 (0.9%) 88.6% 44 (0.5%) 
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Win X Loss  Not played Played % played Total  

   20.-5 3 (0.1%) 41 (1.0%) 93.2% 44 (0.5%) 

   1.-4 42 (0.9%) 2 (0.0%) 4.5% 44 (0.5%) 

   2.-4 43 (0.9%) 1 (0.0%) 2.3% 44 (0.5%) 

   3.-4 40 (0.9%) 4 (0.1%) 9.1% 44 (0.5%) 

   4.-4 35 (0.8%) 9 (0.2%) 20.5% 44 (0.5%) 

   5.-4 32 (0.7%) 12 (0.3%) 27.3% 44 (0.5%) 

   6.-4 26 (0.6%) 18 (0.4%) 40.9% 44 (0.5%) 

   7.-4 28 (0.6%) 16 (0.4%) 36.4% 44 (0.5%) 

   8.-4 22 (0.5%) 22 (0.5%) 50.0% 44 (0.5%) 

   9.-4 14 (0.3%) 30 (0.7%) 68.2% 44 (0.5%) 

   10.-4 7 (0.2%) 37 (0.9%) 84.1% 44 (0.5%) 

   11.-4 10 (0.2%) 34 (0.8%) 77.3% 44 (0.5%) 

   12.-4 7 (0.2%) 37 (0.9%) 84.1% 44 (0.5%) 

   13.-4 7 (0.2%) 37 (0.9%) 84.1% 44 (0.5%) 

   14.-4 3 (0.1%) 41 (1.0%) 93.2% 44 (0.5%) 

   15.-4 5 (0.1%) 39 (0.9%) 88.6% 44 (0.5%) 

   16.-4 3 (0.1%) 41 (1.0%) 93.2% 44 (0.5%) 

   17.-4 4 (0.1%) 40 (1.0%) 90.9% 44 (0.5%) 

   18.-4 4 (0.1%) 40 (1.0%) 90.9% 44 (0.5%) 

   19.-4 4 (0.1%) 40 (1.0%) 90.9% 44 (0.5%) 

   20.-4 4 (0.1%) 40 (1.0%) 90.9% 44 (0.5%) 

   1.-3 39 (0.8%) 5 (0.1%) 11.4% 44 (0.5%) 

   2.-3 35 (0.8%) 9 (0.2%) 20.5% 44 (0.5%) 

   3.-3 33 (0.7%) 11 (0.3%) 25.0% 44 (0.5%) 

   4.-3 33 (0.7%) 11 (0.3%) 25.0% 44 (0.5%) 

   5.-3 31 (0.7%) 13 (0.3%) 29.5% 44 (0.5%) 

   6.-3 17 (0.4%) 27 (0.6%) 61.4% 44 (0.5%) 

   7.-3 15 (0.3%) 29 (0.7%) 65.9% 44 (0.5%) 

   8.-3 14 (0.3%) 30 (0.7%) 68.2% 44 (0.5%) 

   9.-3 10 (0.2%) 34 (0.8%) 77.3% 44 (0.5%) 

   10.-3 2 (0.0%) 42 (1.0%) 95.5% 44 (0.5%) 

   11.-3 6 (0.1%) 38 (0.9%) 86.4% 44 (0.5%) 

   12.-3 3 (0.1%) 41 (1.0%) 93.2% 44 (0.5%) 

   13.-3 4 (0.1%) 40 (1.0%) 90.9% 44 (0.5%) 

   14.-3 2 (0.0%) 42 (1.0%) 95.5% 44 (0.5%) 

   15.-3 2 (0.0%) 42 (1.0%) 95.5% 44 (0.5%) 

   16.-3 3 (0.1%) 41 (1.0%) 93.2% 44 (0.5%) 

   17.-3 4 (0.1%) 40 (1.0%) 90.9% 44 (0.5%) 

   18.-3 3 (0.1%) 41 (1.0%) 93.2% 44 (0.5%) 

   19.-3 2 (0.0%) 42 (1.0%) 95.5% 44 (0.5%) 

   20.-3 3 (0.1%) 41 (1.0%) 93.2% 44 (0.5%) 

   1.-2 38 (0.8%) 6 (0.1%) 13.6% 44 (0.5%) 

   2.-2 33 (0.7%) 11 (0.3%) 25.0% 44 (0.5%) 

   3.-2 33 (0.7%) 11 (0.3%) 25.0% 44 (0.5%) 

   4.-2 23 (0.5%) 21 (0.5%) 47.7% 44 (0.5%) 

   5.-2 20 (0.4%) 24 (0.6%) 54.5% 44 (0.5%) 

   6.-2 13 (0.3%) 31 (0.7%) 70.5% 44 (0.5%) 

   7.-2 8 (0.2%) 36 (0.9%) 81.8% 44 (0.5%) 

   8.-2 9 (0.2%) 35 (0.8%) 79.5% 44 (0.5%) 

   9.-2 6 (0.1%) 38 (0.9%) 86.4% 44 (0.5%) 

   10.-2 5 (0.1%) 39 (0.9%) 88.6% 44 (0.5%) 

   11.-2 2 (0.0%) 42 (1.0%) 95.5% 44 (0.5%) 

   12.-2 2 (0.0%) 42 (1.0%) 95.5% 44 (0.5%) 

   13.-2 4 (0.1%) 40 (1.0%) 90.9% 44 (0.5%) 

   14.-2 2 (0.0%) 42 (1.0%) 95.5% 44 (0.5%) 

   15.-2 3 (0.1%) 41 (1.0%) 93.2% 44 (0.5%) 

   16.-2 3 (0.1%) 41 (1.0%) 93.2% 44 (0.5%) 

   17.-2 2 (0.0%) 42 (1.0%) 95.5% 44 (0.5%) 

   18.-2 4 (0.1%) 40 (1.0%) 90.9% 44 (0.5%) 

   19.-2 1 (0.0%) 43 (1.0%) 97.7% 44 (0.5%) 

   20.-2 2 (0.0%) 42 (1.0%) 95.5% 44 (0.5%) 
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Win X Loss  Not played Played % played Total  

   1.-1 29 (0.6%) 15 (0.4%) 34.1% 44 (0.5%) 

   2.-1 24 (0.5%) 20 (0.5%) 45.5% 44 (0.5%) 

   3.-1 15 (0.3%) 29 (0.7%) 65.9% 44 (0.5%) 

   4.-1 18 (0.4%) 26 (0.6%) 59.1% 44 (0.5%) 

   5.-1 6 (0.1%) 38 (0.9%) 86.4% 44 (0.5%) 

   6.-1 8 (0.2%) 36 (0.9%) 81.8% 44 (0.5%) 

   7.-1 7 (0.2%) 37 (0.9%) 84.1% 44 (0.5%) 

   8.-1 3 (0.1%) 41 (1.0%) 93.2% 44 (0.5%) 

   9.-1 3 (0.1%) 41 (1.0%) 93.2% 44 (0.5%) 

   10.-1 0 (0.0%) 44 (1.0%) 100.0% 44 (0.5%) 

   11.-1 1 (0.0%) 43 (1.0%) 97.7% 44 (0.5%) 

   12.-1 3 (0.1%) 41 (1.0%) 93.2% 44 (0.5%) 

   13.-1 1 (0.0%) 43 (1.0%) 97.7% 44 (0.5%) 

   14.-1 3 (0.1%) 41 (1.0%) 93.2% 44 (0.5%) 

   15.-1 1 (0.0%) 43 (1.0%) 97.7% 44 (0.5%) 

   16.-1 2 (0.0%) 42 (1.0%) 95.5% 44 (0.5%) 

   17.-1 2 (0.0%) 42 (1.0%) 95.5% 44 (0.5%) 

   18.-1 0 (0.0%) 44 (1.0%) 100.0% 44 (0.5%) 

   19.-1 0 (0.0%) 44 (1.0%) 100.0% 44 (0.5%) 

   20.-1 2 (0.0%) 42 (1.0%) 95.5% 44 (0.5%) 

N 4609 (100%) 4191 (100%)  8800 (100%) 

Notes: Share of played lotteries by win and loss value combinations. Each of the 44 subjects decided on 200 lotteries: 

155 with positive expected values and 45 with negative expected values. 

3.2 Gambling choices and socioeconomic characteristics 

In Tables A5 and A6, we show the frequencies and shares of played lotteries by socioeconomic char-

acteristics across all lotteries and individually for NEVL and PEVL. We find that the group of relatively 

older subjects plays a larger share of lotteries than the two groups of relatively younger subjects 

(51.7% vs. 46.8% and 47.7%). Specifically, comparing gambling behavior across NEVL and PEVL reveals 

that the oldest group of subjects plays a substantially larger share of NEVL than the younger groups 

(18.2% vs. 3.2% and 5.4%).  

Regarding differences between the share of accepted lotteries with respect to subjects’ educational 

backgrounds, we find that subjects with a psychological educational background play the smallest 

share of lotteries (41.2%) and, moreover, accept a significantly lower share of NEVL than the other 

groups (0.3% vs. 7.6%, 7.2%, and 7.2%). Concerning differences in gambling behavior across groups 

of subjects with different highest degrees, we find that subjects with A levels (“Abitur”) play the 

relative largest share of lotteries, whereas subjects with “Fachabitur” play the lowest share of lot-

teries (49.9% vs. 38.0%). Furthermore, we find that subjects with A levels play the largest share of 

PEVL (62.5%), and subjects with “Fachabitur” play the smallest share of PEVL (48.7%) and NEVL (1.1% 

vs. 6.1%, 6.3%, and 7.6%).    

Although we do not find large differences between the share of accepted lotteries among the three 

income groups across all lotteries (47.6% vs. 48.8% vs. 45.6%), the group of subjects with the highest 
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relative income plays the smallest share of PEVL (56.4 vs. 60.1% and 61.1%) but the largest share of 

NEVL (8.2% vs. 6.4% and 4.6%). Hence, for NEVL [PEVL], we find a positive [negative] correlation be-

tween income and the share of accepted lotteries. Because a large intersection exists between in-

come and age groups, the differences in risk taking between lower and higher income levels are 

similar to the differences between younger and older subjects. 

Last, we do not find a significant difference between the mean share of accepted lotteries by men 

(48.3%) and women (46.8%) but find women to play around 50% more NEVL than men (5.0% vs. 

7.6%) and men to play slightly less PEVL than women (58.2% vs. 60.9%).  

Table A5. Frequency table for specified socioeconomic characteristics by gambling decision 

Variable Not played Played % played All  p-value 

Gender     0.170 

   Male 2482 (53.9%) 2318 (55.3%) 48.3% 4800 (54.5%)  

   Female 2127 (46.1%) 1873 (44.7%) 46.8% 4000 (45.5%)  

Age     0.017 

   19-25 years 1464 (31.8%) 1336 (31.9%) 47.7% 2800 (31.8%)  

   26-32 years 2662 (57.8%) 2338 (55.8%) 46.8% 5000 (56.8%)  

   33-39 years 483 (10.5%) 517 (12.3%) 51.7% 1000 (11.4%)  

Income     0.068 

   <=800 EUR 1676 (36.4%) 1524 (36.4%) 47.6% 3200 (36.4%)  

   801-1200 EUR 1844 (40.0%) 1756 (41.9%) 48.8% 3600 (40.9%)  

   >1200 EUR 1089 (23.6%) 911 (21.7%) 45.6% 2000 (22.7%)  

Educational Background     < 0.001 

   Psychology 823 (17.9%) 577 (13.8%) 41.2% 1400 (15.9%)  

   Economics 705 (15.3%) 695 (16.6%) 49.6% 1400 (15.9%)  

   NA 319 (6.9%) 481 (11.5%) 60.1% 800 (9.1%)  

   Other 2762 (59.9%) 2438 (58.2%) 46.9% 5200 (59.1%)  

Highest degree     < 0.001 

   A levels 1905 (41.3%) 1895 (45.2%) 49.9% 3800 (43.2%)  

   Bachelor 1133 (24.6%) 1067 (25.5%) 48.5% 2200 (25.0%)  

   GCSE 506 (11.0%) 494 (11.8%) 49.4% 1000 (11.4%)  

   Master 817 (17.7%) 583 (13.9%) 41.6% 1400 (15.9%)  

   Fachabitur 248 (5.4%) 152 (3.6%) 38.0% 400 (4.5%)  

N 4609 4191  8800  

Notes: Share of played lotteries by subjects’ socioeconomic characteristics and lotteries’ expected values (EV). Each of 
the 44 subjects decided on 200 lotteries: 155 with positive EVs and 45 with negative EVs. Reported p-values correspond 

to chi-square association tests. 
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Table A6. Frequency table for socioeconomic characteristics by lottery decision and lotteries’ ex-

pected values 

Variable Played (=1) x Negative expected value lottery (=1)    

