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1 Introduction

The Racah-Wigner coefficients of Lie (super)algebras and their deformations play

an important role in modern mathematical physics. Up to some normalization de-

pendent prefactors, they coincide with the so-called fusing matrix of 2-dimensional

Wess-Zumino-Novikov-Witten (WZNW) models and hence feature very prominently

in the conformal bootstrap of these models and many descendants thereof. In fact,

they do not only provide the coefficients in the bootstrap equations but also furnish

some of their famous solutions e.g. for the bulk and boundary operator product

coefficients. This dual purpose of the Racah-Wigner coefficients is based on a num-

ber of identities they satisfy, most importantly the well-known pentagon equation.

The same identities are also exploited in the construction of state-sum models for

topological 3-manifold invariants. These provide another important area in which

Racah-Wigner symbols appear.

Recently, two of the authors and Leszek Hadasz constructed the Racah-Wigner

symbol for a series of self-dual representations of Uq(osp(1|2)) [1] for q = exp(iπb2)

and real b2. They also verified that the resulting expressions agree with the fusing

matrix of N=1 Liouville field theory in the Neveu-Schwarz (NS) sector [2, 3]. A

central goal of the present work is to extend the previous expression to include both

NS and Ramond (R) sector fields. The way in which we shall achieve our goal is

quite interesting in its own right.

Let us recall that the expression for the Racah-Wigner symbol found in [1] gen-

eralized previous formulas by Ponsot and Teschner for the Racah-Wigner symbol of

Uq(sl(2)) [4, 5]. In a remarkable recent paper [6], Teschner and Vartanov found an

alternative and much more natural way to express the same Racah-Wigner symbol.
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In particular, the new formulation is very closely modeled after the famous expres-

sions for the Racah-Wigner coefficients of finite dimensional Uq(sl(2)) representations

[7, 8], only that an integral appears instead of the usual summation and q-factorials

are replaced by double Gamma functions.

Our strategy here is to extend the Teschner-Vartanov expressions for the Racah-

Wigner symbol of Uq(sl(2)) to the supersymmetric case. Up to certain sign factors,

this step is relatively straight-forward, taking into account some of the properties of

the formula derived in [1]. The resulting expression is so natural that its extension

to the R sector is rather easy to guess. Only the sign factors are a bit tricky to

extend. We shall come up with a concrete proposal. In order to test our prescription

for both NS and R sector labels we shall continue the integral formulas from spins

α ∈ Q/2 + iR to the discrete set j = −α/b ∈ N/2 at which the integrals can be

evaluated by summing over certain residues.

When j is integer, the result of this evaluation gives the known 6J symbols for

finite dimensional spin j representations of Uq(osp(1|2)) [9, 10]. This limit only

uses information from the NS sector, but can be considered a very strong test of

our proposal for the universal Racah-Wigner symbol, including the sign factors we

prescribe in the NS sector.

In order to probe the R sector of the theory we make use of a remarkable ob-

servation in [11, 12]. These authors found that the 6J symbols for finite dimen-

sional integer spin representations of Uq′(sl(2)) and Uq(osp(1|2)) actually coincide

when q′ = i
√
q. Because of the usual relation between the deformation parameter

q = exp(iπ/(2k + 3) and the level k, the deformation parameter q′ actually tends

to q′ = i in the semiclassical limit k → ∞ of Uq(osp(1|2)), i.e. it is associated to a

point q′ = exp(iπ/(k+ 2) with k = 0, deeply in the quantum region of Uq′(sl(2)). In

this sense, the numerical coincidences between 6J symbols of finite dimensional rep-

resentations observed in [11, 12] can be thought of as a non-perturbative duality. 1

In our context we will find that the limiting Uq(osp(1|2)) Racah-Wigner symbols

with discrete weights, including those corresponding to half-integer spin j, coincide

with the 6J symbols of finite dimensional representations of Uq′(sl(2)). Thereby, we

provide highly non-trivial evidence for our choice of sign factors in the R sector of

the theory.

The tests of our proposal we described in the previous two paragraphs exhaust

the data provided by finite dimensional representations of deformed universal en-

veloping algebras. On the other hand, we can evaluate our proposed Racah-Wigner

symbol for a larger set of labels α which are parametrized by a pair of spin labels

(j, j′). When j′ = 0, we are back to the case discussed above. But for nontrivial

values of j′ the limiting value of the Racah-Wigner symbol may be written as a

product of two 6J symbols with different values of q. In reaching such a conclusion,

1We thank Edward Witten for stressing this aspect of the duality in a private conversation.
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details of the sign factors become even more crucial. While the result has no direct

interpretation in terms of finite dimensional representation theory of universal en-

veloping algebras, it can be understood from the relation between Liouville theory

and minimal models in conformal field theory. Hence it adds quite significantly to

the testing of our main proposal.

The plan of this paper is as follows. In the next section we shall re-address the

case of Uq(sl(2)) and show how to recover the Racah-Wigner coefficients of finite

dimensional representations from the formula of Teschner and Vartanov. After this

warm-up, we can turn to the supersymmetric case in section 3. There we propose

a new expression for the Racah-Wigner symbol of Uq(osp(1|2)). The comparison

with the 6J symbols for integer spin representations of Uq(osp(1|2)) and with finite

dimensional representations of Uq(sl(2)) is performed in section 4. We conclude this

work with a number of comments on open problems, including some speculations

about the extension of the duality between Uq(sl(2)) and Uq(osp(1|2)) to infinite

dimensional self-dual representations.

2 The Racah-Wigner symbol of Uq(sl(2))

In this section we will start from a recent integral formula for the Racah-Wigner

symbol of a self-dual series of representations of Uq(sl(2)) with q = eiπb
2
, parametrized

by α = Q/2+iR, Q = b+b−1 [6]. This symbol turns out to simplify when we consider

its analytic continuation to parameters α = −jb − j′b−1; j, j′ ∈ N
2
. In fact, it can

be then written as a sum over finitely many pole contributions. We can compare

the resulting expressions with the formulas for Racah-Wigner coefficients of finite

dimensional representations of Uq(sl(2)) and find complete agreement, at least up to

some normalization dependent prefactors.

Let us begin our discussion by reviewing the formulas for the universal Racah-

Wigner coefficients of Uq(sl(2)) which were proposed by Teschner and Vartanov [6]{
α1 α3 αs
α2 α4 αt

}
= ∆(α1, α2, αs)∆(αs, α3, α4)∆(αt, α3, α2)∆(α4, αt, α1) (2.1)

×
∫
C
duSb(u− α12s)Sb(u− αs34)Sb(u− α23t)Sb(u− α1t4)

Sb(α1234 − u)Sb(αst13 − u)Sb(αst24 − u)Sb(2Q− u)

where

∆(α3, α2, α1) =

(
Sb(α123 −Q)

Sb(α12 − α3)Sb(α23 − α1)Sb(α31 − α2)

) 1
2

(2.2)

and the multi-index of α denotes summation, e.g. αij = αi + αj. The integral is

defined for αj = Q/2 + iR, Q = b+ b−1 by a contour C which crosses the real axis in

the interval (3Q
2
, 2Q) and approaches 2Q+ iR near infinity. The double sine function
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Sb(x) is given in terms of Barnes’ double Gamma function. Its definition and some

relevant properties are listed in appendix A. Let us note that Teschner and Vartanov

were able to show that the expression (2.1) agrees with an earlier formula for the

Racah-Wigner symbol of Uq(sl(2)) that was established by Teschner and Ponsot [4, 5].

Thus the Racah-Wigner symbol (2.1) coincides with the fusion matrix of Liouville

theory [6, 13]. Because of this relation with conformal field theory (CFT) we shall use

some CFT terminology from time to time. In particular, we will refer to the labels

αi, i = 1, . . . , 4 and αs, αt as external and intermediate parameters, respectively.

Let us begin our analysis of the Racah-Wigner symbols (2.1) with the prefactor

of the integral in the first line. Insertion of the definition (2.2) gives

P(αi) ≡ ∆(α1, α2, αs)∆(αs, α3, α4)∆(αt, α3, α2)∆(α4, αt, α1) = (2.3)

(
Sb(α12s −Q)Sb(αs34 −Q)

Sb(α12 − αs)Sb(α2s − α1)Sb(α1s − α2)Sb(α34 − αs)Sb(α3s − α4)Sb(α4s − α3)

) 1
2

×
(

Sb(α23t −Q)Sb(α1t4 −Q)

Sb(α23 − αt)Sb(α2t − α3)Sb(α3t − α2)Sb(α14 − αt)Sb(α1t − α4)Sb(α4t − α1)

) 1
2

.

