
*∣
30
7.
∣8
08
*

 DESY 13-122
 MIT-CTP 4479

ar
X

iv
:1

30
7.

18
08

v1
  [

he
p-

ph
] 

 6
 J

ul
 2

01
3

DESY 13-122MIT{CTP 4479Jet pT Resummation in Higgs Produ
tion at NNLL0+NNLOIain W. Stewart,1 Frank J. Ta
kmann,2 Jonathan R. Walsh,3 and Saba Zuberi31Center for Theoreti
al Physi
s, Massa
husetts Institute of Te
hnology, Cambridge, MA 02139, USA2Theory Group, Deuts
hes Elektronen-Syn
hrotron (DESY), D-22607 Hamburg, Germany3Ernest Orlando Lawren
e Berkeley National Laboratory, University of California, Berkeley, CA 94720(Dated: July 5, 2013)We present predi
tions for Higgs produ
tion via gluon fusion with a pT veto on jets and withthe resummation of jet-veto logarithms at NNLL0+NNLO order. These results in
orporate expli
itO(�2s) 
al
ulations of soft and beam fun
tions, whi
h in
lude the dominant dependen
e on the jetradius R. In parti
ular the NNLL0 order a

ounts for the 
orre
t boundary 
onditions for the N3LLresummation, for whi
h the only unknown ingredients are higher-order anomalous dimensions. Weuse s
ale variations in a fa
torization theorem in both rapidity and virtuality spa
e to estimate theperturbative un
ertainties, a

ounting for both higher �xed-order 
orre
tions as well as higher-ordertowers of jet-pT logarithms. This formalism also predi
ts the 
orrelations in the theory un
ertaintybetween the ex
lusive 0-jet and in
lusive 1-jet bins. At the values of R used experimentally, thereare important 
orre
tions due to jet algorithm 
lustering that in
lude logarithms of R. Althoughwe do not sum logarithms of R, we do in
lude an expli
it 
ontribution in our un
ertainty estimateto a

ount for higher-order jet 
lustering logarithms. Pre
ision predi
tions for this H + 0-jet 
rossse
tion and its theoreti
al un
ertainty are an integral part of Higgs analyses that employ jet binning.I. INTRODUCTIONAfter the dis
overy of a Higgs boson [1, 2℄, a 
entralobje
tive of the LHC physi
s program is to measure theproperties of the new parti
le by exploiting all a

essibleprodu
tion and de
ay 
hannels. The gg ! H ! WW
hannel is very sensitive to the Higgs 
oupling toW gaugebosons. The gg ! H ! �� 
hannel provides dire
t sen-sitivity to the Higgs 
ouplings to fermions and is the onlymeasurable 
hannel that gives dire
t a

ess to the Higgs
ouplings in the leptoni
 se
tor of the Standard Model.In both these 
hannels the experimental analyses sepa-rate the data into jet bins to take advantage of the fa
tthat the signal over ba
kground ratio, as well as the dom-inant ba
kground 
ontributions, strongly depend on thenumber of jets in the �nal state. Of parti
ular impor-tan
e is the 0-jet bin, where any hard jets are vetoed, asit 
ontains the largest signal 
ross se
tion.Extra
ting the Higgs 
ouplings from the measured ex-
lusive 0-jet 
ross se
tion requires pre
ise theoreti
al pre-di
tions. Any type of jet veto introdu
es a veto s
ale,k
ut. For a tight jet veto, k
ut � mH , large Sudakov log-arithms of the veto s
ale, �ns lnm(k
ut=mH), appear inthe perturbative series and must be resummed to all or-ders to obtain a meaningful perturbative predi
tion. Fork
ut � mH , �xed-order perturbation theory 
an safelybe applied, and the 
ross se
tion with arbitrary 
utshas been 
al
ulated at �xed next-to-next-to-leading or-der (NNLO) [3{6℄. In the transition region between thesetwo limits, both the veto logarithms and nonlogarithmi
�xed-order 
orre
tions are numeri
ally important, and a
omplete des
ription in
luding both types of perturbative
orre
tions must be used to obtain the best possible theo-reti
al pre
ision. For earlier theoreti
al work on analyti
resummation for Higgs jet vetoes see for example [7{14℄.In prin
iple, there are several di�erent ways to im-

plement a veto on additional emissions due to initial-state and �nal-state radiation in a given pro
ess. A\global jet veto" 
orresponds to a restri
tion applied tothe sum of all radiation, for example through a globalevent shape su
h as beam thrust [15℄ [or equivalently(N = 0)-jettiness [16℄℄ or ET = PjpT j, and allows forpre
ise resummed predi
tions [7, 15{18℄.The 
urrent experimental analyses use a jet 
lusteringalgorithm (the anti-kT algorithm [19℄ with a jet radiusR = 0:4 for ATLAS and R = 0:5 for CMS) to iden-tify jets. The jet veto is then implemented by requir-ing pjetT < p
utT for any jets with j�jetj < �
ut (whilejets at larger pseudorapidities are unrestri
ted). Thetypi
al experimental ranges are p
utT � 25 � 30GeV for�
ut � 4:5� 5 (with the high value of �
ut having a smalle�e
t on the 
ross se
tion). In 
ontrast to a global jetveto, this pro
edure 
orresponds to a \lo
al jet veto",sin
e the restri
tion on �nal state radiation is appliedseparately to ea
h individual lo
al 
luster of emissions.For a 
ut on either ET < p
utT or pjetT < p
utT , the jet-veto s
ale is set by pT and Sudakov double logarithms ofthe ratio p
utT =mH arise. The leading 
orre
tion to the0-jet 
ross se
tion for Higgs produ
tion via gluon fusionhas the form�0(p
utT ) = �LO�1� �sCA� 2 ln2 p
utTmH + : : :� ; (1)where �LO denotes the lowest-order 
ross se
tion. Thehierar
hy between p
utT andmH implies that resummationof logarithms of p
utT =mH should be performed. For thepjetT � p
utT veto, the resummation of p
utT -logarithms upto NNLL has been presented in Refs. [8{10℄.In this paper, we 
al
ulate the resummed H + 0-jet
ross se
tion from gluon fusion using the framework ofsoft-
ollinear e�e
tive theory (SCET) [20{24℄, where the
ross se
tion is fa
torized into 
al
ulable pie
es and the
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2resummation is performed by renormalization group evo-lution (RGE) in both virtuality and rapidity spa
e. Wedetermine the 
ross se
tion at NNLL0pT+NNLO order,where we use the subs
ript pT to expli
itly denote thefa
t that the resummation order only 
ounts logarithmsof p
utT =mH (and not R2). The primed order 
ounting isdes
ribed for example in Ref. [7℄. It in
ludes the NNLLresummation and in addition the full O(�2s) dependen
eof the fun
tions appearing in the fa
torization theorem(in
luding in our 
ase the O(�2s) e�e
ts from jet 
luster-ing). These 
orre
tions in
orporate the dominant NNLO
orre
tions at small p
utT into the resummed result. Theyare formally part of the N3LL resummation for whi
hthey provide the 
orre
t RGE boundary 
onditions. Themissing ingredients for a 
omplete N3LL resummationare the unknown three-loop non-
usp and four-loop 
uspanomalous dimensions. We also in
lude the \nonsingu-lar" O(�2s) 
orre
tions that vanish as p
utT ! 0, whi
hare not part of the resummation. Thus our results in
or-porate the 
omplete NNLO 
ross se
tion for all values ofp
utT , in
luding the total NNLO 
ross se
tion in the limitof large p
utT . This allows us to also obtain resummedpredi
tions for the ex
lusive 0-jet event fra
tion (or ef-�
ien
y) and the in
lusive 1-jet 
ross se
tion with a 
utpjetT � p
utT on the leading jet.In our analysis, we pla
e a parti
ular emphasis on a
areful estimate of the remaining perturbative un
ertain-ties in our predi
tions. The di�erent 
ontributions to theun
ertainty are estimated by appropriate variations ofthe di�erent s
ales in virtuality and rapidity spa
e ap-pearing in the fa
torization theorem. This allows us todistinguish between and a