 0.0  1.0  % played 0.1  1.1  % played All  

Gender       0.015 

   Male 1456 (52.9%) 2264 (55.6%) 60.9% 1026 (55.2%) 54 (44.3%) 5.0% 4800 (54.5%) 

   Female 1295 (47.1%) 1805 (44.4%) 58.2% 832 (44.8%) 68 (55.7%) 7.6% 4000 (45.5%) 

Age       < 0.001  

   19-25 years 854 (31.0%) 1316 (32.3%) 60.6% 610 (32.8%) 20 (16.4%) 3.2% 2800 (31.8%) 

   26-32 years 1598 (58.1%) 2277 (56.0%) 58.8% 1064 (57.3%) 61 (50.0%) 5.4% 5000 (56.8%) 

   23-39 years 299 (10.9%) 476 (11.7%) 61.4% 184 (9.9%) 41 (33.6%) 18.2% 1000 (11.4%) 

Income       0.014 

   <=800 EUR 989 (36.0%) 1491 (36.6%) 60.1% 687 (37.0%) 33 (27.0%) 4.6% 3200 (36.4%) 

   801-1200 EUR 1086 (39.5%) 1704 (41.9%) 61.1% 758 (40.8%) 52 (42.6%) 6.4% 3600 (40.9%) 

   >1200 EUR 676 (24.6%) 874 (21.5%) 56.4% 413 (22.2%) 37 (30.3%) 8.2% 2000 (22.7%) 

Educ. background       < 0.001 

   Psychology 509 (18.5%) 576 (14.2%) 53.1% 314 (16.9%) 1 (0.8%) 0.3% 1400 (15.9%) 

   Economics 414 (15.0%) 671 (16.5%) 61.8% 291 (15.7%) 24 (19.7%) 7.6% 1400 (15.9%) 

   NA 152 (5.5%) 468 (11.5%) 75.5% 167 (9.0%) 13 (10.7%) 7.2% 800 (9.1%) 

   Other 1676 (60.9%) 2354 (57.9%) 58.4% 1086 (58.4%) 84 (68.9%) 7.2% 5200 (59.1%) 

Highest degree       < 0.001 

   A levels 1104 (40.1%) 1841 (45.2%) 62.5% 801 (43.1%) 54 (44.3%) 6.3% 3800 (43.2%) 

   Bachelor 668 (24.3%) 1037 (25.5%) 60.8% 465 (25.0%) 30 (24.6%) 6.1% 2200 (25.0%) 

   GCSE 298 (10.8%) 477 (11.7%) 61.5% 208 (11.2%) 17 (13.9%) 7.6% 1000 (11.4%) 

   Master 522 (19.0%) 563 (13.8%) 51.9% 295 (15.9%) 20 (16.4%) 6.3% 1400 (15.9%) 

   “Fachabitur“ 159 (5.8%) 151 (3.7%) 48.7% 89 (4.8%) 1 (0.8%) 1.1% 400 (4.5%) 

N 2751 4069  1858 122  8800 

Notes: Share of played lotteries by subjects’ socioeconomic characteristics and lotteries’ expected values (EV). Each of 
the 44 subjects decided on 200 lotteries: 155 with positive EVs and 45 with negative EVs. Reported p-values correspond 

to chi-square association tests.   

3.3 Sequential choices and gambling outcomes 

In the following section, we conduct a descriptive analysis of the impact of previous gambling deci-

sions and their outcomes on subjects’ subsequent gambling behavior. 

Panel A in Figure A2 shows the mean share of accepted NEVL and PEVL by lottery trial and highlights 

that subjects’ willingness to gamble decreases as the experiment progresses; the mean difference 

in predicted probabilities derived from regressing the gambling decision on lottery trial is –0.066%. 

The corresponding mean difference for playing NEVL [PEVL] is –0.056% [–0.072%]. Panel B shows 

subjects’ individual expected final payoffs with respect to all 200 lottery decisions, incorporating all 

previously accepted and non-accepted gambles and their corresponding outcomes at each lottery 

trial, and assuming that all subsequent lotteries are rejected. Whereas subjects’ gambling activity 

substantially decreases in the course of the experiment, all subjects could increase their final ex-

pected payoffs to exceed the initial 10 Euro endowment. The mean expected final payoff after the 

200th trial is 12.12 EUR, the overall minimum is 9.77 EUR, and the overall maximum is 13.58 EUR. 
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Furthermore, playing all PEVL and no NEVL would have maximized the (expected) final expected 

payout with 12.91 EUR. 

Figure A2. Expected payout and relative share of subjects that played lotteries by trial 

 
Notes: Panel A shows the mean share of played positive and negative expected value (EV) lotteries across subjects by 
lottery trial. The experiment includes data on 44 subjects who decided on 200 lotteries: 155 with EV≥0 and 45 with EV<0. 

Panel B shows subjects’ expected final payouts (solid gray lines) with respect to all 200 lottery decisions, including all 
previous choices and outcomes at each lottery trial, and assuming that all subsequent lotteries are rejected. Solid black 

lines correspond to weighted logistic (panel A) and linear (panel B) regression curves. 95% confidence intervals are indi-
cated by gray-shaded areas. Dashed lines indicate the 67th and 133rd trials.   

3.3.1 Last previous choice  

First, we tabulate the last gambling decision and its outcome by the current gambling decisions and 

the share of accepted lotteries across all lotteries in Table A7.  

On average, after having accepted [rejected] the last lottery, subjects tend to accept [reject] the next 

consecutive lottery as well; the corresponding share of accepted lotteries is 51.9% [43.5%]. Depend-

ing on the outcome of previously accepted gambles, the corresponding share ranges from 78.6% (1 

EUR) to 48.6% (20 EUR) for prior gains and from 50.4% (–1 EUR) to 67.9% (–10 EUR) for prior losses. 

On the one hand, in line with the break-even and house-money effects, subjects are more inclined 

to gamble after a prior loss or win than after a prior lottery rejection. On the other hand, in contrast 

to prior losses or small to moderate wins, large prior wins appear to decrease the willingness to 

accept the next gamble beyond 50%.    
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Table A7. Cross-tabulation for the share of accepted gambles by last gambling choice and outcome 

Variable Not played Played % played All 

Last choice     

   Not played 2588 (56.3%) 1992 (47.9%) 43.5% 4580 (52.3%) 

   Played 2010 (43.7%) 2166 (52.1%) 51.9% 4176 (47.7%) 

Last Outcome     

   -10 27 (0.6%) 57 (1.4%) 67.9% 84 (1.0%) 

   -9 30 (0.7%) 46 (1.1%) 60.5% 76 (0.9%) 

   -8 44 (1.0%) 65 (1.6%) 59.6% 109 (1.2%) 

   -7 61 (1.3%) 66 (1.6%) 52.0% 127 (1.5%) 

   -6 74 (1.6%) 83 (2.0%) 52.9% 157 (1.8%) 

   -5 106 (2.3%) 141 (3.4%) 57.1% 247 (2.8%) 

   -4 141 (3.1%) 147 (3.5%) 51.0% 288 (3.3%) 

   -3 153 (3.3%) 164 (3.9%) 51.7% 317 (3.6%) 

   -2 169 (3.7%) 175 (4.2%) 50.9% 344 (3.9%) 

   -1 193 (4.2%) 196 (4.7%) 50.4% 389 (4.4%) 

   1 3 (0.1%) 11 (0.3%) 78.6% 14 (0.2%) 

   2 7 (0.2%) 11 (0.3%) 61.1% 18 (0.2%) 

   3 15 (0.3%) 18 (0.4%) 54.5% 33 (0.4%) 

   4 11 (0.2%) 33 (0.8%) 75.0% 44 (0.5%) 

   5 18 (0.4%) 29 (0.7%) 61.7% 47 (0.5%) 

   6 45 (1.0%) 35 (0.8%) 43.8% 80 (0.9%) 

   7 34 (0.7%) 35 (0.8%) 50.7% 69 (0.8%) 

   8 41 (0.9%) 45 (1.1%) 52.3% 86 (1.0%) 

   9 35 (0.8%) 53 (1.3%) 60.2% 88 (1.0%) 

   10 46 (1.0%) 60 (1.4%) 56.6% 106 (1.2%) 

   11 65 (1.4%) 56 (1.3%) 46.3% 121 (1.4%) 

   12 48 (1.0%) 53 (1.3%) 52.5% 101 (1.2%) 

   13 66 (1.4%) 68 (1.6%) 50.7% 134 (1.5%) 

   14 62 (1.3%) 71 (1.7%) 53.4% 133 (1.5%) 

   15 78 (1.7%) 66 (1.6%) 45.8% 144 (1.6%) 

   16 86 (1.9%) 70 (1.7%) 44.9% 156 (1.8%) 

   17 85 (1.8%) 72 (1.7%) 45.9% 157 (1.8%) 

   18 82 (1.8%) 77 (1.9%) 48.4% 159 (1.8%) 

   19 94 (2.0%) 77 (1.9%) 45.0% 171 (2.0%) 

   20 91 (2.0%) 86 (2.1%) 48.6% 177 (2.0%) 

   Not played 2588 (56.3%) 1992 (47.9%) 43.5% 4580 (52.3%) 

N 4598 4158  8756 

Notes: This table reports the share of played lotteries, and absolute and relative frequencies for the last and current 

gambling choices. The experiment includes data on 44 subjects who decided on 200 lotteries: 155 positive expected 

value lotteries (PEVL) (EV ≥ 0) and 45 negative expected value lotteries (NEVL). We exclude the first observation for 

assessing the impact of the last previous gambling decision, resulting in 8756 observations. 

To further assess the impact of the last lottery decision and outcome, we first use simple logistic 

regression models to estimate the effect of having played the last lottery and the effect of an in-

crease of one Euro for previous wins and previous losses on the probability to accept the lottery 

under a decision. Regarding the impact of having played the last previous lottery, the difference in 

predicted probabilities derived from a fitted logistic model equals 8.37%. Specifically, the logistic 

regression results suggest that having played the previous lottery (out of 199 possible lotteries de-

cisions) on average increases a subject’s propensity to accept the current lottery under a decision 
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from 43.49% to 51.86%. Concerning the outcomes of the set of last previous lotteries played, the 

mean difference in predicted probabilities for a previous win is –0.81% per one Euro increase in the 

previous gain and –1.34% per one Euro increase in the previous loss.    

A different picture emerges when distinguishing between the impacts of previously played lotteries 

with positive and negative EVs. For previously accepted NEVL, the mean difference in predicted 

probabilities derived from a fitted logistic regression model equals 1.15% per a one Euro increase in 

the win value for positive outcomes and –2.22% per a one Euro increase in the loss value for NEVL 

with negative outcomes. Conversely, for previously played PEVL, the corresponding mean difference 

is –0.66% for positive outcomes and –1.00% for negative outcomes. Hence, in general, having won 

or lost a large amount in the last previous lottery decreases a subject’s propensity to reject the next 

consecutive lottery. For PEVL, the impact of previously accepted lotteries with negative outcomes is 

approximately one-third higher than for previously accepted PEVL with positive outcomes. In con-

trast, higher loss values of previously accepted NEVL with positive outcomes appear to increase a 

subject’s propensity to accept the next offered lottery.  

Our findings suggest that having previously won unfavorable lotteries with large potential losses 

seems to foster consecutive gambling activity. However, why subjects appear to engage in such 

gambling behavior is unclear. This phenomenon may be attributed to the resulting excitement and 

arousal experienced by winning NEVL. In contrast, a decreased propensity to gamble after a large 

loss may be attributed to negative emotions in reaction to losing and regretting the previous gam-

ble. In line with this potential explanation, the effect of lost NEVL is approximately twice as large as 

the effect of lost PEVL.  

3.3.2 Gambling and non-gambling streaks  

Next, we report the detailed results for analyzing the impact of previous gambling and non-gam-

bling streaks on subsequent gambling behavior. In this context, we note that we do not include the 

last lottery decision (200th trial) for calculating the number of playing and outcome streaks because 

we are interested in assessing the impact of gambling and outcome streaks on the next consecutive 

gambling decision. Similarly, we do not include the first lottery decision (1st trial) to evaluate the 

impact of previous decisions on the next consecutive gambling choices.  