We observe that the prefactor vanishes each time one of the external parameters αi
approaches the so called degenerate value αn,n′ ≡ −nb

2
− n′

2b
; n, n′ ∈ Z≥0, and one of

the intermediate parameters αx, (x = s, t) satisfies the condition

αx = αj −
xb

2
− x′

2b
, x ∈ {−n,−n+ 2, . . . , n} , x′ ∈ {−n′,−n′ + 2, . . . , n′}(2.4)

where the labels i, j ∈ {1, 2} or {3, 4} for x = s, and i, j ∈ {2, 3} or {1, 4} for x = t.

In Liouville theory, the values αn,n′ are associated with so-called degenerate fields

which satisfy additional null vector decoupling equations. These restrict the possible

operator products to a finite set of terms which are labeled by parameters satisfying

so-called fusion rules, i.e. conditions of the form (2.4).

Let us now consider a limit of the Racah-Wigner symbol where one of the exter-

nal parameters becomes degenerate and the intermediate parameter αs satisfies the

condition (2.4). As we shall show below, the limit is finite and non-zero because the

integral in eq. (2.1) contributes singular terms canceling zeroes from the prefactor.

In order to see how this works in detail, let us focus on the limit α2 → −nb
2

(n > 0)

and αs → α1 − sb
2

. The zero in the prefactor comes from the first two terms in the

denominator of eq. (2.3)

lim
α2→−nb2
αs→α1− sb2

(Sb(α12 − αs)Sb(α2s − α1))
− 1

2 =

(
Sb

(
s− n

2
b

)
Sb

(
−s+ n

2
b

))− 1
2

=
(
−2 sin(πb2)

)n
2

([
n− s

2

]
!

[
n+ s

2

]
!

) 1
2

Sb(0)−1
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where we used the shift relation (A.4) for the double sine function and the notation

[x] =
sin(πb2x)

sin πb2
. (2.5)

For integer x the factorial [x]! is defined as,

[x]! =
x∏
a=1

[a] =
(
sinπb2

)−x x∏
a=1

sin(πb2a) . (2.6)

In order to obtain a finite non-zero limit for the full Racah-Wigner symbol, the

integral must contribute a divergent factor Sb(0) to cancel the corresponding term

from the prefactor. Let us therefore take a closer look at the integral in eq. (2.1).

Its analytic continuation to α2 = −nb
2
, αs = α1 − sb

2
is defined by the same integral

with a deformed contour C ′, see figure 1 and figure 2 for the cases s ≥ 0 and s <

0, respectively. As we deform the original contour we have to take into account

contributions from poles. We shall split these into two groups and denote them by

I1, I2, respectively,∫
C′
du Sb(u− α12s)Sb(u− αs34)Sb(u− α23t)Sb(u− α1t4) (2.7)

Sb(α1234 − u)Sb(αst13 − u)Sb(αst24 − u)Sb(2Q− u) = Ireg + I1 + I2 .

The first term Ireg denotes the integral over the original contour and a regular con-

tribution. The singular terms I1 and I2 will be described and calculated in the next

few paragraphs.

By definition, the first singular term I1 has origin in the two double sine functions

Sb(u − αs34)Sb(α1234 − u). Let us first consider the case of s ≥ 0. Then the poles

of Sb(u − αs34) in u = αs34 − pb (0 ≤ p ≤ n−s
2

) lie on the left side of the contour C,
see figure 1. When we deform the contour to C ′ we thus obtain contributions from

non-vanishing residues in these points. These residues are proportional to the other

double sine function Sb(α1234 − αs34 + pb) and in the limit α2 → −nb
2
, αs → α1 − sb

2

become singular. This is the so called pinching mechanism, see e.g. [5], Lemma 3

and [2, 14] for similar calculations. In the end we obtain the following sum

I1 =

n−s
2∑

p=0

(
(−2 sin(πb2))

s−n
2 Sb(0)

[p]!
[
n−s
2
− p
]
!

Sb(α34− α1 +
nb

2
− pb)

Sb(α1t− α4+ pb)Sb(α14− αt +
(n− s)b

2
− pb)Sb(α3− αt −

sb

2
− pb) (2.8)

Sb(αt− α3 −
nb

2
+ pb)Sb(2Q− α134 +

sb

2
+ pb)

)
.
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Figure 1. The original integration contour C passes between the points u = αs34 and

u = α1234. As we deform the contour to C′, the poles contribute to singular term I1 due to

the pinching mechanism.

When s < 0 the function Sb(u−αs34) has poles in u = αs34−pb (− s
2
≤ p ≤ n−s

2
).

In the limit αs → α1− sb
2

these are situated on the left side of the contour C, see figure

2. On the other hand the function Sb(α1234−u) has poles in u = α1234 + pb (0 ≤ p ≤
− s

2
) that are located on the right side of the contour. While deforming the contour

to C ′ we pick up contributions from all these poles. Each residue is proportional to

Sb(α12 − αs + pb) and develops a singularity in the limit α2 → −nb
2
, αs → α1 − sb

2
.

The final result will be the same as in the case (2.8) where we assumed s ≥ 0.

The term we have denoted by I2 come from the poles of the function Sb(u−α1t4)

in u = α1t4 − p′b for 0 ≤ p′ ≤ n+s
2

. Since s > −n, the poles lie on the left side of

the contour C, independently of the sign of the parameter s (analogous to figure 1).

The residues of all poles we pass while deforming the contour are proportional to

Sb(αst24 − α1t4 + p′b). In the limit α2 → −nb
2
, αs → α1 − sb

2
they contribute to the

Figure 2. When s < 0 we have to deform the contour in the above way. The poles appear

on both sides of the contour C and they all give singular contribution to I1.
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second sum of singular terms,

I2 =

n+s
2∑

p′=0

(
(−2 sin(πb2))

−n+s
2 Sb(0)

[p′]!
[
n+s
2
− p′

]
!

Sb(αt4− α1+
(s+ n)b

2
− p′b)

Sb(α14− α3+
nb

2
− p′b)Sb(αt− α3+

sb

2
− p′b)Sb(2Q− α1t4+ p′b) (2.9)

Sb(α3− αt−
nb

2
+ p′b)Sb(α13− α4−

sb

2
+ p′b)

)
.

Combining the two divergent terms I1, I2 given in eqs. (2.8,2.9) with the prefactor

P(αi) from eq. (2.3) we obtain a finite result for the limit,

lim
α2→−nb2
αs→α1− sb2

{
α1 α3 αs
α2 α4 αt

}
= lim

α2→−nb2
αs→α1− sb2

P(αi) (I1 + I2) (2.10)

=

(
Sb(α14 + αt −Q)Sb(α3 + αt − nb

2
−Q)

Sb(α3 − αt − nb
2

)Sb(αt − α3 − nb
2

)Sb(α14 − αt)Sb(α1t − α4)Sb(α4t − α1)

) 1
2

( [
n−s
2

]
!
[
n+s
2

]
!Sb(2α1 − (s+n)b

2
−Q)Sb(2α134 − sb

2
−Q)

Sb(α3t + nb
2

)Sb(2α1 + (n−s)b
2

)Sb(α34− α1 + sb
2

)Sb(α13− α4 − sb
2

)Sb(α14− α3 − sb
2

)

)1
2

{ n−s
2∑

q=0

(−2 sin(πb2))
s
2

[q]!
[
n−s
2
− q
]
!
Sb(α34 − α1 +

nb

2
− qb)Sb(α14 − αt +

(n− s)b
2

− qb)

Sb(α3− αt−
sb

2
− qb)Sb(αt− α3−

nb

2
+ qb)Sb(α1t− α4+ qb)Sb(2Q− α134+

sb

2
+qb)

+

n+s
2∑

p′=0

(−2 sin(πb2))
− s

2

[p′]!
[
n+s
2
− p′

]
!
Sb(αt4 − α1 +

(s+ n)b

2
− p′b)Sb(α14 − α3 +

nb

2
− p′b)

Sb(αt− α3+
sb

2
−p′b)Sb(α3− αt−

nb

2
+p′b)Sb(α13− α4−

sb

2
+p′b)Sb(2Q− α1t4+p′b)

}
.

Suppose now that the other intermediate parameter αt also satisfies condition (2.4)

i.e. αt → α3 − tb
2

. Then the prefactor in the formula above gives zero. On the other

hand in each term of the sums there are double poles for t ∈ {−n + 2p,−n + 2p +

2, . . . , s+ 2p} and t ∈ {s−2p′, s−2p′+ 2, . . . , n−2p′} coming from Sb(α3−αt− sb
2
−

pb)Sb(αt−α3− nb
2

+pb) and Sb(αt−α3−p′b+ sb
2

)Sb(α3−αt+α2−p′b), respectively.

