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DESY 13-122MIT{CTP 4479Jet pT Resummation in Higgs Prodution at NNLL0+NNLOIain W. Stewart,1 Frank J. Takmann,2 Jonathan R. Walsh,3 and Saba Zuberi31Center for Theoretial Physis, Massahusetts Institute of Tehnology, Cambridge, MA 02139, USA2Theory Group, Deutshes Elektronen-Synhrotron (DESY), D-22607 Hamburg, Germany3Ernest Orlando Lawrene Berkeley National Laboratory, University of California, Berkeley, CA 94720(Dated: July 5, 2013)We present preditions for Higgs prodution via gluon fusion with a pT veto on jets and withthe resummation of jet-veto logarithms at NNLL0+NNLO order. These results inorporate expliitO(�2s) alulations of soft and beam funtions, whih inlude the dominant dependene on the jetradius R. In partiular the NNLL0 order aounts for the orret boundary onditions for the N3LLresummation, for whih the only unknown ingredients are higher-order anomalous dimensions. Weuse sale variations in a fatorization theorem in both rapidity and virtuality spae to estimate theperturbative unertainties, aounting for both higher �xed-order orretions as well as higher-ordertowers of jet-pT logarithms. This formalism also predits the orrelations in the theory unertaintybetween the exlusive 0-jet and inlusive 1-jet bins. At the values of R used experimentally, thereare important orretions due to jet algorithm lustering that inlude logarithms of R. Althoughwe do not sum logarithms of R, we do inlude an expliit ontribution in our unertainty estimateto aount for higher-order jet lustering logarithms. Preision preditions for this H + 0-jet rosssetion and its theoretial unertainty are an integral part of Higgs analyses that employ jet binning.I. INTRODUCTIONAfter the disovery of a Higgs boson [1, 2℄, a entralobjetive of the LHC physis program is to measure theproperties of the new partile by exploiting all aessibleprodution and deay hannels. The gg ! H ! WWhannel is very sensitive to the Higgs oupling toW gaugebosons. The gg ! H ! �� hannel provides diret sen-sitivity to the Higgs ouplings to fermions and is the onlymeasurable hannel that gives diret aess to the Higgsouplings in the leptoni setor of the Standard Model.In both these hannels the experimental analyses sepa-rate the data into jet bins to take advantage of the fatthat the signal over bakground ratio, as well as the dom-inant bakground ontributions, strongly depend on thenumber of jets in the �nal state. Of partiular impor-tane is the 0-jet bin, where any hard jets are vetoed, asit ontains the largest signal ross setion.Extrating the Higgs ouplings from the measured ex-lusive 0-jet ross setion requires preise theoretial pre-ditions. Any type of jet veto introdues a veto sale,kut. For a tight jet veto, kut � mH , large Sudakov log-arithms of the veto sale, �ns lnm(kut=mH), appear inthe perturbative series and must be resummed to all or-ders to obtain a meaningful perturbative predition. Forkut � mH , �xed-order perturbation theory an safelybe applied, and the ross setion with arbitrary utshas been alulated at �xed next-to-next-to-leading or-der (NNLO) [3{6℄. In the transition region between thesetwo limits, both the veto logarithms and nonlogarithmi�xed-order orretions are numerially important, and aomplete desription inluding both types of perturbativeorretions must be used to obtain the best possible theo-retial preision. For earlier theoretial work on analytiresummation for Higgs jet vetoes see for example [7{14℄.In priniple, there are several di�erent ways to im-

plement a veto on additional emissions due to initial-state and �nal-state radiation in a given proess. A\global jet veto" orresponds to a restrition applied tothe sum of all radiation, for example through a globalevent shape suh as beam thrust [15℄ [or equivalently(N = 0)-jettiness [16℄℄ or ET = PjpT j, and allows forpreise resummed preditions [7, 15{18℄.The urrent experimental analyses use a jet lusteringalgorithm (the anti-kT algorithm [19℄ with a jet radiusR = 0:4 for ATLAS and R = 0:5 for CMS) to iden-tify jets. The jet veto is then implemented by requir-ing pjetT < putT for any jets with j�jetj < �ut (whilejets at larger pseudorapidities are unrestrited). Thetypial experimental ranges are putT � 25 � 30GeV for�ut � 4:5� 5 (with the high value of �ut having a smalle�et on the ross setion). In ontrast to a global jetveto, this proedure orresponds to a \loal jet veto",sine the restrition on �nal state radiation is appliedseparately to eah individual loal luster of emissions.For a ut on either ET < putT or pjetT < putT , the jet-veto sale is set by pT and Sudakov double logarithms ofthe ratio putT =mH arise. The leading orretion to the0-jet ross setion for Higgs prodution via gluon fusionhas the form�0(putT ) = �LO�1� �sCA� 2 ln2 putTmH + : : :� ; (1)where �LO denotes the lowest-order ross setion. Thehierarhy between putT andmH implies that resummationof logarithms of putT =mH should be performed. For thepjetT � putT veto, the resummation of putT -logarithms upto NNLL has been presented in Refs. [8{10℄.In this paper, we alulate the resummed H + 0-jetross setion from gluon fusion using the framework ofsoft-ollinear e�etive theory (SCET) [20{24℄, where theross setion is fatorized into alulable piees and the
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2resummation is performed by renormalization group evo-lution (RGE) in both virtuality and rapidity spae. Wedetermine the ross setion at NNLL0pT+NNLO order,where we use the subsript pT to expliitly denote thefat that the resummation order only ounts logarithmsof putT =mH (and not R2). The primed order ounting isdesribed for example in Ref. [7℄. It inludes the NNLLresummation and in addition the full O(�2s) dependeneof the funtions appearing in the fatorization theorem(inluding in our ase the O(�2s) e�ets from jet luster-ing). These orretions inorporate the dominant NNLOorretions at small putT into the resummed result. Theyare formally part of the N3LL resummation for whihthey provide the orret RGE boundary onditions. Themissing ingredients for a omplete N3LL resummationare the unknown three-loop non-usp and four-loop uspanomalous dimensions. We also inlude the \nonsingu-lar" O(�2s) orretions that vanish as putT ! 0, whihare not part of the resummation. Thus our results inor-porate the omplete NNLO ross setion for all values ofputT , inluding the total NNLO ross setion in the limitof large putT . This allows us to also obtain resummedpreditions for the exlusive 0-jet event fration (or ef-�ieny) and the inlusive 1-jet ross setion with a utpjetT � putT on the leading jet.In our analysis, we plae a partiular emphasis on aareful estimate of the remaining perturbative unertain-ties in our preditions. The di�erent ontributions to theunertainty are estimated by appropriate variations ofthe di�erent sales in virtuality and rapidity spae ap-pearing in the fatorization theorem. This allows us todistinguish between and aount for both resummationand �xed-order unertainties. This formalism then auto-matially determines the orrelations in the perturbativeunertainties between the total inlusive, exlusive 0-jet,and inlusive 1-jet ross setions.The 0-jet ross setion de�ned by pjetT � putT has aomplex dependene on the jet algorithm, whose e�et isto introdue a nontrivial dependene on the jet radius R,ln �(n)0 (putT )�LO � ��s4��n ln mHputT Cn(R) : (2)For smallR2 the numerially most relevant terms ontainlogarithms of R2 and at O(�ns ) are of the form [11℄Cn(R) � lnn�1R2 + lnn�2R2 + : : : lnR2 +O(R2) : (3)They also ontain subleading power orretions ofO(R2).The jet lustering e�ets start at O(�2s) (n = 2) rela-tive to �LO. They were �rst alulated in Ref. [10℄ andat present are the only lustering orretions that areknown. They turn out to have a sizeable e�et on theross setion for jet radii R = 0:4 and 0:5. The largelustering e�ets for suh small values of R imply thatthe logarithms of R2 should be formally treated as beingof similar size as the logarithms of putT =mH and heneshould also be resummed. In partiular, as Eq. (2) shows,ounting lnR2 � ln(putT =mH) implies that there are NLL

terms from lustering at eah order in �s. However,the lustering oeÆients Cn>2(R) are unknown, and inpriniple a separate �xed-order alulation is required toobtain eah one. This renders the resummation of thelustering logarithms intratable at present. In our anal-ysis, we inorporate the known O(�2s) lustering e�ets,alulate the O(�2s) lustering e�ets that involve lnR2without a ln(mH=putT ), and inlude an expliit ontri-bution in our unertainty estimate for unknown higher-order lustering terms.The paper is laid out as follows: In Se. II, we overviewhow the ross setion is omputed using SCET and give asummary of the results for eah part of the ross setion.In Se. III, we disuss how the perturbative unertain-ties are estimated through sale variation and how itsvarious omponents are ombined to estimate the totalperturbative unertainty in the 0-jet ross setion, the0-jet fration, and the inlusive 1-jet ross setion. InSe. IV, we present the results of our numerial analysisand our preditions for the LHC for these ross setions.We onlude in Se. V.II. FACTORIZATION WITH A JETALGORITHM AT SMALL RThe fatorization of the pp ! H + 0-jet ross setionwith a jet algorithm has been disussed in Refs. [8, 11℄.For the ase of the pT veto on jets in Higgs produtionvia gluon fusion, the fatorized ross setion is given by�0(putT )= �BHgg(mt;mH ; �) Z dY Bg(mH ; putT ; R; xa; �; �)�Bg(mH ; putT ; R; xb; �; �)Sgg(putT ; R; �; �)+ �Rsub0 (putT ; R) + �ns0 (putT ; R; �ns) ; (4)where xa;b = mHEm e�Y ; �B = p2GF m2H576�E2m : (5)The �rst term in Eq. (4) provides the leading ontribu-tion to the ross setion at small putT , and ontains all thesingular logarithmi terms �is lnj(putT =mH). It is fator-ized into hard, beam, and soft funtions, whih are dis-ussed below. For instane, the leading double logarithmin Eq. (1) is split up asln2 putTmH = ln2mH� + 2 ln putT� ln �mH + ln putT� ln � putT�2 ;(6)where the three terms on the right-hand side are on-tained in the hard, beam, and soft funtions, respe-tively. In Eqs. (4) and (6) � is the usual renormaliza-tion/fatorization sale in virtuality, while � denotes theorresponding sale in rapidity [25, 26℄. Hene, we an



3already see that both invariant mass and rapidity run-ning will be needed to resum the ln(putT =mH) terms withrenormalization group methods.The resummation at NNLL0 requires determining thefuntions Hgg , Bg , and Sgg to O(�2s), as well as iden-tifying their anomalous dimensions to O(�2s), and theirusp anomalous dimensions to O(�3s). We present ournew two-loop results for the soft and beam funtions inSes. II B and IIC below, leaving the details of the al-ulations to a separate publiation.The seond term in Eq. (4), �Rsub0 (putT ; R), ontainsO(R2) ontributions whose all-orders soft-ollinear fa-torization is hallenging and not known at present. In theR2 � 1 regime, these orretions an formally be treatedas subleading power orretions. Numerially, they areindeed very small for the values R ' 0:4{0:5 whih are ofinterest. (As explained in Ref. [11℄, ounting R � 1, theywould signi�antly ompliate the soft-ollinear fator-ization already at leading order in the power ounting.)As shown in Ref. [9℄, their ontribution to the NNLL se-ries is obtained by multiplying them with the same evo-lution fator as the singular terms, and we will follow thissame approah here. Their ontribution to the resummedross setion is disussed in Se. II D.The last term in Eq. (4), �ns0 (putT ; R; �ns), ontainsO(putT =mH) nonsingular orretions, whih vanish forputT ! 0 but beome important at large putT . Theseterms are added to the NNLL0 result and are required toreprodue the omplete NNLO ross setion and ahievethe full NNLL0+NNLO auray. Our extration andanalysis of these terms is disussed in Se. II E.A. Hard FuntionThe hard funtion, Hgg , in Eq. (4) is determined bymathing QCD onto the gluon fusion operator OggH inSCET. As disussed in detail in Ref. [7℄, this mathingan be performed as a two-step mathing [27{30℄ or aone-step mathing. Sine parametriallymH=mt ' 1, weemploy the one-step mathing, whih also makes it easyto inlude the mt dependene of the ggH form fator inthe mathing oeÆient CggH (mt;mH ; �).The hard mathing oeÆient satis�es the RG equa-tion dd ln� ln�CggH (mt;mH ; �)� = gH(mH ; �) ; (7)where the anomalous dimension has the struturegH(mH ; �) = �gusp[�s(�)℄ ln �m2H � i0�2 + gH [�s(�)℄ :(8)The solution of Eq. (7) yields the RGE of the mathingoeÆient from an initial sale �H to some �nal sale �,CggH (mt;mH ; �) (9)= CggH (mt;mH ; �H) exp�Z ��H d�0�0 gH(mH ; �0)� :

