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Generalized Bootstrap Equationsand possible impliations for the NLO OdderonJ. Bartelsa, G.P.Vaaba II. Institut f�ur Theoretishe Physik, Universit�at Hamburg, Luruper Chaussee 149,D-22761 Hamburg, Germanyb INFN Sezione di Bologna, via Irnerio 46, I-40126 Bologna, ItalyAbstrat:We formulate and disuss generalized bootstrap equations in nonabelian gauge theories.They are shown to hold in the leading logarithmi approximation. Sine their validity isrelated to the self-onsisteny of the Steinmann relations for inelasti prodution amplitudesthey an be expeted to be valid also in NLO. Speializing to the N = 4 SYM, we showthat the validity in NLO of these generalized bootstrap equations allows to �nd the NLOOdderon solution with interept exatly at one.1 IntrodutionBootstrap equations are among the most fundamental properties of the BFKL equation [1℄.For the elasti 2! 2 sattering amplitude:T2!2 = 2st Z d!2�i � ( jsj�2 )!F (!; t) (1.1)with the signature fator � = �e�i�! + � (1.2)(where the signature � takes the value � = + for the olor singlet Pomeron hannel and � = �for the olor otet exhange of the reggeized gluon) the well-known bootstrap property ofthe BFKL equation relates, via unitarity, for the olor otet exhange hannel the energydisontinuity (i.e. the imaginary part) of T2!2 to the (leading) real parts of T2!n produtionamplitudes1: dissT2!2 = 2s!(t)t g2s!(t) =Xn Z d
njT2!nj2; (1.3)1We de�ne disxf(x) = 12i (f(x+ i�)� f(x� i�)) 1
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where R d
n stands for the phase spae integral of n produed gluons, and�g(t) = 1 + !(t) (1.4)denotes the gluon trajetory.This bootstrap equation was �rst derived in the leading logarithmi approximation [1℄.In the attempt to generalize to NLO, Braun and Vaa [2, 3℄ introdued the notion of'strong bootstrap': one of the bootstrap properties is formulated as an eigenvalue onditionof the two-reggeon Green's funtion whih shows the lose onnetion between impat fatorsand the wave funtion of the reggeized gluon. Conjeturing the validity of a set of strongbootstrap ondition at NLO and making use of the NLO quark and gluon impat fatorexpressions they were able to ompute the wave funtion of the reggeized gluon. After theomputation of the full NLO BFKL nonforward QCD kernel in the olor otet hannel,the ful�llment of these onditions were expliitly proven by Fadin et al. [4℄. A �rst steptowards generalizing the bootstrap ondition to inelasti amplitudes (still on the basis ofsingle energy disontinuities) was arried out in [5℄: apart from on�rming the previousbootstrap relations, another bootstrap relation was formulated. This relation was �nallyproven in [6℄.In this paper we turn to double energy disontinuities of 2! 3 inelasti amplitudes andshow that they lead to generalized bootstrap onditions. As a by-produt we show that, ifthese generalized bootstrap onditions are valid also in NLO, they an be used to preditthe NLO Odderon solution and its interept.2 Double disontinuities in LLConsider the signatured 2! 3 sattering amplitude in the double Regge limit. In aordanewith the Steinmann relations, it an be written as a sum of the two terms:
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Fig.1: Deomposition for the 2! 3 sattering amplitude
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T2!3 = 2st1t2 Z d!12�i Z d!22�i h� js1j�2 �!1�!2 � jsj�2�!2 �12�2FR(!1; !2; t1; t2; �)
12+� js2j�2 �!2�!1 � jsj�2�!1 �21�1FL(!1; !2; t1; t2; �)
21 i (2.1)with s1 = (k1 + k2)2 ; s2 = (k2 + k3)2 ; � = s1s2s = ~k22 ; (2.2)�i = e�i��(ti) + �i = �e�i�!i + �i ; (2.3)�ij = e�i�(!i�!j) + �i�j; (2.4)and 
i = sin�!i ; 
ij = sin�(!i � !j): (2.5)2.1 The signatures (�1; �2) = (�;�)We �rst onentrate on the negative signature ase: �1 = �2 = � with reggeized gluons inboth t-hannels. In the leading logarithmi approximation the amplitude is known to takethe simple fatorizing form:
CFig.2: The leading log approximation of the 2! 3 sattering amplitude

T2!3 = 2st1t2�(t1)� js1j�2 �!(t1) gC(q1; q2)� js2j�2 �!(t2) �(t2) (2.6)where �(t) and C(q1; q2) denote the residue funtion and e�etive prodution vertex, resp. Inthe following we will show that the partial waves F1 and F2 an be determined from energydisontinuities and unitarity integrals. In partiular, single and double disontinuities givethe same answer, as a result of generalized bootstrap equations. Inserting the results for F1and F2 into (2.1) we �nd agreement with (2.6).Both the single energy disontinuities in the subenergy s1 and the double disontinuityin s1 and s determine F1. From (2.1) we �nd thatdiss1T2!3 = � 2st1t2 Z d!12�i Z d!22�i � js1j�2 �!1�!2 � jsj�2�!2 �2F1(!1; !2; t1; t2; �) (2.7)
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and diss1dissT2!3 = 2st1t2 Z d!12�i Z d!22�i � js1j�2 �!1�!2 � jsj�2�!2 
2F1(!1; !2; t1; t2; �) (2.8)both determine F1. The diagrams orresponding to the single and double disontinuities areshown in Fig.2a and 2b, resp.