First, in Tables A8 and A9, we cross-tabulate the number of gambling streaks by the next consecu-

tive lottery decision on the basis of all lotteries and separately for NEVL and PEVL. 
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Table A8. Cross-tabulation for the share of played lotteries by playing streaks 

Variable Not played  Played % played All  p-value 

Gambling Streak (num) 0.87 (1.44) 1.31 (2.00)  1.08 (1.75) < 0.001 

Gambling Streak     < 0.001 

   0 2608 (56.6%) 2036 (48.6%) 43.8% 4644 (52.8%)  

   1 1074 (23.3%) 944 (22.5%) 46.8% 2018 (22.9%)  

   2 454 (9.9%) 485 (11.6%) 51.7% 939 (10.7%)  

   3 238 (5.2%) 246 (5.9%) 50.8% 484 (5.5%)  

   4 91 (2.0%) 154 (3.7%) 62.9% 245 (2.8%)  

   5 53 (1.1%) 101 (2.4%) 65.6% 154 (1.8%)  

   6 31 (0.7%) 70 (1.7%) 69.3% 101 (1.1%)  

   7 21 (0.5%) 49 (1.2%) 70.0% 70 (0.8%)  

   8 17 (0.4%) 32 (0.8%) 65.3% 49 (0.6%)  

   9 11 (0.2%) 21 (0.5%) 65.6% 32 (0.4%)  

   10 11 (0.2%) 53 (1.3%) 82.8% 64 (0.7%)  

N 4609 4191  8800  

Notes: This table reports the mean and standard deviations (in brackets) as well as the share of played lotteries, abso-

lute and relative frequencies for playing streaks by gambling decision. The experiment includes data on 44 subjects 

who decided on 200 lotteries: 155 positive expected value lotteries (PEVL) (EV ≥ 0) and 45 negative expected value 

lotteries (NEVL), resulting in 8800 observations. Reported p-values correspond to chi-square association tests for mul-

tilevel factor variables and Kruskal-Wallis tests for numeric variables. 

Table A9. Cross-tabulation for playing streaks by gambling decision and lotteries’ expected value 

Gambling 

Streak 

Played (=1) X Negative expected value lottery (=1) 

0.0  1.0  % played 0.1  1.1  % played All 

Numeric 0.78 (1.31) 1.28 (1.96)  1.00 (1.61) 2.53 (2.91)  1.08 (1.75) 

Factor        

   0 1607 (58.4%) 2001 (49.2%) 55.5% 1001 (53.9%) 35 (28.7%) 3.4% 4644 (52.8%) 

   1 642 (23.3%) 917 (22.5%) 58.8% 432 (23.3%) 27 (22.1%) 5.9% 2018 (22.9%) 

   2 269 (9.8%) 468 (11.5%) 63.5% 185 (10.0%) 17 (13.9%) 8.4% 939 (10.7%) 

   3 124 (4.5%) 233 (5.7%) 65.3% 114 (6.1%) 13 (10.7%) 10.2% 484 (5.5%) 

   4 49 (1.8%) 149 (3.7%) 75.3% 42 (2.3%) 5 (4.1%) 10.6% 245 (2.8%) 

   5 21 (0.8%) 97 (2.4%) 82.2% 32 (1.7%) 4 (3.3%) 11.1% 154 (1.8%) 

   6 12 (0.4%) 64 (1.6%) 84.2% 19 (1.0%) 6 (4.9%) 24.0% 101 (1.1%) 

   7 9 (0.3%) 46 (1.1%) 83.6% 12 (0.6%) 3 (2.5%) 20.0% 70 (0.8%) 

   8 10 (0.4%) 29 (0.7%) 74.4% 7 (0.4%) 3 (2.5%) 30.0% 49 (0.6%) 

   9 5 (0.2%) 19 (0.5%) 79.2% 6 (0.3%) 2 (1.6%) 25.0% 32 (0.4%) 

   10 3 (0.1%) 46 (1.1%) 93.9% 8 (0.4%) 7 (5.7%) 46.7% 64 (0.7%) 

N 2751 4069  1858 122  8800 

Notes: This table reports the mean and standard deviation (in brackets) as well as the share of played lotteries, absolute 

and relative frequencies for playing streaks by gambling decision and lotteries’ expected values (positive vs. negative). 
The experiment includes data on 44 subjects who decided on 200 lotteries: 155 positive expected value lotteries (PEVL) 

(EV ≥ 0) and 45 negative expected value lotteries (NEVL), resulting in 8800 observations.   

Table A8 indicates that, on average, subjects’ propensity to play lotteries increases with the number 

of consecutive accepted lotteries, i.e., playing more lotteries in a sequence increases the probability 

of extending a gambling streak. The corresponding mean difference in predicted probabilities de-

rived from fitting a simple logistic regression model is 3.41%. Table A9 shows that this pattern also 

holds true when distinguishing between the impact of gambling streaks on playing NEVL and PEVL; 

the corresponding mean differences in predicted probabilities for one additional played game 
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within a streak for playing NEVL is 4.36% and, thus, slightly higher than the corresponding mean 

difference of 3.23% for playing PEVL.  

Next, in Tables A10 and A11, we present the cross-tabulations for the number of non-gambling 

streaks by the next consecutive lottery decision on the basis of all lotteries and separately for NEVL 

and PEVL. Similar to the results of gambling streaks, subjects’ propensity to reject the next lottery 

increases with the number of previously rejected consecutive lotteries. In general, our results reflect 

subjects’ stronger inclination to play PEVL than NEVL. The corresponding mean differences in pre-

dicted probabilities derived from separate logistic regressions for playing the next consecutive lot-

tery are –2.73% (all lotteries), –0.62% (NEVL), and –3.39% (PEVL). 

Table A10. Cross-tabulation for the share of played lotteries by non-playing streaks 

Variable Not played Played % played All p-value 

Non-playing streak (num) 1.52 (2.29) 1.05 (1.66)  1.30 (2.03) < 0.001 

Non-playing streak     < 0.001 

   0 2035 (44.2%) 2207 (52.7%) 52.0% 4242 (48.2%)  

   1 1052 (22.8%) 954 (22.8%) 47.6% 2006 (22.8%)  

   2 583 (12.6%) 462 (11.0%) 44.2% 1045 (11.9%)  

   3 341 (7.4%) 239 (5.7%) 41.2% 580 (6.6%)  

   4 207 (4.5%) 132 (3.1%) 38.9% 339 (3.9%)  

   5 126 (2.7%) 77 (1.8%) 37.9% 203 (2.3%)  

   6 76 (1.6%) 49 (1.2%) 39.2% 125 (1.4%)  

   7 46 (1.0%) 29 (0.7%) 38.7% 75 (0.9%)  

   8 31 (0.7%) 15 (0.4%) 32.6% 46 (0.5%)  

   9 24 (0.5%) 7 (0.2%) 22.6% 31 (0.4%)  

   10 17 (0.4%) 7 (0.2%) 29.2% 24 (0.3%)  

   11 10 (0.2%) 7 (0.2%) 41.2% 17 (0.2%)  

   12 9 (0.2%) 1 (0.0%) 10.0% 10 (0.1%)  

   13 52 (1.1%) 5 (0.1%) 8.8% 57 (0.6%)  

N 4609 4191  8800  

Notes: This table reports the mean and standard deviation (in brackets) as well as the share of played lotteries, absolute 

and relative frequencies for non-playing streaks by gambling decision. The experiment includes data on 44 subjects 

who decided on 200 lotteries: 155 positive expected value lotteries (PEVL) (EV ≥ 0) and 45 negative expected value 

lotteries (NEVL), resulting in 8800 observations. Reported p-values correspond to chi-square association tests for indi-

vidual multilevel factor variables and Kruskal-Wallis tests for numeric variables.  
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Table A11. Cross-tabulation for non-playing streaks by gambling decision and lotteries’ expected 
value 

Non-playing 

 streak 

Played (=1) x Negative expected value lottery (=1)    

0.0 1.0 % played 0.1 1.1 % played All  

Numeric 1.64 (2.42) 1.07 (1.66)  1.34 (2.07) 0.63 (1.63)  1.30 (2.03) 

Factor        

   0 1165 (42.3%) 2118 (52.1%) 64.5% 870 (46.8%) 89 (73.0%) 9.3% 4242 (48.2%) 

   1 616 (22.4%) 937 (23.0%) 60.3% 436 (23.5%) 17 (13.9%) 3.8% 2006 (22.8%) 

   2 362 (13.2%) 454 (11.2%) 55.6% 221 (11.9%) 8 (6.6%) 3.5% 1045 (11.9%) 

   3 221 (8.0%) 236 (5.8%) 51.6% 120 (6.5%) 3 (2.5%) 2.4% 580 (6.6%) 

   4 123 (4.5%) 131 (3.2%) 51.6% 84 (4.5%) 1 (0.8%) 1.2% 339 (3.9%) 

   5 79 (2.9%) 76 (1.9%) 49.0% 47 (2.5%) 1 (0.8%) 2.1% 203 (2.3%) 

   6 50 (1.8%) 48 (1.2%) 49.0% 26 (1.4%) 1 (0.8%) 3.7% 125 (1.4%) 

   7 36 (1.3%) 28 (0.7%) 43.8% 10 (0.5%) 1 (0.8%) 9.1% 75 (0.9%) 

   8 21 (0.8%) 15 (0.4%) 41.7% 10 (0.5%) 0 (0.0%) 0.0% 46 (0.5%) 

   9 16 (0.6%) 7 (0.2%) 30.4% 8 (0.4%) 0 (0.0%) 0.0% 31 (0.4%) 

   10 10 (0.4%) 7 (0.2%) 41.2% 7 (0.4%) 0 (0.0%) 0.0% 24 (0.3%) 

   11 6 (0.2%) 7 (0.2%) 53.8% 4 (0.2%) 0 (0.0%) 0.0% 17 (0.2%) 

   12 7 (0.3%) 1 (0.0%) 12.5% 2 (0.1%) 0 (0.0%) 0.0% 10 (0.1%) 

   13 39 (1.4%) 4 (0.1%) 9.3% 13 (0.7%) 1 (0.8%) 7.1% 57 (0.6%) 

N 2751 4069  1858 122  8800 

Notes: This table reports the mean and standard deviation (in brackets) as well as the share of played lotteries, absolute 

and relative frequencies for non-playing streaks by gambling decision and lotteries’ expected values (positive vs. neg-
ative). The experiment includes data on 44 subjects who decided on 200 lotteries: 155 positive expected value lotteries 

(PEVL) (EV ≥ 0) and 45 negative expected value lotteries (NEVL), resulting in 8800 observations. 

3.3.3 Gambling streaks with only negative and positive outcomes 

In the next step of our analysis of sequential gambling decisions, we analyze the cross-tabulations 

for gambling streaks with only negative and positive outcomes by subsequent lottery decisions 

across all lotteries and separately for NEVL and PEVL in Tables A12 and A13, respectively. We find 

that both gambling streaks with only positive or negative outcomes increase subjects’ propensity 

to accept the next consecutive lottery. The mean difference in the predicted probabilities derived 

from logistic regressions for playing a lottery per one additional played game in a previous playing 

streak with positive [negative] outcomes is 2.96% [4.55%]. The corresponding mean difference for 

playing PEVL is 3.14% [4.42%] and for playing NEVL is 2.63% [6.20%]. Hence, these findings are in line 

with two frequently reported cognitive biases: the hot hand effect of gambling streaks with positive 

outcomes and the gambler’s fallacy for gambling streaks with negative outcomes. Moreover, the 

effect of playing NEVL after gambling streaks with only positive or only negative outcomes is larger 

than the corresponding effects for playing PEVL.  
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Table A12. Cross-tabulation for the share of played lotteries by streaks of played lotteries with pos-

itive and negative outcomes  

Variable Not played Played % played All p-value 

PO streak (num) 0.28 (0.60) 0.33 (0.67)  0.30 (0.64) 0.003 

PO streak     0.002 

   0 3598 (78.1%) 3170 (75.6%) 46.8% 6768 (76.9%)  

   1 802 (17.4%) 758 (18.1%) 48.6% 1560 (17.7%)  

   2 150 (3.3%) 196 (4.7%) 56.6% 346 (3.9%)  

   3 49 (1.1%) 46 (1.1%) 48.4% 95 (1.1%)  

   4 7 (0.2%) 14 (0.3%) 66.7% 21 (0.2%)  

   5 3 (0.1%) 7 (0.2%) 70.0% 10 (0.1%)  

NO streak (num) 0.28 (0.62) 0.38 (0.76)  0.33 (0.69) < 0.001 

NO streak     < 0.001 

   0 3611 (78.3%) 3051 (72.8%) 45.8% 6662 (75.7%)  

   1 754 (16.4%) 824 (19.7%) 52.2% 1578 (17.9%)  

