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Constraining the primordial power spectrum from SNIa lensing dispersion
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The (absence of detecting) lensing dispersion of supernovae type Ia (SNIa) can be used as a novel
and extremely efficient probe of cosmology. In this preliminary example we analyze its consequences
for the primordial power spectrum. The main setback is the knowledge of the power spectrum in
the nonlinear regime, 1 Mpc−1 <∼ k <∼ 102 − 103 Mpc−1 up to redshift of about unity. By using
the lensing dispersion and conservative estimates in this regime of wave numbers, we show how the
current upper bound σµ(z ≤ 1) < 0.12 on existing data gives strong indirect constraints on the
primordial power spectrum. The probe extends our handle on the spectrum to a total of 12 − 15
inflation e-folds. These constraints are so strong that they are already ruling out a large portion
of the parameter space allowed by PLANCK for running, α ≡ dns/d ln k, and running of running,
β ≡ d2ns/d ln k2. The bounds follow a linear relation to a very good accuracy. A conservative
bound disfavors any enhancement above the line β(k0) = 0.036− 0.42α(k0) and a realistic estimate
disfavors any enhancement above the line β(k0) = 0.022 − 0.44α(k0).

PACS numbers: 98.80.-k, 98.62.Sb, 98.80.Cq

Introduction: Cosmology is becoming a precise sci-
ence, most notably due to increasing number and quality
of measurements. Utilizing several probes is crucial in
breaking degeneracies between cosmological parameters.
The combination of CMB, large scale structure (LSS)
and Type Ia Supernovae (SNIa) has lead to the emer-
gence of the “concordance model” of cosmology. SNIa
are widely used in cosmology due to their small intrin-
sic dispersion around their mean luminosity. By observ-
ing supernovae at cosmological distances, we can mea-
sure the luminosity-redshift relation dL(z) and infer cos-
mological parameters from the mean luminosity. How-
ever, the intrinsic dispersion of SNIa luminosities is not
the only source of scatter in the data. Photons arriv-
ing from these ‘Standard Candles’ are affected by the
inhomogeneous matter distribution between the source
and observer. This induces an additional scatter in the
luminosity-redshift relation, making it a stochastic ob-
servable with mean, dispersion, etc. Therefore, by dis-
entangling this cosmic dispersion from the intrinsic scat-
ter, we can potentially probe background parameters like
Ωm0 or fluctuations, i.e. the power spectrum. Our main
interest will be the lensing contribution, which dominates
the cosmic dispersion at z >∼ 0.3.

We suggest using the lensing dispersion of SNIa as
an additional probe of cosmology. The now operational
Dark Energy Survey [1] will measure thousands of SNIa,
up to redshift z ∼ 1.2 and LSST [2] will measure millions
of SNIa. This will reduce statistical errors considerably
and increase the chance for detection since the lensing
dispersion grows with the redshift at z ∼ 1 [3–5]. With
future data, it has been suggested to use the lensing dis-
persion to constrain certain cosmological properties [3, 6–
9].

In this preliminary paper we analyze the implica-
tions of the lensing dispersion σµ(z) on the primor-
dial power spectrum. The distance modulus, µ =
5 log10(dL(z)/10pc), is a function of the luminosity dis-
tance dL(z) to the source at redshift z. Existing data
analysis has not detected lensing dispersion with enough
statistical significance, but has placed an upper bound
of σµ(z ≤ 1) ≤ 0.12 for the redshift of up to unity
[10] at 95% C.L. and other analyses [11–13] yield sim-
ilar results. A Bayesian analysis was carried out in [14],
suggesting a very marginal detection of a lensing sig-
nal. Finally, in [15] the Joint Light-curve Analysis (JLA)
compiled 740 SNIa, reducing considerably systematic er-
rors. For z <∼ 1 The JLA analysis used mean value of
[10] σµ(z) = 0.055z and added a “coherent dispersion”
σcoh. to account for any other sources of intrinsic vari-
ations. The outcome is σcoh. = 0.106 ± 0.006. More-
over, there is a clear trend of σcoh. decreasing with red-
shift. Hence, the JLA analysis gives a model independent
estimate of the total observed dispersion. Given that
σtotal(z) =

√
σµ(z)2 + σ2

coh. ≤ 0.12, we find that consid-
ering σµ(z ≤ 1) ≤ 0.12 is a rather conservative upper
bound, and we shall use this bound in our analysis.