ount for both resummationand �xed-order un
ertainties. This formalism then auto-mati
ally determines the 
orrelations in the perturbativeun
ertainties between the total in
lusive, ex
lusive 0-jet,and in
lusive 1-jet 
ross se
tions.The 0-jet 
ross se
tion de�ned by pjetT � p
utT has a
omplex dependen
e on the jet algorithm, whose e�e
t isto introdu
e a nontrivial dependen
e on the jet radius R,ln �(n)0 (p
utT )�LO � ��s4��n ln mHp
utT Cn(R) : (2)For smallR2 the numeri
ally most relevant terms 
ontainlogarithms of R2 and at O(�ns ) are of the form [11℄Cn(R) � lnn�1R2 + lnn�2R2 + : : : lnR2 +O(R2) : (3)They also 
ontain subleading power 
orre
tions ofO(R2).The jet 
lustering e�e
ts start at O(�2s) (n = 2) rela-tive to �LO. They were �rst 
al
ulated in Ref. [10℄ andat present are the only 
lustering 
orre
tions that areknown. They turn out to have a sizeable e�e
t on the
ross se
tion for jet radii R = 0:4 and 0:5. The large
lustering e�e
ts for su
h small values of R imply thatthe logarithms of R2 should be formally treated as beingof similar size as the logarithms of p
utT =mH and hen
eshould also be resummed. In parti
ular, as Eq. (2) shows,
ounting lnR2 � ln(p
utT =mH) implies that there are NLL

terms from 
lustering at ea
h order in �s. However,the 
lustering 
oeÆ
ients Cn>2(R) are unknown, and inprin
iple a separate �xed-order 
al
ulation is required toobtain ea
h one. This renders the resummation of the
lustering logarithms intra
table at present. In our anal-ysis, we in
orporate the known O(�2s) 
lustering e�e
ts,
al
ulate the O(�2s) 
lustering e�e
ts that involve lnR2without a ln(mH=p
utT ), and in
lude an expli
it 
ontri-bution in our un
ertainty estimate for unknown higher-order 
lustering terms.The paper is laid out as follows: In Se
. II, we overviewhow the 
ross se
tion is 
omputed using SCET and give asummary of the results for ea
h part of the 
ross se
tion.In Se
. III, we dis
uss how the perturbative un
ertain-ties are estimated through s
ale variation and how itsvarious 
omponents are 
ombined to estimate the totalperturbative un
ertainty in the 0-jet 
ross se
tion, the0-jet fra
tion, and the in
lusive 1-jet 
ross se
tion. InSe
. IV, we present the results of our numeri
al analysisand our predi
tions for the LHC for these 
ross se
tions.We 
on
lude in Se
. V.II. FACTORIZATION WITH A JETALGORITHM AT SMALL RThe fa
torization of the pp ! H + 0-jet 
ross se
tionwith a jet algorithm has been dis
ussed in Refs. [8, 11℄.For the 
ase of the pT veto on jets in Higgs produ
tionvia gluon fusion, the fa
torized 
ross se
tion is given by�0(p
utT )= �BHgg(mt;mH ; �) Z dY Bg(mH ; p
utT ; R; xa; �; �)�Bg(mH ; p
utT ; R; xb; �; �)Sgg(p
utT ; R; �; �)+ �Rsub0 (p
utT ; R) + �ns0 (p
utT ; R; �ns) ; (4)where xa;b = mHE
m e�Y ; �B = p2GF m2H576�E2
m : (5)The �rst term in Eq. (4) provides the leading 
ontribu-tion to the 
ross se
tion at small p
utT , and 
ontains all thesingular logarithmi
 terms �is lnj(p
utT =mH). It is fa
tor-ized into hard, beam, and soft fun
tions, whi
h are dis-
ussed below. For instan
e, the leading double logarithmin Eq. (1) is split up asln2 p
utTmH = ln2mH� + 2 ln p
utT� ln �mH + ln p
utT� ln � p
utT�2 ;(6)where the three terms on the right-hand side are 
on-tained in the hard, beam, and soft fun
tions, respe
-tively. In Eqs. (4) and (6) � is the usual renormaliza-tion/fa
torization s
ale in virtuality, while � denotes the
orresponding s
ale in rapidity [25, 26℄. Hen
e, we 
an



3already see that both invariant mass and rapidity run-ning will be needed to resum the ln(p
utT =mH) terms withrenormalization group methods.The resummation at NNLL0 requires determining thefun
tions Hgg , Bg , and Sgg to O(�2s), as well as iden-tifying their anomalous dimensions to O(�2s), and their
usp anomalous dimensions to O(�3s). We present ournew two-loop results for the soft and beam fun
tions inSe
s. II B and IIC below, leaving the details of the 
al-
ulations to a separate publi
ation.The se
ond term in Eq. (4), �Rsub0 (p
utT ; R), 
ontainsO(R2) 
ontributions whose all-orders soft-
ollinear fa
-torization is 
hallenging and not known at present. In theR2 � 1 regime, these 
orre
tions 
an formally be treatedas subleading power 
orre
tions. Numeri
ally, they areindeed very small for the values R ' 0:4{0:5 whi
h are ofinterest. (As explained in Ref. [11℄, 
ounting R � 1, theywould signi�
antly 
ompli
ate the soft-
ollinear fa
tor-ization already at leading order in the power 
ounting.)As shown in Ref. [9℄, their 
ontribution to the NNLL se-ries is obtained by multiplying them with the same evo-lution fa
tor as the singular terms, and we will follow thissame approa
h here. Their 
ontribution to the resummed
ross se
tion is dis
ussed in Se
. II D.The last term in Eq. (4), �ns0 (p
utT ; R; �ns), 
ontainsO(p
utT =mH) nonsingular 
orre
tions, whi
h vanish forp
utT ! 0 but be
ome important at large p
utT . Theseterms are added to the NNLL0 result and are required toreprodu
e the 
omplete NNLO 
ross se
tion and a
hievethe full NNLL0+NNLO a