The residue for a given αt → α3 − tb
2

takes the form

Res
αt→α3− tb2

(
lim

α2→−nb2
αs→α1− sb2

{
α1 α3 αs
α2 α4 αt

})
=

(
Sb(2α1 − (s+n)b

2
−Q)Sb(2α3 − (t+n)b

2
−Q)

Sb(2α1 + (n−s)b
2

)Sb(2α3 + (n−t)b
2

)

)1
2
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min{n−s
2
,n+t

2
}∑

p=max{0, t−s
2
}

2
([

n−s
2

]
!
[
n+s
2

]
!
[
n−t
2

]
!
[
n+t
2

]
!
) 1

2

[p]!
[
n−s
2
− p
]
!
[
s−t
2

+ p
]
!
[
n+t
2
− p
]
!

Sb(α13− α4 + pb− tb
2

)(
Sb(α13− α4− sb

2
)Sb(α13− α4− tb

2
)
) 1

2

Sb(α34 − α1 − pb+ nb
2

)(
Sb(α34 − α1 + sb

2
)Sb(α34 − α1 − tb

2
)
) 1

2

Sb(α14 − α3 − pb+ (n+t−s)b
2

)(
Sb(α14− α3 − sb

2
)Sb(α14− α3 + tb

2
)
) 1

2(
Sb(α134 − sb

2
−Q)Sb(α134 − tb

2
−Q)

) 1
2

Sb(α134 − sb
2
− pb−Q)

(2.11)

where we redefined the second summation parameter p′ = p− t−s
2

in order to obtain

two identical sums. Let us denote the residue above as{
α1 α3 α1 − sb

2

−nb
2
α4 α3 − tb

2

}′
≡ Res

αt→α3− tb2

(
lim

α2→−nb2
αs→α1− sb2

{
α1 α3 αs
α2 α4 αt

})
. (2.12)

Now one can set all the other external parameters αi (i = 1, 3, 4) to degenerate

values, αi → −jib, 2ji ∈ Z≥0. In this case, eq. (2.11) takes the form{
−j1b −j3b −j1b− sb

2

−nb
2
−j4b −j3b− t

2
b

}′
= 2

(
[2j1 + s−n

2
]!

[2j1 + n+s
2

+ 1]!

[2j3 + t−n
2

]!

[2j3 + n+t
2

+ 1]!

) 1
2

min{n−s
2
, t+n

2
}∑

p=max{0, t−s
2
}

(−1)j1+j3−p+
n+t
2

([
n−s
2

]
!
[
n+s
2

]
!
[
n−t
2

]
!
[
n+t
2

]
!
) 1

2

[p]!
[
p+ s−t

2

]
!
[
n−s
2
− p
]
!
[
n+t
2
− p
]
!

[j134 + p+ s
2

+ 1]!([
j134 + s

2
+ 1
]
!
[
j134 + t

2
+ 1
]
!
) 1

2

([
j13 − j4 + s

2

]
!
[
j13 − j4 + t

2

]
!
) 1

2[
j13 − j4 − p+ t

2

]
!([

j34 − j1 − s
2

]
!
[
j34 − j1 + t

2

]
!
) 1

2[
j34 − j1 + p− n

2

]
!

([
j14 − j3 + s

2

]
!
[
j14 − j3 − t

2

]
!
) 1

2[
j14 − j3 + p− t+n−s

2

]
!

where we assumed that n
2
− α134

b
= j134 + n

2
∈ N and we expressed the Sb functions

in terms of the [.]-factorials (2.6). The minus sign under the sum comes from the

difference in the shift relations (A.4) concerning Sb(−xb) and Sb(−xb+Q). Denoting

j2 = n
2
, js = j1 + s

2
, jt = j3 + t

2
and shifting the summation parameter to z =

p + js34, one can see our limit coincides with the 6J symbol for finite dimensional

representations of the quantum deformed algebra Uq(sl(2)),{
−j1b −j3b −jsb
−j2b −j4b −jtb

}′
=

(−1)js+jt([2js + 1]q[2jt + 1]q)
− 1

2

2 sin(πb2) sin(−πb−2)

(
j1 j2 js
j3 j4 jt

)
q

(2.13)

where the deformation parameter q is given in terms of b as q = eiπb
2

and the quantum

numbers [.]q of Uq(sl(2)) are equal those defined in eq. (2.5), i.e.

[x]q ≡
qx − q−x

q − q−1
= [x] . (2.14)
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Thus we conclude that the residue of the Racah-Wigner coefficient (2.12) analyti-

cally continued to αi = −jib, 2ji ∈ Z≥0 is equivalent to the 6J symbol of the finite

dimensional representations of the quantum deformed algebra Uq(sl(2)).

The 6J symbol of finite dimensional representations of Uq(sl(2)) is given by the

following sum [7, 8, 15](
j1 j2 js
j3 j4 jt

)
q

=
√

[2js + 1]q[2jt + 1]q (−1)j12−j34−2js (2.15)

×
∑
z≥0

(−1)z ∆q(js, j2, j1)∆q(js, j3, j4)∆q(jt, j3, j2)∆q(j4, jt, j1) [z + 1]q!

[z − j12s]q! [z − j34s]q! [z − j14t]q! [z − j23t]q![j1234 − z]q! [j13st − z]q! [j24st − z]q!
.

Here, the summation extend over those values of z for which all arguments of the

quantum number [.]q are non-negative. In addition we used the shorthand

∆q(a, b, c) =
√

[−a+ b+ c]q! [a− b+ c]q! [a+ b− c]q!/[a+ b+ c+ 1]q! .

It is worth pointing out the similarities between the expressions (2.15) and the orig-

inal formula (2.1). In passing to eq. (2.15), the four factors ∆ got replaced by ∆q

while the eight functions Sb have contributed the same number of quantum factorials.

In addition, the integration over u became a summation over z.

In the above calculation we have restricted α to a subset of degenerate labels

α = −jb− j′b−1 with j′ = 0. One may certainly wonder about the more general case

with j′ 6= 0. It turns out that the corresponding limit of the Racah-Wigner symbol

can still be evaluated using pretty much the same steps as before. More precisely,

we can continue the Racach-Wigner symbol (2.1) to general degenerate values

αi → −jib− j′ib−1; j, j′ ∈ Z≥0
2
, (2.16)

evaluate the residue at αt = αj − t
2
b − t′

2
b−1 and restrict the other intermediate

parameter αs to the values (2.4). These steps define the symbol{
−j1b− j′1b−1 −j3b− j′3b−1 −jsb− j′sb−1
−j2b− j′2b−1 −j4b− j′4b−1 −jtb− j′tb−1

}′
(2.17)

≡ lim
αj→−jjb−j′jb−1

αk→−jkb−j′kb
−1

αl→−jlb−j′lb
−1

Res
αt→αj− t2 b−

t′
2
b−1

(
lim

αi→−jib−j′ib−1

αs→αk− s2 b−
s′
2
b−1

{
α1 α3 αs
α2 α4 αt

})
,

where

js = jk +
s

2
, j′s = j′k +

s′

2
; jt = jj +

t

2
, j′t = j′j +

t′

2
.

Using the properties of double sine functions (A.5) and the assumption

j1234, j
′
1234 ∈ Z≥0,
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one can express the limit as a product of two 6J symbols of finite dimensional rep-

resentations of the quantum deformed algebra Uq(sl(2)){
−j1b− j′1b−1 −j3b− j′3b−1 −jsb− j′sb−1
−j2b− j′2b−1 −j4b− j′4b−1 −jtb− j′tb−1

}′
=(−1)jst+j

′
st+3j1234stj′1234st−j13j′13−j24j′24−jstj′st

×([2js + 1]q[2jt + 1]q[2j
′
s + 1]q′ [2j

′
t + 1]q′)

− 1
2

2 sin(πb2) sin(−πb−2)

(
j1 j2 js
j3 j4 jt

)
q

(
j′1 j

′
2 j
′
s

j′3 j
′
4 j
′
t

)
q′

, (2.18)

where the deformation parameters assume two different values, namely q = eiπb
2

and

q′ = eiπb
−2

.

As we anticipated in the introduction, the result has an interesting CFT inter-

pretation. The limit we consider gives the value of the fusion matrix in Liouville

theory where all representations are degenerate and both intermediate representa-

tions satisfy the fusion rules. The resulting numbers are expected to describe the

fusing matrix of Virasoro minimal models, at least after continuation of the parame-

ter b to the imaginary discrete values b = iβ with β2 = m+1
m

. The associated central

charges

c = 13 + 6(b2 + b−2) → 13− 6(β2 + β−2),

take discrete values with c < 1. When parametrized in terms of the integer m, our

parameters q and q′ read

q = e−iπβ
2

= e−iπ
m+1
m , q′ = e−iπβ

−2

= e−iπ
m
m+1 .