   2 191 (4.1%) 219 (5.2%) 53.4% 410 (4.7%)  

   3 45 (1.0%) 66 (1.6%) 59.5% 111 (1.3%)  

   4 5 (0.1%) 19 (0.5%) 79.2% 24 (0.3%)  

   5 2 (0.0%) 5 (0.1%) 71.4% 7 (0.1%)  

   6 0 (0.0%) 4 (0.1%) 100.0% 4 (0.0%)  

   7 0 (0.0%) 2 (0.0%) 100.0% 2 (0.0%)  

   8 1 (0.0%) 1 (0.0%) 50.0% 2 (0.0%)  

N 4609 4191  8800  

Notes: This table reports the mean and standard deviations (in brackets) as well as the share of played lotteries, abso-

lute and relative frequencies for playing-outcome by gambling decision. We consider positive outcome (PO) streaks 

and negative outcome (NO) streaks. The experiment includes data on 44 subjects who decided on 200 lotteries: 155 

positive expected value lotteries (PEVL) (EV ≥ 0) and 45 negative expected value lotteries (NEVL), resulting in 8800 

observations. Reported p-values correspond to chi-square association tests for multilevel factor variables and Kruskal-

Wallis tests for numeric variables.  
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Table A13. Cross-tabulation for the share of played negative and positive expected value lotteries 

by streaks of played lotteries with positive and negative outcomes 

Outcome Played (=1) x Negative expected value lottery (=1) 

Streak 0.0  1.0  % played 0.1  1.1 % played All 

Pos. (num) 0.27 (0.58) 0.33 (0.67)  0.30 (0.64) 0.43 (0.77)  0.30 (0.64) 

Pos         

   0 2152 (78.2%) 3086 (75.8%) 58.9% 1446 (77.8%) 84 (68.9%) 5.5% 6768 (76.9%) 

   1 491 (17.8%) 730 (17.9%) 59.8% 311 (16.7%) 28 (23.0%) 8.3% 1560 (17.7%) 

   2 77 (2.8%) 190 (4.7%) 71.2% 73 (3.9%) 6 (4.9%) 7.6% 346 (3.9%) 

   3 27 (1.0%) 43 (1.1%) 61.4% 22 (1.2%) 3 (2.5%) 12.0% 95 (1.1%) 

   4 3 (0.1%) 13 (0.3%) 81.3% 4 (0.2%) 1 (0.8%) 20.0% 21 (0.2%) 

   5 1 (0.0%) 7 (0.2%) 87.5% 2 (0.1%) 0 (0.0%) 0.0% 10 (0.1%) 

Neg. (num) 0.25 (0.57) 0.38 (0.76)  0.33 (0.67) 0.57 (0.83)  0.33 (0.69) 

Pos         

   0 2202 (80.0%) 2978 (73.2%) 57.5% 1409 (75.8%) 73 (59.8%) 4.9% 6662 (75.7%) 

   1 429 (15.6%) 790 (19.4%) 64.8% 325 (17.5%) 34 (27.9%) 9.5% 1578 (17.9%) 

   2 95 (3.5%) 210 (5.2%) 68.9% 96 (5.2%) 9 (7.4%) 8.6% 410 (4.7%) 

   3 21 (0.8%) 60 (1.5%) 74.1% 24 (1.3%) 6 (4.9%) 20.0% 111 (1.3%) 

   4 2 (0.1%) 19 (0.5%) 90.5% 3 (0.2%) 0 (0.0%) 0.0% 24 (0.3%) 

   5 2 (0.1%) 5 (0.1%) 71.4% 0 (0.0%) 0 (0.0%)  7 (0.1%) 

   6 0 (0.0%) 4 (0.1%) 100.0% 0 (0.0%) 0 (0.0%)  4 (0.0%) 

   7 0 (0.0%) 2 (0.0%) 100.0% 0 (0.0%) 0 (0.0%)  2 (0.0%) 

   8 0 (0.0%) 1 (0.0%) 100.0% 1 (0.1%) 0 (0.0%) 0.0% 2 (0.0%) 

N 2751 4069  1858 122  8800 

Notes: This table reports the mean and standard deviations (in brackets) as well as the share of played lotteries, abso-

lute and relative frequencies for playing-outcome streaks specified as factor variable by gambling decision. We con-

sider positive outcome (PO) streaks and negative outcome (NO) streaks. The experiment includes data on 44 subjects 

who decided on 200 lotteries: 155 positive expected value lotteries (PEVL) (EV  ≥ 0) and 45 negative expected value 

lotteries (NEVL), resulting in 8800 observations. 
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3.4 Gambling choices, lottery design, and eye movements  

Table A14 shows a cross-tabulation for gambling decisions, the share of played lotteries by lookup 

patterns metrics, and the arrangement of lotteries’ payoff and decision boxes across all lotteries.   

Table A14. Cross-tabulation for gambling decisions by measures of visual attention and lottery dis-

play variables 

Variable Level Not played Played % played Total  p-value 

Time win Numeric 1.006 (0.576) 1.117 (0.573)  1.059 (0.577) < 0.001 

Time loss Numeric 0.986 (0.572) 0.876 (0.512)  0.934 (0.547) < 0.001 

Time none Numeric 7.008 (0.645) 7.007 (0.630)  7.007 (0.638) 0.6 

Left box first    0 1160 (25.9%) 1138 (28.4%) 49.5% 2298 (27.0%) 0.01 

    1 3324 (74.1%) 2876 (71.6%) 46.4% 6200 (73.0%)  

Win box first    0 2061 (46.0%) 1729 (43.1%) 45.6% 3790 (44.6%) 0.007 

    1 2423 (54.0%) 2285 (56.9%) 48.5% 4708 (55.4%)  

LBF x WBF    0.0 497 (11.1%) 429 (10.7%) 46.3% 926 (10.9%) 0.002 

    1.0 1564 (34.9%) 1300 (32.4%) 45.4% 2864 (33.7%)  

    0.1 663 (14.8%) 709 (17.7%) 51.7% 1372 (16.1%)  

    1.1 1760 (39.3%) 1576 (39.3%) 47.2% 3336 (39.3%)  

Win right    0 2257 (50.3%) 2005 (50.0%) 47.0% 4262 (50.2%) 0.724 

    1 2227 (49.7%) 2009 (50.0%) 47.4% 4236 (49.8%)  

Accept right    0 2233 (49.8%) 2036 (50.7%) 47.7% 4269 (50.2%) 0.395 

    1 2251 (50.2%) 1978 (49.3%) 46.8% 4229 (49.8%)  

WR x AR    0.0 1101 (24.6%) 1045 (26.0%) 48.7% 2146 (25.3%) 0.121 

    1.0 1132 (25.2%) 991 (24.7%) 46.7% 2123 (25.0%)  

    0.1 1156 (25.8%) 960 (23.9%) 45.4% 2116 (24.9%)  

    1.1 1095 (24.4%) 1018 (25.4%) 48.2% 2113 (24.9%)  

Left box last    0 2557 (57.0%) 2299 (57.3%) 47.3% 4856 (57.1%) 0.816 

    1 1927 (43.0%) 1715 (42.7%) 47.1% 3642 (42.9%)  

Win box last    0 2264 (50.5%) 1685 (42.0%) 42.7% 3949 (46.5%) < 0.001 

    1 2220 (49.5%) 2329 (58.0%) 51.2% 4549 (53.5%)  

LBL x WBL    0.0 1320 (29.4%) 1002 (25.0%) 43.2% 2322 (27.3%) < 0.001 

    1.0 944 (21.1%) 683 (17.0%) 42.0% 1627 (19.1%)  

    0.1 1237 (27.6%) 1297 (32.3%) 51.2% 2534 (29.8%)  

    1.1 983 (21.9%) 1032 (25.7%) 51.2% 2015 (23.7%)  

Box switches (num) Numeric  2.269 (1.050) 2.366 (1.032)  2.315 (1.042) < 0.001 

Box switches    1 980 (21.9%) 776 (19.3%) 44.2% 1756 (20.7%) < 0.001 

    2 1684 (37.6%) 1461 (36.4%) 46.5% 3145 (37.0%)  

    3 1167 (26.0%) 1200 (29.9%) 50.7% 2367 (27.9%)  

    4 470 (10.5%) 429 (10.7%) 47.7% 899 (10.6%)  

    5-7 183 (4.1%) 148 (3.7%) 44.7% 331 (3.9%)  

N  4484 4014  8498  

Notes: Our experiment includes 44 subjects that each decided on 200 lotteries: 155 with positive expected values (PEVL) 

and 45 with negative expected values (NEVL), resulting in 8800 observations. The presented statistics are computed 

on the basis of the cleaned data sample that comprises 8498 observations (see Section 2.2). Reported p-values corre-

spond to chi-square association tests for binary variables and Kruskal-Wallis tests for numeric variables.   

On average, subjects spent more time looking at the win [loss] value when accepting [rejecting] a 

displayed lottery. In contrast, the time that subjects do not look at the two payoff boxes is not sig-

nificantly different for accepted and rejected lotteries. With respect to differences in the sequence 

of lookup patterns, subjects first look at the left payoff box in 73.0% of all trials and accept 48.5% 
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[45.6%] of the trials during which they first looked at the win [loss]. Hence, the information on which 

side of the screen the win box is displayed also captures information on subjects’ tendency to play 

a higher share of lotteries for which they first looked at the win box. However, no evidence exists 

for a simple left-hand-side bias. We find subjects that play the highest share of lotteries for games 

in which the win value is displayed at the right box, and subjects first looked at the win box (51.7% 

vs. 47.2%, 46.3%, 45.4%). Moreover, although subjects accept 51.2% [42.7%] of the trials during which 

they looked last at the win [loss] box and 51.2% [42.7%] of the trials during which they last looked at 

the left [right] box, they look last at the win [left] box in 51.2% [47.1%] of all trials. In this context, 

subjects switched between looking at the win and loss boxes 2-3 times in approximately 67% of all 

trials.  

3.5 Gambling choices and psychophysiological reactions  

Figures A3 and A4 show kernel density estimates and absolute frequencies for CPD type-specific 

minimum, mean, and maximum values by lottery trial for accepted and rejected lotteries. A casual 

inspection of Figures A3 and A4 show relevant differences in SCPM distributions between accepted 

and rejected lotteries over time. For instance, the first third of the trials display more significant 

SCRs for accepted gambles than rejected gambles; however, this pattern appears to reverse during 

the experiment. Hence, we find that the number of significant SCRs decreases as the experiment 

progresses, which indicates that arousal and excitement levels decrease over time. Similarly, Figure 

A3 shows that subjects’ BT increases over time, which may be attributed to emotional and cognitive 

depletion.  
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Figure A3. Kernel density estimates of psychophysiological responses I 

 
Notes: Kernel density estimations of minimum, mean, and maximum values for heart rate (HR), body temperature (BT), 

respiration depth (RSD), and respiration rate (RSR) by gambling decision and lottery trial. The experiment includes data 

on 44 subjects who decided on 200 lotteries: 155 with positive expected values (EV ≥ 0) and 45 negative expected values 

(EV<0), resulting in 8800 observations. The presented density estimates are computed on the basis of the cleaned data 

sample that comprises 8498 observations. 
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Figure A4. Kernel density estimates of psychophysiological responses II 

 
Notes: Kernel density estimations and relative frequency distributions of minimum, mean, and maximum values for blood 

volume pulse amplitude (BVPA), blood volume pulse (BVP), pupil size (PS), and the number of significant skin conductance 

responses (SCRs) and the sum of the significant SCRs’ amplitudes by gambling decision and lottery trial. The experiment 

includes data on 44 subjects who decided on 200 lotteries: 155 with positive expected values (EV ≥ 0) and 45 negative 

expected values (EV<0), resulting in 8800 observations. The presented statistics are computed on the basis of the cleaned 

data sample that comprises 8498 observations.  

3.6 Correlations between choice process data and lottery design 

First, in Figure A5, we present two heat maps to illustrate linear correlations among SCPMs, between 

SCPMs and lottery design variables, and reaction time.2  

 

 

 

                                                             

2 At the end of this section, we provide a brief analysis of the time that subjects require to reach a final decision.  
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Figure A5. Linear correlation coefficients 

 
Notes: This figure shows the linear correlations between simple choice process metrics (SCPMs), reaction time and lotter 

design variables for all lottery decisions (left panel) as well as the difference in the corresponding correlation coefficients 

between accepted and rejected gambles (right panel). The experiment includes data on 44 subjects who decided on 200 

lotteries: 155 PEV (EV ≥ 0) and 45 with negative expected values (EV<0), resulting in 8800 observations. The presented 

statistics are computed on the basis of the cleaned data sample that comprises 8498 observations. The included SCPMs 

are derived from various psychophysiological responses and lookup pattern metrics: the number of significant skin con-

ductance responses (SCRs) and the sum of their amplitudes (SCR AS), heart rate (HR), blood volume pulse (BVP), blood 

volume pulse amplitude (BVPA), respiration depth (RSD), respiration rate (RSR), body temperature (BT), and pupil size (PS), 

as well as the number of times that subjects switch between looking at the two payoff boxes, the time that subjects look 

at the win box (Time win), at the loss box (Time loss), and at neither of the two payoff boxes (Time none). 