ura
y. Our extra
tion andanalysis of these terms is dis
ussed in Se
. II E.A. Hard Fun
tionThe hard fun
tion, Hgg , in Eq. (4) is determined bymat
hing QCD onto the gluon fusion operator OggH inSCET. As dis
ussed in detail in Ref. [7℄, this mat
hing
an be performed as a two-step mat
hing [27{30℄ or aone-step mat
hing. Sin
e parametri
allymH=mt ' 1, weemploy the one-step mat
hing, whi
h also makes it easyto in
lude the mt dependen
e of the ggH form fa
tor inthe mat
hing 
oeÆ
ient CggH (mt;mH ; �).The hard mat
hing 
oeÆ
ient satis�es the RG equa-tion dd ln� ln�CggH (mt;mH ; �)� = 
gH(mH ; �) ; (7)where the anomalous dimension has the stru
ture
gH(mH ; �) = �g
usp[�s(�)℄ ln �m2H � i0�2 + 
gH [�s(�)℄ :(8)The solution of Eq. (7) yields the RGE of the mat
hing
oeÆ
ient from an initial s
ale �H to some �nal s
ale �,CggH (mt;mH ; �) (9)= CggH (mt;mH ; �H) exp�Z ��H d�0�0 
gH(mH ; �0)� :

The hard fun
tion is then given by the absolute valuesquared of the RG evolved 
oeÆ
ient,Hgg(mt;mH ; �) = ��CggH (mt;mH ; �)��2 : (10)For the resummation at NNLL0, we require the NNLOresult for CggH , the two-loop result for the non-
usp hardanomalous dimension 
gH , and the three-loop result forthe gluon 
usp anomalous dimension �g
usp [31℄. Theseresults as well as the expli
it NNLL expression for theevolution fa
tor 
an be found in App. B of Ref. [7℄.To all orders in perturbation theory the mat
hing 
o-eÆ
ient 
ontains logarithms of the ratio (�m2H� i0)=�2H .Choosing a real value for the starting s
ale �H � mHleaves large Sudakov double logarithms ln2(�1 � i0) =��2, leading to a poorly 
onvergent perturbative expan-sion of the hard fun
tion at this s
ale. Sin
e these termsare asso
iated with the logarithms in the mat
hing 
oef-�
ient, they 
an be summed through its RGE by usingan imaginary starting s
ale �H ' �imH [32{34℄. In thisway, the double logarithms are fully minimized, leadingto a mu
h better perturbative 
onvergen
e [27, 35℄. Toillustrate this numeri
ally, for mH = 125GeV we �ndHgg(�H = mH)H(0)gg (�H = mH) = 1 + 0:815+ 0:356 + � � � ;Hgg(�H = �imH)H(0)gg (�H = �imH) = 1 + 0:274+ 0:042 + � � � ; (11)where H(0)gg is the lowest-order result in ea
h 
ase, andthe se
ond and third numbers on the right-hand side givethe NLO and NNLO 
orre
tions, respe
tively. The sub-stantial improvement in 
onvergen
e also implies redu
edperturbative un
ertainties. We therefore use the imagi-nary hard s
ale as the default 
hoi
e in our numeri
alresults. B. Soft Fun
tionThe soft fun
tion des
ribes the soft radiation a
ross theentire event. It is de�ned as a forward s
attering matrixelement of soft Wilson lines along the two in
oming beamdire
tions, with the jet-veto measurement on the �nalstate,Sgg(p
utT ; R; �; �) = h0jYnb Y ynaMjet(p
utT ; R)Yna Y ynb j0i :(12)Here, the measurement fun
tion Mjet(p
utT ; R) a
ts onthe soft �nal state by 
lustering it into jets of radius Rand requiring that all these jets have pT < p
utT . Thislo
al veto on individual jets 
an be divided into a globalveto and a lo
al 
orre
tion from the jet algorithm 
luster-ing, 
onsequently dividing the soft fun
tion into a global



4term and a jet algorithm 
orre
tion1,Sgg(p
utT ; R; �; �) = SGgg(p
utT ; �; �) + �Sjetgg (p
utT ; R; �; �) :(13)This isolates the jet algorithm e�e
ts into �Sjetgg , whi
hmakes them easier to 
ompute and analyze their resum-mation properties. Note that these jet algorithm 
or-re
tions are de�ned relative to the 
hosen global veto,while the full soft fun
tion on the left-hand side isuniquely de�ned by spe
ifying the jet-veto measurement,Mjet(p
utT ; R). At O(�2s), where the 
lustering 
orre
-tions are �rst nonzero, the two-parti
le phase spa
e 
on-straints of the anti-kT algorithm are identi
al to otherkT-type jet algorithms, whi
h in
lude kT and Cambridge-Aa
hen [36{39℄. This is also true for the jet algorithme�e
ts in the beam fun
tion, and thus our 
al
ulationdoes not distinguish between these jet algorithms at theorder to whi
h we work.The soft and beam fun
tions separately 
ontain rapid-ity divergen
es. When they are 
ombined in the 
rossse
tion, the rapidity divergen
es 
an
el, leaving large \ra-pidity logarithms" ln(p
utT =mH) at �xed order. We em-ploy the rapidity renormalization group [25, 26℄, whi
hallows one to apply standard e�e
tive theory and RGmethods to regulate and renormalize the rapidity diver-gen
es and perform the resummation of the asso
iatedrapidity logarithms. It introdu
es an arbitrary rapidityrenormalization s
ale �, whose role in the rapidity RGEis the same as that of the usual renormalization s
ale �in the standard virtuality RGE.In our 
ase, the soft fun
tion is multipli
atively renor-malized in both � and �,dd ln� lnSgg(p
utT ; R; �; �) = 
gS(�; �) ;dd ln � lnSgg(p
utT ; R; �; �) = 
g� (p
utT ; R; �) : (14)The anomalous dimensions have the general stru
-ture [11℄
gS(�; �) = 4�g
usp[�s(�)℄ ln �� + 
gS [�s(�)℄ ;
g� (p
utT ; R; �) = �4�g�(p
utT ; �) + 
g� [�s(p
utT ); R℄ ; (15)where�g�(�0; �) = Z ��0 d�0�0 �g
usp[�s(�0)℄ = �g
usp ln ��0 + � � �(16)1 Te
hni
ally, this division into global and 
lustering 
ontributionsis a�e
ted by the fa
t that non-Abelian exponentiation o

ursfor the soft fun
tion, and only spe
i�es how the genuinely newterms at ea
h perturbative order are divided. Sin
e the �rstnontrivial 
lustering 
orre
tion only arises at O(�2s), Eq. (13)holds for the soft fun
tion through NNLO. The exponentiationof lower-order results will mix global and 
lustering 
ontributionsat higher orders in the soft fun
tion.