Since Uq(sl(2)) 6J symbols are invariant with respect to q → q−1, we can also use

the parameters q1 = exp(iπm+1
m

) and q2 = exp(iπ m
m+1

) on the right hand side of eq.

(2.18). The result agrees then with the fusing matrix of (unitary) minimal models

[16], [17], [18] 2. Thus we have shown that one can recover the fusion matrix of

minimal models from the Racah-Wigner symbol (2.1) .

Given the connection with minimal models, the product structure of our result

(2.18) is easily understood from the famous coset construction,

MMk = (SU(2)k × SU(2)1)/SU(2)k+1 ,

for Virasoro minimal models. Here the parameter k is related to m = k + 2 by a

finite shift. Sectors of the coset theory are labeled by three integers (2j, 2j′, 2l) where

0 ≤ 2j ≤ k, 0 ≤ 2j′ ≤ k + 1, l = 0, 1
2
. The last label does not play a role because

it can be set to l = 0 using the so-called field identification symmetry. The two

nontrivial factors in the fusing matrix are associated with the SU(2) Wess-Zumino-

Witten (WZW) models at level k and k + 1. While the SU(2)k model contributes a

factor with exp(2πi/(k + 2)) = q21, the 6J symbol with exp(2πi/(k + 3)) = q22 comes

from the SU(2) WZW model at level k + 1.

2often Uq(sl(2)) deformation parameters are defined as q = e2iπβ
±2

which in our notation is

equal to q21 , q
2
2
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3 The supersymmetric Racah-Wigner symbol

After our warmup with the Racah-Wigner symbol of the Uq(sl(2)), we are now pre-

pared to study its extension to the supersymmetric case. We shall define the super-

symmetric Racah-Wigner symbol in the next few paragraphs and comment a bit on

its relation with N=1 Liouville field theory and the Racah-Wigner symbol for self-

dual representations of Uq(osp(1|2)). Then we perform an analysis along the lines of

section 2, i.e. we compute the limit of the Racah-Wigner symbol for a discrete set of

representation labels. The interpretation of the results is a bit more subtle than in

the example of Uq(sl(2)). It has to wait until section 4.

As a supersymmetric extension of the Racah-Wigner symbol (2.1) we propose

the following integral formula{
αa11 αa33 αass
αa22 αa44 αatt

}ν3ν4
ν1ν2

= δ∑
i νi=as+atmod 2

∆ν4(αs, α2, α1)∆ν3(αs, α3, α4)∆ν2(αt, α3, α2)

(3.1)

×∆ν1(α4, αt, α1)

∫
C
du

1∑
ν=0

(
(−1)XS1+ν+ν4+as(u− α12s)S1+ν+ν3+as(u− αs34)

S1+ν+ν2+at(u− α23t)S1+ν+ν1+at(u− α1t4)Sν+ν1+ν2+at(α1234 − u)

Sν+ν1+ν3+a2(αst13 − u)Sν+ν1+ν4+a3(αst24 − u)Sν(2Q− u)
)

where

∆ν(α3, α2, α1)=

(
Sν+ 1

2
a123

(α123 −Q)

Sν+ 1
2
(a12−a3)(α12−α3)Sν+ 1

2
(a23−a1)(α23−α1)Sν+ 1

2
(a31−a2)(α31−α2)

)1
2

and the contour C, as in the bosonic case, crosses the real axis in the interval (3Q
2
, 2Q)

and approaches 2Q + iR near infinity. Note that the arguments αa of the Racah-

Wigner symbol contain a continuous quantum number α ∈ Q/2 + iR along with a

superscript a that can take the values a = 0 and a = 1. The discrete label a keeps

track on whether the corresponding representation is taken from the Neveu-Schwarz

(NS) or Ramond (R) sector, respectively. We will comment a bit more on this below.

We define the Racah-Wigner symbol for the discrete labels ai satisfying the following

conditions

as = a1 + a2 = a3 + a4mod 2, at = a1 + a4 = a2 + a3mod 2,
4∑
i=1

ai = 0mod 2,

(3.2)

otherwise the symbol is set to zero. The sign factor

(−1)X = (−1)ν(asν1+a1ν3+a4ν4+a1as+a2a4+as+at) (3.3)
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becomes relevant as soon as some of the discrete labels ai are nonzero. The supersym-

metric double sine functions Sν(x) with ν = 0, 1 are defined in the appendix (A.6).

Before we continue our analysis, let us make a few comments on the status of the

definition (3.1), its relation with Uq(osp(1|2)) and with N=1 Liouville field theory.

In recent work, two of the authors and Leszek Hadasz computed the Racah Wigner

symbols for a certain series of self-dual representations of the quantum enveloping

superalgebra Uq(osp(1|2)). The arguments of this symbol assume values α ∈ Q/2 +

iR. Furthermore, the symbol defined in [1] was shown to coincide with the fusing

matrix of N=1 Liouville field theory when all field labels are taken from the NS sector

of the model. The expression in [1] extends the one found by Teschner and Ponsot for

Uq(sl(2)). The latter has been rewritten by Teschner and Vartanov using some highly

non-trivial integral identities. Our symbol (3.1) with ai = 0 was defined to extend

the Teschner-Vartanov version of the non-supersymmetric symbol to Uq(osp(1|2)).

At the moment we cannot prove that the expression (3.1), ai = 0, agrees with

the formula derived in [1] simply because we are missing certain supersymmetric

analogues of the integral identities employed in [6]. On the other hand our results

below make it seem highly plausible that both formulas agree. In [1] no attempt was

made to extend the constructions to the R sector of N = 1 Liouville field theory. It

is likely that Uq(osp(1|2)) indeed possesses another self-dual series of representations

which can mimic the R sector and that the fusing matrix involving R sector fields

may be obtained from the Racah-Wigner symbol in an extended class of self-dual

representations, but the details have not been worked out. Here we just make a bold

proposal for the extension of the Racah-Wigner symbol to cases with some ai 6= 0.

Our results below strongly support a relation with the R sector of N=1 Liouville

field theory.

After these comments on the Racah-Wigner symbol (3.1), we would like to repeat

the analysis we have performed in section 2. Let us start with the prefactor of our

Racah-Wigner symbol. When written in terms of the double sine function, it takes

the from

P(αi, νi) = ∆ν4(αs, α2, α1)∆ν3(αs, α3, α4)∆ν2(αt, α3, α2)∆ν1(α4, αt, α1) (3.4)

= (Sν4+as(α12s −Q)Sν3+as(αs34 −Q)Sν2+at(α23t −Q)Sν1+at(α14t −Q))
1
2(

Sν4(α12 − αs)Sν4+a1(α1s − α2)Sν4+a2(α2s − α1)

Sν3(α34 − αs)Sν3+a4(αs4 − α3)Sν3+a3(α3s − α4)

Sν2(α23 − αt)Sν2+a2(αt2 − α3)Sν2+a3(α3t − α2)

Sν1(α14 − αt)Sν1+a1(α1t − α4)Sν1+a4(α4t − α1)
)− 1

2
.

By analogy with the bosonic case we expect that the prefactor vanishes each time

one of the external parameters approaches a degenerate value αi = −nb
2
− n′

2b
and one
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of the intermediate parameters αx, (x = s, t) satisfies the condition

αx = αj −
xb

2
− x′

2b
, x ∈ {−n,−n+ 2, . . . , n} , x′ ∈ {−n′,−n′ + 2, . . . , n′}, (3.5)

where the labels i, j ∈ {1, 2} or {3, 4} for x = s, and i, j ∈ {2, 3} or {1, 4} for

x = t. Using properties of supersymmetric double sine functions listed in appendix

A one can check that the prefactor indeed has zeroes in these cases, provided that

the following conditions are satisfied,

n− s
2

+
n′ − s′

2
∈ 2N + 1 +

{
ν4, degenerate αi, i = 1, 2

ν3, degenerate αi, i = 3, 4
(3.6)

n+ s

2
+
n′ + s′

2
∈ 2N + 1 +

{
ν4 + ai, degenerate αi, i = 1, 2

ν3 + ai, degenerate αi, i = 3, 4

by the intermediate parameter αs, and

n− t
2

+
n′ − t′

2
∈ 2N + 1 +

{
ν1, degenerate αi, i = 1, 4

ν2, degenerate αi, i = 2, 3
(3.7)

n+ t

2
+
n′ + t′

2
∈ 2N + 1 +

{
ν1 + ai, degenerate αi, i = 1, 4

ν2 + ai, degenerate αi, i = 2, 3

by αt. As one example, let us discuss the condition (3.6) and suppose that αi = α1 =

−nb
2
− n′

2b
for definiteness. It follows that αj = α2 because α1 and αs appear only

in combination with α2 in the arguments of the double sine functions. According to

eq. (A.7) the first double sine function Sν4(α12 − αs) runs into a pole provided that

its argument α12 − αs = s−n
2
b + s′−n′

2
b−1 satisfies n−s

2
+ n′−s′

2
∈ 2N − 1 + ν4. The

second function Sν4+a1(α1s−α2) has a pole if n+s
2

+ n′+s′

2
∈ 2N− 1 + ν4 + a1. If both

conditions are fulfilled the prefactor become zero. Let us note that this can be the

case only if s+ s′ ∈ 2Z≥0 + a1 and equivalently, due to eq. (3.5), n+ n′ ∈ 2Z≥0 + a1.