The left panel of Figure A5 shows the linear Pearson correlation coefficients on the basis of the 

cleaned data sample. Regarding CPD type-specific SCPM correlations, the corresponding heat map 

substantiates the descriptive results presented in Figure A3: the BT SCPMs are positively correlated 

with lottery trial, i.e., subjects’ BT increases during the experiment. Likewise, Figure A5 also shows 

that the number of significant SCRs decreases over time and, consequently, further indicates that 

the number of significant SCRs (and their sum of amplitudes) is negatively correlated with the BT 
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variables. Similar to the correlations between the SCR and BT SCPMs, many PS SCPMs are also neg-

atively correlated with lottery trial and BT measures as well as with BVP, BVPA, and SCPMs. In addi-

tion, we also find several HR SCPMs to be negatively correlated with BVP and BVPA variables and 

the RSD SCPMs to be negatively correlated with BVP maximum and several RSR SCPMs. Further-

more, HR delta, which can be interpreted as an HRV measure, is also negatively correlated with lot-

tery trial.  

Similar to the differences in the distribution of SCPMs presented in Figures A3 and A4, the right 

panel of Figure A5 shows a heat map that illustrates the differences between the linear correlations 

of accepted and rejected gambles. Concisely, we see that there exist systematic differences in the 

SCPM correlation structures for accepted and rejected gambles. To provide some examples, we find 

relatively large differences for the correlations among the SCR, BVP, and BVPA variables, between 

BVPA delta and the BT SCPMs, and between the PS SCPMs minimum and lottery trial.    

In the second step of our analysis of SCPM correlations, in Table A15, we present inverse variance 

inflation factors (VIFs) on the basis of different combinations of SCPMs derived from standard OLS 

regressions while excluding perfect multi-collinear predictors.  
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Table A15. Inverse variance inflation factors for simple lookup measures and psychophysiological 

response metrics for predicting risky gambling choices 

 (1) (2) (3) (4) (5) 

Variable 1/VIF 1/VIF 1/VIF 1/VIF 1/VIF 

HR min 0.027** 0.027**    

HR max 0.022** 0.022**    

HR mean 0.008*** 0.008*** 0.885 0.876 0.128* 

BVP min 0.058** 0.059**    

BVP max 0.028** 0.029**    

BVP mean 0.159* 0.159* 0.658 0.643 0.061** 

BVPA min 0.013** 0.013**    

BVPA max 0.007*** 0.007***    

BVPA mean 0.004*** 0.004*** 0.697 0.694 0.124* 

RSD min 0.002*** 0.002***    

RSD max 0.003*** 0.003***    

RSD mean 0.001*** 0.001*** 0.930 0.902 0.008*** 

RSR min 0.388* 0.388*    

RSR max 0.218* 0.218*    

RSR mean 0.136* 0.136* 0.984 0.983 0.778 

BT min < .001 < .001    

BT max < .001 < .001    

BT mean < .001 < .001 0.769 0.762 0.219* 

PS min 0.189* 0.191*    

PS max 0.167* 0.172*    

PS mean 0.078** 0.079** 0.761 0.749 0.062** 

Nr. of SCRs 0.731 0.732 0.738 0.736 0.686 

SCR AmpSum 0.724 0.728 0.738 0.731 0.647 

Time win 0.710   0.775 0.488* 

Time loss 0.691   0.750 0.481* 

Left box first 0.959   0.967 0.768 

Win box first 0.990   0.992 0.761 

Nr. of switches 0.859   0.888 0.658 

Controls - - - - Yes 

N 8498 8498 8498 8498 8498 

Notes: The presented inverse variance inflation factors (1/VIF) are derived from predicting risky 50/50 lottery gambling 

decision on the basis of different combinations of simple choice process metrics that relate to various psychophysiolog-

ical reactions and lookup patterns, including heart rate (HR), blood volume pulse (BVP), blood volume pulse amplitude 

(BVPA), respiration depth (RSD), respiration rate (RSR), body temperature (BT), pupil size (PS), the number of significant 

skin conductance responses (SCRs) and the sum of their amplitudes (SCR AS), as well as the number of times that 

subjects switched between looking at the two boxes, the time that subjects look at the win box (time win) and at the 

loss box (time loss), and whether subjects first looked at the left box and whether they first looked at the win box. As 

additional control variables, Model (5) includes subject-specific dummy variables and all the lottery design variables, 

socioeconomic characteristics, and past gambling behavior and experiences (for an overview of variable specifications, 

see Table A1, Section 2.2). * 1/VIF < 0.5, ** 1/VIF < 0.1, *** 1/VIF < 0.01 

We consider CPD type-specific minimum, maximum, and mean values. Consequently, many highly 

collinear P SCPMs exist. Restricting the P SCPMs to mean values appears to largely eliminate these 

multi-collinearity issues. We note that the individual A [LSG] predictor-sets do not contain any var-

iables with an inverse VIF < 0.8 [0.2]. Likewise, combining the A and P mean SCPMs (Model 4) does 
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not produce any inverse VIF < 0.6. However, extending model (4) by the LSG predictors and subject-

specific dummy variables (model (5)) results in new multi-collinearity issues with respect to both 

the predictors included in the LSG set and the A and P SCPMs—intuitively, physiological responses 

can systematically vary by individual subjects and/or socioeconomic characteristics, such as age and 

gender.  

Third, we further investigate the extent to which SCPMs and lottery design variables are linearly 

correlated and provide in Table A16 the resulting coefficient estimates obtained from individual 

simple OLS regressions of the lotteries’ win, loss, and expected values on the A and P SCPMs. In each 

regression, standard errors are clustered at the subject level.  

Regarding relevant linear correlations between a lottery’s win value and SCPMs, we find significant 

positive effects for PS min and PS mean and for the time that subjects spent looking at the win box. 

Moreover, we find a significant negative effect of the time that subjects look at the loss box. All 

other estimated SCPM coefficients are not significantly different from zero.  

Regressing the lottery’s loss value on individual SCPMs shows (weakly) significant negative effects 

for RSR delta and the time that subjects look at the win and the time that subjects did not look at 

either the win or the loss box. Last, we find a significant positive effect of the time that subjects 

allocate to a potential loss. All remaining coefficients are not significantly different from zero.  

Similar to the results for using the win value as an outcome, for the expected value regressions, we 

find a (weakly) significant positive effects for PS min and mean, and a significant positive [negative] 

effect of the time that subjects spent looking at the win [loss] value. Furthermore, we find weakly 

significant positive coefficient estimates for BT minimum, maximum, and mean.  
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Table A16. Linear regression coefficient estimates for predicting lottery design variables on the ba-

sis of simple choice process metrics 

 (1-34)  (35-68)  (69-102)  (103-136)  

Variable Win value  Loss value Exp. value Trial  

HR min 0.0015 (0.0024) -0.0002 (0.0011) 0.0008 (0.0013) 0.2158** (0.0975) 

HR max -0.0005 (0.0024) 0.0002 (0.0010) -0.0003 (0.0012) 0.1287 (0.0949) 

HR mean 0.0001 (0.0023) 0.0004 (0.0011) -0.0002 (0.0012) 0.1836* (0.0979) 

HR delta -0.0169 (0.0153) 0.0036 (0.0050) -0.0103 (0.0081) -0.6096** (0.2311) 

BVP min -0.0007 (0.0009) 0.0008 (0.0005) -0.0008 (0.0005) -0.0446 (0.0510) 

BVP max 0.0006 (0.0007) -0.0002 (0.0004) 0.0004 (0.0004) 0.0193 (0.0373) 

BVP mean 0.0011 (0.0020) 0.0008 (0.0010) 0.0002 (0.0012) 0.0492 (0.0655) 

BVP delta 0.0004 (0.0004) -0.0002 (0.0002) 0.0003 (0.0002) 0.0158 (0.0238) 

BVPA min -0.0003 (0.0008) -0.0003 (0.0003) 0.0000 (0.0005) 0.0055 (0.0356) 

BVPA max 0.0000 (0.0006) -0.0002 (0.0003) 0.0001 (0.0003) 0.0109 (0.0311) 

BVPA mean 0.0001 (0.0007) -0.0002 (0.0003) 0.0002 (0.0004) 0.0090 (0.0338) 

BVPA delta 0.0037 (0.0045) 0.0008 (0.0025) 0.0015 (0.0027) 0.1323 (0.1269) 

RSR min -0.0024 (0.0116) 0.0061 (0.0046) -0.0043 (0.0066) 0.0103 (0.2220) 

RSR max -0.0102 (0.0071) -0.0034 (0.0034) -0.0034 (0.0039) 0.3054*** (0.1053) 

RSR mean -0.0117 (0.0109) -0.0011 (0.0047) -0.0053 (0.0058) 0.3089* (0.1642) 

RSR delta -0.0124 (0.0080) -0.0072* (0.0039) -0.0026 (0.0043) 0.3978*** (0.0930) 

RSD min 0.0002 (0.0002) -0.0000 (0.0001) 0.0001 (0.0001) 0.0007 (0.0067) 

RSD max 0.0003 (0.0002) 0.0000 (0.0001) 0.0001 (0.0001) -0.0010 (0.0067) 

RSD mean 0.0002 (0.0002) -0.0000 (0.0001) 0.0001 (0.0001) -0.0004 (0.0068) 

RSD delta 0.0030 (0.0032) 0.0016 (0.0013) 0.0007 (0.0017) -0.0662 (0.0914) 

BT min 0.0791 (0.0549) -0.0285 (0.0357) 0.0538* (0.0300) 29.6105*** (4.5146) 

BT max 0.0775 (0.0552) -0.0291 (0.0353) 0.0533* (0.0301) 29.5120*** (4.5250) 

BT mean 0.0782 (0.0551) -0.0287 (0.0355) 0.0535* (0.0300) 29.5615*** (4.5196) 

BT delta -9.7252 (6.2179) -1.9076 (3.7635) -3.9088 (3.3441) -1333.7571*** (164.1119) 

PS min 0.2140* (0.1250) -0.0405 (0.0526) 0.1273* (0.0643) -18.3388*** (5.5495) 

PS max 0.1183 (0.1066) -0.0036 (0.0562) 0.0610 (0.0624) -10.8617*** (3.8910) 

PS mean 0.2797** (0.1048) -0.0120 (0.0418) 0.1458** (0.0545) -18.8473*** (6.1567) 

PS delta -0.1583 (0.2402) 0.0645 (0.1152) -0.1114 (0.1367) 12.2202* (6.6583) 

Nr. of SCRs 0.188 (0.134) -0.026 (0.068) 0.107 (0.081) -7.607*** (1.787) 

SCR AmpSum 0.237 (0.296) 0.163 (0.149) 0.037 (0.161) 0.025 (3.071) 

Time win 0.729*** (0.167) -0.164** (0.065) 0.447*** (0.091) -2.518 (2.056) 

Time loss -0.543*** (0.157) 0.417*** (0.064) -0.480*** (0.092) -1.875 (2.178) 

Time none -0.198 (0.132) -0.173*** (0.056) -0.013 (0.084) 3.441 (2.457) 

Box switches 0.117 (0.073) 0.010 (0.038) 0.053 (0.042) -2.671** (1.254) 

N 8498  8498  8498  8498  

Notes: The presented coefficient estimates result from 136 individual OLS regressions. The corresponding outcomes 

are a lottery’s win value (1-34), loss value (35-68), expected value (69-102), and trial (103-136). Constant terms’ coeffi-
cient estimates are omitted for brevity. The simple choice process metrics are derived from various psychophysiological 

responses and lookup patterns, including heart rate (HR), blood volume pulse (BVP), blood volume pulse amplitude 

(BVPA), respiration depth (RSD), respiration rate (RSR), body temperature (BT), and pupil size (PS), the number of sig-

nificant skin conductance responses (SCRs) and the sum of their amplitudes (SCR AmpSum), as well as the number of 

times that subjects switched between looking at the win and loss boxes (box switches), and the time that subjects 

spend looking at the win box (time win), at the loss box (time loss), and at neither of the two payoff boxes (time none).  
* p < 0.1, ** p < 0.05, *** p < 0.01  Standard errors (in parentheses) are clustered at the subject level. 