sums an all-orders set of terms in the anomalous dimen-sion that are determined by the RG 
onsisten
y. (Theyare required to ensure the exa
t path independen
e of theevolution in the two-dimensional �-� spa
e [26℄.) TheRGE of the soft fun
tion is obtained by solving Eq. (14).Evolving �rst in rapidity and then in virtuality, we haveSgg(p
utT ; R; �; �)= Sgg(p
utT ; R; �S; �S) exp�ln ��S 
g� (p
utT ; R; �S)�� exp�Z ��S d�0�0 
gS(�0; �)� : (17)We have 
al
ulated the 
omplete soft fun
tion toO(�2s), whi
h to our knowledge is the �rst two-loop 
al
u-lation employing the rapidity renormalization. Our resultfor the perturbative soft fun
tion through O(�2s) isSgg(p
utT ; R; �S; �S) =1 + �s(�S)4� h2�g0L�S�L�S � 2L�S)� �23 CAi+ �2s(�S)(4�)2 �12h2�g0L�S�L�S � 2L�S)� �23 CAi2+ 2�0L�Sh2�g0L�S�13L�S � L�S�� �23 CAi+ 2�g1L�S(L�S � 2L�S)+ 
gS 1L�S + 
g� 1(R)L�S + s2(R)� ; (18)where we abbreviatedL�S � ln �Sp
utT ; L�S � ln �Sp
utT : (19)Hen
e, the natural soft s
ales for whi
h the large loga-rithms in the soft fun
tion are minimized are �S � p
utTand �S � p
utT .In Eq. (18) and in the following, the � fun
tion andanomalous dimensions are expanded as�(�s) = �2�s 1Xn=0�n��s4��n+1 ;
(�s) = 1Xn=0 
n��s4��n+1 ; (20)where the 
oeÆ
ients needed in Eq. (18) are�0 = 113 CA � 43 TF nf ;�1 = 343 C2A � �203 CA + 4CF�TF nf ;�g0 = 4CA ;�g1 = 4CAh�679 � �23 �CA � 209 TF nfi ; (21)and CA = 3, CF = 4=3, TF = 1=2, and nf = 5 is thenumber of light quark 
avors. The 
oeÆ
ients �2 and �g2are also used in the NNLL resummation.



5At one loop, the non-
usp soft and rapidity anomalousdimensions vanish,
gS 0 = 0 ; 
g� 0(R) = 0 : (22)The dependen
e on the jet algorithm starts to enter attwo loops through the two-loop � anomalous dimension,
g� 1(R), whi
h determines the 
oeÆ
ient of the single log-arithm of ln(�=p
utT ), as well as the nonlogarithmi
 two-loop soft 
onstant, s2(R). For the two-loop 
oeÆ
ientsof the non-
usp anomalous dimensions we �nd
gS 1 = 8CA��529 � 4(1 + �2) ln 2 + 11�3�CA+ �29 + 7�212 � 203 ln 2��0�= 16C2A (�3:83) ;
g� 1(R) = �16CA��179 � (1 + �2) ln 2 + �3�CA+ �49 + �212 � 53 ln 2��0�+ C2(R)= 16C2A (4:16) + C2(R) : (23)Here, C2(R) is the 
lustering 
orre
tion due to the jetalgorithm, and was 
omputed earlier in Ref. [11℄. It isgiven byC2(R) = 2CAh�1� 8�23 �CA + �233 � 8 ln2��0ilnR2+ 15:62C2A � 9:17CA�0 + CRsub2 (R)= 16C2A ��2:49 lnR2 � 0:49�+O(R2) ; (24)where CRsub2 (R) � O(R2) 
ontains all subleading power
orre
tions in R2. Note that we de�ne the 
lustering ef-fe
ts in C2(R) relative to the global ET veto. A di�erent
hoi
e, su
h as the pT of the Higgs used in Ref. [10℄,would give a di�erent R-independent 
onstant in C2(R).Nevertheless, the full result for 
g�1(R) is independent ofthis 
hoi
e and our �nal NNLL 
ross se
tion agrees withthat of Ref. [10℄.For the two-loop soft fun
tion 
onstant s2(R), whi
his not determined from RGE 
onstraints, we �nds2(R) = CA��193 � 10 ln2 + 8�3�CA+ ��1639 + 583 ln 2 + 8 ln2 2��0� lnR2� 18:68C2A � 3:25CA�0 + sRsub2 (R)= 16C2A �0:43 lnR2 � 1:69�+O(R2) ; (25)where sRsub2 (R) � R2. This result for s2(R) is new andalso 
onstitutes the �rst 
al
ulation of the p
utT indepen-dent 
lustering terms in the soft fun
tion.The terms not proportional to lnR2 in C2(R) ands2(R) involve 
ompli
ated phase-spa
e integrals, whi
h
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FIG. 1: Jet-algorithm dependent O(�2s) 
ontributions to the�xed NNLO 
ross se
tion from di�erent sour
es, for �FO =mH and p
utT = 25GeV. The � anomalous dimension 
oeÆ-
ient 
g� 1 is given in Eq. (23), the O(�2s) soft fun
tion 
on-stant terms in Eq. (25), the beam fun
tion 
onstant termsin Eq. (39) and the following paragraph, and the 
lusteringe�e
ts on un
orrelated emissions in Eq. (40).are 
omputed numeri
ally. The 
ontributions of 
g� 1(R)and s2(R) to the �xed NNLO 
ross se
tion in
luding theirfull R dependen
e are shown in Fig. 1.As mentioned above, the jet algorithm 
orre
tions inthe soft fun
tion start at O(�2s). They have the all-orderstru
ture�Sjetgg (p
utT ; R; �S; �S)=Xn�2 �ns (�S)(4�)n hCn(R) ln �Sp
utT +�sn(R)i ; (26)where Cn(R) and �sn(R) 
ontain up to n� 1 powers oflnR2. The Cn(R) in the soft fun
tion are the same as inEq. (2) for the 
ross se
tion. The beam fun
tions 
ontainan equivalent set of terms � �nsCn(R) ln(mH=�B). Inthe �xed-order 
ross se
tion (i.e. for �B = �S = �) they
ombine with the soft fun
tion terms to give the total
lustering 
orre
tion � �nsCn(R) ln(mH=p
utT ) in Eq. (2).For R2 � p
utT =mH , the leading lnn�1R2 terms in Cn(R)formally 
ount as NLL in the exponent of the 
ross se
-tion. Similarly, the leading lnn�1R2 terms in �sn(R),as well as the lnn�2R2 terms in Cn(R), formally 
ountas NNLL. The anomalous dimension 
g� (R) in
ludes theCn(R), so its perturbative series expli
itly 
ontains thelnR2 terms, whi
h means that the NLL and higher log-arithmi
 series from lnR2 
lustering 
orre
tions are notresummed here. A formalism for this resummation is not
urrently known. Sin
e these 
lustering 
orre
tions arenumeri
ally large at O(�2s), we perform an estimate ofthe potential size of the higher-order 
lustering e�e
ts aspart of our un
ertainty analysis.



