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Abstract: We discuss the top-antitop production cross section near threshold at a future

linear collider accounting for the NNLL QCD corrections to the anomalous dimension of

the leading S-wave production current computed recently within renormalization-group-

improved NRQCD perturbation theory. We argue that the still unknown soft NNLL mixing

corrections are negligible so that the NNLL QCD corrections to the total cross section

can be considered complete for practical purposes. Based on combined variations of the

renormalization and matching scales and the overall size of the perturbative corrections

we estimate that the NNLL QCD total cross section has a normalization uncertainty of

dσ/σ = 5% at threshold. We present results for the total cross section and also for the

experimentally more relevant case, when moderate cuts are imposed on the reconstructed

top and antitop invariant masses.
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1 Introduction

The measurement of the top-antitop resonance line-shape is a major goal at a future linear

collider (LC) [1]. It will allow for a precise determination of the top quark mass with

unambiguous control over the renormalization scheme as well as the width and the couplings

of the top quark and therefore provides crucial input for tests of the Standard Model (SM).

A precise and unambiguous measurement of the top quark mass is also important for

vacuum stability studies and the analyses of many new physics models. In particular

the c.m. energy, where the cross section starts to rise, i.e. the position of the resonance

peak, is very sensitive to the top quark mass. Experimental studies on the scan of the

cross section line-shape [2, 3] including precise knowledge of the e+e− luminosity spectrum

have shown that a top mass experimental uncertainty well below 100 MeV is feasible.

On the other hand, other parameters like the strong coupling αs, the decay width of

the top Γt or the top Yukawa coupling can be extracted from the normalization and the

shape of the cross section in the peak region. The expected accuracy of the experimental

data from a threshold scan requires a very precise theoretical prediction for the cross

section in the resonance region. Since nonperturbative effects in top-antitop production

are sufficiently suppressed due to the large top quark width [4], high-order perturbative

calculations using nonrelativistic effective field theories (EFT’s) based on NRQCD [5] can

in principle yield theoretical uncertainties that can compete with the experimental ones.

Nevertheless, reaching predictions with small theoretical uncertainties has proven to be a

nontrivial task [6].

The bound-state like dynamics of the top-antitop system close to threshold is governed

by (at least) three physical scales: the mass m, the 3-momentum ∼ mv and the kinetic

energy ∼ mv2 of the top quarks in the c.m. frame. They are referred to as the hard, the

soft and the ultrasoft scale, respectively. For the typical velocities in the resonance region
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(v ∼ 0.1− 0.2) we are therefore confronted with a multi-scale problem and the top-antitop

system becomes sensitive to scales (soft, ultrasoft) that are substantially lower than the

top mass. In NRQCD the strong hierarchy among the physical scales is exploited in order

to resum ’Coulomb-singular’ terms ∼ (αs/v)n to all orders in perturbation theory using

a Schrödinger equation. This resummation is crucial to correctly describe the behavior of

the cross section at and near threshold. Higher order corrections (in αs and v) to the lead-

ing order (LO) Coulomb resummed result are obtained using nonrelativistic perturbation

theory. Calculations that account for the resummation of the Coulomb-singular terms in

the context of perturbative NRQCD are commonly called “fixed-order” computations.

At the next-to-next-to-leading order (NNLO) level such fixed-order calculations were

achieved by a number of groups [7–13]. In Ref. [6] a common effort was made to estimate

the uncertainties of the NNLO total threshold cross section. The position of the visible

top-antitop 1S bound state resonance is very stable when short-distance threshold mass

schemes are employed for the top quark in order to avoid an intrinsic renormalon ambiguity

of O(ΛQCD) in the perturbative expansion. This allows for theoretical uncertainties in the

top quark mass determinations at the 100 MeV level, which matches well with the expected

experimental error. On the other hand, it was estimated that the normalization of the

threshold cross section has uncomfortably large uncertainties at the level of ±20%, which

would make precise measurements of the top width and couplings impossible. To match

the expected experimental precision at a future LC [2, 3] a normalization uncertainty of

around 3% should be achieved in the theoretical predictions. By now fixed-order partial

results have been obtained at N3LO, see e.g. Refs. [14–18] and we refer to Ref. [19] for a

preliminary analysis.

Some time ago extensions of the NRQCD formalism have been devised, notably pN-

RQCD [20, 21] and vNRQCD [22–24], which in addition to the Coulomb-singular terms

allow the resummation of logarithms of the heavy quark velocity (ln v) related to ratios of

the hard, soft and ultrasoft scales. Predictions that systematically account for the summa-

tion of velocity logarithms are called “renormalization-group-improved” (RGI) calculations

and may stabilize the normalization of the top threshold cross section.1 In this paper we

work in the vNRQCD framework, which features a modified renormalization group (RG)

with a “subtraction velocity” ν that parametrizes the correlation between the soft renor-

malization scale, µS = ν µh and the ultrasoft renormalization scale, µU = ν2µh (reflecting

the kinematic correlation between the nonrelativistic kinetic energy and 3-momentum),

where µh ∼ m is the hard scale at which the matching of the EFT to full QCD is per-

formed. In the following we denote the strong coupling αs at the hard, the soft and the

ultrasoft scale as αh ≡ αs(µh), αS ≡ αs(µS) and αU ≡ αs(µU ), respectively, whenever the

distinction is necessary.

1RGI and fixed-order approaches yield similar results concerning theoretical uncertainties in the de-

termination of the top quark mass in proper short-distance mass schemes, because these schemes involve

infrared subtractions to directly stabilize the 1S ground state top-antitop binding energy. In the RGI and

the fixed-order approaches these subtractions are carried out consistently w.r.t. the treatment of the higher

order velocity logarithms and thus lead to comparable stabilizations of the observable ground state peak

energy.
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Upon resummation of the singular terms ∝ (αs/v)n and ∝ (αs ln v)n the RGI R-ratio

close to the top-antitop threshold schematically takes the form (σµ+µ− = 4πα2/(3s))

R =
σtt̄

σµ+µ−
= v

∑
k

(
αs
v

)k∑
i

(αs ln v)i ×
{

1 (LL); αs, v (NLL); α2
s, αsv, v

2 (NNLL); . . .

}
,

(1.1)

where we adopt the counting v ∼ αs � 1 and αs ln v ∼ 1 to comply with the Coulombic

bound-state-like nature of the resonance [11, 25, 26] and indicated the terms belonging to

leading-logarithmic (LL) order, next-to-leading logarithmic (NLL) order, etc..