Moreover, the individual OLS regression results for lottery trial presented in Table A16 substantiate 

the correlation patterns shown in Figure A4: The coefficient estimates for HR delta, BT delta, PS min, 

max, and mean, number of significant SCRs, and number of box switches are significantly negative. 
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Conversely, we find significant positive coefficient estimates for HR min and HR mean, RSR max, 

mean, and delta, BT min, max, and mean, and PS delta. Hence, some psychophysiological reactions 

associated with sympathetic activity and arousal, e.g., pupil dilation and increasing numbers of sig-

nificant SCRs, are stronger at the beginning of the experiment when the repetitive gambling expe-

rience is still new and exciting. Conversely, we find significant positive coefficient estimates for BT 

as well as for several cardiovascular and respiratory SCPMs, which can reflect stress and resource 

depletion (Cheema & Patrick, 2012; Halko & Sääksvuori, 2017). Consequently, we also find several 

SCR and PS metrics to be negatively correlated with BT measures. Furthermore, many PS SCPMs are 

negatively correlated with several cardiovascular and respiratory measures (see Figure A4). 

Last, although this study focuses on the predictive importance of CPD, we also briefly investigate 

how long subjects are required to execute their decision after the first three seconds of lottery in-

formation processing. On the basis of the uncleaned data sample that comprises 8800 observa-

tions, the mean reaction time (RT) is 0.667 seconds (SD=0.518), the minimum is 0.001, the maximum 

is 7.341, the median is 0.529, and the first and third quartiles are 0.386 and 0.752, respectively. Most 

importantly, all subjects executed their final decisions within the required 10-second period; after 

this period, the experiment software would had automatically and randomly decided to accept or 

reject the offered lottery. Moreover, the left panel of Figure A4 shows that RT is slightly positively 

correlated with a lottery’s (absolute) win, loss, and expected value, which may indicate that subjects 

take more time reaching a final decision when relatively higher stakes are at play. Similarly, the 

right panel of Figure A4 shows that, on average, the correlation between lottery design variables 

and RT is slightly higher for rejected than accepted gambles. Furthermore, RT is negatively corre-

lated with lottery trial, which may indicate that subjects experience cognitive depletion and, con-

sequently, more frequently choose the risk-averse alternative as the experiment progresses.  

4 Multiple regression-based analysis and hypotheses testing 

In this section, we present the detailed results of our regression-based hypotheses tests that were 

omitted from the main text for brevity. We estimate logistic regression models with subject fixed 

effects using the binary gambling choice 𝑦 as an outcome (𝑦 = 1 for played). To this end, in each 

model, we include subject-specific dummy variables and, in addition, cluster standard errors at the 

subject level. For our regression-based analysis and hypotheses testing, we use Stata (Statacorp, 

2017).    
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Table A17. Logistic regression results for predicting gambling choices on the basis of lottery design 

characteristics and attention variables 

 (1)  (2)  (3)  (4)  

 L1  L2  L3  L4  

Win value 0.3278*** (0.0407) 0.3278*** (0.0407) 0.1985*** (0.0157)   

Loss value -0.6769*** (0.0835) -0.6770*** (0.0835)   -0.4204*** (0.0337) 

Trial -0.0060*** (0.0009) -0.0060*** (0.0009)     

Win right 0.0225 (0.1239)       

Accept right 0.9542*** (0.0835)       

Constant -0.5913* (0.3116) -0.5781** (0.2864) -3.0277*** (0.1970) 1.3788*** (0.1534) 

         

 (5)  (6)  (7)  (8)  

 A1  A2  A3  A4  

Time win 0.1451 (0.1351) 0.1933 (0.1313) 0.3672*** (0.0803)   

Time loss -0.3875*** (0.1351) -0.3107** (0.1260)   -0.4311*** (0.0724) 

Left box first -0.0075 (0.0636)       

Win box first 0.1695*** (0.0631)       

Nr. of switches 0.1171** (0.0551)       

Constant -0.7805*** (0.2308) -0.6558*** (0.2377) -1.1141*** (0.0858) -0.3487*** (0.0617) 

         

 (9)  (10)  (11)  (12)  

 LA1  LA2  LA3  LA4  

Win value 0.3266*** (0.0405) 0.3262*** (0.0405)     

Loss value -0.6745*** (0.0837) -0.6760*** (0.0835) -0.4241*** (0.0338) -0.4215*** (0.0337) 

Trial -0.0060*** (0.0009) -0.0059*** (0.0009) -0.0037*** (0.0007) -0.0037*** (0.0007) 

Time win 0.1241 (0.1233) 0.2324** (0.0955) 0.3032** (0.1435)   

Time loss -0.1962 (0.1246)   -0.1519 (0.1255) -0.3419*** (0.0780) 

Constant -0.5098 (0.3690) -0.8098** (0.3262) 1.5998*** (0.2877) 2.0809*** (0.1631) 

N 8498  8498  8498  8498  

Notes: Dependent variable is gambling decision. We account for subject fixed effects by including subject-specific dummy 

variables in all models (coefficients omitted for brevity). Standard errors (in parentheses) are clustered at the subject level. 
* p < 0.1, ** p < 0.05, *** p < 0.01 

The results presented in Table A17 are in line with our hypotheses related to lotteries’ payoff struc-

ture. First, individuals are more likely to accept [reject] a gamble when the win [loss] value increases 

(H1a). The average marginal effect estimate on the basis of model (1) across potential win [loss] 

values is 0.0367 [–0.0777]. Second, the effect of an additional one Euro increase in the loss value is 

significantly larger than a one Euro increase in the win value (p<0.001) (H1b). 

Moreover, the results in Table A17 (model (7) and (8)) also support our attention-related hypothesis: 

individuals are more likely to accept [reject] a lottery when allocating more attention to the poten-

tial gain [loss] (H2). However, when including both the time spent looking at the win and loss values, 

only one of both coefficient estimates remains significantly different from zero (model (5-8)). Fur-

thermore, when using the information on both L data and A SCPMs, Table A17 shows that the coef-

ficient estimates for the time spent looking at the win and loss values become insignificant. How-

ever, the coefficient for the time spent looking at the win value becomes significant when excluding 
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a lottery’s potential win and/or the time spent looking at the loss value (model (9-12)). These results 

reflect the inherent correlation between A SCPMs and their relationship with lottery payoff struc-

ture variables: the win value is positively [negatively] correlated with the time spent looking at the 

win [loss] value, the loss value is negatively [positively] correlated with time spent looking at the 

win [loss] value, and spending more time looking at the win [loss] value decreases the time that is 

left for looking at the loss [win] value. 

In Table A18, we present the results for individual logistic regression models on the basis of psycho-

physiological SCPMs and—controlling for subject fixed effects—to investigate our last hypothesis: 

High levels of arousal are an indicator of lottery acceptance (H3).  

Table A18. Logistic regression results for predicting gambling choices on the basis of simple choice 

process metrics derived from psychophysiological responses 

 (1-7)  (8-14)  (15-21)  (22-28)  

 Min  Max  Mean  Delta  

HR  -0.0011 (0.0049) -0.0013 (0.0056) -0.0028 (0.0053) -0.0003 (0.0071) 

BVP  -0.0079* (0.0046) 0.0019 (0.0015) -0.0001 (0.0103) 0.0018 (0.0012) 

BVPA  0.0005 (0.0016) 0.0004 (0.0015) 0.0011 (0.0015) 0.0002 (0.0039) 

RSR  -0.0016 (0.0064) -0.0038 (0.0034) -0.0027 (0.0054) -0.0039 (0.0032) 

RSD  0.0063 (0.0049) 0.0066** (0.0029) 0.0070* (0.0037) 0.0058** (0.0027) 

BT  -0.1849*** (0.0615) -0.1857*** (0.0619) -0.1854*** (0.0617) 3.2890 (2.6399) 

PS  0.5885*** (0.1561) 0.5138** (0.2483) 1.9863*** (0.3738) -0.1102 (0.1481) 

N 8498  8498  8498  8498  

         

   (29)  (30)  (31)  

   SCR1  SCR2  SCR3  

Nr. of SCRs  0.1312** (0.0602) 0.1375** (0.0550)   

SCR AmpSum    -0.0273 (0.1346) 0.1039 (0.1372) 

N   8498  8498  8498  

Notes: Dependent variable is gambling decision. The presented coefficient estimates result from regressing the gambling 

decision on individual simple choice process metrics (SCPMs), i.e., 115 regressions in total. In addition to a CPD-type specific 

SCPMs (e.g., HR Min), each model includes subject specific dummy variables and a constant (coefficients omitted for brev-

ity). The SCPMs relate to minimum (1-28), maximum (29-56), and mean values (57-84), as well as the difference between 

maximum and minimum values (85-112), and are derived from different psychophysiological responses: heart rate (HR), 

blood volume pulse (BVP), blood volume pulse amplitude (BVPA), respiration depth (RSD), respiration rate (RSR), body 

temperature (BT), and pupil size (PS). Models (113-115) are based on SCPMs that are derived from skin conductance re-

sponses (SCRs): the number of significant SCRs and the sum of the significant SCRs’ amplitudes (SCR AmpSum). Standard 

errors (in parentheses) are clustered at the subject level. * p < 0.1, ** p < 0.05, *** p < 0.01  

The results presented in Table A18 show that high levels of arousal measured by SCRs and PS indi-

cate lottery acceptance. In addition, higher [lower] BT levels significantly indicate a lower [higher] 

propensity to accept lotteries. Furthermore, only RSD max, mean, and delta show a slightly signifi-

cant and positive coefficient estimate, and BVP min shows a weakly significant negative estimate. 

All other SCPM coefficient estimates are not significantly different from zero.  
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In Table A19, we show logistic regression results based on different predictor-set combinations: LSG, 

LSGA, LSGP, and LSGPA. However, we desist from estimating time-invariant socioeconomic charac-

teristics in favor of controlling for subject fixed effects and clustering standard errors at the subject 

level. In this context, except for the two SCR variables, we further note that, in Table A19, we restrict 

the set of P SCPMs to mean values to mitigate multi-collinearity issues (for details, see our VIF anal-

ysis in Section 3.5). 
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Table A19. Logistic regression results for predicting gambling choices on the basis of varying data 

sets 

 (1)  (2)  (3)  (4)  

 LSG  LSGA  LSGP  LSGAP  

Win value 0.3300*** (0.0404) 0.3283*** (0.0402) 0.3289*** (0.0403) 0.3274*** (0.0402) 

Loss value -0.6817*** (0.0825) -0.6788*** (0.0827) -0.6835*** (0.0828) -0.6804*** (0.0830) 

Trial -0.0058*** (0.0009) -0.0058*** (0.0009) -0.0049*** (0.0011) -0.0049*** (0.0011) 

Win right 0.0217 (0.1251) 0.0063 (0.1106) 0.0215 (0.1254) 0.0069 (0.1104) 

Accept right 0.9323*** (0.1009) 0.7181*** (0.1390) 1.8041 (1.3911) 1.5267 (1.3975) 

Lag1-2 played 0.0729 (0.1426) 0.0761 (0.1428) 0.0717 (0.1472) 0.0738 (0.1468) 

Lag1-3 played 0.1047 (0.1710) 0.1038 (0.1734) 0.0995 (0.1678) 0.0951 (0.1706) 

Lag1-4 played 0.1388 (0.2637) 0.1472 (0.2682) 0.1322 (0.2595) 0.1448 (0.2647) 

Lag1-5 played 0.3183 (0.3022) 0.3103 (0.3014) 0.3170 (0.2971) 0.3082 (0.2975) 

Lag1 PO -0.2696 (0.1847) -0.2811 (0.1849) -0.2607 (0.1955) -0.2675 (0.1954) 

Lag2 PO 0.0434 (0.1678) 0.0424 (0.1682) 0.0463 (0.1721) 0.0473 (0.1725) 

Lag3 PO -0.1709* (0.1027) -0.1731* (0.1032) -0.1731* (0.1021) -0.1735* (0.1026) 

Lag4 PO 0.0350 (0.0844) 0.0327 (0.0844) 0.0389 (0.0830) 0.0365 (0.0829) 

Lag5 PO 0.1642* (0.0896) 0.1645* (0.0888) 0.1651* (0.0909) 0.1662* (0.0900) 

Lag1 NO 0.0636 (0.1779) 0.0639 (0.1772) 0.0739 (0.1846) 0.0746 (0.1834) 