6C. Beam Fun
tionThe beam fun
tion is de�ned as the forward protonmatrix element of 
ollinear gluon �elds. It provides a
ombined des
ription of 
ollinear initial-state radiationfrom the in
oming gluons together with their extra
tionfrom the 
olliding protons via the nonperturbative partondistribution fun
tions (PDFs)[15℄.Like the soft fun
tion, the beam fun
tion is multipli
a-tively renormalized in both � and �,dd ln� lnBg(mH ; p
utT ; R; x; �; �) = 
gB(mH ; �; �) ; (27)dd ln � lnBg(mH ; p
utT ; R; x; �; �) = �12
g� (p
utT ; R; �) :The anomalous dimensions 
an be determined from thoseof the hard and soft fun
tions using the 
onsisten
y of thefa
torization theorem. The � anomalous dimension, 
g� ,is the same as in Eq. (15). The � anomalous dimensionis given by
gB(mH ; �; �) = 2�g
usp[�s(�)℄ ln �mH + 
gB [�s(�)℄ ;
gB(�s) = �
gH(�s)� 12
gS(�s) ; (28)with the resulting one-loop and two-loop 
oeÆ
ients
gB 0 = 2�0 ;
gB 1 = 2�1 + 8CA���54 + 2(1 + �2) ln 2� 6�3�CA+ � 524 � �23 + 103 ln 2��0� : (29)The RGE of the beam fun
tion follows from solvingEq. (27), and is analogous to that of the soft fun
tion,Bg(mH ; p
utT ; R; x; �; �)= Bg(mH ; p
utT ; R; x; �B ; �B)� exp�12 ln �B� 
g� (p
utT ; R; �B)�� exp�Z ��B d�0�0 
gB(mH ; �0; �)� : (30)Note that in 
ontrast to the PDF evolution, the evolu-tion of the beam fun
tion does not 
hange its value ofx. This is a general feature of beam fun
tions and is dueto the fa
t that their evolution des
ribes the initial-stateradiation from an in
oming parton that is not 
on�nedto the proton anymore, while the PDF evolution is frozenout at the beam s
ale �B [15, 40℄.At the beam s
ale, the gluon beam fun
tion 
an be
omputed as a 
onvolution between perturbative mat
h-ing kernels, Igj(mH ; p
utT ; z; �B; �B), and the standardquark and gluon PDFs, fj(x; �B),Bg(mH ; p
utT ; R; x; �B ; �B) (31)=Xj Z 1x dzz Igj(mH ; p
utT ; R; z; �B; �B) fj�xz ; �B� :

We expand the mat
hing kernels Igj to O(�2s) as (sup-pressing the arguments for brevity)Igj = ÆgjÆ(1� z) + �s(�B)4� I(1)gj + �2s(�B)(4�)2 I(2)gj +O(�3s) :(32)The O(�s) 
oeÆ
ients are 
ommon to several observ-ables, and we agree with the 
al
ulation of I(1)gg using therapidity regulator in Ref. [26℄. We �nd,I(1)gg (mH ; p
utT ; z; �B ; �B) = 4CAL�B� �2L�BÆ(1� z)� Pgg(z)� ;I(1)gq (mH ; p
utT ; z; �B ; �B) = 2CF ��2L�BPgq(z) + I(1)gq (z)� ;I(1)gq (z) = z ; (33)where we abbreviatedL�B � ln �Bp
utT ; L�B � ln �BmH : (34)The natural s
ales for the beam fun
tion are thus �B �p
utT and �B � mH . Our results for I(1)gj agree withRef. [8℄, after taking into a

ount the di�erent rapidityregularization.The O(�2s) kernel for the gg 
ontribution is given byI(2)gg (mH ; p
utT ; R; z; �B; �B)= 32C2A(L�B)2L�B�L�BÆ(1� z)� Pgg(z)�+ 4CA�0(L�B)2�2L�BÆ(1� z)� Pgg(z)�+ 8(L�B)2�C2A(Pgg 
 Pgg)(z)+ 2CFTFnf (Pgq 
 Pqg)(z)�� 8L�B�P (1)gg (z) + 2CFTFnf (I(1)gq 
 Pqg)(z)�+ hL�B�2�g1L�B + 
gB 1�� 12
g� 1(R)L�BiÆ(1� z)+ I(2)gg (z;R) : (35)The O(�2s) kernel for the gq 
ontribution is given byI(2)gq (mH ; p
utT ; R; z; �B; �B)= 16CACFL�BL�B��2L�BPgq(z) + I(1)gq (z)�+ 8CF�0L�B��L�BPgq(z) + I(1)gq (z)�+ 8CF (L�B)2�CA(Pgg 
 Pgq)(z) (36)+ CF (Pgq 
 Pqq)(z)�� 8L�B�P (1)gq (z) + C2F (I(1)gq 
 Pqq)(z)�+ I(2)gq (z;R) :The 
onvolutions (g 
 h)(z) are de�ned as(g 
 h)(z) � Z 1z d�� g�z� �h(�) : (37)The various splitting fun
tions Pij(z) and 
onvolutionsbetween them are given in App. B2 of Ref. [7℄. The



7additional 
onvolutions we need are(I(1)gq 
 Pqg)(z) = 1 + z � 2z2 + 2z ln z ; (38)(I(1)gq 
 Pqq)(z) = 1 + z2 � z ln z + 2z ln(1� z) :The terms involving logarithms of � and � in the Igjkernels are fully determined by renormalization group(RG) 
onstraints. The nonlogarithmi
 terms I(2)gi (z;R)require the full two-loop 
al
ulation of the beam fun
-tions. Note that the full two-loop qq 
ontribution to thebeam fun
tion for the transverse momentum of the ve
torboson has been 
omputed re
ently in Ref. [41℄. At twoloops, the pjetT beam fun
tion needed here is di�erent andrequires a separate 
al
ulation. Like the soft fun
tion,it re
eives both global and jet 
lustering 
ontributions.In parti
ular, we 
an 
al
ulate dire
tly the leading 
lus-tering 
orre
tions proportional to lnR2, and determinethe 
ontribution from the remaining terms numeri
ally,givingI(2)gg (z;R) = CA2 ��1� 8�23 �CA + �233 � 8 ln 2��0�� Pgg(z) lnR2 + I(2;
)gg (z) + I(2;Rsub)gg (z;R) ;I(2)gq (z;R) = 2C2F�3� �23 � 3 ln2�Pgq(z) lnR2+ I(2;
)gq (z) + I(2;Rsub)gq (z;R) : (39)Here, I(2;
)gg (z) denotes the 
onstantR independent terms,while I(2;Rsub)gg (z;R) are the O(R2) suppressed 
ontribu-tions. Their expli
it form is not known at present. Weextra
t their total 
ontribution after 
onvolution with thePDFs numeri
ally from the �xed-order 
ross se
tion asexplained in Se
. II E below. This is suÆ
ient for pra
ti-
al purposes, sin
e their e�e
t is found to be numeri
allysmall 
ompared to the lnR2 terms for R � 0:4{0:5. Thetotal 
ontribution (from both beam fun
tions) of the fullI(2)gg (z;R) and I(2)gq (z;R) to the �xed NNLO 
ross se
tionis shown by the blue dashed line in Fig. 1 that is labeledas 2b2.D. O(R2) Corre
tions From Un
orrelatedEmissionsStarting at O(�2s), the 
lustering e�e
ts from the jetalgorithm in
ludes 
ontributions that s
ale as powers ofR2 in the small R limit. Clustering e�e
ts from 
or-related emissions in the soft or 
ollinear se
tors are in-
luded in the subleading O(R2) 
orre
tions in the softand beam fun
tions. On the other hand, the 
lustering ofun
orrelated emissions from the soft and 
ollinear beamse
tors inhibits the fa
torization of the jet-veto measure-ment into independent soft and 
ollinear measurementsat O(R2). The all-order fa
torization of the 
ross se
tion