Partial results for the top-antitop total threshold cross section in RGI perturbation

theory at NNLL order have already been presented in Refs. [25–27] some time ago. Their

results suffered from the missing NNLL anomalous dimension of the dominant S-wave top

pair production current, which at that time was believed to be small. Within this ap-

proximation Refs. [25, 26] estimated 2-3% theoretical uncertainties for the cross section

normalization based on variations of the subtraction velocity parameter ν. The analysis

of Ref. [27] confirmed the findings, but pointed out that the variation associated with the

matching scale µh is significantly larger and that an uncertainty of 10% should be assigned

to this partial NNLL order prediction. Subsequently, a substantial amount of work was

invested in computing the missing NNLL corrections to the anomalous dimension of the

dominant S-wave production current. These NNLL corrections consist of two contribu-

tions, the non-mixing corrections related to the UV-divergences of three-loop vNRQCD

vertex diagrams and the mixing corrections related to the NLL evolution of the potential

coefficients entering the NLL anomalous dimension of the current. The calculation of the

complete set of non-mixing contributions2 from all three-loop (soft and ultrasoft) vertex

diagrams [28] revealed that the non-mixing corrections from ultrasoft gluon diagrams are

extremely large, questioning the conclusions drawn in Refs. [25–27], see Ref. [29]. Recently

the full set of ultrasoft mixing corrections from the subleading RG evolution of the po-

tential coefficients [30–32] has become available [32].3 The results show that the ultrasoft

mixing and non-mixing NNLL corrections to the evolution of the production current are

both anomalously large, but that there are substantial cancellations between them. This

appears to render NNLL predictions for the top pair threshold cross section with QCD

uncertainties at the level of a few percent feasible [33].

Up to now the full set of all available NNLL QCD corrections have not been applied

to the top threshold cross section. It is the aim of this paper to fill this gap and carry

out such an updated NNLL analysis with the intention to assess the QCD uncertainties

including the effects of combined variations of the soft and ultrasoft renormalization scales

µS and µU as well as the matching scale µh. Currently the only missing contributions for a

complete NNLL QCD prediction are the NNLL mixing corrections from soft and potential

diagrams contributing to the NLL evolution of the subleading potentials. We argue that the

2Expanded in fixed-order the velocity logarithms summed by the NNLL non-mixing corrections appear

at N3LO and beyond. At N3LO they arise as single logarithmic terms.
3Expanded in fixed-order the velocity logarithms summed by the ultrasoft NNLL mixing corrections

appear at N4LO and beyond. At N4LO they arise as double logarithmic terms.
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uncertainty due to these unknown soft mixing corrections is negligible (see also Refs. [33,

34]) so that the QCD predictions at the NNLL level can be considered complete from

the practical point of view. We find that accounting for the recently determined ultrasoft

NNLL mixing corrections does indeed lead to a substantial stabilization of the results found

in Ref. [28]. Moreover, we also observe that the large matching scale dependence reported

on in Ref. [27] is reduced considerably. Overall we find that the NNLL normalization

uncertainty in the top threshold cross section in the RGI approach from QCD effects is

dσ/σ = 5%, and that this estimate is fully consistent with the size of the corrections.

This closely approaches the theoretical normalization uncertainty of 3% aimed for in the

theoretical predictions.

It has been pointed out in Ref. [35] that the pure NRQCD total cross section contains

a sizable unphysical contribution that is related to the leading order effective theory im-

plementation of the top quark width Γt. The width effectively shifts the energy into the

complex plane, E → E + iΓt, prior to taking the absorptive part of the forward scatter-

ing amplitude. This unphysical contribution arises since using the optical theorem within

NRQCD strongly overestimates phase space regions of top decay final states from (anti)top

quarks with high virtuality. Thus to achieve a realistic theoretical prediction for the top

threshold cross section it is necessary to include electroweak effects beyond the complex en-

ergy shift related to the top quark width. This also includes contributions from irreducible

background processes which have the same final state as top pair production [35–40]. It

was demonstrated in Ref. [35] that the by far largest of these electroweak effects is con-

nected to the implementation of phase space cuts on the top and antitop decay products,

which in fact remove the unphysical phase space contributions. It was in particular shown

that imposing moderate invariant mass cuts on the pure (NR)QCD prediction with the

complex energy shift gives a much more realistic description of the total cross section near

threshold.

Thus besides studying the total NRQCD cross section based on the optical theorem we

will also examine the more realistic case, when loose invariant mass cuts are applied to the

decay products of both, the top and the antitop. Concerning the other electroweak effects

we only account for the decay of the top quark at leading order through the complex

energy shift. We refer to Refs. [35–40] for a more systematic discussion of higher order

electroweak corrections. It is straightforward to combine them with our results, and they

can therefore be studied independently. For the prediction of the inclusive (total) cross

section the dominant theoretical error anyway originates from perturbative QCD effects.

Hence our treatment of electroweak effects is sufficient for the purpose of this work. Overall

we find that the behavior of the QCD effects and in particular the QCD uncertainties of the

NNLL cross section are not affected by phase space cuts. We finally note that we consider

the 1S mass [8] defined as half the perturbative (QCD) contribution to the 3S1 ground state

of would-be toponium as the short-distance mass in our analysis. For alternative threshold

schemes suggested in the literature we refer to Refs. [8, 41, 42].

The content of this work is as follows: In Sec. 2 we briefly review the vNRQCD calcula-

tion of the RGI total tt̄ threshold cross section and summarize the results for the different

contributions to NNLL order. We also argue that the present status of the calculation
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allows for a very good approximation of the full NNLL cross section and that the error

related to the missing NNLL terms is negligible compared to the perturbative uncertainty

of the complete NNLL result. In Sec. 3 we perform combined variations of the renormal-

ization and matching scales in the NNLL vNRQCD expression for the total inclusive cross

section and compare the resulting uncertainties to previous analyses. Section 4 addresses

the effect of invariant mass cuts for the decay products of the top and antitop quark and

gives our final estimate for the overall perturbative uncertainty of the physical cross section

at NNLL. We conclude in Sec. 5.

2 The NNLL Total Cross Section

In the following we briefly review the theory setup for the vNRQCD prediction of the

top-antitop threshold cross section at NNLL order concentrating mainly on the new NNLL

mixing corrections to the anomalous dimension of the leading order S-wave current [32–34].