In principle, the primordial power spectrum is not lim-
ited to a specific parametrization. In practice, it is typ-
ically parameterized as Pk = As(k/k0)ns(k0)−1, where
k0 is a suitable “pivot scale”. A common, more general
form, is when the spectral index ns(k) is scale dependent,
and then expanded around the pivot scale k0,

ns(k) = ns(k0) +
α(k0)

2
ln

k

k0
+
β(k0)

6
ln2 k

k0
, (1)

where α is typically dubbed the “running” of the spectral
index, and β, the “running of running”. The best con-
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FIG. 1: Log-Log plot of the “transfer functions” (5) at redshift
z = 1 multiplied by c = 1 (solid black), c = 0.5 (dashed
grey), c = 0.1 (dashed red) c = 0.01 (dashed green). Solid
blue, cyan and purple curves are the step functions in (6)
with b = 3, kNL = 1 Mpc−1; b = 10, kNL = 2 Mpc−1; b =
50, kNL = 15 Mpc−1, respectively.

straints on α, β with k0 = 0.05 Mpc−1, ns(k0) ' 0.96 are
given by PLANCK [16] and Lyα [17]. These analyses are
only probing the range H0 ≤ k <∼ 1 Mpc−1. The lensing
dispersion, σµ is sensitive to 0.01 <∼ k <∼ 102−103 Mpc−1,
thus giving access to 2−3 more decades of the spectrum.
Hence, σµ(z) is particularly sensitive to the quasi-linear
and non-linear part of the spectrum. In terms of infla-
tion, the direct measurement of k <∼ 1 Mpc−1 corresponds
to about 8 e-folds of inflation, leaving most of the power
spectrum of ∼ 60 e-folds out of reach [40]. Therefore,
even after PLANCK there is still an enormous space of
inflationary models allowed. It is therefore of crucial im-
portance to infer as much of the spectrum as possible for
a better inflationary model selection. The lensing disper-
sion constrains additional 4 − 7 e-folds, yielding a total
of 12− 15 e-folds.

Other methods of probing the primordial spectrum in-
clude methods such as Lyα [17], the absence of primordial
black holes and Ultracompact Minihalos [18–20], measur-
ing spectral distortions of the CMB blackbody spectrum
[21–23], galaxy weak lensing [24], galaxy correlation func-
tions [25] and cluster number counts [26]. All of which
have either different systematics, different k range sensi-
tivity, based on future data or some combination of the
above. Albeit degenerate with other cosmological pa-
rameters, σµ surpasses these methods by actually cutting
into the allowed parameter space allowed by PLANCK,
using existing data only. In a separate publication [27],
we analyze the case, where the power spectrum takes a
different “non-slow-roll” parametrization such as in cases
analyzed in [22].

Method: We start from the full dispersion expression
of the luminosity distance, calculated in the light-cone av-
erage approach up to second order in the Poisson (longi-
tudinal) gauge, [5, 28–31], and recently confirmed in [32].
The dominant contribution of the dispersion at z >∼ 0.3,
comes from the lensing contribution. For a perturbed

FLRW Universe, one starts with the line of sight (LOS)
first order lensing contribution to the distance modulus,

δµ1(η(0)
s ) =

5

ln 10

∫ ηo

η
(0)
s

dη1

∆η

η1 − η(0)
s

ηo − η1
∆2Ψ , (2)

where the gravitational potential Ψ = Ψ(ηi, ri, θ̃
a) is

evaluated along the past light-cone at ri = ηo − ηi, ηo
is the observer conformal time, η

(0)
s is the conformal

time of the source with unperturbed geometry, ∆η(z) =

ηo(z) − η
(0)
s (z) =

∫ z
0

dy

H0

√
Ωm0(1+y)3+ΩΛ0

and ∆2 is the

2D angular Laplacian, see [5, 29] for technical terms and
explanations. Squaring (2) and taking the ensemble aver-
age in Fourier space at a fixed observed redshift, gives the
variance, σ2

µ(z) [41]. In general, the calculation involves
a complicated double line of sight (LOS) and wave num-
ber integration. However, at z >∼ 0.3, the double LOS
integral is dominated by the equal time part, and further
by Si(x� 1) ≈ π/2, yielding:

σ2
µ '

(
5

ln 10

)2
π

∆η2

∫ ηo

η
(0)
s

dη1dk

k
PΨ(k, η1)k3 (3)