The analysis for the other cases is similar.

In general, the conditions (3.6), (3.7) can be satisfied only if degenerate param-

eters are of the form

αi = −nb
2
− n′

2b
, n+ n′ ∈ 2Z≥0 + ai. (3.8)

This reflects the situation in the N = 1 Liouville field theory, where degenerate

representations in the NS and R sectors are labeled by αn,n′ with even and odd

n + n′, respectively. Additionally, the pattern of zeroes of the prefactor P(αi, νi)

well matches with fusion rules of N = 1 Liouville field theory. This provides a first

non-trivial test for our proposal.

We plan to test our proposal (3.1) further by continuing it to degenerate pa-

rameters, as in the previous section. To this end, let us consider the limit of the
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Racah-Wigner symbol where α2 → −nb
2

, αs → α1− s
2

and the conditions (3.5)- (3.8)

are satisfied. Before talking the limit it is useful to pass from the summation over ν

to a new summation index ν ′ = ν + ν3 + as. The Racah-Wigner symbol then reads,{
αa11 αa33 αass
αa22 αa44 αatt

}ν3ν4
ν1ν2

= δ∑
i νi=as+atmod 2

P(αi, νi)

∫
C
du

1∑
ν′=0

(
(−1)X S1+ν3+ν4+ν′(u− α12s)

S1+ν′(u− αs34)S1+ν1+ν4+ν′(u− α23t)S1+ν2+ν4+ν′(u− α1t4)Sν4+ν′(α1234 − u) (3.9)

Sν1+ν′+a1(αst13 − u)Sν2+ν′+a2(αst24 − u)Sν3+ν′+as(2Q− u)
)
.

As in the previous section, we need to determine the singular contributions from the

integral∫
C′
du

1∑
ν′=0

(
(−1)X S1+ν3+ν4+ν′(u− α12s)S1+ν′(u− αs34)S1+ν1+ν4+ν′(u− α23t)

S1+ν2+ν4+ν′(u− α1t4)Sν4+ν′(α1234 − u)Sν1+ν′+a1(αst13 − u)Sν2+ν′+a2(αst24 − u)

Sν3+ν′+as(2Q− u)
)

= I ′reg + I ′1 + I ′2 .

Note that the product S1+ν′(u − αs34)Sν4+ν′(α1234 − u) has poles in the positions

u = α134 − sb
2
− pb for p ∈ {ν ′, ν ′ + 2, . . . , n−s

2
− ν ′} (ν ′ keeps track of the parity of

p). Due to the “pinching mechanism” each pole contributes a singular term. Once

we include the summation over ν ′ = 0, 1, the sum of singular terms runs through all

values of p ∈ {0, 1, . . . , n−s
2
},

I ′1 =

n−s
2∑

p=0

(−1)X

(
2 cos(πb

2

2
)
) s−n

2
S1(0)

[p]b!
[
n−s
2
− p
]
b
!

S1+ν3+ν4+ν′(α34 − α1 +
nb

2
− pb)

S1+ν1+ν4+ν′(α14 − αt +
(n− s)b

2
− pb)S1+ν2+ν4+ν′(α3 − αt −

sb

2
− pb)

Sν1+ν′+a1(α1t − α4 + pb)Sν2+ν′+a2(αt − α3 −
nb

2
+ pb)Sν3+ν′+as(2Q− α134 +

sb

2
+ pb),

where we used the shift relations for the supersymmetric double sine function (A.9)

and the notation

[n]b! =


∏n−1

j=1mod 2 cos(j πb
2

2
)
∏n

j=2mod 2 sin(−j πb2
2

)
(

cos(πb
2

2
)
)−n

, forn ∈ 2N∏n
j=1mod 2 cos(j πb

2

2
)
∏n−1

j=2mod 2 sin(−j πb2
2

)
(

cos(πb
2

2
)
)−n

, forn ∈ 2N + 1 .
(3.10)

With the help of conditions (3.6) one can verify that the functions S1+ν2+ν4+ν′(u −
α1t4)Sν2+ν′+a2(αst24 − u) have poles located in u = α1t4 − p′b, where p′ ∈ {µ, µ +
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2, . . . , n+s
2
− µ}, µ = ν2 + ν4 + ν ′ mod 2. They lead to the second sum of singular

terms I2,

I ′2 =

n+s
2∑

p′=0

(−1)X
(

2 cos(πb
2

2
)
)−n+s

2
S1(0)

[p′]b!
[
n+s
2
− p′

]
b
!

Sν4+ν′(α3− αt−
nb

2
+ p′b)

S1+ν1+ν4+ν′(α14− α3+
nb

2
− p′b)S1+ν′(αt−α3+

sb

2
− p′b)Sν1+ν′+a1(α13−α4+ p′b− sb

2
)

S1+ν3+ν4+ν′(αt4−α1+
(n+ s)b

2
− p′b)Sν3+ν′+as(2Q− α1t4 + p′b) .

Once the two singular contributions from the integral are multiplied by the vanishing

prefactor, they give a finite result for the limit of the Racah-Wigner symbol,

lim
α2→−nb2
αs→α1− sb2

{
αa11 αa33 αass
αa22 αa44 αatt

}ν3ν4
ν1ν2

= δ∑
i νi=as+atmod 2

lim
α2→−nb2
αs→α1− sb2

P(αi, νi) (I ′1 + I ′2) . (3.11)

The limit above, similar as in the bosonic case (2.10), has simple poles when the

second intermediate parameter αt → α3− tb
2

satisfies the conditions (3.5), (3.7). The

residue is given by the following formula,

Res
αt→α3− tb2

(
lim

α2→−nb2
αs→α1− sb2

{
αa11 αa33 αass
αa22 αa44 αatt

}ν3ν4
ν1ν2

)
= δ∑

i νi=as+atmod 2
(3.12)

2

(
Sν4+as(2α1 − (s+n)b

2
−Q)Sν2+at(2α3 − (t+n)b

2
−Q)

Sν4+a1(2α1 + (n−s)b
2

)Sν2+a3(2α3 + (n−t)b
2

)

) 1
2

min{n−s
2
,n+t

2
}∑

p=max{0, t−s
2
}

{
(−1)X

(
Sν3+as(α134 − sb

2
−Q)Sν1+at(α134 − tb

2
−Q)

) 1
2

Sν3+ν′+as(α134 − sb
2
− pb−Q)

([
n−s
2

]
b
!
[
n+s
2

]
b
!
[
n−t
2

]
b
!
[
n+t
2

]
b
!
) 1

2

[p]b!
[
n−s
2
− p
]
b
!
[
p+ s−t

2

]
b
!
[
t+n
2
− p
]
b
!

Sν1+ν′+a1(α13 − α4 + pb− tb
2

)(
Sν3+a3(α13− α4− sb

2
)Sν1+a1(α13− α4− tb

2
)
) 1

2

S1+ν3+ν4+ν′(α34− α1 − pb+ nb
2

)(
Sν3(α34−α1+ sb

2
)Sν1+a4(α34−α1− tb

2
)
) 1

2

S1+ν1+ν4+ν′(α14− α3 − pb+ (n+t−s)b
2

)(
Sν3+a4(α14−α3− sb

2
)Sν1(α14−α3+ tb

2
)
) 1

2

}
.

In complete analogy to the bosonic case, see eq. (2.12), we shall denote the residue

by {
αa11 αa33

(
α1 − sb

2

)as
−nb

2
αa44

(
α3 − tb

2

)at }′ ν3ν4
ν1ν2

≡ Res
αt→α3− tb2

(
lim

α2→−nb2
αs→α1− sb2

{
αa11 αa33 αass
αa22 αa44 αatt

}ν3ν4
ν1ν2

)
, (3.13)
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where we assume n ∈ 2Z≥0 + a2, according to the condition (3.8). Now we can send

all the other external parameters to degenerate values,

αi → −jib, 2ji ∈ 2Z≥0 + ai.