Lag2 NO 0.0146 (0.1606) 0.0148 (0.1602) 0.0141 (0.1647) 0.0149 (0.1639) 

Lag3 NO 0.0696 (0.1105) 0.0621 (0.1117) 0.0654 (0.1104) 0.0567 (0.1116) 

Lag4 NO 0.0250 (0.0923) 0.0302 (0.0927) 0.0294 (0.0931) 0.0340 (0.0937) 

Lag5 NO 0.1560* (0.0947) 0.1605* (0.0947) 0.1548 (0.0946) 0.1600* (0.0946) 

Time win   0.0920 (0.1281)   0.0381 (0.1323) 

Time loss   -0.2594** (0.1300)   -0.3104** (0.1294) 

Left box first   0.0034 (0.0930)   -0.0043 (0.0908) 

Win box first   0.0755 (0.0938)   0.0756 (0.0911) 

Nr. of switches   0.1078* (0.0551)   0.1161** (0.0545) 

HR mean     -0.0000 (0.0083) -0.0018 (0.0081) 

BVP mean     -0.0038 (0.0137) -0.0039 (0.0135) 

BVPA mean     0.0003 (0.0032) 0.0008 (0.0031) 

RSR mean     0.0000 (0.0069) -0.0019 (0.0068) 

RSD mean     0.0045 (0.0092) 0.0044 (0.0092) 

BT mean     0.0395 (0.1532) 0.0509 (0.1515) 

PS mean     1.4785*** (0.3844) 1.5462*** (0.4001) 

Nr. of SCRs     0.1132 (0.0708) 0.1177* (0.0698) 

Constant -0.6524* (0.3558) -0.6718 (0.4386) -10.7935 (9.0162) -11.0066 (9.0605) 

N 8498  8498  8498  8498  

Notes: Dependent variable is gambling decision. We account for subject fixed effects by including subject-specific dummy 

variables in all models (coefficients omitted for brevity). Simple choice process metrics (SCPMs) are derived from different 

types of eye movements and psychophysiological responses, including heart rate (HR), blood volume pulse (BVP), blood 

volume pulse amplitude (BVPA), respiration depth (RSD), respiration rate (RSR), body temperature (BT), pupil size (PS), and 

significant skin conductance responses (Nr. of SCRs). Standard errors (in parentheses) are clustered at the subject level. * 

p < 0.1, ** p < 0.05, *** p < 0.01 

Table A19 shows that the coefficient estimates for the lottery design variables on the basis of LSG, 

LSGA, LSGP, and LSGPA change only marginally when compared with the individual L regression re-

sults presented in Table A17. Whereas the estimated coefficient for the time that subjects spent 

looking at the loss value is significantly negative when controlling for the LSG or LSGP variables 

(model (2) and (4)), the effect is of less magnitude than the corresponding estimate obtained from 

the individual regressions shown in Table A17. Moreover, the corresponding estimates for the time 
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spent looking at the win value become insignificant after controlling for the full set of LSGA or LSGP 

variables. Similar to the estimates of the A predictors, the estimated effect of the number of signif-

icant SCRs is only weakly significant when controlling for the LSGA variables (model (3) and (4)). 

Conversely, PS is highly significant across both model specifications ((3) and (4)).  

To further investigate the extent to which controlling for lottery design variables affects selected 

SCPM coefficient estimates, in Table A20, we show additional logistic regression results for BT 

mean, PS mean, and the number of significant SCRs.  

Table A20. Logistic regression results for predicting gambling choices on the basis of lottery design 

variables and selected psychophysiological choice process metrics 

 (1)  (2)  (3)  (4)  

 Played  Played  Played  Played  

Trial -0.0060*** (0.0011) -0.0028*** (0.0006)     

Win value 0.3278*** (0.0407)   0.3229*** (0.0402)   

Loss value -0.6770*** (0.0835)   -0.6659*** (0.0829)   

BT mean -0.0058 (0.1596) 0.0341 (0.0621) -0.4775*** (0.1467) -0.1854*** (0.0617) 

Constant -0.3736 (5.6477) -1.6634 (2.1708) 15.7791*** (5.2216) 5.8455*** (2.1903) 

N 8498  8498  8498  8498  

         

 (5)  (6)  (7)  (8)  

 Played  Played  Played  Played  

PS mean 1.9943*** (0.4158)   1.8454*** (0.4970)   

Nr. of SCRs   0.1900** (0.0777)   0.0664 (0.0688) 

Constant -5.5817*** (1.0877) -0.3987*** (0.0120) -5.7739*** (1.2550) -1.1418*** (0.0167) 

Trial <= 100  <= 100  > 100  > 100  

N 4132  4132  4366  4366  

Notes: Dependent variable is gambling decision. We account for subject fixed effects by including subject-specific dummy 

variables in all models (coefficients omitted for brevity). Choice process metrics are derived from different psychophysio-

logical responses: body temperature (BT), pupil size (PS), significant skin conductance responses (Nr. of SCRs). Standard 

errors (in parentheses) are clustered at the subject level. * p < 0.1, ** p < 0.05, *** p < 0.01 

Our correlation analysis in Section 3.5 (Table A16) shows that lottery trial is positively correlated 

with standard BT measures (min, max, and mean), and the results presented in Table A20 suggest 

that both lottery trial and BT capture information on subjects’ decreasing propensity to accept gam-

bles as the experiment progresses. However, whereas the lottery trial coefficient remains signifi-

cant across various model specifications (Tables A17, A19, and A20), the BT mean coefficient esti-

mate is only significantly different from zero when excluding lottery trial (Tables A18 and A20).  
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5 Detailed results for forecasting gambling choices 

5.1 Implementation  

We use R (R Core Team, 2020) and RStudio (RStudio Team, 2020) for the main computations and 

graphics in this paper. For the generalized linear methods employed in this study we use the R-

package glmnet (Friedman et al., 2010), for support vector machines we use kernlab (Karatzoglou et 

al., 2004), for neural network models we use nnet (Venables & Ripley, 2002), for random forests we 

use ranger (Wright & Ziegler, 2017), and for stochastic gradient boosting machines we use gbm 

(Greenwell et al., 2018). We use caret (Kuhn, 2018) for model training and model evaluation. More-

over, we use tidyverse (Wickham et al., 2019; 2020), circlize (Gu et al., 2014), RColorBrewer (Neuwirth, 

2014), and complexHeatmap (Gu et al., 2016), visreg (Breheny & Burchett, 2017), svglite (Wickham et 

al., 2020), rsvg (Ooms, 2020), gridExtra (Auguie, 2017), ggimage (Yu, 2020), ggpubr (Kassambara, 

2020), egg (Auguie, 2019), and arsenal (Heinzen et al., 2020) for data manipulations and creating 

the tables and figures that are included this study. Furthermore, we use doParrallel (Calaway et al., 

2017) for multicore processing where applicable. 

5.2 Data splitting and model training strategy 

We use subjects as strata in both randomly selecting 80% of the cleaned data as a training sample 

and tuning models’ hyperparameters via 10-fold stratified cross validation on the basis of the train-

ing sample. The remaining 20% of the data are used as a hold-out test set to produce reasonable 

accuracy estimates. This sampling procedure utilizes 6810 observations for model training and 1688 

observations for model testing. We use classification accuracy as a metric to assess models’ predic-

tive capabilities in the model training process because the average share of played lotteries is rela-

tively balanced. Moreover, we set the cut-off value for classifying a record as played to a predicted 

probability of 50%, and we separately center and scale all numeric predictors with respect to the 

corresponding 10 training CV fold-sets and the test data. 

In Table A21 we separately summarize the distribution of gambling choices by lotteries’ expected 

values for each data sample: the full data, the cleaned data (100%), the training data (80%), and the 

test data (20%). 
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Table A21. Distribution of risky choices by data sample and lotteries’ expected values 

Data: Full sample All PEV NEV 

Not played 4609 (52.4%) 2751 (40.3%) 1858 (93.8%) 

Played 4191 (47.6%) 4069 (59.7%) 122 (6.2%) 

N 8800 6820 1980 

    

Data: Cleaned All PEV NEV 

Not played 4484 (52.8%) 2677 (40.7%) 1807 (94.2%) 

Played 4014 (47.2%) 3902 (59.3%) 112 (5.8%) 

N 8498 6579 1919 

    

Data: Training All PEV NEV 

Not played 3602 (52.9%) 2125 (40.5%) 1477 (94.1%) 

Played 3208 (47.1%) 3116 (59.5%) 92 (5.9%) 

N 6810 5241 1569 

    

Data: Test All PEV NEV 

Not played 882 (52.3%) 552 (41.3%) 330 (94.3%) 

Played 806 (47.7%) 786 (58.7%) 20 (5.7%) 

N 1688 1338 350 

Notes: The experiment data covers 44 subjects that each were offered 200 lotteries with 50/50 outcome probabilities: 

155 with positive expected values (PEV) (EV≥0) and 45 with negative expected values (NEV).  

In Table A22, we provide an overview of the models and the corresponding model hyperparameters 

evaluated in this study using a systematic grid search. Except for the two naïve forecasting meth-

ods, we evaluate all models on the basis of four differently specified predictor-sets. Furthermore, 

for our forecasting analysis, we individually control for multi-collinearity by QR decomposition for 

each predictor-set.  
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Table A22. Summary of evaluated forecasting methods and tested hyper parameters 

Method     Hyperparameters   Tested values 

Naïve      

Risk-averse decision rule   -  - 

Statistical decision rule   -  - 

Generalized linear           

Logistic regression   -  - 

Penalized regression   Alpha   0, 0.1, 0.2, … , 1 

   Lambda  0.01, 0.025, 0.05, 0.1, 0.15 

Non-linear          

Support vector machine   Kernel   𝑅𝑎𝑑𝑖𝑎𝑙 𝑏𝑎𝑠𝑖𝑠 

(SVM)   Cost  1, 2, … , 10 

   Inverse kernel width (sigma)   0.01, 0.025, 0.05, 0.1, 0.15 

       Geben Sie hier eine Formel ein. Artificial neural network   Activation function  𝑆𝑖𝑔𝑚𝑜𝑖𝑑 

(ANN)   No. of nodes in the hidden layer   1, 2, … , 10 

   Weight decay  0.1, 0.2, … , 0.5 

Tree-based ensemble           

Random forest (RF)     Splitting rule   𝐺𝑖𝑛𝑖 

   No. of ensembled trees  1500 

   Min. no. of samples in each leaf 

node 
 1, 5, 10, 20, 40 

   No. of predictors in each split  |𝐷𝑖|(0.1, 0.2, 0.4, 0.8, 1)   
       
Gradient boosting ma-

chines 
  Interaction depth  5, 10, 20, 40 

(GBM)   No. of ensembled trees   20, 40, 80, 160 

   Shrinkage  0.1, 0.4, 0.7, 1 

      Min. no. of samples in each leaf 

node 

  10, 40, 70, 100 

Notes: |𝐷𝑖| refers to the number of predictors for predictor-set 𝑖 with i ={P, A, LSG, LSGPA}. Except for the two naïve fore-

casting methods, we evaluate all models on the basis of four differently specified predictor-sets, resulting in 1750 individ-

ual model specifications.  

5.3 Cross validated accuracy results  

Table A23 shows the selected models’ hyperparameters according to the highest 10-fold CV mean 

accuracy. All other models’ hyperparameter values are set to their default values (detailed infor-

mation can be found in the corresponding R package documentation). However, we note that we 

evaluate the model performance on the same left-out CV observations for each round of CV.  
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Table A23. Selected model hyperparameters according to highest mean 10-fold CV accuracy 

Model: Elastic Dataset       

Hyperparameter P A LSG LSGPA 

Alpha 0.0 0.0 0.4 0.8 

Lambda 0.01 0.01 0.025 0.01 

CV Accuracy 0.61 0.60 0.85 0.85 

          

Model: SVM Dataset       

Hyperparameter P A LSG LSGPA 

Kernel Radial Radial Radial Radial 

Sigma 0.01 0.15 0.01 0.01 

Cost 10 5 7 3 

Accuracy 0.60 0.66 0.87 0.87 

          

Model: ANN Dataset       

Hyperparameter P A LSG LSGPA 

Activation function Sigmoid Sigmoid Sigmoid Sigmoid 

No. of neurons in the hidden layer 1 9 7 7 

Weight decay 0.4 0.4 0.5 0.5 

Accuracy 0.60 0.65 0.87 0.87 

         

Model: RF Dataset       

Hyperparameter P A LSG LSGPA 

Splitting rule Gini Gini Gini Gini 

No. of ensembled trees 1500 1500 1500 1500 

Min. no. of samples in each leaf node 1 10 5 1 

No. of predictors considered in each split 7 5 50 18 

Accuracy 0.60 0.64 0.86 0.87 

     
Model: GBM Dataset       

Hyperparameter P A LSG LSGPA 

Shrinkage 0.1 0.1 0.1 0.1 

Interaction depth 5 10 40 40 

Min. no. of samples in each leaf node 40 10 10 10 

No. of ensembled trees 160 80 160 160 

Accuracy 0.60 0.63 0.88 0.87 

Notes: We determined models’ hyperparameters via a systematic-grid search using 10-fold mean CV accuracy with 

subjects as strata. Training data include 6810 observations (80%) that are randomly drawn from the cleaned data using 

subjects as strata. We evaluate logistic and penalized linear regression models (Elastic), support vector machines 

(SVM), artificial neural networks (ANN), random forests (RF), and tree-based gradient boosting machines (GBM) on the 

basis of psychophysiological (P) and attention (A) choice-process predictors; lottery-design, socioeconomic character-

istics, and information on past gambling behavior (LSG); and a full-model that is comprised of all input categories 

(LSGPA).  