For details on the other theoretical input we refer to Refs. [24–26, 28].

We consider the production of the top-antitop pair in e+e− collisions mediated by a

virtual photon or Z boson with the c.m. energy
√
s. The R-Ratio for the total cross section

therefore has vector and axial-vector contributions:

Rγ,Z(s) = σtot(e
+e− → γ∗, Z∗ → t t̄ )/σµ+µ− = F v(s)Rv(s) + F a(s)Ra(s) . (2.1)

Employing the optical theorem the Rv,a can be related to current-current correlators,

Rv(s) =
4π

s
Im

[
−i
∫
d4x ei

√
s t
〈

0
∣∣T jvµ(x) jvµ(0)

∣∣ 0
〉 ]

,

Ra(s) =
4π

s
Im

[
−i
∫
d4x ei

√
s t
〈

0
∣∣T jaµ(x) jaµ(0)

∣∣ 0
〉 ]

. (2.2)

The respective prefactors F v(s), F a(s) account for the (tree-level) γ and Z exchange and

are given e.g. in Ref. [26]. The Standard Model (SM) currents jvµ and jaµ produce the heavy

quark pair in a vector and an axial-vector state, respectively. In the effective theory these

currents are replaced by their nonrelativistic counterparts through an operator product

expansion and we find to NNLO in the v counting

Rv(s) =
4π

s
Im
[
c2

1(ν, h)A1(v,m, ν, h) + 2 c1(ν, h) c2(ν, h)A2(v,m, ν, h)
]
,

Ra(s) =
4π

s
Im
[
c2

3(ν, h)A3(v,m, ν, h)
]
. (2.3)

For later reference we not only indicate the renormalization scale dependence of the various

ci andAi terms in Eq. (2.3) through the RG parameter ν but also their dependence (explicit

or implicit) on the matching scale through the matching parameter h ≡ µh/m. Both ν

and h are dimensionless. Throughout this paper we are employing the MS scheme for

renormalization (and matching). In the remainder of this section we discuss the individual

terms in Eq. (2.3) in some detail.
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The effective current correlators

Ai(v,m, ν, h) = i
∑
p,p′

∫
d4x ei(

√
s−2m)t

〈
0
∣∣∣T Ji,p(x)J†i,p′(0)

∣∣∣ 0〉 , (2.4)

have a well-defined scaling in the nonrelativistic velocity v. In Eq. (2.3) for instance A2 and

A3 are v2-suppressed compared to the LO correlator A1. The correlator A1 is determined

from the S-wave zero-distance Green function of the Schrödinger equation for the top-

antitop system. Following Refs. [25, 26] we use a semi-analytic approach to calculate A1,

where all effects from the Coulomb potential (including its corrections up to NNLL order,

i.e. O(α3
S)), are accounted for exactly through a numerical solution for the Green function

using the TOPPIK program [8] and all O(v2) corrections are determined analytically using

the results from Ref. [26] with the updates concerning the convention for the 1/(mk)

potential given in Refs. [24, 28]. For the v2-suppressed correlators A2,3 we employ the

analytic results given in Ref. [26].

The ci in Eq. (2.3) are the Wilson coefficients in the nonrelativistic expansion of the

vector and axial-vector SM currents in Eq. (2.2). The results for c2 and c3 have been

given analytically in Ref. [26]. Since they multiply the v2-suppressed correlators A2,3, the

numerical impact of their anomalous dimensions is quite small. Their contribution is not

significant for the perturbative uncertainties, but included of course for completeness. The

term c1 is the Wilson coefficient of the leading 3S1 effective current

J1,p = ψ†p σ(iσ2)χ∗−p , (2.5)

where the field operators ψp and χp (in the vNRQCD label notation, with suppressed color

indices) annihilate top and antitop quarks with soft three-momentum p, respectively. At

the LL order c1 is renormalization scale invariant. The NNLL order anomalous dimen-

sion contains the previously mentioned mixing and non-mixing corrections according to

Refs. [32, 33] and Ref. [28], respectively.

When electroweak effects and the top quark decay are accounted for beyond the leading

order level, the top pair threshold cross section has to be defined through the top decay

final state and the form of the Eqs. (2.2) and (2.3) needs to be extended due to interference

contributions involving non-tt̄ amplitudes and irreducible background. Moreover, the cross

section becomes intrinsically dependent on cuts applied on the tt̄ final state. For details we

refer to Refs. [35–37]. As mentioned above, the aim of this work is to study the perturbative

uncertainties from QCD effects at the NNLL order level. Concerning the electroweak effects

we account (i) for the top quark on-shell width and (ii) for cuts on the reconstructed top

and antitop invariant masses. The top quark width is implemented in the optical theorem

relation Eq. (2.3) by using the common complex definition

v =

√√
s− 2m+ iΓt

m
(2.6)

for the effective velocity. This approach to implement the top quark width is known

to fully account for electroweak effects at the leading order level [4] (using the counting
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v2 ∼ α2
s ∼ αew) but also entails that the QCD cross section based on Eq. (2.3) receives the

sizable contributions from unphysical phase space regions associated with arbitrary large

top and antitop invariant masses. The problem is related to the nonrelativistic expansion

in the large top quark mass and leads to an unphysical enhancement of the total cross

section in Eq. (2.3) that, formally, acts like a background contribution. In a full treatment

of electroweak effects, the form of Eq. (2.3) has to be extended by additive contributions

from local (e+e−)(e+e−) forward scattering operators, and all Wilson coefficients in gen-

eral receive complex contributions through electroweak matching conditions [35–37], see in

particular Eq. (26) in Ref. [35].

It has been demonstrated in Ref. [35] that the unphysical phase space contributions

just mentioned (and the corrections related to removing them) contribute at the next-to-

leading order level and constitute the by far largest numerical electroweak matching effects.