Using the shift relations (A.9) for double sine functions one obtains{
−j1b −j3b −jsb
−j2b −j4b −jtb

}′ ν3ν4
ν1ν2

= δ∑
i νi=2(js+jt)mod 2

(−1)A(ji)

2 cos (πb
2

2
) cos ( π

2b2
)

(3.14)

∑
z≥0

(−1)X(−1)
1
2
z(z−1) [z + 1]b! ∆b(js, j2, j1)∆b(js, j3, j4)∆b(jt, j3, j2)∆b(j4, jt, j1)

[z − j12s]b! [z − j34s]b! [z − j14t]b! [z − j23t]b! [j1234 − z]b! [j13st − z]b! [j24st − z]b!

where we denoted n
2

= j2,
s
2

= js− j1, t
2

= jt− j3 and besides conditions (3.6), (3.7)

we assume additionally

j1234 ∈ 2N + ν3 + ν4 + as, and j1234 ∈ 2N + ν1 + ν2 + at. (3.15)

The sum in (3.14) runs over z = p+js34 such that all arguments [.]b are non-negative,

and

∆b(a, b, c) =
√

[−a+ b+ c]b! [a− b+ c]b! [a+ b− c]b!/ [a+ b+ c+ 1]b! .

The sign (−1)A(ji) in the prefactor comes from the identity (A.9) applied to the terms

Sν(−xb−Q),

(−1)A(ji) = (−1)
1
4
j12s(j12s−1)+ 1

4
js34(js34−1)+ 1

4
j23t(j23t−1)+ 1

4
j14t(j14t−1)+1 .

This concludes our computation of the Racah-Wigner symbol (3.1) for degenerate

labels αi → −jib, 2ji ∈ 2Z≥0 + ai.

Let us finally mention that along the same lines one can calculate more general

limit of the Racah-Wigner symbol where the parameters take degenerate values,

αi → −jib− j′ib−1, ji + j′i ∈ Z≥0 +
ai
2

(3.16)

and the relations (3.6), (3.7) and

j1234 + j′1234 ∈ 2Z≥0 + ν3 + ν4 + as, and j1234 + j′1234 ∈ 2Z≥0 + ν1 + ν2 + at (3.17)

are assumed. The limit is defined analogously to eqs. (3.13) and (2.17),{
−j1b− j′1b−1 −j3b− j′3b−1 −jsb− j′sb−1
−j2b− j′2b−1 −j4b− j′4b−1 −jtb− j′tb−1

}′ ν3ν4
ν1ν2

≡ lim
αj→−jjb−j′jb−1

αk→−jkb−j′kb
−1

αl→−jlb−j′lb
−1

Res
αt→αj− t2 b−

t′
2
b−1

(
lim

αi→−jib−j′ib−1

αs→αk− s2 b−
s′
2
b−1

{
αa11 αa33 αass
αa22 αa44 αatt

}ν3ν4
ν1ν2

)
,
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where

js = jk +
s

2
, j′s = j′k +

s′

2
; jt = jj +

t

2
, j′t = j′j +

t′

2
.

Using the identity (A.11) for double sine functions Sν(−xb− yb−1) one may obtain{
−j1b− j′1b−1 −j3b− j′3b−1 −jsb− j′sb−1
−j2b− j′2b−1 −j4b− j′4b−1 −jtb− j′tb−1

}′ ν3ν4
ν1ν2

∼ δ∑
i νi=2(js+jt)mod 2∑

z≥0

∑
z′≥0

(−1)X(−1)
1
2
z(z−1)+ 1

2
z′(z′−1)(−1)B[z + 1]b! [z′ + 1] 1

b
!

(
[z − j12s]b! [z − j34s]b![z − j14t]b! [z − j23t]b![j1234 − z]b!

)−1
(3.18)(

[j13st − z]b! [j24st − z]b! [z′ − j′12s] 1
b
! [z′ − j′34s] 1

b
! [z′ − j′14t] 1

b
!
)−1

(
[z′ − j′23t] 1

b
! [j′1234 − z′] 1

b
! [j′13st − z′] 1

b
! [j′24st − z′] 1

b
!
)−1

.

The result is similar to eq. (3.14), with the difference that now we have two sets

of brackets [x]b , [y] 1
b

defined by the formula (3.10) and the analogous one with b

exchanged for b−1. Moreover an additional sign comes from eq. (A.11),

(−1)B = (−1)−2zj
′
1234st−2z′j1234st(−1)

1
2

∑7
i=1 µi(z−xi)2−ν(

z2

2
−z) (3.19)

where

µ1 = 1 + ν + ν4 + as mod 2, x1 = j12s; µ5 = ν + ν1 + ν2 + at mod 2, x5 = j1234;

µ2 = 1 + ν + ν3 + as mod 2, x2 = js34; µ6 = ν + ν1 + ν3 + a2 mod 2, x6 = jst13;

µ3 = 1 + ν + ν2 + at mod 2, x3 = j23t; µ7 = ν + ν1 + ν4 + a3 mod 2, x7 = jst24;

µ4 = 1 + ν + ν1 + at mod 2, x4 = j1t4;

The final formulas (3.14), (3.18) look somewhat similar to the corresponding equa-

tions in section 2. We are now going to see that they are indeed very closely related.

4 Comparison with the finite dimensional 6J symbols

Our formulas (3.14), (3.18) for the limiting value of the proposed Racah-Wigner

symbol could turn into a strong test of eq. (3.1) provided we were able to show that

the expressions (3.14), (3.18) give rise to a solution of the pentagon equation. In

our discussion of the Racah-Wigner symbol for Uq(sl(2)) this followed from the com-

parison with the 6J symbols for finite dimensional representations. By construction,

the latter are known to satisfy the pentagon equation. By analogy one might now

hope that the coefficients (3.14), (3.18) coincide with the 6J symbols for finite di-

mensional representations of the quantum universal enveloping algebra Uq(osp(1|2)).
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This, however, is not quite the case. To start the comparison, we quote an expression

for the 6J symbols of Uq(osp(1|2)) from [9, 10],[
l1 l2 ls
l3 l4 lt

]
q

= (−1)
1
2
(l1234+ls+lt)(l1234+ls+lt+1)+ 1

2(
∑4
i=1 li(li−1)+ls(ls−1)+lt(lt−1)) (4.1)

∑
z≥0

(−1)
1
2
z(z−1)[z + 1]′q!∆

′
q(ls, l2, l1)∆

′
q(ls, l3, l4)∆

′
q(lt, l3, l2)∆

′
q(l4, lt, l1)

[z − l12s]′q! [z − l34s]′q! [z − l14t]′q![z − l23t]′q![l1234 − z]′q! [l13st − z]′q! [l24st − z]′q!

where the sum extend over those values of z for which all arguments of the quantum

number [.]′q are non-negative and

∆′q(a, b, c) =
√

[−a+ b+ c]′q! [a− b+ c]′q! [a+ b− c]′q!/[a+ b+ c+ 1]′q! .

Let us stress that irreducible finite dimensional representations of Uq(osp(1|2)) are

labeled by integers l. Hence all the arguments li in the above 6J symbols satisfy

li ∈ Z≥0. In the previous definition the q-number [.]′q is defined as

[n]′q =
q−

n
2 − (−1)nq

n
2

q−
1
2 + q

1
2

. (4.2)

For q = eiπb
2

the quantum factorial takes the form

[n]′q!=


∏n−1

j=1mod 2 cos(j πb
2

2
)
∏n

j=2mod 2

(
i sin(−j πb2

2
)
)(

cos(πb
2

2
)
)−n

, forn ∈ 2N∏n
j=1mod 2 cos(j πb

2

2
)
∏n−1

j=2mod 2

(
i sin(−j πb2

2
)
)(

cos(πb
2

2
)
)−n

, forn ∈ 2N+1.

It is related to the similar symbol [.]b! which we defined in eq. (3.10) through

[n]b! = (−1)
1
12
n(n+1)(2n+1)(−i)n [n]′q! . (4.3)

In order to compare the limiting values (3.14) of Racah-Wigner symbols (3.1) with

the 6J symbols (4.1) we rewrite the latter in terms of the new symbol [n]′q,{
−j1b −j3b −jsb
−j2b −j4b −jtb

}′ ν3ν4
ν1ν2

= δ∑
i νi=2(js+jt)mod 2

(−1)A
′(ji)∆′q(js, j2, j1)∆

′
q(js, j3, j4)

2 cos (πb
2

2
) cos ( π

2b2
)

∆′q(jt, j3, j2)∆
′
q(j4, jt, j1)

∑
z≥0

(−1)X(−1)
1
2
z(z−1)+2z(j1234st+j1j3+j2j4+jsjt)[z + 1]′q! (4.4)

(
[z − j12s]′q! [z − j34s]′q![z − j14t]′q! [z − j23t]′q![j1234 − z]′q! [j13st − z]′q! [j24st − z]′q!