The hard funtion is then given by the absolute valuesquared of the RG evolved oeÆient,Hgg(mt;mH ; �) = ��CggH (mt;mH ; �)��2 : (10)For the resummation at NNLL0, we require the NNLOresult for CggH , the two-loop result for the non-usp hardanomalous dimension gH , and the three-loop result forthe gluon usp anomalous dimension �gusp [31℄. Theseresults as well as the expliit NNLL expression for theevolution fator an be found in App. B of Ref. [7℄.To all orders in perturbation theory the mathing o-eÆient ontains logarithms of the ratio (�m2H� i0)=�2H .Choosing a real value for the starting sale �H � mHleaves large Sudakov double logarithms ln2(�1 � i0) =��2, leading to a poorly onvergent perturbative expan-sion of the hard funtion at this sale. Sine these termsare assoiated with the logarithms in the mathing oef-�ient, they an be summed through its RGE by usingan imaginary starting sale �H ' �imH [32{34℄. In thisway, the double logarithms are fully minimized, leadingto a muh better perturbative onvergene [27, 35℄. Toillustrate this numerially, for mH = 125GeV we �ndHgg(�H = mH)H(0)gg (�H = mH) = 1 + 0:815+ 0:356 + � � � ;Hgg(�H = �imH)H(0)gg (�H = �imH) = 1 + 0:274+ 0:042 + � � � ; (11)where H(0)gg is the lowest-order result in eah ase, andthe seond and third numbers on the right-hand side givethe NLO and NNLO orretions, respetively. The sub-stantial improvement in onvergene also implies reduedperturbative unertainties. We therefore use the imagi-nary hard sale as the default hoie in our numerialresults. B. Soft FuntionThe soft funtion desribes the soft radiation aross theentire event. It is de�ned as a forward sattering matrixelement of soft Wilson lines along the two inoming beamdiretions, with the jet-veto measurement on the �nalstate,Sgg(putT ; R; �; �) = h0jYnb Y ynaMjet(putT ; R)Yna Y ynb j0i :(12)Here, the measurement funtion Mjet(putT ; R) ats onthe soft �nal state by lustering it into jets of radius Rand requiring that all these jets have pT < putT . Thisloal veto on individual jets an be divided into a globalveto and a loal orretion from the jet algorithm luster-ing, onsequently dividing the soft funtion into a global



4term and a jet algorithm orretion1,Sgg(putT ; R; �; �) = SGgg(putT ; �; �) + �Sjetgg (putT ; R; �; �) :(13)This isolates the jet algorithm e�ets into �Sjetgg , whihmakes them easier to ompute and analyze their resum-mation properties. Note that these jet algorithm or-retions are de�ned relative to the hosen global veto,while the full soft funtion on the left-hand side isuniquely de�ned by speifying the jet-veto measurement,Mjet(putT ; R). At O(�2s), where the lustering orre-tions are �rst nonzero, the two-partile phase spae on-straints of the anti-kT algorithm are idential to otherkT-type jet algorithms, whih inlude kT and Cambridge-Aahen [36{39℄. This is also true for the jet algorithme�ets in the beam funtion, and thus our alulationdoes not distinguish between these jet algorithms at theorder to whih we work.The soft and beam funtions separately ontain rapid-ity divergenes. When they are ombined in the rosssetion, the rapidity divergenes anel, leaving large \ra-pidity logarithms" ln(putT =mH) at �xed order. We em-ploy the rapidity renormalization group [25, 26℄, whihallows one to apply standard e�etive theory and RGmethods to regulate and renormalize the rapidity diver-genes and perform the resummation of the assoiatedrapidity logarithms. It introdues an arbitrary rapidityrenormalization sale �, whose role in the rapidity RGEis the same as that of the usual renormalization sale �in the standard virtuality RGE.In our ase, the soft funtion is multipliatively renor-malized in both � and �,dd ln� lnSgg(putT ; R; �; �) = gS(�; �) ;dd ln � lnSgg(putT ; R; �; �) = g� (putT ; R; �) : (14)The anomalous dimensions have the general stru-ture [11℄gS(�; �) = 4�gusp[�s(�)℄ ln �� + gS [�s(�)℄ ;g� (putT ; R; �) = �4�g�(putT ; �) + g� [�s(putT ); R℄ ; (15)where�g�(�0; �) = Z ��0 d�0�0 �gusp[�s(�0)℄ = �gusp ln ��0 + � � �(16)1 Tehnially, this division into global and lustering ontributionsis a�eted by the fat that non-Abelian exponentiation oursfor the soft funtion, and only spei�es how the genuinely newterms at eah perturbative order are divided. Sine the �rstnontrivial lustering orretion only arises at O(�2s), Eq. (13)holds for the soft funtion through NNLO. The exponentiationof lower-order results will mix global and lustering ontributionsat higher orders in the soft funtion.

sums an all-orders set of terms in the anomalous dimen-sion that are determined by the RG onsisteny. (Theyare required to ensure the exat path independene of theevolution in the two-dimensional �-� spae [26℄.) TheRGE of the soft funtion is obtained by solving Eq. (14).Evolving �rst in rapidity and then in virtuality, we haveSgg(putT ; R; �; �)= Sgg(putT ; R; �S; �S) exp�ln ��S g� (putT ; R; �S)�� exp�Z ��S d�0�0 gS(�0; �)� : (17)We have alulated the omplete soft funtion toO(�2s), whih to our knowledge is the �rst two-loop alu-lation employing the rapidity renormalization. Our resultfor the perturbative soft funtion through O(�2s) isSgg(putT ; R; �S; �S) =1 + �s(�S)4� h2�g0L�S�L�S � 2L�S)� �23 CAi+ �2s(�S)(4�)2 �12h2�g0L�S�L�S � 2L�S)� �23 CAi2+ 2�0L�Sh2�g0L�S�13L�S � L�S�� �23 CAi+ 2�g1L�S(L�S � 2L�S)+ gS 1L�S + g� 1(R)L�S + s2(R)� ; (18)where we abbreviatedL�S � ln �SputT ; L�S � ln �SputT : (19)Hene, the natural soft sales for whih the large loga-rithms in the soft funtion are minimized are �S � putTand �S � putT .In Eq. (18) and in the following, the � funtion andanomalous dimensions are expanded as�(�s) = �2�s 1Xn=0�n��s4��n+1 ;(�s) = 1Xn=0 n��s4��n+1 ; (20)where the oeÆients needed in Eq. (18) are�0 = 113 CA � 43 TF nf ;�1 = 343 C2A � �203 CA + 4CF�TF nf ;�g0 = 4CA ;�g1 = 4CAh�679 � �23 �CA � 209 TF nfi ; (21)and CA = 3, CF = 4=3, TF = 1=2, and nf = 5 is thenumber of light quark avors. The oeÆients �2 and �g2are also used in the NNLL resummation.



5At one loop, the non-usp soft and rapidity anomalousdimensions vanish,gS 0 = 0 ; g� 0(R) = 0 : (22)The dependene on the jet algorithm starts to enter attwo loops through the two-loop � anomalous dimension,g� 1(R), whih determines the oeÆient of the single log-arithm of ln(�=putT ), as well as the nonlogarithmi two-loop soft onstant, s2(R). For the two-loop oeÆientsof the non-usp anomalous dimensions we �ndgS 1 = 8CA��529 � 4(1 + �2) ln 2 + 11�3�CA+ �29 + 7�212 � 203 ln 2��0�= 16C2A (�3:83) ;g� 1(R) = �16CA��179 � (1 + �2) ln 2 + �3�CA+ �49 + �212 � 53 ln 2��0�+ C2(R)= 16C2A (4:16) + C2(R) : (23)Here, C2(R) is the lustering orretion due to the jetalgorithm, and was omputed earlier in Ref. [11℄. It isgiven byC2(R) = 2CAh�1� 8�23 �CA + �233 � 8 ln2��0ilnR2+ 15:62C2A � 9:17CA�0 + CRsub2 (R)= 16C2A ��2:49 lnR2 � 0:49�+O(R2) ; (24)where CRsub2 (R) � O(R2) ontains all subleading powerorretions in R2. Note that we de�ne the lustering ef-fets in C2(R) relative to the global ET veto. A di�erenthoie, suh as the pT of the Higgs used in Ref. [10℄,would give a di�erent R-independent onstant in C2(R).Nevertheless, the full result for g�1(R) is independent ofthis hoie and our �nal NNLL ross setion agrees withthat of Ref. [10℄.For the two-loop soft funtion onstant s2(R), whihis not determined from RGE onstraints, we �nds2(R) = CA��193 � 10 ln2 + 8�3�CA+ ��1639 + 583 ln 2 + 8 ln2 2��0� lnR2� 18:68C2A � 3:25CA�0 + sRsub2 (R)= 16C2A �0:43 lnR2 � 1:69�+O(R2) ; (25)where sRsub2 (R) � R2. This result for s2(R) is new andalso onstitutes the �rst alulation of the putT indepen-dent lustering terms in the soft funtion.The terms not proportional to lnR2 in C2(R) ands2(R) involve ompliated phase-spae integrals, whih
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FIG. 1: Jet-algorithm dependent O(�2s) ontributions to the�xed NNLO ross setion from di�erent soures, for �FO =mH and putT = 25GeV. The � anomalous dimension oeÆ-ient g� 1 is given in Eq. (23), the O(�2s) soft funtion on-stant terms in Eq. (25), the beam funtion onstant termsin Eq. (39) and the following paragraph, and the lusteringe�ets on unorrelated emissions in Eq. (40).are omputed numerially. The ontributions of g� 1(R)and s2(R) to the �xed NNLO ross setion inluding theirfull R dependene are shown in Fig. 1.As mentioned above, the jet algorithm orretions inthe soft funtion start at O(�2s). They have the all-orderstruture�Sjetgg (putT ; R; �S; �S)=Xn�2 �ns (�S)(4�)n hCn(R) ln �SputT +�sn(R)i ; (26)where Cn(R) and �sn(R) ontain up to n� 1 powers oflnR2. The Cn(R) in the soft funtion are the same as inEq. (2) for the ross setion. The beam funtions ontainan equivalent set of terms � �nsCn(R) ln(mH=�B). Inthe �xed-order ross setion (i.e. for �B = �S = �) theyombine with the soft funtion terms to give the totallustering orretion � �nsCn(R) ln(mH=putT ) in Eq. (2).For R2 � putT =mH , the leading lnn�1R2 terms in Cn(R)formally ount as NLL in the exponent of the ross se-tion. Similarly, the leading lnn�1R2 terms in �sn(R),as well as the lnn�2R2 terms in Cn(R), formally ountas NNLL. The anomalous dimension g� (R) inludes theCn(R), so its perturbative series expliitly ontains thelnR2 terms, whih means that the NLL and higher log-arithmi series from lnR2 lustering orretions are notresummed here. A formalism for this resummation is noturrently known. Sine these lustering orretions arenumerially large at O(�2s), we perform an estimate ofthe potential size of the higher-order lustering e�ets aspart of our unertainty analysis.