It has also been shown how these unphysical phase space contributions arise within the

NRQCD effective theory diagrams and, that they can be computed by imposing a cut ∆M

on the top and antitop invariant masses in NRQCD phase space integrations:

(m−∆M) ≤Mt,t̄ ≤ (m+ ∆M) , (2.7)

where Mt,t̄ is the (anti)top reconstructed invariant mass. In fact, genuine electroweak

effects related to background contributions are so much smaller that the NRQCD cross

section based on Eq. (2.3) with NRQCD cuts on the top and antitop invariant masses

represents a much better approximation to the physical total cross section than Eq. (2.3)

when only the width effect (i) is accounted for [35]. We note that instead of employing the

full set of analytic phase space matching conditions for the (e+e−)(e+e−) forward scattering

operators discussed in detail in Ref. [35], we use these analytic results in our analysis only

for A2 and A3 as well as for the O(v2) suppressed contributions in A1. The corresponding

terms are given in Eqs. (54), (55), (71) in Ref. [35], where we do not account for the

interference contributions and time dilatation corrections related to the top width. For the

Coulomb interaction contributions in Ac1 we implement the invariant mass cuts numerically

using an explicit phase space integration for the tt̄ final state and the exact numerical result

for the square of the top quark 3-momentum distribution, see Eqs. (79) and (44), (46) in

Ref. [35]. The 3-momentum distribution is also computed by the TOPPIK routine and we

refer to Ref. [8] for details. Since we ignore all other electroweak and top width related

corrections and in particular also the anomalous dimensions of the (e+e−)(e+e−) forward

scattering operators our results do not account for a systematic summation of logarithms

(of v) multiplied by the electroweak couplings. Note that we calculate the effects from the

invariant mass cuts in the Ai correlators with all couplings and potential coefficients at the

low energy scales of the correlators. So for the purpose of our analysis we do not treat the

contributions from the invariant mass cuts as hard corrections.

For the implementation of the 1S top quark mass scheme its relation to the pole mass

scheme is required. At NNLL order it reads

Mpole = M1S{1 + ∆LL + ∆NLL + [(∆LL)2 + ∆NNLL
c + ∆NNLL

m ]} , (2.8)
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where the various ∆ terms are given in Ref. [26] and the additional modifications due to

keeping h 6= 1 as a free parameter are described in Ref. [34]. The terms ∆LL,NLL and

∆NNLL
c arise from the Coulomb potential (including its subleading corrections) and ∆NNLL

m

refers to the relativistic O(v2)-term from all other non-Coulomb interactions and kinematic

corrections. As already explained in Ref. [26] ∆LL,NLL and ∆NNLL
c are implemented exactly

within the numerical solution for the contribution to A1 arising from the Coulomb inter-

actions. The corrections due to ∆NNLL
m are consistently treated perturbatively and give an

analytic O(v2) contribution to A1. In the v2-suppressed correlators A2,3 only the LL term

∆LL is required. In the following we use the notation m ≡M1S .

Since we want to study also variations of the matching scale we retain the explicit h

dependence of the terms in Eq. (2.3). While in the earlier literature often only expressions

for h = 1 can be found, the nontrivial h-dependence in the current coefficient c1(ν, h)

has been worked out in Ref. [34]. To NNLL the current correlators Ai correspond to

vNRQCD matrix elements with only soft and potential interactions. Therefore their only

explicit dependence on renormalization/matching scales is through µS . Thus the explicit

h-dependence of the Ai’s is trivially obtained by replacing ν → hν in the results for h = 1

as given in Ref. [26]. The coefficients c2 and c3 are only needed at LL. At this order they

do not explicitly depend on the matching scale. Implicit h-dependence of all contributions

to the cross section through the strong coupling constant αs evaluated at the different

renormalization/matching scales (αh ≡ αs(µh), αS ≡ αs(µS) and/or αU ≡ αs(µU )) is

understood. This includes in particular the implicit h-dependence through the Wilson

coefficients Vj(αS , αU ) of the potentials in the Ai correlators.

As outlined above, all terms in the NNLL cross section, Eq. (2.3), except for c1(ν, h),

the coefficient of the leading top pair production current, are known to the required pre-

cision. This is also true for the matching condition c1(1, h), which has been calculated up

to two loops [43, 44]. The most recent progress towards the complete RGI cross section,

Eq. (2.1), at NNLL order has been made in the computation of the RG running of c1(ν, h).

To summarize the different contributions to the RG evolution of c1 we parametrize it as

ln
[c1(ν, h)

c1(1, h)

]
= ξNLL(ν, h) +

(
ξNNLL

m (ν, h) + ξNNLL
nm (ν, h)

)
+ . . . , (2.9)

where ξNLL refers to the NLL order contribution and the ξNNLL
m and ξNNLL

nm to the NNLL

order mixing and non-mixing corrections, respectively. The matching condition c1(h, 1)

and the expressions for the ξ’s can be found in App. B of Ref. [34] and the references cited

there.

Based on the recently completed calculation of the ultrasoft NLL running of the Wilson

coefficients associated to the O(v2)- and O(αsv)-suppressed potentials [30–32], the ultrasoft

mixing contributions to ξNNLL
m , referred to as ξNNLL

m,usoft, have been determined in Ref. [32].

Concerning the corresponding soft mixing contributions currently only those coming from

the NLL order anomalous dimension of the spin-dependent O(v2)-suppressed potential are

fully known and found to be tiny [45]. On the other hand, because the NLL matching

conditions of all the suppressed potentials are known, it is possible to compute the fixed-
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order term ∝ α3
s ln ν of the soft mixing contributions, which we call ξNNLL

m,soft1:

ξNNLL
m,soft1 =

α3
h

48π
C2
F

[
CA

(
16S2 − 3

)
+ 4CF

(
5− 2S2

)
− 16

5
TF

]
ln ν

+
α3
h

12π
C2
F

[
CA

(
7S2 − 17

)
− 2CF

]
lnh ln ν . (2.10)

The result in Eq. (2.10) has already been given in Ref. [28] for the special case h = 1. We

include the lnh term here for completeness, but its numerical effect is irrelevant. For ν ∼ v
the soft mixing logarithm ξNNLL

m,soft1 is part of the N3LO result in the fixed-order expansion.

By including it in our analysis we make sure that we correctly incorporate all logarithmic

terms through N3LO: ξNNLL
m,soft = ξNNLL

m,soft1 +O(α4
S ln2 ν).