× (η1 − η(0)
s )2(ηo − η1)2 ,

where PΨ is the linear (LPS, PL) or non-linear dimension-
less power spectrum (NLPS, PNL) of the gravitational po-
tential [42]. Hence, the lensing dispersion of supernovae
is a direct measurement of the integrated late-time power
spectrum. At the most basic level, this can be used to
constrain parameterizations of PΨ, or cosmological pa-
rameters such as Ωm0, σ8 or w(z). We will be mostly in-
terested in the dispersion at z = 1 where sufficient data
is available and because up to the redshift of a few, the
dispersion grows approximately linearly [5, 10, 13, 33], so
the best constraints can be given at the maximal avail-
able redshift. In general, the k2 enhancement makes σµ
a sensitive probe to the small scales of the power spec-
trum. To make this claim transparent, let us switch to
dimensionless variables, η̃ = H0η and p = k/keq [43]:

σ2
µ '

(
5

ln 10

)2
π

∆η̃2

(
keq
H0

)3 ∫
dη̃1dpPΨ(p, η̃1)p2 (4)

×(η̃1 − η̃(0)
s )2(η̃o − η̃1)2 .

From this expression we learn that: (a) The relevant
physical scales are H0 and keq, which give an enhance-
ment of (keq/H0)3. (b) The dispersion is really sensitive
to the scales smaller than the equality scale p > 1. (c)
The NLPS has an additional redshift dependent physical
scale which is the onset of nonlinearity. For a given red-
shift, parameterizing the NLPS as ∼ C(k/kNL)ν , from
some kNL, will have an additional parametric enhance-
ment of (kNL/keq)

3.
Equation (4) is free of IR and UV divergences so the

main limitation is the validity of the spectrum [5]. For
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FIG. 2: Regions of allowed parameters combined with PLANCK data. The ellipses are the 68% and 95% C.L. contours from
[16]. In the colored regions σµ(z = 1) > 0.12 and are disfavored for b = 0, 1, 3, 10, 50 (left panel) and c = 0, 0.01, 0.1, 0.5, 1
(right panel)

k � H0 at some redshift dependent point standard cos-
mological perturbation theory breaks down, and one has
to resort to numerical simulations to get an approxi-
mate fitting formula for the power spectrum. We use
the HaloFit model [34–36] with kUV = 320hMpc−1. We
have verified that varying kUV ∈ (30h,∞) Mpc−1 or H0

and Ωm0 independently within the range H0 ∈ [64, 70],
Ωm0 ∈ [0.27, 0.36] gives at most 15% change in the
value of σµ. Taken that σµ(z = 1, α = β = 0, kUV =
320hMpc−1) = 0.08, the bound cannot be saturated by
varying the background parameters and/or integrating
up to arbitrarily small scales. Hence the bound can be
useful for constraining α(k0) and β(k0) and our results
are accurate to about 20%.

Considering a big enough α and β, the HaloFit fit-
ting formula is not reliable anymore due to its sensitivity
to initial conditions. For example, with α = 0.04 and
β = 0.05 the existing HaloFit actually gives enhance-
ment of a few at 1 < k < 175 Mpc−1 and a suppressed
power spectrum compared to the linear one at larger
k. It is nevertheless obvious that the non-linear evolu-
tion causes clustering and enhances the power spectrum.
For example, at redshift z = 1, the ratio between the
HaloFit formula, PNL(k, z), with standard initial condi-
tions (ns ' 0.96, α = β = 0) and the linear power spec-
trum PNL(k, 1)/PL(k, 1) is the solid, thick, black curve
plotted in Fig. 1. Already at k = 1 Mpc−1 the non-linear
power spectrum is a factor of a few larger than the lin-
ear one, and for k >∼ 10 Mpc−1, it behaves as a power
law with a scaling exponent of nearly 1/2. We therefore
utilize this ratio in the standard case of ns = const. to
define a “transfer function”,

F (k, z) ≡ PNL(k, z)

PL(k, z)
, (5)

where PNL is the non-linear power spectrum, PL =
(3/5)2PkT

2(k)g2(z) is the linear spectrum and T (k) is
the transfer function with baryons [37], all taken in the
standard scenario with ns ' 0.96, α = β = 0. We take
the enhancement into account in two simple ways. The
first method is by the Heaviside function Θ(k). Here we
are not limited to the HaloFit formula, so we perform the
following substitution in equation (3),