6C. Beam FuntionThe beam funtion is de�ned as the forward protonmatrix element of ollinear gluon �elds. It provides aombined desription of ollinear initial-state radiationfrom the inoming gluons together with their extrationfrom the olliding protons via the nonperturbative partondistribution funtions (PDFs)[15℄.Like the soft funtion, the beam funtion is multiplia-tively renormalized in both � and �,dd ln� lnBg(mH ; putT ; R; x; �; �) = gB(mH ; �; �) ; (27)dd ln � lnBg(mH ; putT ; R; x; �; �) = �12g� (putT ; R; �) :The anomalous dimensions an be determined from thoseof the hard and soft funtions using the onsisteny of thefatorization theorem. The � anomalous dimension, g� ,is the same as in Eq. (15). The � anomalous dimensionis given bygB(mH ; �; �) = 2�gusp[�s(�)℄ ln �mH + gB [�s(�)℄ ;gB(�s) = �gH(�s)� 12gS(�s) ; (28)with the resulting one-loop and two-loop oeÆientsgB 0 = 2�0 ;gB 1 = 2�1 + 8CA���54 + 2(1 + �2) ln 2� 6�3�CA+ � 524 � �23 + 103 ln 2��0� : (29)The RGE of the beam funtion follows from solvingEq. (27), and is analogous to that of the soft funtion,Bg(mH ; putT ; R; x; �; �)= Bg(mH ; putT ; R; x; �B ; �B)� exp�12 ln �B� g� (putT ; R; �B)�� exp�Z ��B d�0�0 gB(mH ; �0; �)� : (30)Note that in ontrast to the PDF evolution, the evolu-tion of the beam funtion does not hange its value ofx. This is a general feature of beam funtions and is dueto the fat that their evolution desribes the initial-stateradiation from an inoming parton that is not on�nedto the proton anymore, while the PDF evolution is frozenout at the beam sale �B [15, 40℄.At the beam sale, the gluon beam funtion an beomputed as a onvolution between perturbative math-ing kernels, Igj(mH ; putT ; z; �B; �B), and the standardquark and gluon PDFs, fj(x; �B),Bg(mH ; putT ; R; x; �B ; �B) (31)=Xj Z 1x dzz Igj(mH ; putT ; R; z; �B; �B) fj�xz ; �B� :

We expand the mathing kernels Igj to O(�2s) as (sup-pressing the arguments for brevity)Igj = ÆgjÆ(1� z) + �s(�B)4� I(1)gj + �2s(�B)(4�)2 I(2)gj +O(�3s) :(32)The O(�s) oeÆients are ommon to several observ-ables, and we agree with the alulation of I(1)gg using therapidity regulator in Ref. [26℄. We �nd,I(1)gg (mH ; putT ; z; �B ; �B) = 4CAL�B� �2L�BÆ(1� z)� Pgg(z)� ;I(1)gq (mH ; putT ; z; �B ; �B) = 2CF ��2L�BPgq(z) + I(1)gq (z)� ;I(1)gq (z) = z ; (33)where we abbreviatedL�B � ln �BputT ; L�B � ln �BmH : (34)The natural sales for the beam funtion are thus �B �putT and �B � mH . Our results for I(1)gj agree withRef. [8℄, after taking into aount the di�erent rapidityregularization.The O(�2s) kernel for the gg ontribution is given byI(2)gg (mH ; putT ; R; z; �B; �B)= 32C2A(L�B)2L�B�L�BÆ(1� z)� Pgg(z)�+ 4CA�0(L�B)2�2L�BÆ(1� z)� Pgg(z)�+ 8(L�B)2�C2A(Pgg 
 Pgg)(z)+ 2CFTFnf (Pgq 
 Pqg)(z)�� 8L�B�P (1)gg (z) + 2CFTFnf (I(1)gq 
 Pqg)(z)�+ hL�B�2�g1L�B + gB 1�� 12g� 1(R)L�BiÆ(1� z)+ I(2)gg (z;R) : (35)The O(�2s) kernel for the gq ontribution is given byI(2)gq (mH ; putT ; R; z; �B; �B)= 16CACFL�BL�B��2L�BPgq(z) + I(1)gq (z)�+ 8CF�0L�B��L�BPgq(z) + I(1)gq (z)�+ 8CF (L�B)2�CA(Pgg 
 Pgq)(z) (36)+ CF (Pgq 
 Pqq)(z)�� 8L�B�P (1)gq (z) + C2F (I(1)gq 
 Pqq)(z)�+ I(2)gq (z;R) :The onvolutions (g 
 h)(z) are de�ned as(g 
 h)(z) � Z 1z d�� g�z� �h(�) : (37)The various splitting funtions Pij(z) and onvolutionsbetween them are given in App. B2 of Ref. [7℄. The



7additional onvolutions we need are(I(1)gq 
 Pqg)(z) = 1 + z � 2z2 + 2z ln z ; (38)(I(1)gq 
 Pqq)(z) = 1 + z2 � z ln z + 2z ln(1� z) :The terms involving logarithms of � and � in the Igjkernels are fully determined by renormalization group(RG) onstraints. The nonlogarithmi terms I(2)gi (z;R)require the full two-loop alulation of the beam fun-tions. Note that the full two-loop qq ontribution to thebeam funtion for the transverse momentum of the vetorboson has been omputed reently in Ref. [41℄. At twoloops, the pjetT beam funtion needed here is di�erent andrequires a separate alulation. Like the soft funtion,it reeives both global and jet lustering ontributions.In partiular, we an alulate diretly the leading lus-tering orretions proportional to lnR2, and determinethe ontribution from the remaining terms numerially,givingI(2)gg (z;R) = CA2 ��1� 8�23 �CA + �233 � 8 ln 2��0�� Pgg(z) lnR2 + I(2;)gg (z) + I(2;Rsub)gg (z;R) ;I(2)gq (z;R) = 2C2F�3� �23 � 3 ln2�Pgq(z) lnR2+ I(2;)gq (z) + I(2;Rsub)gq (z;R) : (39)Here, I(2;)gg (z) denotes the onstantR independent terms,while I(2;Rsub)gg (z;R) are the O(R2) suppressed ontribu-tions. Their expliit form is not known at present. Weextrat their total ontribution after onvolution with thePDFs numerially from the �xed-order ross setion asexplained in Se. II E below. This is suÆient for prati-al purposes, sine their e�et is found to be numeriallysmall ompared to the lnR2 terms for R � 0:4{0:5. Thetotal ontribution (from both beam funtions) of the fullI(2)gg (z;R) and I(2)gq (z;R) to the �xed NNLO ross setionis shown by the blue dashed line in Fig. 1 that is labeledas 2b2.D. O(R2) Corretions From UnorrelatedEmissionsStarting at O(�2s), the lustering e�ets from the jetalgorithm inludes ontributions that sale as powers ofR2 in the small R limit. Clustering e�ets from or-related emissions in the soft or ollinear setors are in-luded in the subleading O(R2) orretions in the softand beam funtions. On the other hand, the lustering ofunorrelated emissions from the soft and ollinear beamsetors inhibits the fatorization of the jet-veto measure-ment into independent soft and ollinear measurementsat O(R2). The all-order fatorization of the ross setion

at this level is therefore not known at present.2The full ontribution from lustering of unorrelatedemissions to the �xed NNLO ross setion is [10℄�(2)0 (putT ) � �LO��sCA� �2ln mHputT ���23 R2+ R44 � : (40)It is shown by the green dotted line in Fig. 1 for putT =25GeV. As one an see, at the R values of interest itis numerially very small ompared to the orrespond-ing lnR2 enhaned lustering orretions ontained ing�1(R), and an thus safely be treated as a power orre-tion.As argued in Refs. [9, 10℄, the above O(�2s) oeÆientdetermines the omplete NNLL series oming from thisontribution [i.e. no new oeÆients appear at O(�3sL2)or higher℄. Therefore, we an inlude this orretion inthe resummed ross setion at NNLL by multiplying itwith the total evolution fator as follows,�Rsub0 (putT ; R) = �2s(p�B�S)�2 C2A ln mHputT ���23 R2 + R44 �� [F (0)U0℄(�H ; �B ; �S ; �B ; �S) : (41)Here, F (0) denotes the leading �xed-order ontributionsfrom the hard, beam, and soft funtions, and U0 istheir ombined NNLL evolution fator [given expliitlyin Eq. (57) below℄. Sine these orretions ome fromsoft or ollinear emissions we hoose to evaluate the ar-gument of the �2s in the prefator at the geometri meanof the beam and soft sales.In Ref. [8℄ this oeÆient is absorbed into the two-loop rapidity anomalous dimension, whih amounts to2 The statement in Ref. [8℄ that soft-ollinear mixing is absent atleading power for R � 1 relies on a power ounting for ollinearrapidities (y) and soft rapidities (ys) where y � ys � O(1)suh that y � ys � R � 1. For typial values of pT = 25GeVand Q = 125GeV there is a legitimate power expansion in� = pT =Q = 0:2 � 1. But this gives y ' ln(1=�) = 1:6,whih does not learly satisfy y � ys � 1. Indeed, phys-ially, emissions at �xed pT tend to be uniform in rapidityrather than having a rapidity gap between soft and ollinearregions. (The analogous statement using light-one variables ise�R � eys�y = q(k�s =k+s )(p+ =p� ) � O(1) � �. For R = 1,this orresponds to ounting 0:37� O(1)� � = O(1)� 0:2.) Asdisussed in detail in Ref. [11℄, the ontribution from lustering asoft and a ollinear emission is �R2, so the only way to expandit to zero is R2 � 1.The fat that soft and ollinear modes in SCET-II are only dis-tinguished by their rapidity does not automatially imply thattheir rapidities are parametrially widely separated as ys � y,sine in pratie amplitudes from eah of these modes are inte-grated over all rapidities and we must worry about ontributionsfrom overlapping regions. If there is a double ounting for in-frared singularities from the overlap region then this is removedby 0-bin subtrations [42℄, but in general these subtrations donot suÆe to remove �nite ontributions from the overlap re-gion. Thus a proof of fatorization at O(R2), inluding also soft-ollinear mixing ontributions, will require additional argumentsto all orders in �s, and remains an interesting open question.