a

bFig.3: Single and double energy disontinuities of the 2! 3 sattering amplitude.Dots denote the e�etive prodution vertex.When omputing the unitary integrals illustrated in Fig.3a, it is onvenient to transforminto the CM system of the outgoing partiles 1 and 2, using heliity onservation of the elastisattering of partile 2, performing the 'multipliation' and then moving bak into the overallCM system. Alternatively, one an use left and right gauges for the polarization vetors ofthe produed gluon. The result for the prodution verties 2V1 and 2V2 are illustrated inFig.4a and 4b, resp..
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Fig.4. Prodution verties: a) the RRPR prodution vertex 2V1 , b) the RRPRRprodution vertex 2V2blak dots denote the e�etive BFKL prodution vertex, straight line the gluon propagator1=k2.Next we de�ne (amputated) BFKL amplitudes for two reggeized gluons,Da1a22 (k1; k2; qj!),where k1 + k2 = q, a1; a2 are the olor indies of the reggeized gluons, and we suppress theolor labels of the external partiles2. For the olor otet hannel we fator out the overallolor tensor and de�ne the two-reggeon amplitude D(8A)2 whih satis�es the integral equation(rhs of Fig.5):!D(8A)2 (k1; k2; qj!) = D(8A)(2;0 (k1; k2; q) + ��K8r + !(k1) + !(k2)�
D(8A)2 � (k1; k2; qj!) (2.9)where K8r is the real emission part of the olor otet BFKL kernel (i.e. it ontains the olorfator N2 and, in LO, it equals 12K1r). This equation has the familiar bootstrap solutionD(8A)2 (k1; k2; qj!) = �(t) 1! � !(q)g (2.10)with�q2 = t. In obtaining (2.10) it was essential that the inhomgeneous term,D(8A)(2;0 (k1; k2; q)is point-like, i.e it depends only on k1 + k2 = q and not separately on k1 and k2.2The notion 'amputated' refers to the transverse momentum propagators of the reggeized gluons. Ourfuntion D2(k1; k2; q;!) inludes, for the outgoing reggeons, a reggeon denominator 1=(! � !(k1)� !(k2)).5
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Dfaig2 �a1a2a3 (k1; k2; k3; q1j!) + �Xij Kfaigr;ij + !(k1) + !(k2) + !(k3)�
Dai3 !a1a2a3 (k1; k2; k3; q1j!); (2.13)where the olor supersripts denote the olor struture, and lower subsripts refer to reggeonlines. In the seond equation, k1+ k2+ k3 = q1. Kfaigr;23 is the real emission part of the BFKLkernel ating between the reggeons '2' and '3', and it inludes the struture onstants fab:Kfaigr (q1; q2; q01; q02) = fa1a01lf la2a02Kr(q1; q2; q01; q02)1g2Kr = ��q2 + q21q022 + q021q22(q1 � q01)2 � (2.14)The transition kernel Kfaig2!3 = K2!3fa1a01l f la02m fa03a3m has the form:1g3K2!3(q01; q02; q03; q1; q3) = �q2 � q022 q21q23(q01�q1)2(q03�q3)2 + (q01+q02)2q23(q03�q3)2 + (q02�q03)2q21(q01�q1)2 (2.15)6



with q = q01+q02+q03. We would like to stress that this transition kernel is symmetri underq1 $ q3; q01 $ q03; in Fig. 3b, it is obtained as the produt of two e�etive prodution vertiesabove and below and an elasti resattering vertex in between.We onsider the speial ase where we antisymmetrize in the reggeons with momenta k2and k3: A23 �Da1a2a33 (k1; k2; k3; q1j!) =12 (Da1a2a33 (k1; k2; k3; q1j!)�Da1a3a23 (k1; k3; k2; q1j!)) (2.16)(this de�nes the operator A23 whih antisymmetrizes in the two lower legs with momenta k2and k3 and olor a2 and a3). This funtion satis�es the equation!A23 �Da1a2a33 (k1; k2; k3; q1j!) =A23 �Da1a2a33;0 (k1; k2; k3; q1) + �(A23 �Kfaig2!3)
Dfaig2 �a1a2a3 (k1; k2; k3; q1j!) + �Xij Kfaigr;ij + !(k1) + !(k2) + !(k3)�
 A23 �Dai3 !a1a2a3 (k1; k2; k3; q1j!) (2.17)Provided the orresponding inhomogeneous term A23 � Da1a2a33;0 (k1; k2; k3; q1) is pointlikein the pair of momenta k2 and k3 (i.e. it depends only upon the sum k2 + k3 = k23) andequals A23 �Da1a2a33;0 (k1; k2; k3; q1) = Da12;0 (k1; k23; q1)g2f a2a3 ; (2.18)the equation for A23 �Da1a2a33 (k1; k2; k3; q1;!) an be solved. One obtains:A23 �Da1a2a33 (k1; k2; k3; q1j!) = Da12 (k1; k23; q1j!)g2f a2a3 (2.19)