)−1
where

(−1)A
′(ji) = (−1)−

1
2
−(j1234st+1)(j1j3+j2j4+jsjt+1)+ 1

2
j12s(j12s−1)+ 1

2
js34(js34−1)

(−1)
1
2
j23t(j23t−1)+ 1

2
j14t(j14t−1)−F (j1,j2,js)−F (j3,j4,js)−F (j2,j3,jt)−F (j1,j4,jt) ,

(−1)F (j1,j2,j3) = (−1)
3
4
j123(j123+1)+j1j2j3+j1j2+j1j3+j2j3 .
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In the case when all ji are integer, or equivalently all ai = 0, the sign (−1)X defined

in eq. (3.3) and (−1)2z(j1234st+j1j3+j2j4+jsjt) both vanish so that we can relate the limit

of the Racah-Wigner symbol (4.4) to the Uq(osp(1|2)) 6J coefficients (4.1),{
−j1b −j3b −jsb
−j2b −j4b −jtb

}′ ν3ν4
ν1ν2

= δ∑
i νi=2(js+jt)mod 2

(−1)A
′′(ji)

2 cos (πb
2

2
) cos ( π

2b2
)

[
j1 j2 js
j3 j4 jt

]
q

(4.5)

where

(−1)A
′′(ji) = (−1)

1
2
−j1234st(j1j3+j2j4+jsjt)−F (j1,j2,js)−F (j3,j4,js)−F (j2,j3,jt)−F (j1,j4,jt) .

Let us emphasize that in arriving at the expressions (3.14) for the limiting values

of the Racah-Wigner symbol, the parameters ji were allowed to take either integer

(ai = 0) or half-integer (ai = 1) values. We have now shown that the limit is

proportional to the Uq(osp(1|2)) 6J coefficients, provided all arguments ji are integer.

In order to find an interpretation of the limit (3.14) in the case of half-integer ji, we

will have to bring in a different idea. It is related to an intriguing duality between

the 6J symbol of Uq(osp(1|2)) and Uq(sl(2)).

As was originally noticed in [11], [12], the Uq(sl(2)) quantum numbers (2.14)

with the deformation parameter q′ = i
√
q are related to the Uq(osp(1|2)) quantum

numbers (4.2) through,

[x]q′ = (−1)
1−x
2 [x]′q . (4.6)

This equation implies a relation between the quantum factorials,

[x]′q! = (−1)
x(x−1)

4 [x]q′ ! . (4.7)

With its help we can rewrite the Uq(osp(1|2)) 6J symbol in terms of the Uq(sl(2))

quantum factorials,[
j1 j2 js
j3 j4 jt

]
q

= (−1)
∑4
i=1

ji
2
(ji−1)+ js

2
(js−1)+ jt

2
(jt−1)− 1

2
jstj1234− 1

2
j13j24

∑
z≥0

(−1)z+2zj1234st [z + 1]q′ !∆q′(js, j2, j1)∆q′(js, j3, j4)∆q′(jt, j3, j2)∆q′(j4, jt, j1)

[z − j12s]q′ ! [z − j34s]q′ ! [z − j14t]q′ ![z − j23t]q′ ![j1234 − z]q′ ! [j13st − z]q′ ! [j24st − z]q′ !
.

Due to the condition ji ∈ Z≥0 in the Uq(osp(1|2)) 6J symbol, the sign (−1)2zj1234st

vanishes and one arrives at the following relation between the 6J symbols (4.1) and

(2.15) [
j1 j2 js
j3 j4 jt

]
q

= (−1)
∑4
i=1

ji
2
(ji−1)+ js

2
(js−1)+ jt

2
(jt−1)− 1

2
jstj1234− 1

2
j13j24

(−1)−j12+j34+2js√
[2js + 1]q′ [2jt + 1]q′

(
j1 j2 js
j3 j4 jt

)
q′

.
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In a similar way we can relate our limit of Racah-Wigner coefficients (4.4) to the 6J

symbol of Uq′(sl(2)) even if some of the arguments ji assume (half-)integer values.

When written in terms of [x]q′ , the Racah-Wigner coefficients (4.4) take the following

form,{
−j1b −j3b −jsb
−j2b −j4b −jtb

}′ ν3ν4
ν1ν2

= δ∑
i νi=2(js+jt)mod 2

(−1)A
′′′(ji)∆q′(js, j2, j1)∆q′(js, j3, j4)

2 cos (πb
2

2
) cos ( π

2b2
)

∆q′(jt, j3, j2)∆q′(j4, jt, j1)
∑
z≥0

(−1)X(−1)z+2(z+1)(j1j3+j2j4+jsjt)[z + 1]q′ ! (4.8)

(
[z−j12s]q′ ! [z−j34s]q′ ![z−j14t]q′ ! [z−j23t]q′ ![j1234−z]q′ ! [j13st−z]q′ ! [j24st−z]q′ !

)−1
where

(−1)A
′′′(ji) = (−1)

1
2
−(j1234st+2)(j1j3+j2j4+jsjt)−F ′(j1,j2,js)−F ′(j3,j4,js)−F ′(j2,j3,jt)−F ′(j1,j4,jt),

(−1)F
′(j1,j2,j3) = (−1)j1j2j3+

1
2
(j1+j2+j3) .

Using the relations (3.6, 3.7) and (3.15) one may check that

(−1)2j1j3+2j2j4+2jsjt = (−1)asν1+a1ν3+a4ν4+a1as+a2a4+as+at . (4.9)

Since the parameter z is related to the summation parameter p (3.12) as z = p+ j34s
and the parity of p is tracked by ν ′ = ν + ν3 + as, we may relate the sign under the

sum in eq. (4.8) to the sign factor (−1)X that was defined in eq. (3.3),

(−1)2(z+1)(j1j3+j2j4+jsjt) = (−1)2(ν+ν3+as+j34s+1)(j1j3+j2j4+jsjt) (4.10)

= (−1)ν(asν1+a1ν3+a4ν4+a1as+a2a4+as+at) = (−1)X ,

where we used eq. (3.15) to check that ν + ν3 + as + j34s + 1 ∈ 2N + 2(ν + ν3 + ν4 +

as) + ν. Thus the limit (4.8) is proportional to the 6J symbol of finite dimensional

representations of Uq′(sl(2)),{
−j1b −j3b −jsb
−j2b −j4b −jtb

}′ ν3ν4
ν1ν2

= δ∑
i νi=2js+2jtmod 2

(−1)A
′′′(ji)

2 cos (πb
2

2
) cos ( π

2b2
)

(4.11)

(−1)−j12+j34+2js√
[2js + 1]q′ [2jt + 1]q′

(
j1 j2 js
j3 j4 jt

)
q′

.

This concludes our discussion of the limiting Racah-Wigner coefficients (3.14). Our

analysis has shown that the expression we obtained from our proposal (3.1) is dual

to the 6J symbol for finite dimensional representations of the quantum universal en-

veloping algebra Uq(sl(2)). By construction the latter satisfy the pentagon equation.

Even though we have not demonstrated that the original symbol (3.1) solved the

pentagon identity for arbitrary values of the weights α, our results provide highly
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non-trivial evidence in favor of the proposal. Note in particular that our sign factors

were rather crucial in making things work as soon as some of the parameters had

non-zero label ai, what corresponds to R sector of N = 1 Liouville field theory.

It is actually possible to carry things a bit further. As we noted before, the

evaluation of the Racah-Wigner symbol (3.1) is possible for general degenerate pa-

rameters. In that case, the limiting values of the Racah-Wigner symbol (3.18) can

be also related to Uq(sl(2)) 6J symbols,{
−j1b− j′1b−1 −j3b− j′3b−1 −jsb− j′sb−1
−j2b− j′2b−1 −j4b− j′4b−1 −jtb− j′tb−1

}′ ν3ν4
ν1ν2

(4.12)

∼ δ∑
i νi=2js+2jtmod 2

(
j1 j2 js
j3 j4 jt

)
q′

(
j′1 j

′
2 j
′
s

j′3 j
′
4 j
′
t

)
q′′

,

where the deformation parameters are q′2 = −q = eiπ(b
2−1) and q′′2 = eiπ(b

−2−1). The

above factorization occurs when the sign (−1)X defined by eq. (3.3) cancels the factor

(−1)B from eq. (3.19) multiplied by the sign in eq. (4.8) and the corresponding one

depending on j′i, i.e. whenever

(−1)X(−1)B(−1)2z(j1j3+j2j4+jsjt)+2z′(j′1j
′
3+j

′
2j
′
4+j

′
sj
′
t) = 1 .