8writing this ontribution as A exp(�2s), instead of A(1 +�2s) as in Ref. [9℄. Sine this ontribution �rst appearsat O(�2s), either form gives the same NNLL ontributionand the di�erene is higher order, meaning the results ofRefs. [9, 10℄ do not determine whih is the orret all-order struture beyond NNLL.E. Nonsingular ContributionsIn �xed-order perturbation theory, the ross setion at�f = �r = �FO has the all-order struture�FO0 (putT ; �FO) = �s0(putT ; �FO) + �ns0 (putT ; �FO) ; (42)�s0(putT ; �FO) =Xm Xn�2mmn(�FO)�ms (�FO) lnn putTmH :Here, the singular ross setion, �s0, ontains all termsthat are nonzero for putT ! 0 and whih are on-tained in the resummed ross setion. The nonsingularross setion, �ns0 , sales as O(putT =mH) and vanishes forputT ! 0. To reprodue the full �xed-order ross setionwe have to inlude the nonsingular terms, in partiularwhen going to large putT where they beome important.An important feature of the NNLL0 (NLL0) resummedresult is that by onstrution its �xed-order expansion toNNLO (NLO) in terms of �s(�FO) an be obtained bysimply setting all sales equal to �FO. And this also pre-isely reprodues the �xed-order singular ontributions.Hene, we an determine the nonsingular orretions bysubtrating the latter from the full �xed-order ross se-tion,�ns0 (putT ; R; �FO) = �FO0 (putT ; R; �FO) (43)� �resum00 (putT ; R; �i = �i = �FO) :At NLO, this proedure is straightforward sine theone-loop hard, beam, and soft funtions required at NLL0are ompletely known, while �NLO0 (putT ; �FO) is easily ob-tained numerially e.g. from MCFM.At NNLO, we obtain the full �xed-order ross se-tion by subtrating the NLO gg ! H + j ross se-tion for a leading jet with pjetT > putT , obtained usingMCFM [5, 43℄, from the total NNLO ross setion [44{46℄. For the resummed NNLL0 ross setion we inludeall available ontributions through O(�2s) summarized inthe previous subsetions, inluding the �Rsub0 terms inEq. (41). The only missing piees at two loops are theunknown I(2;)gj (z) and I(2;Rsub)gj (z;R) terms in the beamfuntion, whih when integrated against the PDFs give aputT independent ontribution determined by a onstantb(+Rsub)2 (R). Hene, we have�ns;NNLO0 (putT ; R; �FO)+�LO(�FO)�2s(�FO)(4�)2 2b(+Rsub)2 (R)= [�NNLO�0 (�FO)� �NLO�1 (putT ; R; �FO)℄� �NNLL00 (putT ; R; �i = �i = �FO) : (44)

Here, the right-hand side is obtained numerially andthen �t with a set of funtions suitable to desribe theputT dependene of �ns0 (putT ; R; �FO). Sine the lattervanishes for putT ! 0, this �t also allows us to determinethe numerial value of 2b(+Rsub)2 (R) from the intereptat putT = 0. Note that sine there are large numerialanellations between the full and singular results on theright-hand side, the remaining nonsingular data has largestatistial utuations for putT ! 0. Ensuring a stable �tresult therefore required the use of very high statistisfrom MCFM as well as a areful validation of the �ttingproedure.Note also that the sale �B at whih the b(+Rsub)2 on-tribution is evaluated in the beam funtion is relevant atNNLL0 (i.e. it ontributes to the subset of N3LL e�etsthat are supposed to be inluded at NNLL0). In the nu-merial determination above the PDFs are evaluated at a�xed �B = �FO. To aount for this we resale it by thePDF dependene of the LO ross setion, as indiated inEq. (44). Sine we perform the nonsingular �t at di�er-ent values of �FO, we are able to hek that this apturesthe PDF sale dependene to very good approximation.At large putT , the distintion between singular and non-singular ontributions beomes meaningless sine bothare of similar size and there are nontrivial anellationsbetween them (as an be seen in Fig. 4 below). Whenusing the imaginary sale setting in the hard funtion, itmodi�es the ross setion at all values of putT . Therefore,it is important to implement an analogous improvementfor the nonsingular ontributions, sine otherwise theseanellations would be spoiled. The �nal expression forthe nonsingular ross setion entering in Eq. (4) is givenby �ns0 (putT ; R; �ns)= ��ns(1)0 (putT ; R; �ns)�1� �s(�ns)2� CA�2�+ �ns(2)0 (putT ; R; �ns)�UH(�i�ns; �ns) : (45)Here, �ns(i)0 (putT ; R; �ns) are the O(�is) nonsingular termsobtained numerially for given values of R and �ns, andUH(�i�ns; �ns) is the evolution fator of the hard fun-tion. The latter is used to apply the analogous resumma-tion of �2 terms to the nonsingular ross setion as wasindued by the hard funtion in the singular terms.The NLO and NNLO nonsingular ontributions forR = 0:4 and �ns = mH are shown in Fig. 2 for both real(left panel) and imaginary (right panel) sale setting. Weobserve that the latter substantially improves the pertur-bative onvergene also in the nonsingular terms at allvalues of putT . This is not unexpeted from the point ofview of the power expansion in SCET. For putT � mHand at subleading order in the SCET power ounting,the nonsingular terms would arise from a ombination ofleading and subleading hard, beam, and soft funtions,and many of the hard funtions in these ontributionsan be expeted to require an imaginary hard sale.
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FIG. 2: The nonsingular ross setion at �ns = mH at NLO (blue, dashed) and NNLO (orange, solid) for R = 0:4. We omparethe pure �xed-order nonsingular terms (on the left) with the nonsingular terms that inlude �2 summation (on the right). Thelatter shows a substantially improved perturbative onvergene from NLO to NNLO.III. RESUMMATION AND PERTURBATIVEUNCERTAINTIESA ritial aspet of preision ross setion preditionsis the theoretial ontrol of perturbative unertainties.Ultimately, the formal perturbative auray in the pre-ditions is only meaningful together with a robust under-standing and estimate of theoretial unertainties.The ategorization of the data into jet bins is usedin the experimental analyses to optimize the ontrol ofbakgrounds and experimental systemati e�ets. In theend, the information from all measured ategories owstogether, thereby maximizing the use of the availabledata. In this ontext, vetoing jets in the 0-jet ross se-tion amounts to dividing the total inlusive ross se-tion, �tot � ��0, into an exlusive 0-jet bin equivalent to�0(putT ) and the remaining inlusive 1-jet bin,��0 = �0(putT ) + ��1(putT ) : (46)Therefore, a omplete theoretial desription of this bin-ning proedure is needed. This requires a framework,whih, in addition to the resummation of �0(putT ) atsmall putT , provides a valid desription of the ross se-tion at all values of putT as well as the orrelations be-tween the perturbative unertainties in the jet bins andthe total ross setion.As we disuss in detail in this setion, the frameworkwe use for resummation and �xed-order mathing, basedon SCET and pro�le funtions, is well-suited for thistask. It provides us with diret theoretial handles toreliably assess the perturbative unertainties and allowsus to predit the required orrelations by utilizing om-mon underlying theory parameters in the sales �H , �B ,�S , �B , and �S . These are varied to obtain the uner-tainty estimates.In Se. III A we give an overview of perturbative un-ertainties for jet bins, and establish the neessary no-

tation. As the jet-veto ut is inreased our resummedresults smoothly reprodue the �xed-order ross setionand its standard unertainties by using pro�le funtions,whih are disussed in Se. III B. In Se. III C we explainhow variations of the hard, soft, and beam sales in thee�etive theory determine the �xed-order and jet-binningunertainties. Finally, in Se. III D we disuss our esti-mate for the additional unertainty from lustering ef-fets at higher orders in perturbation theory. Note thatwe will not disuss additional parametri unertaintiesfrom input parameters suh as PDFs or �s(mZ). Thesehave to be estimated separately and inluded with theusual unertainty propagation.A. Perturbative Unertainties in Jet BinningA onvenient way to desribe the unertainties involvedin the jet binning is in terms of fully orrelated and fullyantiorrelated omponents [12, 47℄, whih amounts toparametrizing the ovariane matrix for f�0; ��1g asC(f�0; ��1g) = (�y0)2 �y0 �y�1�y0 �y�1 (�y�1)2!+ �2ut ��2ut��2ut �2ut !:(47)The �rst orrelated omponent, denoted with a super-sript \y", an be interpreted as an overall yield uner-tainty shared among all bins. The seond antiorrelatedomponent an be interpreted as a migration unertaintybetween the two bins, whih is introdued by the binningut and drops out in their sum. The total unertainty foreah bin is given by��0 = �y0 +�y�1 � �y�0 ;�20 = (�y0)2 +�2ut ;�2�1 = (�y�1)2 +�2ut : (48)



10Equation (47) is a ompletely generi parametrizationof a 2�2 symmetri matrix. This hoie of parameters isonvenient beause of the above physial interpretation.An additional advantage is that the unertainties are de-sribed in terms of two independent omponents, whihare fully orrelated or antiorrelated between the di�er-ent observables, so that the experimental implementationis straightforward (e.g. in a pro�le likelihood �t, the yieldand migration unertainties an eah be implemented byan independent nuisane parameter).To estimate eah unertainty omponent in our resum-mation framework we make the following identi�ations:�yi � ��i ; �ut � �resum : (49)Here, ��i orresponds to the unertainties in the rosssetion that reprodue the �xed-order unertainty in thetotal ross setion and probe the nonlogarithmi ontri-butions at �nite putT . This makes it natural to iden-tify these with the yield unertainties. The resummationunertainty, �resum, orresponds to the intrinsi uner-tainty in the resummed logarithmi series. The loga-rithms ln(putT =mH) are diretly aused by the binningut and at small putT are the dominant veto-dependente�et, whih anels between �0 and ��1. Hene, higher-order logarithms are the primary soure of unertaintyin the division of the ross setion into bins and we antherefore identify �resum with the migration unertainty.Furthermore, �resum vanishes at large putT where the re-summation of logarithms beomes unimportant. This isonsistent with the fat that in this limit migration ef-fets beome irrelevant sine ��1 beomes numeriallymuh smaller than �0(putT ). Our proedure to estimate��i and �resum through sale variations in the resummedross setion is disussed in the following setions.With these identi�ations, the full ovariane matrixfor f��0; �0; ��1g is given byC�f��0; �0; ��1g� = C� + Cresum ; (50)where C� = 0B� �2tot �tot��0 �tot���1�tot��0 �2�0 ��0���1�tot���1 ��0���1 �2��1 1CA ;Cresum = 0B�0 0 00 �2resum ��2resum0 ��2resum �2resum 1CA ; (51)and we an easily read o� the unertainties in the di�er-ent ross setions�tot � ���0 = ��0 +���1 ;�20(putT ) = �2resum +�2�0 ;�2�1(putT ) = �2resum + (�tot ���0)2 : (52)The unertainties in other observables follow by standardunertainty propagation. For example, for the 0-jet eÆ-