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In order to verify this solution, one inserts the solution into the integral equation for A23 �Da1a2a33 (k1; k2; k2; q1j!), (2.17), and makes use of the following relation between the 2 ! 3kernel and the BFKL kernel 3 : [Kr;1020; S2℄ = �K2!3; (2.20)where the operator S2 denotes the splitting of line 2. We illustrate this equation in Fig.7a:
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Fig.7: ommutator relations:a) eq.(2.20) for the real emission part of the BFKL kernelb) for the RRPR prodution vertex.Both identities hold for the momentum strutures Kr and K2!3, i.e. olor has beenstripped o�.A similar equation holds for the RRPR prodution vertex, 2V1. We show this in Fig.7b.The bootstrap ondition (2.19) represents a generalization of the well-known bootstrapproperty of the two-reggeon Green's funtion (2.10). Relations of this kind where �rst derivedin [7, 8, 9℄. Note that, for this solution, we have not projeted on any total olor quantumnumber in the t1 hannel. In partiular, this relation an be applied both to the olor singletand to the olor otet hannel.Let us now apply this result to the double disontinuity in Fig.3b. In order to obtain,from the three-reggeon amplitude A23 � Da1a2a33 (k1; k2; k3;!1), the left hand part of Fig.3b,we have to onvolute with the RRPR vertex and add the onvolution of the two-reggeon3In all our �gures, the kernels are ating on wave funtions to the left (sign of arrows) whereas in ourformulae operators are ating on wave funtions on the right
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Green's funtion with the RRPRR vertex (Fig.8):2V1(q1 � k0 � k; k0; q2 � k)
 A �Dfaig3 (q1 � k0 � k; k0; k;!1)+2V1(q1 � q2 � k0 + k; k0; k)
 A �Dfaig3 (q1 � q2 � k0 + k; q2 � k; k0;!1)+A �2 V2(q1 � k0; k0; q2 � k; k)
Dfaig2 (q1 � k0; k0;!1)= �2V1(q1 � k0; k0; q2)12gf a2a3�
Dfaig2 (q1 � k0; k0;!1) (2.21)
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relation is easily veri�ed from by diret alulation from the analyti form of Kr and K2!3.Alternatively, one an invert the argument and ask whether this ommutator relation anbe derived from the validity of the bootstrap ondition (2.19). Starting from the integralequation for A23�Da1a2a33 (k1; k2; k3; q1;!), (2.17), and inserting the bootstrap solution (2.19),one onludes that, on order that (2.19) solves the equation, the following (slightly weaker)ondition must hold:
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Fig.9: The modi�ed ommutator equation, derived from the validity of the bootstrapondition (2.19). The kernels are the momentum spae expressions Kr and K2!3, i.e. olorhas has been stripped o�.We write this equation in the following form:Kr;12 
12 Sq2 
2 +K2!3(102030) +Kr;13 
13 Sq2 
2 +K2!3(103020) = 2Sq02 
2 Kr;12 ; (2.23)Later on we will show that this relation enables us to derive the LO Odderon solution: theOdderon wave funtion and interept an be derived from of the validity of the generalizedbootstrap ondition. Generalizing the validity of (2.19) to NLO, the same line of argumentsallows to address also the NLO Odderon solution.2.2 The signatures (�1; �2) = (+;�)Let us apply the same argument to another signature on�guration, (+;�): now we have theBFKL Pomeron in the t1-hannel and the reggeized gluon in the t2 hannel. The full 2! 3sattering amplitude has again the representation (2.1), but now, in the leading logarithmirepresentation, only the �rst term ontributes (the seond one is of higher order), and itis diretly proportional to the disontinuity in s1 (Fig.3a). The onsisteny between the10