The NNLL order non-mixing contributions in ξNNLL
nm , both, the ultrasoft as well as the

soft contributions, are completely known already from Ref. [28].4 In the same publication

it was observed that the ultrasoft non-mixing contributions are more than an order of

magnitude larger than the soft ones, and that the smallness of the latter was not arising

from any accidental cancellation between different color factors but was a genuine property

of all soft non-mixing contributions. On the other hand, the large size of the ultrasoft

contributions was not only due to the larger ultrasoft coupling αU > αS , but also due to a

rather large overall coefficient in the ultrasoft NNLL anomalous dimension. As was shown

in Refs. [32–34] also the ultrasoft mixing corrections ξNNLL
m,usoft are anomalously large. They

have the opposite sign w.r.t. ξNNLL
nm,usoft and lead to a significant cancellation. Still the sum

ξNNLL
m,usoft + ξNNLL

nm,usoft is about 20 times larger than ξNNLL
nm,soft.

Although the complete soft NNLL mixing corrections ξNNLL
m,soft are still unknown, we ar-

gue in the following that their contribution is small and in fact negligible in view of the re-

maining perturbative uncertainty due to the NNLL ultrasoft corrections, ξNNLL
m,usoft +ξNNLL

nm,usoft.

To estimate the theory error of the NNLL prediction due to the missing soft mixing log-

arithms in c1 we have plotted the RG running of c1 including all known corrections to

NNLL (h = 1, red solid line) in Fig. 1a enclosed in the red band generated by varying

the soft non-mixing contributions by a factor between zero and two. For comparison we

also show the NLL RG evolution of c1 (blue dashed line) in the same panel. The small

numerical size of the soft NNLL non-mixing corrections is evident. In fact, their effect is

smaller than the perturbative uncertainty that arises from scale variations of the ultrasoft

NNLL corrections in the ν-range between 0.1 and 0.2. We now argue that the complete

soft mixing corrections are very likely of similar size as the small NNLL soft non-mixing

corrections.

In Fig. 1b we have plotted all known soft and ultrasoft mixing as well as non-mixing

corrections of NNLL order for h = 1. The curve for ξNNLL
nm,soft1 denotes the linear logarithmic

terms α3
s ln ν contained in the NNLL soft non-mixing corrections. We see that ξNNLL

nm,soft1

and ξNNLL
m,soft1 have very similar size, in fact we have ξNNLL

m,soft1/ξ
NNLL
nm,soft1 ≈ 1.5 for h = 1. On

the other hand the first NNLL soft non-mixing logarithm already represents the bulk of

the resummed result: 0.7 < ξNNLL
nm,soft1/ξ

NNLL
nm,soft < 0.9 for 0.1 < ν < 0.5, as is clearly visible

4The non-mixing term ξNNLL
nm is not yet available in the pNRQCD formalism.
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Figure 1. Panel a): RG evolution of the 3S1 current coefficient c1(ν) ≡ c1(ν, 1) normalized to

c1(1) ≡ c1(1, 1) for m = 172 GeV and h = 1. The blue dashed line represents the full NLL result

exp(ξNLL). The red solid curve labeled ”NNLL” includes in addition all known NNLL corrections:

exp(ξNLL + ξNNLL
nm + ξNNLL

m,usoft + ξNNLL
m,soft1). The light red band around the NNLL line is generated

by varying the NNLL soft non-mixing contribution to that curve by a factor between 0 and 2.

The black dotted line displays the complete N3LO fixed-order expression for c1(ν)/c1(1) given in

Eq. (A.1). Panel b): Separate curves for the different (soft/ultrasoft, mixing/non-mixing) NNLL

corrections (ξNNLL) to the running of c1 as indicated in the plot. For both plots we have used

α
(nf=5)
s (172 GeV) = 0.108.

in Fig. 1b. Assuming a similar behavior for the NNLL soft mixing logarithms we believe

it is safe to argue, that the full NNLL result for c1 should lie well within the error band

in Fig. 1a. The gap between the NLL and the NNLL curve in Fig. 1a as well as the

residual ν dependence of the NNLL result is much larger than the width of this band. We

therefore conclude, as already indicated, that we can safely neglect the uncertainty due to

the unknown NNLL soft mixing logarithms in the running of c1 as compared to the residual

scale uncertainties that the cross section exhibits due to the NNLL ultrasoft corrections.

The outcome of this consideration remains unchanged for different values of h between one

half and two. In the following we will therefore regard the result for the total top-antitop

production cross section in Eqs. (2.1), (2.3) as complete through NNLL.

In Fig. 1a we have also added a curve for the fixed-order expansion of c1(ν, 1)/c1(1, 1)

in αh to N3LO (black dotted line). The corresponding analytic expression is given explic-

itly in Eq. (A.1). Note that this expression is the complete N3LO fixed-order result for

c1(ν, h)/c1(h). Hence the difference of the black dotted line to the solid red one shows the

effects of the resummed NNLL logarithms in the current coefficient from beyond N3LO. We

see that these higher order contributions are essential for reaching stability in the region

ν < 0.2, which is crucial for predictions of the top-antitop cross section in the peak region.

3 Analysis of QCD Uncertainties

In our numerical analysis we allow for variations of the hard matching scale as well as

the soft and ultrasoft renormalization scales subject to the following physically motivated

constraints:
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1. At all times we maintain the correlation µU ∝ µ2
S/m and we impose the constraint

that at the matching point we have µS = µU = µh such that the soft and the ultrasoft

renormalization scale can never exceed the matching scale µh.

2. We consider variations of the matching scale in the canonical range m/2 ≤ µh ≤ 2m.

3. We consider variations of the ultrasoft scale in the range µ∗U/2 ≤ µU ≤ 2µ∗U , where

µ∗U ≡ mν2
∗ is an energy-dependent default choice for the ultrasoft scale with the

default subtraction velocity ν∗ being related to the typical velocity.

Constraint 1 implies a strict correlation which allows only for a twofold variation. We

therefore parametrize

µh = hm , µS = ν hm , µU = ν2 hm , (3.1)

where ν = 1 corresponds to the matching point. For the energy-dependent default sub-

traction velocity ν∗ we adopt the expression

ν∗ = 0.05 +

∣∣∣∣
√√

s− 2m+ iΓt
m

∣∣∣∣ . (3.2)

The small constant offset is motivated by the observation from Ref. [34] that the typical

subtraction velocity scale in the n-th moment of the heavy quark pair threshold cross

section can be parametrized very well by the form const.+ 1/
√
n, where 1/

√
n is of order

of the typical velocity. We have chosen 0.05 for the offset accounting for the fact that the

velocities in the top quark case are substantially smaller than for the bottom quark case

that was considered in Ref. [34]. Together with Eq. (3.2) constraint 3 ensures that the

ultrasoft scale always remains in the perturbative regime µ∗U/2 > 0.01m. In Ref. [27] the

choice ν∗ = 2 v was employed, which leads to similar results in the near-threshold region we

consider in this work, but leads to an imbalance of the scale hierarchies in the intermediate

region where the NRQCD cross section might be merged with the full QCD cross section.