ieny, �0(putT ) � �0(putT )=��0, we have�2�0(putT )�20(putT ) = �20(putT )�20(putT ) + �2tot�2tot � 2 �tot��0��0�0(putT ) : (53)Through the last term the orrelation between �tot and��0 redues the relative unertainty in the 0-jet eÆ-ieny, whih will be notieable in our numerial analysis.In partiular, in the limit of large putT where �0 ! 1 theunertainty ��0 will go to zero as it should.1. Fixed OrderIn a pure �xed-order predition, there is no way tofully disentangle the two unertainty omponents. Usinga ommon �xed-order sale variation for all observablesamounts to setting �ut = 0 and setting �yi � �FOi .However, as demonstrated in detail in Refs. [12, 47℄, atsmall values of putT , as soon as the logarithmi orre-tions beome sizable, migration e�ets are important andannot be negleted. Doing so an lead to a signi�antunderestimate of unertainties. A more reliable �xed-order estimate is obtained by expliitly taking into a-ount �ut by using instead�y0 = �FO�0 � �tot ; �ut = �FO�1 ; (54)where �FO�i are the �xed-order unertainties in the in-lusive ross setions. (As explained in Ref. [12℄, thishoie is motivated by the fat that the perturbative se-ries in ��1 starts as �s ln2(putT =mH) and its �xed-ordersale variation therefore diretly estimates the size of theputT logarithms. An alternative presription proposed inRef. [10℄ yields very similar results for �0(putT ).)With the hoie in Eq. (54) the unertainties in thepure �xed-order predition are desribed byCST�f��0; �0; ��1g�=0B��2tot �2tot 0�2tot �2tot+(�FO�1 )2 �(�FO�1 )20 �(�FO�1 )2 (�FO�1 )2 1CA:(55)These are the default �xed-order Higgs jet-binning uner-tainties used by the experiments, and also what we willuse when omparing our results to �xed order in Se. IV.B. Resummation and Mathing to Fixed Orderwith Pro�le SalesIn the e�etive �eld theory framework, the resumma-tion is performed by RGE running. First, we evaluateeah of the hard, beam, and soft funtions appearingin the fatorized ross setion at their natural virtualitysales �i and rapidity sales �i. Next, we evolve themall to arbitrary, ommon sales: � for invariant mass and� for rapidity. This resums the logarithms of the in-variant mass ratios �i=�j and rapidity ratios �i=�j . As
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FIG. 3: Combined renormalization group evolution in vir-tuality and rapidity. The hard, beam, and soft funtionsare evolved in the virtuality sale �, where the harateristisales are �H � mH and �B � �S � putT . Additionally, ra-pidity logarithms are summed by evolving the beam and softfuntions in the rapidity sale �, with harateristi sales�B � mH and �S � putT .we saw in Se. II, the beam and soft funtions evolve inboth virtuality and rapidity spae, while the hard fun-tion only evolves in virtuality. The evolution togetherwith the natural sales is illustrated in Fig. 3. Finally,the evolved funtions are ombined together in the rosssetion at the ommon sales (�; �), whih is a point inthe plane shown in this �gure.The resummed ross setion is expliitly independentof the arbitrary sales � and � at eah order in resummedperturbation theory, whih means we are free to pik anyonvenient values. Taking � = �B and � = �S , andombining all the ingredients detailed in Se. II, the rosssetion in Eq. (4) takes the form�0(putT )= �BHgg(mt;mH ; �H)Z dY Bg(mH ; putT ; R; xa; �B ; �B)�Bg(mH ; putT ; R; xb; �B ; �B)Sgg(putT ; R; �S ; �S)� U0(putT ; R;�H ; �B ; �S ; �B ; �S)+ �Rsub0 (putT ; R) + �ns0 (putT ; R; �ns) ; (56)where the ombined renormalization group evolution fa-tor U0 is given byU0(putT ; R;�H ; �B ; �S ; �B ; �S)= ����exp�Z �B�H d�0�0 gH(mH ; �0)�����2� exp�Z �B�S d�0�0 gS(�0; �S)�� exp�ln �B�S g� (putT ; R; �B)� : (57)Next, we disuss how to hoose numerial values forthe sales �H ; �B ; �S ; �B , and �S as a funtion of putT ,whih are referred to as pro�le sales [48, 49℄. For this

purpose we an distinguish three di�erent regimes a-ording to the relative importane of the singular andnonsingular ross setion ontributions. In Fig. 4, thesingular and nonsingular terms are plotted against thetotal �xed-order ross setion at O(�2s).In the resummation region at low values of putT ,the singular ontributions dominate and must be re-summed, while the nonsingular ontributions are pertur-bative power orretions. To resum the logarithms, thesales should parametrially follow their anonial valuesditated by the RGE,�H � �imH ; �B � �S � putT ;�B � mH ; �S � putT : (58)At large putT >� mH=2, the singular and nonsingular on-tributions are equally important, and �xed-order pertur-bation theory should be used. In this �xed-order regionit is essential that the resummation is turned o� to en-sure that the orret �xed-order ross setion is obtained.The reason is that there are important anellations be-tween singular and nonsingular terms, whih are spoiledif the resummation is kept on too long. In this region,all virtuality sales must approah a ommon �xed-ordersale and the rapidity sales must be equal,j�H j = �B = �S = �ns = �FO ; �B = �S : (59)Finally, in the transition between the resummation and�xed-order regions typially both the logarithmi resum-mation as well as the �xed-order orretions are impor-tant. To obtain a proper desription of this transitionregion, whih in our ase also inludes the experimentalrange of interest, we have to use pro�les that inorpo-rate the onstraints imposed by the resummation towardsmall putT and the �xed-order mathing toward large putT ,together with a smooth interpolation between these tworegimes. There is a growing body of literature on theonstrution of appropriate pro�les in a variety of on-texts [7, 13, 14, 48{56℄.For the entral pro�les we take�H = �i�FO ; �ns = �FO ;�B = �FO ;�B = �S = �S = �FO frun(putT =mH) : (60)That is, we take �xed values for �H , �ns, and �B , while�B , �S , and �S are onstruted in terms of the ommonpro�le funtion
frun(x) =8>>>>>>>>><>>>>>>>>>:

x0�1 + (x=x0)2=4� x � 2x0 ;x 2x0 � x � x1 ;x+ (2� x2 � x3)(x � x1)22(x2 � x1)(x3 � x1) x1 � x � x2 ;1� (2� x1 � x2)(x � x3)22(x3 � x1)(x3 � x2) x2 � x � x3 ;1 x3 � x : (61)
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FIG. 4: Singular and nonsingular ontributions to the �xed NNLO ross setion (using R = 0:4 and �FO = mH). Left: Themagnitude of the ontributions di�erential in pjetT . Right: The orresponding ontributions to the integrated ross setion asa funtion of putT . The resummation, transition, and �xed-order regions are learly visible as the relative importane of thesingular and nonsingular terms hanges with pjetT and putT .The �rst regime, x � 2x0, is the nonperturbative regionand the sales �B;S and �S asymptote as x ! 0 to a�xed sale x0�FO >� �QCD. This ensures that fatorsof �s(�i) that enter from solving perturbatively de�nedanomalous dimension equations, never beome nonper-turbative. The seond regime has the anonial salingfor resummation. The third and fourth have quadratisaling (of positive and negative seond derivative, re-spetively) and simply provide a smooth transition tothe �nal (onstant) region where all sales are equal andresummation is turned o�. This pro�le funtion and its�rst derivative are both ontinuous.For the overall sale parameter we have �FO � mH andfor our entral result we will use �FO = mH in Eq. (60).In Eq. (61) the parameters xi mark the boundary be-tween the di�erent regimes, and their values are hosenby onsidering the importane of the singular versus non-singular ontributions plotted in Fig. 4. The singularand nonsingular ontributions beome omparable nearputT = 40GeV so the pro�le must transition towards the�xed-order result beyond this value. For our entral pro-�les we hoosex0 = 2:5GeV=�FO ; fx1; x2; x3g = f0:15; 0:4; 0:65g :(62)For �FO = mH = 125GeV the fx1; x2; x3g values orre-spond to f19; 50; 81gGeV. The resulting entral pro�lesales are shown in Fig. 5, so we see that the transitionours roughly between 30{65GeV. In the next subse-tion, we disuss in detail the pro�le sale variations thatwe use to evaluate perturbative unertainties.Note that in the transition from small to large putT ,we are essentially fored to keep the hard sale at itsimaginary value �H = �imH . In priniple, one ouldontemplate rotating it to the real axis as a funtionof putT to turn o� the resulting resummation of large�2 terms in the hard virtual orretions. However, this
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would inevitably lead to an unphysial result of a dereas-ing ross setion with inreasing putT . What this meansis that the signi�antly improved perturbative stabilityobserved in the small pT region also diretly translatesinto an improved onvergene in the �xed-order ross se-tion at large putT , simply beause a large part of the totalross setion omes from the small pT region. Further-more, as we have seen in Fig. 2, the imaginary sale alsotranslates into an improved onvergene of the nonsin-gular ontributions themselves. The total ross setionfor �H = �imH inreases by about 7% ompared to theNNLO ross setion evaluated at �FO = mH=2. This in-rease is quite onsistent with the expeted inrease inthe total ross setion at N3LO from the reent estimatein Ref. [57℄.



13C. Yield and Resummation Unertainties ViaPro�le Sale VariationsTo evaluate the perturbative unertainties in our pre-ditions we vary the pro�le sales about the entral pro-�les de�ned in the previous setion. We onsider severaltypes of variation in turn, and disuss how they are usedto determine the yield and resummation unertaintiesthat appear in the matries C� and Cresum in Eq. (51).The �rst type of variation is a olletive variation ofall of the sales up or down by a fator of 2. This isaomplished by taking �FO = 2mH or �FO = mH=2 inEq. (60). At large putT , where all sales beome equal to�FO, this variation beomes equivalent to the usual salevariation in the �xed-order ross setion. Indeed, in thelimit of very large putT it reprodues the �xed-order salevariation of the total ross setion.3 When varying �FO,all sale ratios are kept �xed, so this does not hangeany of the arguments inside the logarithms ln(�H=�B;S)and ln(�B=�S) that sum up the large ln(mH=putT ) terms.Hene, this variation is learly identi�ed as ontributingto the yield unertainties.A seond type of variation is to the pro�le shape. Thevalues fx1; x2; x3g determine the boundaries between thedi�erent saling regions of the low-sale pro�les as afuntion of putT . We aount for the ambiguity in thisshape by using four di�erent hoies for fx1; x2; x3g toprovide a variation away from the entral sale hoiefx1; x2; x3g = f0:15; 0:4; 0:65g:fx1; x2; x3g : f0:1; 0:3; 0:5g ; f0:2; 0:5; 0:8g ;f0:04; 0:4; 0:8g ; f0:2; 0:35; 0:5g : (63)These hanges to the pro�le have an impat on the uner-tainty from varying �FO sine they determine the transi-tion between the region where the resummation is ativeand where the �xed-order predition is used and henethe extent of the �xed-order region. They also vary thelogarithms ln(�H=�B;S), and hene have some impat onunertainties that would be assoiated to resummation.In pratie, with �FO = mH the e�et of varying the xi inthe entral pro�le is smaller than the other resummationunertainties (disussed below), whereas when varying�FO up and down there is a notieable impat on theyield unertainties. Therefore we will group this varia-tion with the yield unertainty, and use eah of the �vepro�les spei�ed by fx1; x2; x3g together with eah of thethree values of �FO. This set of pro�le variations is plot-ted in the left panel of Fig. 6. We still note that the rangeof ross setion values obtained from hanging �FO witha �xed pro�le is signi�antly larger than the range from3 For putT > x3mH and real �H = �FO we exatly reprodue the�xed-order ross setion sale variation for equal fatorizationand renormalization sales. If these two sales are varied inde-pendently they give essentially the same �nal result sine therenormalization sale variation dominates by far.