single disontinuity in s1 and the double disontinuity in s1 and s requires, again, a relationbetween Figs.3a and b. As we have shown above, the bootstrap ondition (2.19) is valid bothfor the otet and the singlet representations in the t1 hannels. Therefore, our derivation ofthe relation between single and double energy disontinuities is the same as before: Fig.8holds for singlet and otet representations in the t1 hannel.3 NLO onsiderationsLet us now turn to NLO. Our previous disussion has shown that the validity of the bootstrapondition (2.19) is losely onneted with the ansatz (2.1) for the 2! 3 sattering amplitudeand its double energy disontinuities. Similar to the familiar bootstrap equation, whihwas onneted with the single energy disontinuity of the 2 ! 2 sattering amplitude andwhih was shown to be valid in LO and NLO, it is plausible to expet that also (2.19)remains valid in NLO. In the following we assume that this is the ase, and we investigatethe onsequenes. We now onentrate on the olor singlet t1-hannel (i.e. the signatureon�guration (�1; �2) = (+;�)) whih has an overall olor oeÆient fa1a2a3 for the three-reggeon amplitude D3.Let us �rst see how the integral equations (2.12) and (2.13) are modi�ed in NLO4:1) the gluon trajetory funtion is to be taken in NLO2) in the equation for D2, we need the olor singlet NLO impat fator D(1)2;0. It is knownfor several ases (e.g. the quark and gluon impat fators and the virtual photon impatfator). The NLO BFKL kernel in the olor singlet representation is also known.3) In the equation for D3, we need the NLO olor singlet impat fator D3;0(k1; k2; k3)(1)proportional to fab. This impat fator, when antisymmetrized in the two gluons withmomenta k2 and k3, has to ful�ll the strong bootstrap ondition:A23�D(1)3;0(k1; k2; k3; q1) = 12 �D(1)2;0(k1; k2 + k3; q1) (0)8 (k2; k3) +D(0)2;0(k1; k2 + k3; q1) (1)8 (k2; k3)�(3.1)where  (0)8 = g and  (1)8 (k2; k3) denote the wave funtion of the reggeized gluon in LO andNLO, resp..4) In (2.13), the NLO BFKL kernel ating in the three reggeon state is in the antisymmetriolor otet representation (f-type).5) the 2! 3 kernel (f.(2.15)) is to be omputed in NLO (not known yet): by onstrution,it must be symmetri under the exhange:(reggeons 1 and 10) $ (reggeons 3 and 30) .6) In (2.13) the integral kernel of the three-reggeon state reeives a new ontribution, a 3! 3kernel K3!3(q1; q2; q3; q01; q02; q03). It arises from inserting, into the double energy disontinuity,a prodution vertex whih is omputed in quasiregge kinematis (QMRK). We illustrate thethree ontributions in the following Fig.10:4From now on we will use supersripts (0) and (1) for distinguishing between LO and NLO quantities.11
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Fig.11: NLO analogue of Fig.9 (see text).In Fig.11 we have stripped o� all olor fators in the following way. From the left we haveprojeted onto the olor singlet state by ontrating the olor labels of the two gluons. TheBFKL kernels (ontaining only the real emission parts) are normalized to the projetors P8Aor P1. The 3! 3 kernel has been ontrated, from the left, with the fab tensor. In this way,all terms are proportional to the olor tensor 12fa1a2a3 . The blak blob denotes the NLO wavefuntion of the reggeized gluon,  (1)8 . We give here a formula whih enodes the relation ofFig. 11. After moving all terms to the lhs we obtain:K(1)8r;1020 (0)8 S2 +K(0)8r;1020 (1)8 S2 +K(1)2!3(10; 20; 30)+K(1)8r;1030 (0)8 S2 +K(0)8r;1030 (1)8 S2 +K(1)2!3(10; 30; 20)�2� (0)8 S200K(1)1r;12 +  (1)8 S200K(0)1r;12� +K3!3 (0)8 S2 = 0 (3.5)Comparison of Fig.11 with Fig.9 and of (3.5) with (2.23 shows that they are of the sameform, exept for the new 3! 3 kernel whih appears �rst in NLO.4 A possible impliation for the NLO Odderon solutionin N = 4 SYMThe validity of the generalized bootstrap ondition (2.19) beyond LL might have an inter-esting onsequene for the Odderon solution in NLO.