We verified this relation for degenerate parameters αi = −jib − j′ib
−1 with ai = 0

satisfying ji − j′i ∈ 2Z and for arbitrary degenerate parameters with ai = 1.

As in the bosonic case (2.18), we can relate our result with the fusion matrix

of supersymmetric minimal models. The degenerate representations of NSR algebra

are parametrized by a pair of Kac labels (2j, 2j′), satisfying ji+j′i ∈ Z≥0, ji−j′i ∈ 2Z
in the NS sector and ji + j′i ∈ Z≥0 + 1

2
in the R sector. It follows from the coset

construction

SMMk = (SU(2)k × SU(2)2)/SU(2)k+2

of supersymmetric minimal models that the fusion matrix is given in terms of two

6J symbols of Uq(sl(2)) with deformation parameters q21 = exp(2iπ/(k + 2)) and

q22 = exp(2iπ/(k + 4)). Taking into account the symmetry qi ↔ q−1i , these values

match perfectly those in the 6J symbols on the right hand side of eq. (4.12) if we set

b2 = (k + 4)/(k + 2).

With all these non-trivial test being performed, we trust that our formula (3.1)

correctly describes the fusing matrix of N = 1 Liouville field theory for both NS and

R sector fields.

5 Conclusions

In this work we proposed a formula (3.1) for the Racah-Wigner symbol of the non-

compact quantum universal enveloping algebra Uq(osp(1|2)). In order to test our pro-

posal we continued the symbol to a discrete set of parameters α = −jb−j′b−1, j, j′ ∈
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Z≥0/2. For integer j ∈ N and j′ = 0 we recovered the known expressions for Racah-

Wigner coefficients of finite dimensional Uq(osp(1|2)) representations. Half integer

values j are not related to the 6J symbols of Uq(osp(1|2)) but rather to those of

Uq(sl(2)). The relation is furnished by a duality which extends the known correspon-

dence between finite dimensional representations of Uq(osp(1|2)) and integer spin

representations of Uq(sl(2)) to the case of half-integer spins. A related extension

was also uncovered by Mikhaylov and Witten [19]. For cases with j′ 6= 0 we also

discussed the expected relation with the fusing matrix of unitary superconformal

minimal models. There are a number of interesting open issues that merit further

investigation.

As we stressed before, the Racah-Wigner symbol (3.1) should coincide with the

complete fusing matrix of N=1 Liouville field theory in both the NS and the R

sector [2, 3], [20]. For NS sector representations a related statement was established

in [1]. Of course, it would be interesting to incorporate R sector representations into

this comparison. Our comments on the relation with the fusing matrix of minimal

models supports such an identification very strongly. Assuming that our Racah-

Wigner symbol can be reinterpreted as the fusing matrix in N=1 Liouville theory,

our expression (3.1), and special cases thereof, should then also describe various

operator product coefficients in the bulk and boundary theory, and in particular the

coefficients of boundary operator product expansion, see e.g. [21] for a review of the

relation.

Recently, it has been observed that the operator product coefficients of N=1

Liouville field theory with central charge c = 15/2 + 3(b2 + b−2) can be factorized

into a products of the coefficients in ordinary (non-supersymmetric) Liouville field

theory and those of an imaginary (time-like) version thereof [22–25]. The central

charges of the latter are given by ci = 13 + 6(b2i + b−2i ) for i = 1, 2 with

b21 =
1

2
(b2 − 1) , b22 = 2(b−2 − 1)−1 = −b−21 − 2 .

This suggest a relation between Racah-Wigner symbols of non-compact Uq(osp(1|2))

for q = exp iπb2 and those of Uqi(sl(2)) for the two values q1 = exp(iπb21) =
√
−q and

q2 = q̃1. Note that the latter is obtained from the former by modular transformation.

We see sign of such a relation in the limit of discrete parameters (4.12), where two

6J symbols for finite dimensional representations of Uq(sl(2)) with q′ = eiπb
2
1 and

q′′ = eiπb
−2
2 occur. We plan to investigate the extension of the duality between

Uq(osp(1|2)) and Uq(sl(2)) to the continuous self-dual series of representations in

future work. It should also be linked with a strong-weak coupling duality between

the non-compact OSP(2|1)/U(1) cigar-like coset model and double Liouville theory

that was described in [26].

As we recalled in the introduction, the fusing matrix of N = 1 Liouville field

theory should be a central ingredient in the construction of a new 3-dimensional
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topological quantum field theory, just as Faddeev’s quantum dilogarithm [27, 28],

i.e. the building block of the fusing matrix on Liouville field theory, is used to con-

struct SL(2) Chern-Simons or quantum Teichmueller theory, see e.g. [29–35]. We will

explore these aspects of our work in a future publication.
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A Double sine functions

The double sine function Sb(x) is given in terms of Barnes’ double Gamma function

through

Sb(x) =
Γb(x)

Γb(Q− x)
(A.1)

and has poles in positions x such that

Sb(x)−1 = 0 ⇐⇒ x = −nb−mb−1 , n,m ∈ Z≥0 . (A.2)

It satisfies the shift relations

Sb(x+ b±1) = 2 sin(πb±1x)Sb(x) , (A.3)

which imply that one can evaluate

Sb(−kb) =
k∏
j=1

(
2 sin(−πjb2)

)−1
Sb(0) =

(
−2 sin (πb2)

)−k Sb(0)

[k]!
,

(A.4)

Sb(−kb−Q) =
(
2 sin (πb2)

)−k−1 (
2 sin (−πb−2)

)−1 Sb(0)

[k + 1]!
,

for k ∈ N, and more general

Sb(−xb− yb−1) =
(
2 sin (πb2)

)−x (
2 sin (−πb−2)

)−y (−1)xySb(0)

[x]![y]′!
, (A.5)

for x, y ∈ Z≥0. We have also used the q-number [x] = sin(πb2x)
sinπb2

and [y]′ = sin(πb−2y)
sinπb−2 .

The supersymmetric double sine functions are constructed from Barnes’ double

Gamma functions

S1(x) = SNS(x) =
Γb
(
x
2

)
Γb
(
x+Q
2

)
Γb
(
Q−x
2

)
Γb
(
2Q−x

2

)
(A.6)

S0(x) = SR(x) =
Γb
(
x+b
2

)
Γb

(
x+b−1

2

)
Γb
(
Q−x+b

2

)
Γb

(
Q−x+b−1

2

)
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and they have poles as

Sν(x)−1 = 0 ⇐⇒ x = kb+ l/b , k, l ∈ Z≥0 , k + l ∈ 2N− 1− ν. (A.7)

They obey the shift relations:

S1(x+ b±1) = 2 cos(
πb±1x

2
)S0(x), S0(x+ b±1) = 2 sin(

πb±1x

2
)S1(x). (A.8)

For x integer such that x ∈ 2N− 1− ν the double sine functions can be written as:

Sν(−xb) =
S1(0)(

2 cos (πb
2

2
)
)x

[x]b!
(A.9)

Sν(−xb−Q)=
(−1)−

x+1
2
− 1

2
δν,1 S1(0)

2 cos ( π
2b2

)
(
2 cos (πb

2

2
)
)x+1

[x+ 1]b!
=

(−1)−
x(x−1)

2
+1 S1(0)

2 cos ( π
2b2

)
(
2 cos (πb

2

2
)
)x+1

[x+ 1]b!

where

[n]b! =


∏n−1

j=1mod 2 cos(j πb
2

2
)
∏n

j=2mod 2 sin(−j πb2
2

)
(

cos(πb
2

2
)
)−n

, forn ∈ 2N∏n
j=1mod 2 cos(j πb

2

2
)
∏n−1

j=2mod 2 sin(−j πb2
2

)
(

cos(πb
2

2
)
)−n

, forn ∈ 2N + 1.
(A.10)

In general, for arguments such that x + y ∈ 2N − 1 − ν, the double sine functions

satisfy the identity:

Sν(−xb− yb−1) =
(−1)

xy
2
+ν x

2

2 S1(0)(
2 cos (πb

2

2
)
)x (

2 cos ( π
2b2

)
)y

[x]b! [y] 1
b
!

(A.11)

where [n] 1
b
! is given by the formula (A.10) with b exchanged for b−1.
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