hanging the pro�le via x1;2;3 for a �xed �FO, and henethe �FO variation is the more important variation by far.The total yield unertainty for the 0-jet ross setionis thus de�ned as the maximum absolute deviation fromthe entral sale over all 14 variations,��0(putT ) = maxvi2V����vi0 (putT )� �entral0 (putT )�� : (64)where V� is the set of variations. To determine the to-tal unertainty in the �xed-order ross setion we makeuse of the fat that limputT !1��0(putT ) = �tot, and inpratie we extrat �tot for putT = 600GeV. Togetherthis determines the two parameters ourring in the yieldovariane matrix C�.Resummation unertainties are estimated throughvariations of the beam and soft sales, while keeping�FO = mH at its entral value. The variations of thebeam and soft sales are performed with a multipliativevariation fator fvary(putT ). For a generi beam or softsale �i or �i, the up and down variations are performedvia the variations�upi (putT ) = �entrali (putT )� fvary(putT =mH) ;�downi (putT ) = �entrali (putT ) = fvary(putT =mH) ;�upi (putT ) = �entrali (putT )� fvary(putT =mH) ;�downi (putT ) = �entrali (putT ) = fvary(putT =mH) : (65)The variation fator is de�ned byfvary(x) = 8><>:2(1� x2=x23) 0 � x � x3=2 ;1 + 2(1� x=x3)2 x3=2 � x � x3 ;1 x3 � x : (66)It is designed to smoothly turn o� these variations, sinethey must turn o� when the resummation is turned o�at high putT values. These variations for �B ; �S ; �B , and�S are plotted in the right panel of Fig. 6.The resummation unertainty is a ombination of a setof up, down, and entral values for the �B ; �S ; �B , and�S sales. The dependene on eah of these sales anelsbetween RG evolution and the �xed-order ontributionsat the order we are working, while the remaining resid-ual dependene probes the higher-order ontributions inresummed perturbation theory.The purpose of an individual sale variation is to varythe argument of the logarithms it appears in by a fa-tor in order to probe the potential size of higher-orderlogarithms of that sale. For our pro�les the variationfator above is 1=2 or 2 for putT ! 0 and goes towards 1for putT ! x3mH where the resummation is turned o�.Certain ombinations of sale variations are undesirableas they double the variations of the logarithms, for ex-ample f�upB ; �downS g gives a fator of 4 variation for thelogarithm of �B=�S . To avoid varying the sales in log-arithms outside of the desired fator of 2 range, we on-sider all the ratios of beam and soft sales that appear in
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FIG. 6: The variations of the entral pro�les as desribed in the text. On the left, the variations are shown that ontribute tothe yield unertainty, where all sales are olletively multiplied by a fator 2 or 1/2, for all four pro�le shapes. The entralpro�le shape is shown with thik lines, while the other pro�le shapes are shown with dotted lines, and we shade betweenthe shapes. On the right, the variations of �B , �S , and �S (solid lines, yellow shading) and �B (dotted lines, green shading)are shown whih ontribute to the resummation unertainty. Combinations of variations of these sales make up the set ofvariations that we perform to asses the unertainties in our predition.the fatorization,�S�B � �S�S � 1 ; �B�S � mHputT : (67)All of these salings are respeted by the entral pro-�les. We then onstrain the variations about the entralpro�les to not violate any of these saling relations bymore than a fator of 2 (as would happen for instane byvarying �B up and �S down). We make one additionalonstraint on the variations by onsidering the evolutionfator U0 in Eq. (57). The summation of rapidity loga-rithms ontains the fatorexp�ln��B�S �g� (putT ; R; �B)� : (68)This is a unique ombination as it features a large loga-rithm of �B=�S multiplying a rapidity anomalous dimen-sion that depends on �B . A simultaneous variation of�B down with either �S down or �B up gives sensitivityto small sales �s(�B), and the e�et is e�etively dou-bled by the ln(�S=�B) variation, leading us to eliminatethese two ombinations from the set of sale variationswe onsider.With these restritions, there are 35 remaining (of anoriginal possible 80) pro�le sale variations of �B ; �S ; �B ;and �S away from their entral pro�le whih probe the re-summation unertainty. We note that without separatelyvarying �B and �S , and without expliit variations of the�B and �S sales there would be only a single up/downvariation and a signi�ant redution in the resummationunertainty. Exploring a muh larger spae for the salevariations is ruial to reliably estimate the unertaintyfrom the summation of logarithms. Note that at small Rthe large lnR2 e�ets appear through the rapidity RGE,so it is important to vary the rapidity sales to probe the

e�et of these terms on the putT resummation. For the�nal resummation unertainty we use�resum(putT ) = maxvi2Vresum���vi0 (putT )��entral0 (putT )�� ; (69)where Vresum is the above set of 35 resummation salevariations. This unertainty determines the ovarianematrix Cresum, and together with C� gives the full o-variane matrix.D. Unertainties from Clustering E�etsThe purpose of the pro�le sale variations is to es-timate the e�et of unalulated higher-order terms inthe ross setion. This inludes the higher-order orre-tions in the perturbative series of the various anoma-lous dimensions, whih would be needed for the resum-mation at N3LL. While this is e�etive for the loga-rithms of putT =mH , whih are being resummed, the lus-tering e�ets generate an all-orders series of logarithmsof putT =mH and logarithms of R2. In partiular, as ex-plained at the end of Se. II B, the lnR2 terms appear asan unresummed series of large logarithms in the rapidityanomalous dimension. The e�et of these terms on theresummed ross setion is not neessarily well estimatedfrom sale variation of the lowest order term alone.The new lustering e�ets (those not determined fromsoft funtion exponentiation) arising at O(�ns ) dependon a oeÆient Cn(R), whose small R limit has the formin Eq. (3). The term with the most fators of lnR2 atO(�ns ) gives a ontribution to the ross setion of the



15order mathing (Hgg, Bg , Sgg) nonsingular gH;B;S g� �gusp � PDF �s(mZ)NLLpT LO - 1-loop 1-loop 2-loop 2-loop LO 0:13939NLL0pT+NLO NLO NLO 1-loop 1-loop 2-loop 2-loop NLO 0:12018NNLL0pT+NNLO NNLO NNLO 2-loop 2-loop 3-loop 3-loop NNLO 0:11707TABLE I: Perturbative ingredients entering at eah order in resummed perturbation theory.form ln �(n)0 (putT )�LO � Cn;n�1��s(putT )CA� lnR2�n�1� ��s(putT )CA� ln mHputT � ; (70)where only the lowest O(�2s) lustering oeÆient C2;1 =�2:49 is known [see Eq. (24)℄. Note that lnR2 depen-dent terms with more powers of ln(mH=putT ) are deter-mined by exponentiation through the rapidity RGE [i.e.the terms in Eq. (70) arise as higher-order orretions ing� (R)℄.Until a alulation of any of the higher-order luster-ing oeÆients exists, the best we an do is to estimatetheir e�et on the ross setion. To derive an uner-tainty estimate from higher-order lustering e�ets, weuse the ansatz C3;2 = �C2;1 and add the orrespondingO(�3s) term to the rapidity anomalous dimension. Wehave hosen the above way of fatoring out olor fatorsand de�ning the higher-order lustering oeÆients, suhthat C2;1 is roughly an O(1) number and the higher-orderorretions sale with a power of�s(putT )CA� lnR2 : (71)In this way, taking C3;2 = �C2;1 leads to a reasonable es-timate of the potential size of the higher-order lusteringorretions. For example, for R = 0:4, putT = 25GeV,this fator is �0:25, so taking C3;2 = �C2;1 the O(�3s)lustering term would give a 25% orretion to the O(�2s)lustering term. This leads to a lustering unertaintywhih is not negligible but fortunately does not dominatethe unertainty. Numerial results for di�erent parame-ters of phenomenologial interest are given in the nextsetion.IV. PREDICTIONS FOR THE LHCIn this setion we present our preditions for the ex-lusive 0-jet ross setion �0, the inlusive 1-jet ross se-tion ��1, and the exlusive 0-jet fration �0. In analyzingour results we will onsider varying: the perturbative or-der (NLLpT , NLL0pT+NLO, and NNLL0pT+NNLO), thehoie of jet radius R, and the hoie of putT . The Higgsmass dependene may also be examined, but we will �xmH = 125GeV. The order of the hard, beam, andsoft funtions, nonsingular orretions, and anomalous

dimensions entering at eah order in the resummed rosssetion are given in Table I. We use the MSTW 2008PDFs [58℄ with their �s(mZ) at the relevant order asshown in Table I.4We start with a summary of our main results. In Ta-ble II we give our preditions for eah of ��0, �0, ��1,and �0 using putT 2 f25; 30gGeV and R 2 f0:4; 0:5; 0:7g.The unertainties are determined by the ovariane ma-trix in Eq. (51). The basi parameters in the matrix arethe resummation unertainty �resum and the �xed-orderunertainties �tot, ��0, and ���1 = �tot � ��0. Thevalues of these unertainties for two examples areputT = 25GeV putT = 30GeVR = 0:4 R = 0:5�tot : 1:49 pb 1:49 pb�resum : 0:86 pb 0:52 pb (72)��0 : 0:87 pb 0:70 pb���1 : 0:62 pb 0:79 pbwhih an be ompared to total unertainties quoted inTable II. In Eq. (72) the redution in resummation un-ertainties at larger R and putT is to be expeted, andis mainly driven by the inrease in putT . This is also themain reason for the redued unertainties with inreasingputT in �0 and �0 at NNLL0pT+NNLO, seen in Table II.We will disuss additional aspets of Table II and as-soiated �gures for �0, ��1, and �0 in the following sub-setions. In Figs. 7, 8, and 9 we will show preditions atdi�erent orders and ompare our most aurate predi-tion to the NNLO result. In Eq. (73) we will estimate theunertainty from higher-order lustering terms. Then inFig. 10 we will plot various orrelation oeÆients as afuntion of putT , and in Table III give orrelation oeÆ-ients for two di�erent values of R. In App. A, we willdisuss in more detail the impat of the �2 summationon our analysis.4 At NLL, the �s running order required by the LO PDFs and theresummation di�er. In this ase, we use the pragmati solutionof inluding the required 2-loop beta funtion oeÆients in theRGE evolution kernels, but use the 1-loop running required bythe LO PDFs to obtain the numerial value of �s at a givensale. This mismath does not happen at the higher orders.



16��0 [pb℄ �0(putT ) [pb℄ ��1(putT ) [pb℄ �0(putT )NLL0pT+NLOputT = 25GeV 20:46 � 3:37 (16:5%) 11:19 � 1:98 (17:7%) 9:27 � 2:76 (29:7%) 0:547 � 0:086 (15:8%)putT = 30GeV 20:46 � 3:37 (16:5%) 12:70 � 2:07 (16:3%) 7:76 � 2:67 (34:5%) 0:621 � 0:090 (14:5%)NNLL0pT+NNLO (R = 0:4)putT = 25GeV 21:68 � 1:49 (6:9%) 12:67 � 1:22 (9:6%) 9:01 � 1:06 (11:8%) 0:584 � 0:040 (6:8%)putT = 30GeV 21:68 � 1:49 (6:9%) 14:09 � 0:96 (6:8%) 7:60 � 0:93 (12:3%) 0:650 � 0:028 (4:4%)NNLL0pT+NNLO (R = 0:5)putT = 25GeV 21:68 � 1:49 (6:9%) 12:40 � 1:12 (9:0%) 9:28 � 1:03 (11:1%) 0:572 � 0:036 (6:2%)putT = 30GeV 21:68 � 1:49 (6:9%) 13:85 � 0:87 (6:3%) 7:83 � 0:94 (12:0%) 0:639 � 0:026 (4:1%)NNLL0pT+NNLO (R = 0:7)putT = 25GeV 21:68 � 1:49 (6:9%) 11:97 � 1:05 (8:8%) 9:71 � 0:97 (10:0%) 0:552 � 0:032 (5:7%)putT = 30GeV 21:68 � 1:49 (6:9%) 13:48 � 0:83 (6:2%) 8:20 � 0:92 (11:2%) 0:622 � 0:024 (3:8%)TABLE II: Preditions for various ross setions with omplex sale setting �H = �i�FO and �FO = mH as the entral salehoie, and with the total ombined perturbative unertainties. For onveniene we also show the equivalent perent unertaintyin brakets after eah result.A. The 0-Jet Cross SetionThe fundamental quantity measured by experimentsthat needs to be alulated theoretially is �0(putT ; R),the �duial ross setion in the 0-jet bin. For this reasonthe preditions disussed here for the 0-jet ross setionat NNLL0pT+NNLO are our main results. The purposeof the resummation is to improve the preision and a-uray of the �xed-order ross setion when putT � mH ,so it is natural to ompare the resummed result to theNNLO ross setion. For NNLO we use the entral sale�FO = mH throughout. In addition, to verify the valid-ity of our unertainty analysis it is important to studythe onvergene of the resummation by studying di�er-ent orders in the resummed perturbation theory. Wemake these omparisons in Fig. 7 using R = 0:4. Fromthe top left panel one sees that there is indeed a sub-stantial redution of unertainties when inreasing theauray of the resummation/mathing, with higher or-ders falling inside the unertainty bands of the lower or-der results, as desired. From the top right panel onesees that the NNLL0pT+NNLO predition has notieablysmaller unertainties than the NNLO predition. Thisis expeted for smaller putT , but even remains true forlarger putT due to the �2 summation that is present inthe NNLL0pT+NNLO result, but not in the NNLO result.(The orresponding omparisons for R = 0:5 are quitesimilar, yielding the same onlusions.)The bottom left panel shows perent unertainties forthe two highest order resummation results, and alsobreaks them down into the ontributions from the re-summation unertainty �resum and the total unertaintyfrom ombining yield and resummation unertainties inquadrature. For large putT the yield unertainties dom-inate at both NLL0pT+NLO and NNLL0pT+NNLO, sinethe resummation is not important in this region. For