13



4.1 A family of LL Odderon statesLet us briey reapitulate the onstrution of odderon solutions at LL. The orrespondingthree reggeized gluon kernel an be written, after olour projetion, asH3 = Xi !(qi)Æ(2)(q0i � qi) +K8r;12 +K8r;23 +K8r;13= 12 �K(12) +K(23) +K(31)� ; (4.1)where K8r;ij = N2 Kr;ij is the LL BFKL olor otet kernel (inluding only real emissions)ating on gluons with labels i and j. It is onvenient to introdue the infrared safe kernels:K(ij) = !(qi)Æ(2)(q0i � qi) + !(qj)Æ(2)(q0j � qj) + 2K8r;ij(q0i; q0j; qi; qj) (4.2)where K1r;ij = 2K8r;ij. Note that in LO this kernel oinides with the olor singlet BFKLHamiltonian H2. In eah term of the odderon kernel the 'non interating' gluon trajetoryfuntions are aompanied by delta distributions whih will be omitted in the following. Suha kernel, due to the bootstrap property related to gluon reggeization, satis�es the followingrelation, when integrated with a onstant funtion (unity),K(ij) 
ij 1 = 2!(q0i + q0j)� !(q0i)� !(q0j) (4.3)where 
ij stands for integration in qi and qj with the onstraint of momentum onservation.Let us onsider the BLV-ansatz [10℄ for the odderon solution (amputated): (q1; q2; q3) = '(q1 + q2; q3) + '(q2 + q3; q1) + '(q3 + q1; q2)= '12;3 + '23;1 + '31;2 = Sq1 
2 '(q2; q3) + yl: perm: : (4.4)where '(k1; k2) denotes a two gluon amplitude. Let us at with the odderon kernel on the�rst term (the other two are obtained by yli permutations). We have three ontributions:K(12) 
12 '12;3 = [2!(q01 + q02)� !(q01)� !(q02)℄'(q01 + q02; q03); (4.5)K(23) 
23 '12;3 = [!(q02) + !(q03)℄'(q01+q02; q03) +K1r;23 
23 Sq01 
2 '(q2; q3) (4.6)and K(31) 
31 '12;3 = [!(q03) + !(q01)℄'(q01+q02; q03) +Kr;31 
23 Sq02 
1 '(q1; q3) (4.7)Summing these last three intermediate expressions one hasK(12) 
  amp = 2 [!(q01 + q02) + !(q03)℄'(q01 + q02) +K1r;23 
23 Sq01 
2 '(q2; q3) +K1r;31 
23 Sq02 
1 '(q1; q3) (4.8)We now make use of the relation (2.23) illustrated in Fig. 9 (whih was derived as a on-sequene of the bootstrap equation). We rewrite it for onveniene for this spei� asemultiplying it by with N (sine NKr = K1r):K1r;23
23 Sq1
1+NK2!3(102030)+K1r;13
13Sq1
1+NK2!3(201030) = 2Sq01
1K1r;12 ; (4.9)14



and taking into aount the fator 1=2 in Eq. (4.1) we �ndH3 
 '12;3 = [!(q01+q02) + !(q03)℄'(q01+q02) +K1r(q01+q02; q03; q1; q3)
13 '(q1; q3)�N2 [K2!3(102030) +K2!3(201030)℄
 '= (H2 
 ')(q01+q02; q03)� N2 [K2!3(102030) +K2!3(201030)℄
 ' (4.10)Let us now onsider the full ansatz for the solution given in Eq. (4.4). On applying H3we get H3 = H3 
 ('12;3 + '23;1 + '31;2)= (H2 
 ')12;3 + (H2 
 ')23;1 + (H2 
 ')31;2�N2 [K2!3(102030) +K2!3(201030) +K2!3(203010) +K2!3(302010)+K2!3(301020) +K2!3(103020)℄
 ': (4.11)In [10℄ it was observed that if one hoses, in the ansatz (4.4), a funtion '(k1; k2) whihis antisymmetri under the exhange of k1 and k2 then, thanks to the symmetry propertiesof K2!3, the sum of terms in the last two lines is zero andH3 = Xyl:perm: ( 8H2')12;3 : (4.12)Moreover if ' is taken as an antisymmetri eigenfuntion 'h of the singlet BFKL kernel K1rwith eigenvalue �h, then  amp beomes an eigenfuntion of the odderon hamiltonian:H3  h = �h  amph : (4.13)It is well-known that the antisymmetri BFKL eigenfuntions have odd onformal spin quan-tum numbers n, and the leading eigenvalue �(�; n) belongs to � = 0 and n = 1 with:�(0; 0) = 0; (4.14)i.e. the