at this level is therefore not known at present.2The full 
ontribution from 
lustering of un
orrelatedemissions to the �xed NNLO 
ross se
tion is [10℄�(2)0 (p
utT ) � �LO��sCA� �2ln mHp
utT ���23 R2+ R44 � : (40)It is shown by the green dotted line in Fig. 1 for p
utT =25GeV. As one 
an see, at the R values of interest itis numeri
ally very small 
ompared to the 
orrespond-ing lnR2 enhan
ed 
lustering 
orre
tions 
ontained in
g�1(R), and 
an thus safely be treated as a power 
orre
-tion.As argued in Refs. [9, 10℄, the above O(�2s) 
oeÆ
ientdetermines the 
omplete NNLL series 
oming from this
ontribution [i.e. no new 
oeÆ
ients appear at O(�3sL2)or higher℄. Therefore, we 
an in
lude this 
orre
tion inthe resummed 
ross se
tion at NNLL by multiplying itwith the total evolution fa
tor as follows,�Rsub0 (p
utT ; R) = �2s(p�B�S)�2 C2A ln mHp
utT ���23 R2 + R44 �� [F (0)U0℄(�H ; �B ; �S ; �B ; �S) : (41)Here, F (0) denotes the leading �xed-order 
ontributionsfrom the hard, beam, and soft fun
tions, and U0 istheir 
ombined NNLL evolution fa
tor [given expli
itlyin Eq. (57) below℄. Sin
e these 
orre
tions 
ome fromsoft or 
ollinear emissions we 
hoose to evaluate the ar-gument of the �2s in the prefa
tor at the geometri
 meanof the beam and soft s
ales.In Ref. [8℄ this 
oeÆ
ient is absorbed into the two-loop rapidity anomalous dimension, whi
h amounts to2 The statement in Ref. [8℄ that soft-
ollinear mixing is absent atleading power for R � 1 relies on a power 
ounting for 
ollinearrapidities (y
) and soft rapidities (ys) where y
 � ys � O(1)su
h that y
 � ys � R � 1. For typi
al values of pT = 25GeVand Q = 125GeV there is a legitimate power expansion in� = pT =Q = 0:2 � 1. But this gives y
 ' ln(1=�) = 1:6,whi
h does not 
learly satisfy y
 � ys � 1. Indeed, phys-i
ally, emissions at �xed pT tend to be uniform in rapidityrather than having a rapidity gap between soft and 
ollinearregions. (The analogous statement using light-
one variables ise�R � eys�y
 = q(k�s =k+s )(p+
 =p�
 ) � O(1) � �. For R = 1,this 
orresponds to 
ounting 0:37� O(1)� � = O(1)� 0:2.) Asdis
ussed in detail in Ref. [11℄, the 
ontribution from 
lustering asoft and a 
ollinear emission is �R2, so the only way to expandit to zero is R2 � 1.The fa
t that soft and 
ollinear modes in SCET-II are only dis-tinguished by their rapidity does not automati
ally imply thattheir rapidities are parametri
ally widely separated as ys � y
,sin
e in pra
ti
e amplitudes from ea
h of these modes are inte-grated over all rapidities and we must worry about 
ontributionsfrom overlapping regions. If there is a double 
ounting for in-frared singularities from the overlap region then this is removedby 0-bin subtra
tions [42℄, but in general these subtra
tions donot suÆ
e to remove �nite 
ontributions from the overlap re-gion. Thus a proof of fa
torization at O(R2), in
luding also soft-
ollinear mixing 
ontributions, will require additional argumentsto all orders in �s, and remains an interesting open question.



8writing this 
ontribution as A exp(�2s), instead of A(1 +�2s) as in Ref. [9℄. Sin
e this 
ontribution �rst appearsat O(�2s), either form gives the same NNLL 
ontributionand the di�eren
e is higher order, meaning the results ofRefs. [9, 10℄ do not determine whi
h is the 
orre
t all-order stru
ture beyond NNLL.E. Nonsingular ContributionsIn �xed-order perturbation theory, the 
ross se
tion at�f = �r = �FO has the all-order stru
ture�FO0 (p
utT ; �FO) = �s0(p
utT ; �FO) + �ns0 (p
utT ; �FO) ; (42)�s0(p
utT ; �FO) =Xm Xn�2m
mn(�FO)�ms (�FO) lnn p
utTmH :Here, the singular 
ross se
tion, �s0, 
ontains all termsthat are nonzero for p
utT ! 0 and whi
h are 
on-tained in the resummed 
ross se
tion. The nonsingular
ross se
tion, �ns0 , s
ales as O(p
utT =mH) and vanishes forp
utT ! 0. To reprodu
e the full �xed-order 
ross se
tionwe have to in
lude the nonsingular terms, in parti
ularwhen going to large p
utT where they be
ome important.An important feature of the NNLL0 (NLL0) resummedresult is that by 
onstru
tion its �xed-order expansion toNNLO (NLO) in terms of �s(�FO) 
an be obtained bysimply setting all s
ales equal to �FO. And this also pre-
isely reprodu
es the �xed-order singular 
ontributions.Hen
e, we 
an determine the nonsingular 
orre
tions bysubtra
ting the latter from the full �xed-order 
ross se
-tion,�ns0 (p
utT ; R; �FO) = �FO0 (p
utT ; R; �FO) (43)� �resum00 (p
utT ; R; �i = �i = �FO) :At NLO, this pro
edure is straightforward sin
e theone-loop hard, beam, and soft fun
tions required at NLL0are 
ompletely known, while �NLO0 (p
utT ; �FO) is easily ob-tained numeri
ally e.g. from MCFM.At NNLO, we obtain the full �xed-order 
ross se
-tion by subtra
ting the NLO gg ! H + j 
ross se
-tion for a leading jet with pjetT > p
utT , obtained usingMCFM [5, 43℄, from the total NNLO 
ross se
tion [44{46℄. For the resummed NNLL0 
ross se
tion we in
ludeall available 
ontributions through O(�2s) summarized inthe previous subse
tions, in
luding the �Rsub0 terms inEq. (41). The only missing pie
es at two loops are theunknown I(2;
)gj (z) and I(2;Rsub)gj (z;R) terms in the beamfun
tion, whi
h when integrated against the PDFs give ap
utT independent 
ontribution determined by a 
onstantb(
+Rsub)2 (R). Hen
e, we have�ns;NNLO0 (p
utT ; R; �FO)+�LO(�FO)�2s(�FO)(4�)2 2b(
+Rsub)2 (R)= [�NNLO�0 (�FO)� �NLO�1 (p
utT ; R; �FO)℄� �NNLL00 (p
utT ; R; �i = �i = �FO) : (44)