both of these orders the resummation unertainty startsto have a relevant impat for putT <� 40GeV.In the bottom right panel of Fig. 7 we show the per-ent unertainties relative to the entral urve for theNNLL0pT+NNLO and NNLO ross setions. In this �g-ure the size of the improvement is lear. For instane,for R = 0:4 and putT = 25GeV the unertainty dereasesfrom 20% at NNLO to 9:6% at NNLL0pT+NNLO. Simi-lar improvements by roughly a fator of 2 are observedfor putT = 30GeV and for R = 0:5. Jet binning is akey aspet of the experimental H ! WW and H ! ��analyses, whih will therefore diretly bene�t from thissubstantial improvement in the theoretial unertainties.The lustering e�ets provide an additional uner-tainty. Using the proedure disussed in Se. III D, therelative unertainty from lustering, �lus0 (putT )=�0(putT ),is(�lus0 =�0)(putT ) putT = 25GeV putT = 30GeVR = 0:4 : 3:6% 2:9%R = 0:5 : 2:1% 1:7% (73)R = 0:7 : 0:5% 0:4%Sine our method of estimating these unertainties islikely to be improved in the future by alulations ora better understanding of lustering e�ets, we have notinluded them in the plots or in our numbers in Table II.These lustering unertainties are small ompared to theperturbative unertainties disussed above and shown inTable II, but are nonnegligible, so we will quote them asan additional unertainty on eah 0-jet ross setion. Oneshould interpret these with are sine they ome from arough estimate of the higher-order lustering oeÆientwhih ould easily be twie as large or one-half as large.As representative �nal results we quote the following val-
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FIG. 7: The 0-jet ross setion for R = 0:4 and mH = 125GeV. On the left we show the NLLpT , NLL0pT+NLO, andNNLL0pT+NNLO preditions. A good onvergene and redution of unertainties at suessively higher orders is observed. Onthe right we ompare our best predition at NNLL0pT+NNLO to the �xed NNLO predition. The lower plots show the relativeunertainty in perent for eah predition. On the lower left the lighter inside bands show the ontribution from �resum only,while the darker outer bands show the total unertainty from adding �resum and �� in quadrature.ues for �0(putT ; R) with both theoretial unertainties:�0(25GeV; 0:4) = 12:67� 1:22pert � 0:46lust pb ;�0(30GeV; 0:5) = 13:85� 0:87pert � 0:24lust pb : (74)It is interesting to ompare our results and unertain-ties for �0 to the NNLL+NNLO results presented ear-lier in Ref. [9℄. Our results build on their results in afew ways. In partiular, our RG approah inludes �2resummation, our results are quoted as NNLL0 beausethey go beyond NNLL by inluding the omplete NNLOsingular terms in the �xed-order mathing (whih are theorret boundary onditions for the N3LL resummation),and �nally we use a fatorization based approah to un-ertainties, whih also makes preditions for the orrela-tions between the di�erent jet bins.Comparing �0 at putT = 25GeV and R = 0:4 our en-tral values agree with those in Ref. [9℄, and are well withineah other's unertainties. Our perturbative unertaintyof 9:6% is a bit smaller than the 13:3% unertainty for�0 of Ref. [9℄ whih seems reasonable given the above

mentioned additions. One important ingredient in thisomparison is the inlusion of the �2 resummation whihimproves the onvergene of our results and dereases ourunertainty. On the other hand, in Ref. [9℄ the entralsale is hosen to be �FO = mH=2 whih also works in thesame diretion, dereasing the unertainty relative to thehoie �FO = mH . For the total ross setion Ref. [9℄ hasa 7:4% unertainty, whereas we have 6:9% unertaintyusing �FO = mH and inluding �2 resummation (see Ta-ble II). From Table IV in appendix App. A we see thatour perturbative unertainty for �0(25GeV; 0:4) wouldinrease to 12:8% if the �2 resummation were turned o�(while still taking the entral �FO = mH), and that atthis level the unertainty would beome omparable tothat of Ref. [9℄. For putT = 30GeV and R = 0:5 ourentral values remain perfetly ompatible with Ref. [9℄,and the unertainties follow a pattern similar to the aseabove.



18B. The Inlusive 1-Jet Cross SetionThe inlusive 1-jet ross setion ontains the same jet-veto logarithms as the exlusive 0-jet ross setion,��1(putT ) = ��0 � �0(putT ) : (75)Here, putT in ��1(putT ) is now the lower limit on the pTof the leading jet in this inlusive ross setion. Sineour resummation framework onsistently inludes both�0(putT ) and ��0, we an determine a resummed predi-tion for ��1(putT ) from their di�erene. A nontrivial in-gredient in this predition is determining its perturbativeunertainty via the theory ovariane matrix determinedin Se. III.In Fig. 8, we show the onvergene of the resummedand mathed preditions at di�erent orders, as well asthe omparison to the �xed-order ross setion. The to-tal ross setion used to obtain ��1(putT ) is evaluatedwith an auray equal to the �xed-order mathing re-sults ontained in �0(putT ). This is required to enfore��1(putT ! 1) ! 0. For this reason in the left panelof Fig. 8 the NLLpT distribution (whose mathing doesnot even inlude the full tree-level matrix element forthe H + 1 jet rate) is lower than the higher-order distri-butions. The NNLL0pT+NNLO distribution is well on-tained within the NLL0pT+NLO unertainty band, withthe expeted improvement in auray. Note that wheninluding the resummation, ��1(putT ) approahes the to-tal ross setion as putT ! 0, whereas it would diverge at�xed order.In the right panel of Fig. 8 we ompare the �xed-orderresult for ��1(putT ) with the result obtained from Eq. (75)using our NNLL0pT+NNLO 0-jet distribution. (We labelthe NNLL0pT+NNLO predition as suh to be onsistentwith our preditions for other observables, although interms of the �xed-order ontributions it is not beyond theNLO result forH+�1 jet denoted as NLO1 in the �gure.)The resummed predition for ��1(putT ) is larger than theNLO1 result due to the summation of �2 terms in ��0and �0(putT ) in Eq. (75). Without this �2 summation,the resummed ��1(putT ) would give a slightly lower ratethan at �xed order. For R = 0:4 and putT = 25GeV the�xed-order unertainty is 20%. It is redued to 11:8% atNNLL0pT+NNLO (see Table II). This redution is similarto what was observed for �0, as is the mild dependene onR. On the other hand, inreasing putT to 30GeV does notreally hange the relative unertainty for ��1, unlike for�0. Note the importane of the theory orrelations here,sine we an see from Eq. (72) that the yield unertainty���1 alone behaves in the opposite fashion.Our resummed results for the inlusive 1-jet ross se-tion ��1(putT ; R) provide improved preditions omparedto the auray of its NLO result, but should be usedtogether with the appropriate theory unertainty orre-lations determined here. As representative �nal resultsfor ��1(putT ; R), where we also inlude the unertainty

from lustering estimated as in Eq. (74), we quote��1(25GeV; 0:4) = 9:01� 1:06pert � 0:46lust pb ;��1(30GeV; 0:5) = 7:83� 0:94pert � 0:24lust pb : (76)Note that the lustering unertainties have a larger rel-ative size here (5:1% and 3:0%) sine ��1 is numeriallysmaller than �0.Reently, the gg ! Hg ontribution to the H+�1-jetross setion has been alulated at NNLO [59℄. Thisalulation inludes all O(�3s) orretions whih inludelogarithms of putT =mH , �2 terms, and nonsingular on-tributions. Our resummed alulation aptures all of thelogarithms of putT =mH exept for the single logarithms(whih would require N3LL resummation) as well as the�2 terms at O(�3s), but does not inlude any nonsingu-lar ontributions. In ontrast, the �xed-order alulationdoes not inlude the resummation of the putT logarithmsor �2 terms beyond O(�3s). The di�erent theoretial in-gredients in these two alulations makes a omparisonbetween them interesting. In fat, for phenomenologi-ally relevant parameters the gg ! Hg NNLO alula-tion �nds a K-fator relative to NLO that is quantita-tively similar to the inrease over the NLO ross setionthat we observe between the two entral urves in theright panel of Fig. 8. As mentioned above, in our asethe resummation of the putT logarithms lowers the 1-jetinlusive ross setion relative to �xed NLO, but inlud-ing also the �2 summation raises it above. Although thepurely virtual �2 terms from the hard funtion anel outin Eq. (75), there are real-virtual ross terms involving �2fators in ��0 that are not aneled. This suggests thatthese �2 terms may play an important role in determiningthe magnitude of the NNLO K-fator. (In ontrast, the�2 terms that an be determined from imaginary salesetting in the exlusive H+1-jet ross setion are knownto not play a dominant role at NLO [50℄.)C. The 0-Jet EÆienyAnother observable that an be predited using ourresults is the 0-jet eÆieny,�0(putT ) = �0(putT )��0 : (77)One again it is important to aount for the orrelationsin theoretial unertainties when omputing the uner-tainty in this observable aording to Eq. (53). In Fig. 9,we plot �0(putT ) and its unertainty as a funtion of putTfor R = 0:4 and we give expliit numbers in Table II. AtNLL0pT+NLO the relative unertainties for �0 and �0 aresimilar, but this is no longer the ase at NNLL0pT+NNLO.With the dereased unertainties that our at this order,a more signi�ant amount of the unertainties in the nu-merator and denominator of Eq. (77) beome positivelyorrelated and anel. As a result, our 0-jet eÆieny atNNLL0pT+NNLO has smaller relative unertainties than
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tainty for �0, whih in their framework is assumed to beindependent from the unertainty in the total ross se-tion. Thus, their unertainty for �0 is always larger thanthat for �0. This 11:5% unertainty for their �0 is lose tothe 9:6% unertainty for our �0, but larger than the 6:8%unertainty for our �0. For the analysis of Ref. [9℄ thereis no orresponding anellation of unertainties betweenthe numerator and denominator of Eq. (77), and henethe same anellation that we observe does not our.D. CorrelationsWhen evaluating the perturbative unertainties via thepro�le sale variations as disussed in Se. III C, the or-relations in the total perturbative unertainties between
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FIG. 10: Predited orrelation oeÆients for the total perturbative unertainties within the resummed preditions betweendi�erent observables at NLL0pT+NLO (left) and NNLL0pT+NNLO (right, with R = 0:4). Sine the orrelations result from theinterplay between the relative sizes of the C� and Cresum omponents, the hanges between orders is not unexpeted.putT = 30GeV ��0 �0(putT ) ��1(putT ) �0(putT )R = 0:4��0 1 0:80 0:78 �0:34�0(putT ) 1 0:25 0:30��1(putT ) 1 �0:85�0(putT ) 1R = 0:5��0 1 0:81 0:84 �0:44�0(putT ) 1 0:35 0:18��1(putT ) 1 �0:86�0(putT ) 1TABLE III: Correlations in the perturbative unertainties be-tween di�erent observables at putT = 30GeV for R = 0:4 andR = 0:5.the di�erent observables are automatially predited bythe resulting total ovariane matrix C�+Cresum. In pre-vious subsetions we have highlighted a few ases wherethese orrelations are important for determining uner-tainties, and in this setion we disuss them in more de-tail.As an example, in Table III we give the orrelationoeÆients obtained at putT = 30GeV for both R = 0:4and R = 0:5. One observes that they have a fairly milddependene on R. On the other hand, sine the orrela-tions arise from the interplay between the relative size ofthe antiorrelated omponent C� and orrelated ompo-nent Cresum, they an have a muh stronger dependeneon putT . Similarly, the orrelation matrix an also hangeby a large amount between perturbative orders beauseunertainties are dereased by going to higher order, andtherefore the relative importane of C� and Cresum anhange. These two features are illustrated in Fig. 10. TheputT dependene is strongest in the orrelations between