We also define the energy-independent scaling parameter f = ν/ν∗. All scale variations

consistent with the constraints 1-3 can then be conveniently translated into variations of

the variables f and h with the restrictions

1/2 ≤ hf2 ≤ 2 , 1/2 < h < 2 . (3.3)

The corresponding region in the two-dimensional h-f plane is illustrated by the red area

in Fig. 2.

Before starting our discussion it is instructive to briefly recall the analyses and con-

clusions of the three previous analyses by Hoang et. al. [26], by Pineda and Signer [27] and

Hoang [29], which were based on RGI NRQCD calculations. At the time of the analysis

of Ref. [26] the NNLL anomalous dimension of the current Wilson coefficient c1 were still

unknown and the numerical examinations were carried out setting ξNNLL
m + ξNNLL

nm = 0.

This means that their results were missing the sizable positive correction coming from the

NNLL order evolution in the square of the Wilson coefficient c1 visible in the left panel of
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Figure 2. Scale variations parametrized by h = µh/m and f = ν/ν∗. The region bounded by the

red line is defined by 1/2 ≤ hf2 ≤ 2 and 1/2 < h < 2 and represents the parameter space we scan

to determine the uncertainty of the cross section due to scale variations. The red dot indicates our

default choice for the scale parameters h and f . The blue lines correspond to the scale variations

studied in Ref. [27] defined w.r.t. a different ν∗ definition (ν∗ = 0.185 compared to our ν∗ = 0.143

for
√
s = 2m). The matching scale variation in Ref. [27] corresponds to a correlated h-f variation

in our parametrization.

Fig. 1. Hoang et al. [26] only accounted for the correlation of soft and ultrasoft renormal-

ization scales according to Eq. (3.1) with energy-independent ν-values and did not vary the

matching scale (h = 1). They obtained a relative uncertainty for the total cross section of

δσ/σ . ±3% based on variations 0.1 < ν < 0.4. We can produce this result well with our

scale variation for 1/2 ≤ f ≤ 2 setting h = 1 and ξNNLL
m + ξNNLL

nm = 0 as shown in Fig. 3a,

exhibiting a very small relative scale variation of around ±1% and a good apparent overlap

between the NLL order and (incomplete) NNLL order results. In their subsequent analysis

Pineda and Signer [27] in addition considered variations of the matching scale quite similar

to our constraint 2. This can be reproduced by our h-variations, see the lines in Fig. 2

indicating variations carried out in [27]. Pineda and Signer used effectively the same incom-

plete NNLL QCD theory input as Hoang et. al. [26] and found very large matching scale

dependence at the level of ±10%. Their result showed that the cross section is considerably

more sensitive to global variations of the three scales µh, µS , µU (particularly when they

are small) than to the correlated scale variation corresponding to the variation of f . The

same behavior is observed in Fig. 3b, where we have set ν = ν∗ and varied 1/2 ≤ h ≤ 2.

giving relative variations of the cross section of around ±8% at the (incomplete) NNLL

order. For completeness we also show in Fig. 3c the result from the combined h-f variation

according to the entire red area displayed in Fig. 2, causing an overall relative variation of

the (incomplete) NNLL order prediction of ±10%.

At the time of the analysis by Hoang [29]5 only the non-mixing corrections to the

NNLL order anomalous dimension of the Wilson coefficient c1 were known and his analysis

was carried out setting ξNNLL
m = 0. Hoang found extremely large scale variations with very

5In fact Ref. [29] appeared before Ref. [27].
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Figure 3. Plots of the inclusive (∆M = ∞) total cross section with corresponding error bands

from scale variations to LL (light blue), NLL (orange) and incomplete NNLL (red) order. In these

plots the NNLL evolution of the current coefficient c1 has been switched off (ξNNLL
m = ξNNLL

nm = 0)

for comparison with previous analyses. The error bands in panel a come from the variation of f

between 1/2 and 2 with h = 1 fixed and in panel b from the variation of h between 1/2 and 2 with

f = 1 fixed. Panel c shows the scale uncertainties from combined h-f variations scanning over the

region defined in Fig. 2. Panel d compares the incomplete NNLL band (red) of panel c with the

new NNLL band (transparent blue) from Fig. 4 c. For the plots we used Γt = 1.5 GeV, M1S = 172

GeV and α
(nf=5)
s (172 GeV) = 0.1077.

large positive shifts of the cross section due to the enormous positive size of the ultrasoft

non-mixing corrections as shown in Fig. 1b. Since the cancellation between the ultrasoft

mixing and non-mixing corrections to the NNLL order anomalous dimension of c1 appears

to be a crucial aspect of the behavior of the ultrasoft NNLL order corrections in the RGI

cross section we do not discuss the results of Ref. [29] further.

Finally, in Fig. 4 we show the results for the same respective scale variations as per-

formed in Fig. 3, but employing our complete NNLL order vNRQCD prediction properly

accounting for all known NNLL contributions to the RG evolution of c1 as described in

Sec. 2. The respective LL and NLL results are identical to those in Fig. 3, and the solid

black lines refer to the corresponding predictions using the default values f = h = 1. Since

we now employ the complete NNLL order prediction, we can also discuss the convergence

and consistency of the results passing from LL and NLL order to NNLL order. Fig. 4a

shows the results using only the subtraction velocity variation with 1/2 ≤ f ≤ 2 setting

h = 1 whereas Fig. 4b only displays the matching scale variation 1/2 ≤ h ≤ 2 setting
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Figure 4. Plots of the inclusive total cross section with corresponding error bands from scale

variations analogous to Fig. 3 a-c, but using our complete vNRQCD expression for the cross section

at NNLL order. Panel d shows the NLL and NNLL results with the symmetric error estimated as

± half the size of the difference to the result at one lower order. While the NNLL error bands in

panel c and d are almost identical the NLL band in panel d is much larger than in panel c and

completely embeds the NNLL band. The central black curves in panel d are the same as in panel c.