Here, the right-hand side is obtained numeri
ally andthen �t with a set of fun
tions suitable to des
ribe thep
utT dependen
e of �ns0 (p
utT ; R; �FO). Sin
e the lattervanishes for p
utT ! 0, this �t also allows us to determinethe numeri
al value of 2b(
+Rsub)2 (R) from the inter
eptat p
utT = 0. Note that sin
e there are large numeri
al
an
ellations between the full and singular results on theright-hand side, the remaining nonsingular data has largestatisti
al 
u
tuations for p
utT ! 0. Ensuring a stable �tresult therefore required the use of very high statisti
sfrom MCFM as well as a 
areful validation of the �ttingpro
edure.Note also that the s
ale �B at whi
h the b(
+Rsub)2 
on-tribution is evaluated in the beam fun
tion is relevant atNNLL0 (i.e. it 
ontributes to the subset of N3LL e�e
tsthat are supposed to be in
luded at NNLL0). In the nu-meri
al determination above the PDFs are evaluated at a�xed �B = �FO. To a

ount for this we res
ale it by thePDF dependen
e of the LO 
ross se
tion, as indi
ated inEq. (44). Sin
e we perform the nonsingular �t at di�er-ent values of �FO, we are able to 
he
k that this 
apturesthe PDF s
ale dependen
e to very good approximation.At large p
utT , the distin
tion between singular and non-singular 
ontributions be
omes meaningless sin
e bothare of similar size and there are nontrivial 
an
ellationsbetween them (as 
an be seen in Fig. 4 below). Whenusing the imaginary s
ale setting in the hard fun
tion, itmodi�es the 
ross se
tion at all values of p
utT . Therefore,it is important to implement an analogous improvementfor the nonsingular 
ontributions, sin
e otherwise these
an
ellations would be spoiled. The �nal expression forthe nonsingular 
ross se
tion entering in Eq. (4) is givenby �ns0 (p
utT ; R; �ns)= ��ns(1)0 (p
utT ; R; �ns)�1� �s(�ns)2� CA�2�+ �ns(2)0 (p
utT ; R; �ns)�UH(�i�ns; �ns) : (45)Here, �ns(i)0 (p
utT ; R; �ns) are the O(�is) nonsingular termsobtained numeri
ally for given values of R and �ns, andUH(�i�ns; �ns) is the evolution fa
tor of the hard fun
-tion. The latter is used to apply the analogous resumma-tion of �2 terms to the nonsingular 
ross se
tion as wasindu
ed by the hard fun
tion in the singular terms.The NLO and NNLO nonsingular 
ontributions forR = 0:4 and �ns = mH are shown in Fig. 2 for both real(left panel) and imaginary (right panel) s
ale setting. Weobserve that the latter substantially improves the pertur-bative 
onvergen
e also in the nonsingular terms at allvalues of p
utT . This is not unexpe
ted from the point ofview of the power expansion in SCET. For p
utT � mHand at subleading order in the SCET power 
ounting,the nonsingular terms would arise from a 
ombination ofleading and subleading hard, beam, and soft fun
tions,and many of the hard fun
tions in these 
ontributions
an be expe
ted to require an imaginary hard s
ale.
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FIG. 2: The nonsingular 
ross se
tion at �ns = mH at NLO (blue, dashed) and NNLO (orange, solid) for R = 0:4. We 
omparethe pure �xed-order nonsingular terms (on the left) with the nonsingular terms that in
lude �2 summation (on the right). Thelatter shows a substantially improved perturbative 
onvergen
e from NLO to NNLO.III. RESUMMATION AND PERTURBATIVEUNCERTAINTIESA 
riti
al aspe
t of pre
ision 
ross se
tion predi
tionsis the theoreti
al 
ontrol of perturbative un
ertainties.Ultimately, the formal perturbative a

ura
y in the pre-di
tions is only meaningful together with a robust under-standing and estimate of theoreti
al un
ertainties.The 
ategorization of the data into jet bins is usedin the experimental analyses to optimize the 
ontrol ofba
kgrounds and experimental systemati
 e�e
ts. In theend, the information from all measured 
ategories 
owstogether, thereby maximizing the use of the availabledata. In this 
ontext, vetoing jets in the 0-jet 
ross se
-tion amounts to dividing the total in
lusive 
ross se
-tion, �tot � ��0, into an ex
lusive 0-jet bin equivalent to�0(p
utT ) and the remaining in
lusive 1-jet bin,��0 = �0(p
utT ) + ��1(p
utT ) : (46)Therefore, a 
omplete theoreti
al des
ription of this bin-ning pro
edure is needed. This requires a framework,whi
h, in addition to the resummation of �0(p
utT ) atsmall p
utT , provides a valid des
ription of the 
ross se
-tion at all values of p
utT as well as the 
orrelations be-tween the perturbative un
ertainties in the jet bins andthe total 
ross se
tion.As we dis
uss in detail in this se
tion, the frameworkwe use for resummation and �xed-order mat
hing, basedon SCET and pro�le fun
tions, is well-suited for thistask. It provides us with dire
t theoreti
al handles toreliably assess the perturbative un
ertainties and allowsus to predi
t the required 
orrelations by utilizing 
om-mon underlying theory parameters in the s
ales �H , �B ,�S , �B , and �S . These are varied to obtain the un
er-tainty estimates.In Se
. III A we give an overview of perturbative un-
ertainties for jet bins, and establish the ne
essary no-

tation. As the jet-veto 
ut is in
reased our resummedresults smoothly reprodu
e the �xed-order 
ross se
tionand its standard un
ertainties by using pro�le fun
tions,whi
h are dis
ussed in Se
. III B. In Se
. III C we explainhow variations of the hard, soft, and beam s
ales in thee�e
tive theory determine the �xed-order and jet-binningun
ertainties. Finally, in Se
. III D we dis
uss our esti-mate for the additional un
ertainty from 
lustering ef-fe
ts at higher orders in perturbation theory. Note thatwe will not dis
uss additional parametri
 un
ertaintiesfrom input parameters su
h as PDFs or �s(mZ). Thesehave to be estimated separately and in
luded with theusual un
ertainty propagation.A. Perturbative Un
ertainties in Jet BinningA 
onvenient way to des
ribe the un
ertainties involvedin the jet binning is in terms of fully 
orrelated and fullyanti
orrelated 
omponents [12, 47℄, whi
h amounts toparametrizing the 
ovarian
e matrix for f�0; ��1g asC(f�0; ��1g) = (�y0)2 �y0 �y�1�y0 �y�1 (�y�1)2!+ �2
ut ��2
ut��2
ut �2
ut !:(47)The �rst 
orrelated 
omponent, denoted with a super-s
ript \y", 
an be interpreted as an overall yield un
er-tainty shared among all bins. The se
ond anti
orrelated
omponent 
an be interpreted as a migration un
ertaintybetween the two bins, whi
h is introdu
ed by the binning
ut and drops out in their sum. The total un
ertainty forea
h bin is given by��0 = �y0 +�y�1 � �y�0 ;�20 = (�y0)2 +�2
ut ;�2�1 = (�y�1)2 +�2
ut : (48)