For all consecutive results reported in our study, we set the models’ hyperparameters to the values 

that yield the highest mean 10-fold CV accuracies.  
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Figure A7 shows the 10-fold CV accuracy results by model and predictor-set.  

Figure A7. 10-fold Cross validation classification accuracy for playing a 50/50-gamble 

 
Notes: Mean 10-fold CV accuracy on the basis of 6810 observations for playing a 50/50-gamble with one potential loss- 

and one win-outcome using subjects as strata in the random sampling process. We evaluate logistic (Logistic) and penal-

ized linear regression models (Elastic), support vector machines (SVM), artificial neural networks (ANN), random forests 

(RF), and tree-based gradient boosting machines (GBM) on the basis of psychophysiological (P) and attention (A) choice-

process predictors; lottery-design, socioeconomic characteristics, and information on past gambling behavior (LSG); and 

a full-model that is comprised of all input categories (LSGPA). Error bars correspond to 95% confidence intervals with re-

spect to the 10 CV fold-sets. The dashed lines correspond to the models that achieves the highest mean CV accuracy with 

respect to the different predictor-sets. The first solid line is a naïve forecast benchmark that yields a training data accuracy 

of 53% by predicting all records as not-playing, and the second solid line is a naïve forecast that yields an accuracy of 67% 

by predicting a lottery with EV<0 as not-playing and with EV≥0 as played. 

Table A24 shows the differences in models’ CV accuracy estimates together with pairwise t-tests 

for detecting significant differences on the basis of Bonferroni-adjusted p-values.  
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Table A24. Models’ differences in mean 10-fold CV accuracies and pairwise t-test results  

Data: P Accuracy Logistic Elastic SVM ANN RF GBM 

Logistic 0.60  -0.003 0.000 -0.001 -0.001 0.001 

Elastic 0.61 1.000  0.003 0.002 0.002 0.004 

SVM 0.60 1.000 1.000  -0.001 -0.001 0.001 

ANN 0.60 1.000 1.000 1.000  0.000 0.002 

RF 0.60 1.000 1.000 1.000 1.000  0.002 

GBM 0.60 1.000 1.000 1.000 1.000 1.000  

        

Data: A Accuracy Logistic Elastic SVM ANN RF GBM 

Logistic 0.60  0.000 -0.054 -0.047 -0.039 -0.031 

Elastic 0.60 1.000  -0.054 -0.047 -0.039 -0.031 

SVM 0.66 0.000 0.000  0.007 0.015 0.023 

ANN 0.65 0.000 0.000 1.000 0.008 0.008 0.016 

RF 0.64 0.000 0.000 0.061 1.000  0.008 

GBM 0.63 0.002 0.001 0.003 0.428 0.546  

        
Data: LSG Accuracy Logistic Elastic SVM ANN RF GBM 

Logistic 0.85  -0.002 -0.020 -0.025 -0.016 -0.027 

Elastic 0.85 1.000  -0.018 -0.023 -0.014 -0.025 

SVM 0.87 0.000 0.007  -0.005 0.004 -0.007 

ANN 0.87 0.000 0.000 1.000  0.009 -0.002 

RF 0.86 0.033 0.045 1.000 0.885  -0.011 

GBM 0.88 0.001 0.004 1.000 1.000 0.325  

        
Data: LSGPA Accuracy Logistic Elastic SVM ANN RF GBM 

Logistic 0.85  -0.002 -0.016 -0.018 -0.021 -0.019 

Elastic 0.85 1.000  -0.014 -0.016 -0.019 -0.017 

SVM 0.87 0.050 0.023  -0.002 -0.006 -0.003 

ANN 0.87 0.005 0.004 1.000  -0.004 -0.001 

RF 0.87 0.001 0.011 1.000 1.000  0.002 

GBM 0.87 0.009 0.006 1.000 1.000 1.000  

Notes: Mean 10-fold CV accuracy differences using 6810 observations for playing a 50/50-gamble with one potential 

loss- and one win-outcome using subjects as strata. The upper triangle shows the pair-wise estimates of accuracy dif-

ferences between models, and the lower triangle shows the Bonferroni adjusted p-values for pairwise t-tests for de-

tecting differences between models’ accuracies with 𝐻0 as a difference of zero. We evaluate logistic (Logistic) and pe-

nalized linear regression models (Elastic), support vector machines (SVM), artificial neural networks (ANN), random 

forests (RF), and tree-based gradient boosting machines (GBM) on the basis of psychophysiological (P) and attention 

(A) choice-process predictors; lottery-design, socioeconomic characteristics, and information on past gambling behav-

ior (LSG); and a full-model that is comprised of all input categories (LSGPA). Model hyperparameters are selected via a 

systematic grid-search based on 10-fold CV.  

5.4 Out-of-sample forecasting results 

The detailed out-of-sample results for all models, predictor-sets, and predictive classification 

measures are reported in Table A25. 
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Table A25. Model out-of-sample performance metrics over all lotteries 

Measure Logistic Elastic SVM ANN RF GBM Data 

Accuracy 0.62 0.60 0.60 0.61 0.59 0.58 P 

Lower accuracy 0.60 0.58 0.57 0.59 0.57 0.56 P 

Upper accuracy 0.64 0.63 0.62 0.63 0.61 0.61 P 

Sensitivity 0.49 0.44 0.49 0.47 0.48 0.46 P 

Specificity 0.74 0.75 0.69 0.73 0.69 0.69 P 

Positive predicted value 0.62 0.61 0.59 0.61 0.58 0.57 P 

Negative predicted value 0.62 0.60 0.60 0.61 0.60 0.59 P 

Balanced accuracy 0.62 0.60 0.60 0.61 0.59 0.58 P 

                

Measure Logistic Elastic SVM ANN RF GBM Data 

Accuracy 0.61 0.61 0.63 0.63 0.63 0.63 A 

Lower accuracy 0.59 0.59 0.61 0.60 0.60 0.61 A 

Upper accuracy 0.63 0.63 0.65 0.65 0.65 0.65 A 

Sensitivity 0.51 0.47 0.56 0.57 0.54 0.56 A 

Specificity 0.70 0.74 0.69 0.67 0.70 0.69 A 

Positive predicted value 0.60 0.61 0.62 0.61 0.62 0.62 A 

Negative predicted value 0.61 0.61 0.64 0.64 0.63 0.64 A 

Balanced accuracy 0.61 0.61 0.63 0.63 0.63 0.63 A 

                

Measure Logistic Elastic SVM ANN RF GBM Data 

Accuracy 0.86 0.85 0.87 0.87 0.86 0.87 LSG 

Lower accuracy 0.84 0.83 0.85 0.85 0.84 0.85 LSG 

Upper accuracy 0.88 0.86 0.88 0.88 0.87 0.88 LSG 

Sensitivity 0.86 0.84 0.87 0.86 0.85 0.86 LSG 

Specificity 0.86 0.86 0.87 0.87 0.86 0.87 LSG 

Positive predicted value 0.85 0.84 0.86 0.85 0.85 0.86 LSG 

Negative predicted value 0.87 0.85 0.88 0.88 0.87 0.88 LSG 

Balanced accuracy 0.86 0.85 0.87 0.87 0.86 0.87 LSG 

                

Measure Logistic Elastic SVM ANN RF GBM Data 

Accuracy 0.85 0.85 0.86 0.86 0.86 0.87 LSGPA 

Lower accuracy 0.84 0.83 0.84 0.85 0.84 0.86 LSGPA 

Upper accuracy 0.87 0.87 0.88 0.88 0.88 0.89 LSGPA 

Sensitivity 0.86 0.85 0.87 0.87 0.86 0.85 LSGPA 

Specificity 0.85 0.86 0.86 0.86 0.86 0.89 LSGPA 

Positive predicted value 0.84 0.84 0.84 0.85 0.84 0.87 LSGPA 

Negative predicted value 0.87 0.86 0.88 0.88 0.88 0.87 LSGPA 

Balanced accuracy 0.85 0.85 0.86 0.86 0.86 0.87 LSGPA 

Notes: Out-of-sample accuracy for playing a 50/50 gamble. Test [training] data consist of 1688 [6810] records and the 

models’ hyperparameters are chosen as the values that yield the highest mean 10-fold CV accuracy using subjects as 

strata. We evaluate two naïve benchmark forecasts (RDR and SDR), logistic (Logistic) and penalized linear regression 

models (Elastic), support vector machines (SVM), artificial neural networks (ANN), random forests (RF), and tree-based 

gradient boosting machines (GBM) on the basis of psychophysiological (P) and attention (A) choice-process data; lot-

tery-design, socioeconomic characteristics, and information on past gambling behavior (LSG); and a full-model is com-

prised of all input categories (LSGPA). Models’ hyperparameters were determined via a systematic grid-search using 

10-fold CV and subjects as strata.  
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To assess the importance of CPD on forecasting risky choices for NEVL and PEVL across models’ test 

results by individual subjects, in Figure A8, we present the predictor-set- and subject-specific out-

of-sample accuracy results for NEVL, PEVL, and the difference between NEVL and PEVL. To highlight 

differences across subjects’ accuracy results, we separately use a hierarchical k-means clustering 

approach with respect to the corresponding subject-model-specific accuracy results for NEVL, PEVL, 

and the difference between NEVL and PEVL.    

Figure A8. Out-of-sample classification accuracy for playing a 50/50-gamble for individual subjects 

by method and lotteries’ expected values 

 
Notes: Out-of-sample accuracy results for 44 subjects for negative expected value lotteries (NEVL) positive expected value 

lotteries (PEVL), and the difference between NEVL and PEVL for playing a 50/50 gamble. Test [training] data consist of 

1688 [6810] records and the models’ hyperparameters are chosen as the values that yield the highest mean 10-fold CV 

accuracy using subjects as strata. In this Figure, we use k-means clustering to highlight differences across subjects-model-

specific accuracy results across PEVL, NEVL and differences between NEVL and PEVL results. We evaluate logistic and pe-

nalized linear regression models (Elastic), support vector machines (SVM), artificial neural networks (ANN), random for-

ests (RF), and gradient boosting machines (GBM) on the basis of psychophysiological (P) and attention (A) choice-process 

predictors; lottery-design, socioeconomic characteristics, and information on past gambling behavior (LSG); and a full-

model that comprises all input categories (LSGPA). RDR is naïve forecast that predicts all records as not-playing, and SDR 

results from predicting a lottery with NEV (EV<0) as not-playing and PEV (EV≥0) as played.  
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Figure A8 supports our previous findings with respect to systematic differences in models’ forecast-

ing capabilities between subject-specific NEVL and PEVL choices. The corresponding subjects are 

characterized by the large differences within their NEVL results (red vs. green) and between their 

NEVL and PEVL results (red vs. blue). For example, the A-Logistic, A-Elastic, P-Logistic, P-Elastic, and 

P-ANN result in more 100% accurate forecasts for individual subjects for NEVL than all other A and 

P model-predictor-set combinations. In addition, they are the model-predictor-set combinations 

that show the highest number of subject-specific forecast differences between NEVL and PEVL (blue 

shaded areas). For LSG and LSGPA, both provide information on lotteries’ payoff structures, and all 

evaluated forecasting methods produce accurate forecasts for the vast majority of subjects, espe-

cially for NEVL. Concisely, in contrast to PEVL, many subjects strictly reject NEVL, although a small 

number of subjects play a relatively large share of NEVL. As a result, for the vast majority of subjects, 

classification accuracy for the predictor-sets that include information on the lotteries’ payoff struc-

ture is substantially higher for NEVL when compared with PEVL.  
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