(Γt = 1.5 GeV, M1S = 172 GeV, α
(nf=5)
s (172 GeV) = 0.1077)

f = 1. While the f -variation leads to an effect (±1% at the peak) on the NNLL prediction

similar to Fig. 3a, where the incomplete NNLL order result was employed, we find that the

matching scale dependence of the complete NNLL order result is reduced by about a factor

of two compared to the incomplete NNLL result. The combined h-f -variation according

to Fig. 2, which is displayed in Fig. 4c, leads to a scale variation of the complete NNLL

order prediction of

δσincl.
tt̄

σincl.
tt̄

= ±5% . (3.4)

In Fig. 3d we compare the error bands from the combined h-f -variation using the in-

complete NNLL (red) and complete NNLL (transparent blue) predictions to illustrate the

impact of the NNLL order corrections to the anomalous dimension of c1. For the inter-

pretation of the complete NNLL scale variation, Eq. (3.4), it is, however, also required

to analyze it in view of the LL and NLL order results. Considering the combined h-f

variation in Fig. 4c in the peak region we find ±24% at LL order and ±7% at NLL order.

However, there is no overlap between the LL and NLL order bands, and the NNLL order
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Figure 5. h and f dependence of the inclusive total cross section close to the peak (
√
s = 2m).

In the left plot we keep f = 1 and in the right plot h = 1 fixed. (Γt = 1.5 GeV, M1S = 172 GeV,

α
(nf=5)
s (172 GeV) = 0.1077)

prediction is essentially covering the gap between the LL and NLL order bands. At this

point it is instructive to also consider the LL, NLL and NNLL order curves for the default

values f = h = 1 (black lines). We see that at LL and NNLL order they each are well

within the bands from the scale variation. For the NLL order prediction, however, the

default prediction is very close to the upper edge of the band. This is further visualized in

Fig. 5, where we have displayed the h- (left panel) and f -dependence (right panel) of the

peak cross section at LL, NLL and NNLL order. Given the observations it is reasonable to

conclude that the NLL scale variations do not provide a good perturbative error estimate.

Alternatively one may estimate the uncertainty of the cross section at a given order

by half of the separation between the default predictions at the present and the preceding

order. This method gives 20% at NLL order and 5% at NNLL order (at the peak position)

as can be read off from the bands in Fig. 4d. The NLL uncertainty is almost three times

larger than the one from scale variations, while at NNLL order both methods yield the

same uncertainty. Furthermore, replacing the NLL error band in Fig. 4c with the one of

Fig. 4d leads to a perfectly consistent perturbative behavior of the LL, NLL and NNLL

order predictions at all energies in the threshold region. We therefore conclude that the

NNLL perturbative error given in Eq. (3.4) is reliable.

It is also interesting to study the dependence of the peak position on the scale vari-

ations. In Fig. 6a we have displayed the range of variation (from scaning the h-f region

shown in Fig. 2) of the peak position at LL, NLL and NNLL order. The respective black

dots indicate the peak positions for the default scales h = f = 1. Similar as for the line-

shape shown in Fig. 4c, we find that the NLL and NNLL scale variations are much smaller

than the LL order one, but there does not seem to be any considerable improvement at

NNLL order compared to the NLL result. The location of the default peak position, on

the other hand, reveals that the NLL order scale dependence is again single-sided, and we

therefore conclude that the NLL scale variation underestimates the perturbative error, just

as it does for the normalization. Likewise we believe that the NNLL order variation range,

which is about 80 MeV provides a reliable estimate of the NNLL perturbative uncertainty.
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Figure 6. Resonance peak position of the inclusive total cross section (a) and the cross section

with a top/antitop invariant mass cut (∆M = 30 GeV) (b) at LL, NLL and (full) NNLL precision

for h = f = 1 (black dots). The error bars indicate the associated uncertainties from combined h-f

scale variations. (Γt = 1.5 GeV, M1S = 172 GeV, α
(nf=5)
s (172 GeV) = 0.1077)

Given that the peak position is related to twice the top quark mass this indicates that the

theoretical uncertainty in a top quark mass determination from a threshold scan is

δm ∼ ±20MeV . (3.5)

We stress, however, that eventually the top quark mass will be measured from fits to the

experimental line-shape measurements, which involves on the theoretical side a convolution

with the e+e− luminosity spectrum accounting for effects such as the beam strahlung and

initial state radiation. So the result in Eq. (3.5) can only serve as a first, naive, error

estimate. A reliable method should be based on scale variations of the full theory code

used for the fits and should be carried out during the analysis of the experimental data.

4 Phase Space Cuts

We now analyze our results including a cut in the form of Eq. (2.7) on the reconstructed top

and antitop invariant masses using the approach explained in Sec. 2. From the physical

point of view the invariant mass cut removes unphysical contributions in the NRQCD

prediction directly related to the top width implementation in Eq. (2.6) and the use of

the optical theorem (2.3) - the method all previous analyses of the top pair threshold

cross section relied on. The contributions from invariant masses above the cut are mainly

unphysical because they are calculated with the nonrelativistic approximation for which

the phase space allows for arbitrary large invariant masses. As was emphasized in Ref. [35],

these unphysical terms are positive and, in fact, are the reason why the total top threshold

cross section based on Eqs. (2.3) and (2.6) never vanishes even for energies far below the

top pair threshold.

While it is the purpose of the phase space matching procedure advocated in Ref. [35]

to get rid of these unphysical contributions and implement the correct behavior of off-shell

configurations from the underlying electroweak theory, the phase space cuts are special
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Figure 7. Cross section with a cut of ∆M = 15 GeV (a) and ∆M = 30 GeV (b) on the invariant

masses of the reconstructed top and antitop. The colored bands represent the uncertainties from

combined h-f scale variations analogous to Fig. 4c. Default results are indicated by the black solid

lines (top: LL, middle: NNLL, bottom: NLL). In addition we display the alternative error estimate

at NLL based on the difference between the LL and NLL default curves (band between the orange

lines). (Γt = 1.5 GeV, M1S = 172 GeV, α
(nf=5)
s (172 GeV) = 0.1077)

because the unphysical contributions are the by far dominating contribution in the phase

space matching [35]. It is therefore interesting to have a closer look into the perturbative

behavior of the total cross section after an invariant mass cut has been imposed. Since

the perturbative behavior of highly virtual unphysical NRQCD phase space configurations

has never been analyzed before, it is instructive to examine the convergence and the scale-

dependence of the cross section with the invariant mass cut. Moreover, as was demonstrated

in Ref. [35], the cross section with the invariant mass cut is numerically much closer to the

true inclusive total cross section (in the full electroweak theory).