PΨ → PL(k, z)(1 + bΘ(k − kNL)) (6)

and we evaluate σµ for b = 0, 3, 10, 50 with corresponding
kNL = 1, 1, 2, 15 Mpc−1, such that the step function is
always underestimating the transfer function F , so this
is a very conservative estimate. The step functions are
the solid blue, cyan and purple lines in Fig. 1. The second
method is to use F of the HaloFit model, such that

PΨ → PL(k, z)(1− c+ cF (k, z)) , (7)

and evaluate σµ with c = 0, 0.01, 0.1, 0.5, 1. In both
methods b = 0 or c = 0 correspond to computing the
dispersion with the linear power spectrum only, while
c = 1 corresponds to exactly following the HaloFit en-
hancement pattern. Except c = 1 all the second method
values of c are underestimates as well. The resulting en-
hancement at z = 1, is plotted in Fig. 1 as green, red and
grey dashed lines.
Results: In Fig. 2 we show the constraints on running

and running of running from the non-detection of lensing
dispersion overlaid on PLANCK likelihood contours. In
the left panel, the values b = 0, 3, 10, 50 with correspond-
ing kNL = 1, 1, 2, 15 Mpc−1 are considered. The right
panel considers c = 0, 0.01, 0.1, 0.5, 1. In both panels,
colored regions give σµ(z = 1) ≥ 0.12 and are disfavored.
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We wish to note that there are additional factors which
make our analysis an underestimate. First of all, par-
tial sky coverage is expected to increase dispersion [4].
Second, SNIa at higher redshift have already been de-
tected and used for cosmological parameter inference.
The monotonicity of σµ(z) ensures that considering, for
instance, σµ(z = 1.2) would give more stringent bounds.
Third, the consideration of other analyses. Bayesian
analyses [14, 38] suggested that the total dispersion is
about 0.12 with a very marginal detection of the lensing
signal. Better yet, the JLA [15] is an up to date, model
independent analysis and also there σtotal(z ≤ 1) ≤ 0.12,
not just the lensing dispersion. In the above cases, the
intrinsic or “coherent” dispersion, actually dominates the
total dispersion. On top of that, in the JLA analysis there
is a clear trend of σcoh. decreasing in redshift, meaning
that the actual value of the lensing dispersion is prob-
ably smaller than the σµ = 0.055z it uses. Last, all
other analyses (data, statistical, theoretical and numeri-
cal) [5, 10, 13, 33, 39] point to a lower value of the dis-
persion as well, at most σµ(z) ' 0.093z, practically dis-
favouring even a larger portion of the parameter space
allowed by PLANCK.

Conclusions and Outlook: From Fig. 2, it is ob-
vious that the lensing dispersion or its absence is an
extremely powerful cosmological probe. Even if a scale
dependent spectral index induces clustering which is an
order of magnitude smaller than the standard constant
ns scenario, some of the parameter space allowed by
PLANCK is ruled out. Moreover, the analysis discusses
the spectrum up to k ∼ 320hMpc−1, more than two or-
ders of magnitude beyond PLANCK’s lever arm (∼ 5
e-folds more) irrespective of whether models are ruled in
or out. It can be treated as a prediction of inflationary
models. In the more realistic case where the enhance-
ment is similar to the HaloFit model, such as c = 0.5, 1,
one gets strong bounds on the allowed parameters, that
can be expressed as a linear relation,

β(k0) ≤ 0.036− 0.42α(k0), c = 0.5 (8)

β(k0) ≤ 0.022− 0.44α(k0), c = 1. (9)

The realistic case of β(k0) ≤ 0.022 nicely matches
PLANCK’s α(k0) = 0+0.016

−0.013 , β(k0) = 0.017+0.016
−0.014. Ob-

viously, a definite detection of lensing will enable a more
stringent analysis similar to CMB lensing.

It is very appealing to add the lensing dispersion con-
straint to the likelihood analysis of the PLANCK data.
We believe that numerical simulations with initial con-
ditions as suggested here, α(k0), β(k0) 6= 0, which will
give a more accurate late time power spectrum, will yield
similar results, thus strengthening our argument. These
simulations are already on their way. Last, we have sug-
gested using the (absence of) dispersion to constrain the
primordial power spectrum. Since the dispersion depends
on several cosmological parameters, it can be useful in

constraining other fundamental cosmological parameters
as well.
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