interept of this Odderon solution equals zero.It is important to emphasize that a ruial ingredient in this argument was the bootstrapidentity (4.9) and the symmetry of the kernel K2!3(q1; q2; q01; q02; q03) under the exhange ofmomenta: q1 $ q2 and q01 $ q03.4.2 An ansatz for a family of N = 4 SYM Odderon states at NLOLet us now go to NLO and assume that the bootstrap ondition (2.19) holds in NLO, inpartiular for the signature on�guration (�1; �2) = (+;�) with the t1-hannel being in theolor singlet on�guration. As we have argued above, the validity of (2.19) implies Fig.11,i.e. a generalized version of the ommutator relation (3.5) also holds in NLO. From now onwe speialize to the ase of N = 4 SYM where speial simpli�ations our.15



In [11℄ the NLO orretions for the Odderon kernel have been alulated. They onsistof the new 3 ! 3 kernel and the NLO orretions for the symmetri BFKL kernel in theolor otet state. In partiular, it was found that, in the supersymmetri ase, due to thefat that also the salar and fermion �elds belong to the adjoint representation of the gaugegroup, the symmetri (dab) and antisymmetri (fab) NLO orretions for the BFKL kerneloinide. This implies that the NLO wave funtion for the reggeized gluon oinides with theNLO wave funtion for the symmetri d-reggeon: the degeneray between the odd signaturef -reggeon (gluon) and the even signature d-reggeon remains valid in NLO. Moreover, the3 ! 3 kernels in the olor singlet hannel are the same for the f and the d states. Thisimplies that the NLO generalization of the ommutator relation (2.20) remains the sameif we replae the overall f struture by an overall d struture, and the f -reggeon by the dreggeon.It is worthwhile to mention a spei� feature of the NLO results obtained in [11℄. Forthe alulation of the 3 ! 3 kernel it was important to observe that the s-hannel inter-mediate state gluons, initially, had to be taken as being o�-shell. This lead to ultravioletdivergenies of the integrals over longitudinal variables whih anelled only after summingover all permutations of reggeized gluons. In the �nal result, i.e., after taking the sum overall permutations, the 3 ! 3 kernel ould be written as a sum of three yli permutations,eah of them being the residue of the two poles of the s-hannel gluon propagators, withthe speial onstraint that the longitudinal momenta of the s-hannel gluons had oppositediretions. It is this feature whih allows to identify the 3 ! 3 vertex inside the doubleenergy disontinuity (Fig.10) with the 3! 3 vertex derived in [11℄.With these arguments, we now show that all the ingredients whih went into the LOsolution of the Odderon eigenvalue problem an be extended to NLO. As a result, theOdderon solution, again, is given by the n = 1 olor singlet BFKL eigenfuntion withinterept zero.Let us start from the struture of the NLL BKP kernel [11℄ in the Odderon hannel, i.e.having taken the projetion on the da1a2a3 olor singlet struture for the N = 4 SYM theory.The Hamiltonian now has the form:H3 = !1 + !2 + !3 +K8r;12 +K8r;23 +K8r;31 +K(123)= 12 �K(12) +K(23) +K(31)�+K(123) (4.15)where !i are the reggeized gluon trajetories, K8r;ij is the real part of the BFKL kernelin the symmetri otet hannel, all of them now up to NLO auray, and K(123) is theonneted three-gluon interation term (in the tree approximation) whih ontributes �rstin NLO. The kernels in the 8S representation, oiniding in N = 4 SYM with the ones inthe 8A representation areK(ij) = (!i + !j) + 2K8r;ij = 2H(8)(ij) � (!i + !j) (4.16)and together withK(123) (also the same for the fab and dab singlet olor states) are assoiatedto infrared �nite operators. It will be onvenient to make also use of the olor singletHamiltonian H2: H2 = !(q1) + !(q2) +K1r;ij: (4.17)16