In Fig. 7 we have plotted the LL, NLL and NNLL order cross sections with an invariant

mass cut ∆M = 15 GeV (left panel) and ∆M = 30 GeV (right panel). The uncertainty

bands are obtained by the combined h-f -variations indicated in Fig. 2. The respective

black lines are the predictions with the default scale choice f = h = 1. Moreover we have

indicated the (symmetric) NLL error estimate from the separation of the LL and NLL

default predictions as additional orange lines. Overall we see that the behavior of the

LL, NLL and NNLL order predictions concerning the scale variation and the convergence

properties is very similar to the predictions for ∆M = ∞ discussed in Sec. 3. As we

have already concluded for the ∆M = ∞ case at NLL order the scale variation certainly

underestimates the theoretical uncertainty, and one should rely on the method based on the

default predictions. At NNLL order the uncertainty estimates coming from scale variation

and the method based on the default predictions are equivalent and give

δσcut
tt̄

σcut
tt̄

= ±5% . (4.1)

We consider this estimate reliable as discussed above in Sec. 3. Since the invariant mass

cuts imposed here represent the largest contribution in a complete treatment of electroweak

effects [35] we can further conclude that this theoretical uncertainty also applies to the
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NNLL order prediction with the full set of electroweak corrections. We emphasize that our

prediction here only includes the effects of the width and of the invariant mass cut, and

that some of the electroweak corrections we neglected in this analysis lead to changes of

the line-shape that must be taken into account for data analysis.

We conclude the discussion of the cross section by mentioning that the invariant mass

cut has a considerable numerical effect on the cross section for c.m. energies below the

threshold peak. Because the unphysical phase space contribution technically behaves like

a background [35], its energy dependence is very small. For ∆M = 15(30) MeV the phase

space cuts reduce the cross section by about 0.1(0.05) pb, which represents an order unity

effect a few GeV below the peak position. Physically the invariant mass cut ensures that the

cross section properly vanishes at the c.m. energy 2(m−∆M). We stress that the NRQCD

cross section based on the optical theorem through Eqs. (2.3) and (2.6) and computed

without phase space cut is non-vanishing for all energies, so that the predictions for the line-

shape below the peak position are unreliable. This should be taken into account in present

simulation studies, in particular in connection with conclusions concerning background and

if the outcome of the fits has a significant dependence on the energy region below the peak.

Finally, we also comment on the peak position for the cross section with the invariant

mass cut. In Fig. 6b we show the scale variations (based on the combined h-f variations

indicated in Fig. 2) of the peak position at LL, NLL and NNLL order. Comparing to the

results for ∆M =∞ we see that the outcome concerning convergence and scale variations is

essentially unchanged and that our discussion on the peak position in Sec. 3 is not affected

by imposing a moderate phase space cut ∆M >∼ 20 GeV. The phase space cuts also do

not have any significant effect on the peak position due to their small energy-dependence.

We note, however, that some of the electroweak corrections we have neglected in this

analysis, most notable the interference terms, can shift the peak position at the level of 30

to 50 MeV [36]. So electroweak effects are highly important and cannot be neglected for

experimental analyses.

5 Conclusion

In this paper we have analyzed for the first time the NNLL RGI top-antitop threshold

cross section in e+e− collisions with the full set of available NNLL QCD corrections in

RGI perturbation theory. Our theory code implements the latest results on the NNLL or-

der corrections to the anomalous dimension of the dominant top pair production current.

At this time, at NNLL order concerning QCD corrections, there is only one set of NNLL

soft (”mixing”) corrections missing which is related to the ignorance of the soft NLL RG

evolution of the subleading (non-Coulomb) QCD potentials. We presented arguments that

show that these corrections are very likely tiny and negligible, so that our NNLL QCD

prediction can be considered complete for practical purposes. We find that the NNLL

QCD top pair cross section has a remaining relative theory error of δσ/σ = ±5% in the

peak region and above. The uncertainties concerning the peak position indicate that the

theoretical uncertainty in the determination of the top quark mass (in a proper thresh-

old short-distance mass scheme) is at the level of 20 MeV. A reliable theory uncertainty
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estimate in the top mass measurement can, however, only be obtained from a simulation

study including realistic experimental input, in particular related to the e+e− luminosity

spectrum, which depends on the linear collider design.

In our analysis we did not account for the full set of presently available electroweak

corrections and only included the effects from the top quark decay width and from cuts on

the reconstructed top and antitop invariant masses. These two effects are the numerically

largest sources of electroweak corrections that affect the normalization of the cross section,

so that our conclusions concerning the (QCD) uncertainties remain unchanged when all

electroweak corrections are taken into account. We emphasize that the implementation of

invariant mass cuts is essential to achieve realistic predictions for the cross section in the

energy range below the peak, where the cross section is small.
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A N3LO current logarithms

Expanding the NNLL RG evolution factor of the current coefficient c1 in αh ≡ αs(hm) up

to O(α3
h), which corresponds to N3LO in the fixed-order counting, we obtain the expression

c1(ν, h)

c1(1, h)
= 1 +

1

6
α2
hCF

[
2CF (S2−3)− 3CA

]
ln ν + (A.1)

α3
h

{
ln ν

[
β1CF

[
2CF (S2 − 3)− 3CA

]
24πβ0

+
β0CF

[
8CF (S2 − 12)− 111CA

]
288π

−
CF
[
5C2

A(576 ln 2− 271)− 40CACF (2S2 − 75− 72 ln 2)
]

1440π

−
C2
F

[
5CF (3S2 + 46− 72 ln 2) + 6TF

]
90π

−
CF lnh

[
8C2

A + CACF (41− 7S2) + 18C2
F

]
12π

]
+ ln2 ν

[
β0CF

[
3CA − 2CF (S2 − 3)

]
12π

−
CF
[
8C2

A + CACF (41− 7S2) + 18C2
F

]
24π

]}
+O(α4

h) ,

where S2 = 2 for the spin triplet state and β0 = 11
3 CA−

4
3nfTF , β1 = 34

3 C
2
A− 4CF nfTF −

20
3 CAnfTF .
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