the inlusive ross setion, ��0, and the exlusive 0-jetobservables �0 (solid orange lines) and �0 (blue dashedlines). The reason for this is that the 0-jet observables re-eive ontributions from Cresum, whose importane rela-tive to C� depends on putT , while ��0 has no ontributionfrom Cresum. We also see that at NNLL0pT+NNLO theorrelation between �0 and ��1 dereases toward smallerputT and turns negative below <� 30GeV, beause theantiorrelated migration unertainties from Cresum startdominating over their ommon orrelated yield uner-tainty in C�. This anti-orrelation is not so evident inthe resummed result at NLL0pT+NLO sine C� plays abigger role at this order. Finally, we observe that in thelarge putT regime, where the resummation turns o� andthe C� ontributions dominate, the orrelations betweenthe 0-jet eÆieny and the total ross setion in our for-malism approahes �1, as it must. For large putT theorrelations between any two ross setions tends to 1,also as they must.From this disussion it should also be apparent thatwe do not expet the orrelations obtained after resum-mation to be the same as in the pure �xed-order alu-lation. Indeed, inluding the resummation the pertur-bative unertainties in the logarithmi series indued bythe jet binning are signi�antly redued ompared to inthe �xed-order ase. This means the orrelation betweenthe unertainties in �0 and ��1 should be more nega-tive at �xed order. This is indeed what happens whenusing the method of Ref. [12℄, for whih at pure NNLOwe �nd �(�0; ��1) rises from �0:7 to �0:2 over the putTrange shown in Fig. 10. The added advantage of theresummation framework used here is that it automati-ally provides theory based handles to estimate both theorrelated ontributions C� and antiorrelated ontribu-tions in Cresum without having to make an assumptionabout the orrelation between any two quantities. As a�nal autionary note, we remark that one should reallthat the magnitude of the orrelation oeÆients does



21not indiate the relative importane of their entries indetermining the �nal unertainties sine the size of theorresponding diagonal unertainties is also required.V. CONCLUSIONSIn this paper we have presented results for Higgs pro-dution via gluon fusion with a jet veto. Jets are identi-�ed with a kT-type lustering algorithm (whih inludesthe experimentally used anti-kT algorithm) with jet ra-dius R, and are vetoed via the requirement pjetT < putT .The logarithms of putT =mH are resummed to NNLL0 andthe resummation is mathed to the full �xed NNLO rosssetion. Our analysis is based around the small R limit,where the ross setion an be fatorized into hard, beam,and soft funtions. To ahieve NNLL0 order we omputedthe relevant soft funtion to O(�2s) and omputed the full�2s lnR2 term for the beam funtion, determining the re-maining putT independent O(�2s) terms in the beam fun-tion numerially. Our resummation results also inlude�2 summation in the hard orretions through imagi-nary sale setting. To onsistently inorporate the fullNNLO result we made use of pro�le funtions that prop-erly handle both the small and large putT regions, and inpartiular the experimentally relevant transition regionin between. We also inluded a preise numerial deter-mination of the O(�2s) nonsingular terms. Our resultsinlude preditions for the exlusive 0-jet ross setion,the 0-jet eÆieny, and the inlusive 1-jet ross setion.A key aspet of our numerial analysis is the robust es-timation of perturbative unertainties. The unertaintyomes from two independent omponents: overall yieldunertainties (whih are orrelated between jet bins) andresummation unertainties (related to prediting the mi-gration between jet bins as we vary putT ). Eah of thesean be estimated through the variation of various invari-ant mass and rapidity sales in the fatorization theorem.The unertainty framework disussed in Se. III allows usto onstrut the omplete ovariane matrix for the total,exlusive 0-jet, and inlusive 1-jet ross setions.In Se. IV, we presented results for the 0-jet rosssetion, the inlusive 1-jet ross setion, and the 0-jet eÆieny. Our numerial results for several phe-nomenologial points of interest (putT = 25; 30GeV andR = 0:4; 0:5; 0:7) are given in Table II. The preision ofthe preditions inreases signi�antly as the resummationand mathing is improved, from NLLpT to NLL0pT+NLOto NNLL0pT+NNLO. For the most preise preditions,the unertainties are signi�antly smaller than the �xed-order NNLO unertainties, whih are urrently the nom-inal benhmark unertainties for the experimental H !WW and H ! �� analyses. Our results add a few addi-tional ingredients on top of the NNLL results in Ref. [9℄,in partiular: by inluding �2 summation [35℄, by in-luding the omplete NNLO singular terms in the �xed-order mathing for soft and beam funtions atO(�2s), andbeause our fatorization based framework also makes

preditions for both orrelated and antiorrelated on-tributions to the theory unertainty orrelation matrixbetween di�erent jet bins. We observe a orrespond-ing modest improvement in the size of the unertainties,where details an be found in Se. IVA and Se. IVC.Our results are part of an ongoing e�ort to more om-pletely understand jet vetoes for Higgs prodution andtheir assoiated unertainties. The H + 0-jet ross se-tion is an exellent testing ground for the new methodsbeing developed to improve the theoretial preditions.Currently, the �xed-order perturbative unertainties dueto the jet binning in the H ! WW analysis are thedominant systemati unertainties. Our results an bediretly applied to provide improved theory preditionswith substantially redued perturbative unertainties.AknowledgmentsWe thank Robert Shabinger for assistane in on-verting our numerial values of the 2-loop non-uspanomalous dimensions into analyti expressions. Theauthors thank eah other's institutions and the ErwinShr�odinger Institute program \Jets and Quantum Fieldsfor LHC and Future Colliders" for hospitality while por-tions of this work were ompleted.This work was supported in part by the Diretor, Of-�e of Siene, OÆes of Nulear Physis and High En-ergy Physis of the U.S. Department of Energy under theGrant No. DE-FG02-94ER40818 and the Contrat No.DE-AC02-05CH11231, the DFG Emmy-Noether grantTA 867/1-1, and the US National Siene Foundation,grant NSF-PHY-0705682, the LHC Theory Initiative.This researh used resoures of the National EnergyResearh Sienti� Computing Center, whih is sup-ported by the OÆe of Siene of the U.S. Departmentof Energy under Contrat No. DE-AC02-05CH11231.Note Added:While �nalizing this paper Ref. [60℄ appeared, whih alsomakes preditions for the H+0-jet ross setion inludingontributions beyond the NNLL results of Ref. [9℄. In thisnote added we ompare their theoretial ingredients withours.Regarding the derivation of fatorization for terms ofO(R2) we believe the disussion of rapidity saling in ourfootnote 2 still applies to Ref. [60℄.A ommon goal of both our work and Ref. [60℄ is the in-lusion of �xed-order orretions from the low-energyma-trix elements (orresponding to beam and/or soft fun-tions) that are needed as ingredients in a alulation atN3LL order. In our analysis we have fully alulated theO(�2s) soft funtion, inluding the R-dependent anoma-lous dimension and �nite orretions that depend onlnR2. In addition, we have alulated the �nite orre-tions in the beam funtion that depend on lnR2. Thus,the dominant R dependene has been fully determinedanalytially, and the only numerial ingredient is the re-



22maining ontribution in the beam funtion. In ontrast,in Ref. [60℄ an analyti alulation is done for the anoma-lous dimension terms, but a numerial extration is donefor the ombined �nite soft + beam ontributions inlud-ing their R dependene. We make use of the rapidityrenormalization group in our analysis, inluding rapiditysale variations in our unertainties to estimate the size ofhigher-order rapidity logarithms, while Ref. [60℄ aountsfor these ontributions using the \ollinear anomaly" for-malism without variations of the rapidity sales. A re-summation of �2 ontributions through imaginary salesetting is used in both our work and their work.Ref. [60℄ refers to the auray of their resummationas \N3LLp", where \p" stands for partial, whih an beontrasted with our NNLL0. As far as perturbative in-gredients that have been either alulated analytiallyor extrated numerially, both our results inlude thesame theoretial ingredients. Ref. [60℄ makes an addi-tional ansatz about the anomalous dimensions requiredfor N3LL resummation, sine none of the required oeÆ-ients are urrently known. Their method of estimatingand varying the size of these oeÆients in some rangeis another method for estimating unertainties from un-known higher-order perturbative orretions. It does nothowever improve the perturbative auray of the resum-mation beyond NNLL0 order.In our analysis we have used pro�le sales to prop-erly desribe the transition between the resummation and�xed-order regimes, whih ensures that we have anon-ial sales in the small putT region and also reproduethe �xed-order ross setion in the large putT limit. Inontrast, Ref. [60℄ limit themselves to using anonialsales, whih an only be used to properly desribe theross setion in the small putT region below the transi-tion region. As we have seen in our analysis, for phe-nomenologially relevant values of putT , the ross setionand its unertainties are inuened by the transition re-gion. The onnetion to the �xed-order ross setion alsoprovides an important onstraint when prediting orre-lations (whih are not onsidered in Ref. [60℄). Overall,our method of alulating perturbative unertainties byvarying all sales appearing in the RGE is therefore quite

di�erent from Ref. [60℄. Numerially, the resummed per-turbation theory as organized in Ref. [60℄ show a sloweronvergene (as shown, e.g., in their Figs. 8 and 11)ompared to our results shown in Fig. 7.Appendix A: Results for Real �HFor ompleteness and to demonstrate the bene�t of theimaginary sale setting for �H , in this Appendix we givepreditions for the real sale setting �H = �FO, whihexludes the large �2 terms from the resummation in thehard funtion.In Fig. 11, we plot the analog of Fig. 7 for �0(putT )but using real �H . Comparing these two �gures, it islear that inluding the �2 terms in the resummationsigni�antly improves the onvergene and preision ofthe 0-jet preditions at small putT . This improvementalso translates into an improved onvergene and reduedunertainties at larger values of putT . In Table IV, wegive the analogous values without �2 summation to thosein Table II. For putT = 25GeV, R = 0:4 and putT =30GeV, R = 0:5, the orresponding omponents of theunertainty are putT = 25GeV putT = 30GeVR = 0:4 R = 0:5�tot : 1:91 1:91�resum : 1:08 0:95 (A1)��0 : 1:16 1:32���1 : 0:75 0:59Both the resummed and �xed-order unertainties for the0-jet ross setion are larger when the �2 terms are ex-luded from the resummation, indiating that these large�2 terms have an e�et on the shape as well as the nor-malization of the ross setion. This is also reeted inFig. 11.[1℄ ATLAS Collaboration, G. Aad et al., Phys. Lett. B 716,1 (2012), [arXiv:1207.7214℄.[2℄ CMS Collaboration, S. Chatrhyan et al., Phys. Lett. B716, 30 (2012), [arXiv:1207.7235℄.[3℄ C. Anastasiou, K. Melnikov, and F. Petriello, Phys. Rev.Lett. 93, 262002 (2004), [hep-ph/0409088℄.[4℄ C. Anastasiou, K. Melnikov, and F. Petriello, Nul. Phys.B724, 197 (2005), [hep-ph/0501130℄.[5℄ S. Catani and M. Grazzini, Phys. Rev. Lett. 98, 222002(2007), [hep-ph/0703012℄.[6℄ M. Grazzini, JHEP 02, 043 (2008), [arXiv:0801.3232℄.[7℄ C. F. Berger, C. Marantonini, I. W. Stewart, F. J. Tak-mann, and W. J. Waalewijn, JHEP 04, 092 (2011),[arXiv:1012.4480℄.
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