Sine in NLO the real part of the BFKL singlet kernel, K(1)1r , is di�erent from 2K(1)8r , theNLO part of H2 is di�erent from that of K(ij).An important property of the otet kernel, valid also in N = 4 SYM, is the strongbootstrap equation H(8)(ij) 8(qi; qj) = !(qi + qj) 8(qi; qj) ; (4.18)where  8 is the gluon wave funtion 8 =  (0)8 +  (1)8 (4.19)and whih an be translated in the equivalent relation for the IR safe kernelK(ij) 8(qi; qj) = [2!(qi + qj)� !(qi)� !(qj)℄ 8(qi; qj) : (4.20)Upon perturbative expansion to NLO auray, it beomes:K(0)(ij) (1)8 (qi; qj) +K(1)(ij) (0)8 (qi; qj) = �2!(0)(qi + qj)�!(0)(qi)�!(0)(qj)� (1)8 (qi; qj)+ �2!(1)(qi + qj)�!(1)(qi)�!(1)(qj)� (0)8 (qi; qj) (4.21)Let us now onsider an ansatz whih extends the LL BLV wavefuntion  (0) solution reviewedabove to NLO:  =  (0) +  (1) : (4.22)We again onsider a two gluon wave funtion ' = '(0) + '(1) (whih later on will be hosento be antisymmetri) and de�ne (q1; q2; q3) = Xyl: perm: 8(q1; q2; q1 + q2)'(q1 + q2; q3) = Xyl: perm: 8 Ŝq1' (4.23)Note that the notation  8 Ŝq1 stands for a splitting of a gluon arrying momentum q1, mul-tiplied by the eigenfuntion  (8) solution of (4.18). In more detail we have, for the �rst ofthe three yli permutations up to NLL auray: (1) = Xyl: perm:h (0)8 '(1)(q1 + q2; q3) +  (1)8 (q1; q2; q1 + q2)'(0)(q1 + q2; q3)i (4.24)Under whih onditions an the wave funtion de�ned in Eq. (4.23) an be an eigenstateof the odderon kernel H3? To answer this we proeed in the same way as in the provioussubsetion, i.e. we ompute H3 and show that, with an antisymmetri funtion ',  is, infat, eigenfuntion of H3 with the kernel H2.Expanding up to NLO let us onsider the following notation: !i = !(0)i + !(1)i , K8r(ij) =K(0)8r(ij) +K(1)8r(ij), K(ij) = K(0)(ij) +K(1)(ij), H2 = H(0)2 +H(1)2 , and H3 = H(0)3 +H(1)3 . We wish toompute H3 = �12 �K(12) +K(23) +K(31)�+K(123)� Xyl: perm: 8 Ŝq1' (4.25)17



whih, up to NLO, means:(H3 )(1) = Xyl:perm:�H(1)3  (0)8 '(0)12;3 +H(0)3  (1)8 '(0)12;3 +H(0)3  (0)8 '(1)12;3� (4.26)The last term ontaining '(1) an be treated in the same way as the LO solution: if '(1) isan antisymmetri funtion, this last term is eigenfuntion by itself:H(0)3 Xyl:perm: (0)8 '(1)12;3 = Xyl:perm:( (0)8 H(0)2 '(1))12;3 (4.27)In the �rst two terms of (4.26) we begin with the �rst of the three yli permutations,'12;3, and apply the kernel K(12): this is just (4.20), i.e. we have the NLO term of the strongbootstrap ondition (4.21). They an be written as12 �2!(1)12 � !(1)1 � !(1)2 � (0)8 Sq1 
 '(0) + 12 �2!(0)12 � !(0)1 � !(0)2 � (1)8 Sq1 
 '(0) (4.28)Next we onsider the ation of the remaining parts of H3 on '12;3:12 hK(1)(23) +K(1)(31)i
  (0)8 Sq1 
 '(0) + 12 hK(0)(23) +K(0)(31)i
  (1)8 Sq1 
 '(0) +K(123) 
  (0)8 Sq1 
 '(0): (4.29)Using (4.16) for the kernels Kij this expression an be rewritten as12 �!(0)1 + !(0)2 + 2!(0)3 � (1)8 Sq1 
 '(0) + 12 �!(1)1 + !(1)2 + 2!(1)3 � (0)8 Sq1 
 '(0)+�K(1)8r;23 +K(1)8r;31�
  (0)8 Sq1 
 '(0) + �K(0)8r;23 +K(0)8r;31�
  (1)8 Sq1 
 '(0) ++K(123) 
  (0)8 Sq1 
 '(0)� (4.30)We now use, for the last two lines of this equation, the relation (3.5) (or Fig.11) (whih wasderived from the validity of the generalized bootstrap ondition) and obtain for this part of(4.30):2 (0)8 Sq01
K(1)1r 
'(0)12;3+2 (1)8 Sq01
K(0)1r 
'(0)12;3�K(1)2!3(102030)
'(0)�K(1)2!3(201030)
'(0) (4.31)Let us now follow the argument made for the derivation of the LO solution and take '(0)to be an antisymmetri funtion. Then, after summing over all yli permutations andmaking use of the symmetri properties of the 2 ! 3 kernel, the sum of terms ontainingK(1)2!3 anels. Colleting all our results in Eqs. (4.28), (4.30) and (4.31) we �nd for the �rsttwo terms of (4.26):Xyl: perm:�h!(0)12 + !(0)3 i (1)8 Sq1 
 '(0) + h!(1)12 + !(1)3 i (0)8 Sq1 
 '(0) + (0)8 Sq01 
K(1)1r 
 '(0) +  (1)8 Sq01 
K(0)1r 
 '(0)�= Xyl: perm:�( (1)8 H(0)2 +  (0)8 H(1)2 )'(0)�12;3 (4.32)18



Combining this with (4.27), we have thus veri�ed that, in NLO,H3 = Xyl: perm: ( 8H2')12;3 : (4.33)Finally, if up to NLO, ' is an odd eigenfuntion of H2 with the NLO eigenvalue �(�; n) =�(0)(�; n) + �(1)(�; n), our funtion  is eigenfuntion of the odderon Hamiltonian with theleading eigenvalue �(� = 0; n = 1) = 0: (4.34)5 ConlusionsIn this paper we have shown that there exist, at least in the leading logarithmi approx-imation, generalized bootstrap relations (2.19) whih are essential to guarantee the self-onsisteny of the ansatz (2.1), in partiular the ompatibility between single and doubleenergy disontinuities. They an be seen as a generalization of the familiar bootstrap equa-tion (2.10) whih guarantees, for the 2! 2 sattering amplitude with olor otet exhange,the onsisteny between the leading real part and the energy disontinuity (imaginary part).For this ase the bootstrap ondition has been shown to remain valid also in NLO auray.It is therefore tempting to expet that also the generalized version of the bootstrap equationdisussed in this note is valid in NLO.If these generalized bootstrap relations are valid in NLO, they allow an interesting ap-pliation for the NLO Odderon solution in N = 4 SYM. After reviewing the derivation ofthe LO Odderon solution we have shown that the same line of arguments an be appliedalso in NLO, i.e. there exists a family of NLO eigenfuntions whih are onstruted withthe n = 1 olor singlet BFKL eigenfuntions and share the same interept up to one. Inour argument, however, we are making use of a few properties of NLO orretions whih arevalid in N = 4 SYM but not in QCD. Therefore, without further diret QCD alulationswe annot onlude that also in QCD the NLO Odderon has interept one.It is lear that a diret proof of the NLO bootstrap equation (2.19) is of vital interest.AknowledgementsOne of us, J. B., gratefully aknowledges the hospitality of the INFN Setion of Bolognawhere most of this work has been done.Referenes[1℄ V.S. Fadin, E.A. Kuraev and L.N. Lipatov, Phys. Lett. B60 (1975) 50; E.A. Kuraev,L.N. Lipatov and V.S. Fadin, Zh. Eksp. Teor. Fiz. 71 (1976) 840 [Sov. Phys. JETP 44(1976) 443℄; 72 (1977) 377 [45 (1977) 199℄; Ya.Ya. Balitskii and L.N. Lipatov, Sov. J.Nul. Phys. 28 (1978) 822.[2℄ M. Braun and G. P. Vaa, Phys. Lett. B 454 (1999) 319 [hep-ph/9810454℄.19
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