10Equation (47) is a 
ompletely generi
 parametrizationof a 2�2 symmetri
 matrix. This 
hoi
e of parameters is
onvenient be
ause of the above physi
al interpretation.An additional advantage is that the un
ertainties are de-s
ribed in terms of two independent 
omponents, whi
hare fully 
orrelated or anti
orrelated between the di�er-ent observables, so that the experimental implementationis straightforward (e.g. in a pro�le likelihood �t, the yieldand migration un
ertainties 
an ea
h be implemented byan independent nuisan
e parameter).To estimate ea
h un
ertainty 
omponent in our resum-mation framework we make the following identi�
ations:�yi � ��i ; �
ut � �resum : (49)Here, ��i 
orresponds to the un
ertainties in the 
rossse
tion that reprodu
e the �xed-order un
ertainty in thetotal 
ross se
tion and probe the nonlogarithmi
 
ontri-butions at �nite p
utT . This makes it natural to iden-tify these with the yield un
ertainties. The resummationun
ertainty, �resum, 
orresponds to the intrinsi
 un
er-tainty in the resummed logarithmi
 series. The loga-rithms ln(p
utT =mH) are dire
tly 
aused by the binning
ut and at small p
utT are the dominant veto-dependente�e
t, whi
h 
an
els between �0 and ��1. Hen
e, higher-order logarithms are the primary sour
e of un
ertaintyin the division of the 
ross se
tion into bins and we 
antherefore identify �resum with the migration un
ertainty.Furthermore, �resum vanishes at large p
utT where the re-summation of logarithms be
omes unimportant. This is
onsistent with the fa
t that in this limit migration ef-fe
ts be
ome irrelevant sin
e ��1 be
omes numeri
allymu
h smaller than �0(p
utT ). Our pro
edure to estimate��i and �resum through s
ale variations in the resummed
ross se
tion is dis
ussed in the following se
tions.With these identi�
ations, the full 
ovarian
e matrixfor f��0; �0; ��1g is given byC�f��0; �0; ��1g� = C� + Cresum ; (50)where C� = 0B� �2tot �tot��0 �tot���1�tot��0 �2�0 ��0���1�tot���1 ��0���1 �2��1 1CA ;Cresum = 0B�0 0 00 �2resum ��2resum0 ��2resum �2resum 1CA ; (51)and we 
an easily read o� the un
ertainties in the di�er-ent 
ross se
tions�tot � ���0 = ��0 +���1 ;�20(p
utT ) = �2resum +�2�0 ;�2�1(p
utT ) = �2resum + (�tot ���0)2 : (52)The un
ertainties in other observables follow by standardun
ertainty propagation. For example, for the 0-jet eÆ-


ien
y, �0(p
utT ) � �0(p
utT )=��0, we have�2�0(p
utT )�20(p
utT ) = �20(p
utT )�20(p
utT ) + �2tot�2tot � 2 �tot��0��0�0(p
utT ) : (53)Through the last term the 
orrelation between �tot and��0 redu
es the relative un
ertainty in the 0-jet eÆ-
ien
y, whi
h will be noti
eable in our numeri
al analysis.In parti
ular, in the limit of large p
utT where �0 ! 1 theun
ertainty ��0 will go to zero as it should.1. Fixed OrderIn a pure �xed-order predi
tion, there is no way tofully disentangle the two un
ertainty 
omponents. Usinga 
ommon �xed-order s
ale variation for all observablesamounts to setting �
ut = 0 and setting �yi � �FOi .However, as demonstrated in detail in Refs. [12, 47℄, atsmall values of p
utT , as soon as the logarithmi
 
orre
-tions be
ome sizable, migration e�e
ts are important and
annot be negle
ted. Doing so 
an lead to a signi�
antunderestimate of un
ertainties. A more reliable �xed-order estimate is obtained by expli
itly taking into a
-
ount �
ut by using instead�y0 = �FO�0 � �tot ; �
ut = �FO�1 ; (54)where �FO�i are the �xed-order un
ertainties in the in-
lusive 
ross se
tions. (As explained in Ref. [12℄, this
hoi
e is motivated by the fa
t that the perturbative se-ries in ��1 starts as �s ln2(p
utT =mH) and its �xed-orders
ale variation therefore dire
tly estimates the size of thep
utT logarithms. An alternative pres
ription proposed inRef. [10℄ yields very similar results for �0(p
utT ).)With the 
hoi
e in Eq. (54) the un
ertainties in thepure �xed-order predi
tion are des
ribed byCST�f��0; �0; ��1g�=0B��2tot �2tot 0�2tot �2tot+(�FO�1 )2 �(�FO�1 )20 �(�FO�1 )2 (�FO�1 )2 1CA:(55)These are the default �xed-order Higgs jet-binning un
er-tainties used by the experiments, and also what we willuse when 
omparing our results to �xed order in Se
. IV.B. Resummation and Mat
hing to Fixed Orderwith Pro�le S
alesIn the e�e
tive �eld theory framework, the resumma-tion is performed by RGE running. First, we evaluateea
h of the hard, beam, and soft fun
tions appearingin the fa
torized 
ross se
tion at their natural virtualitys
ales �i and rapidity s
ales �i. Next, we evolve themall to arbitrary, 
ommon s
ales: � for invariant mass and� for rapidity. This resums the logarithms of the in-variant mass ratios �i=�j and rapidity ratios �i=�j . As



11
BgSggµS ∼pcut

T

ν RGE

µ RGE

ννB ∼mHνS ∼ pcut

T

µB ∼pcut

T

µ
Hgg

|µH|∼mH

FIG. 3: Combined renormalization group evolution in vir-tuality and rapidity. The hard, beam, and soft fun
tionsare evolved in the virtuality s
ale �, where the 
hara
teristi
s
ales are �H � mH and �B � �S � p
utT . Additionally, ra-pidity logarithms are summed by evolving the beam and softfun
tions in the rapidity s
ale �, with 
hara
teristi
 s
ales�B � mH and �S � p
utT .we saw in Se
. II, the beam and soft fun
tions evolve inboth virtuality and rapidity spa
e, while the hard fun
-tion only evolves in virtuality. The evolution togetherwith the natural s
ales is illustrated in Fig. 3. Finally,the evolved fun
tions are 
ombined together in the 
rossse
tion at the 
ommon s
ales (�; �), whi
h is a point inthe plane shown in this �gure.The resummed 
ross se
tion is expli
itly independentof the arbitrary s
ales � and � at ea
h order in resummedperturbation theory, whi
h means we are free to pi
k any
onvenient values. Taking � = �B and � = �S , and
ombining all the ingredients detailed in Se
. II, the 
rossse
tion in Eq. (4) takes the form�0(p
utT )= �BHgg(mt;mH ; �H)Z dY Bg(mH ; p
utT ; R; xa; �B ; �B)�Bg(mH ; p
utT ; R; xb; �B ; �B)Sgg(p
utT ; R; �S ; �S)� U0(p
utT ; R;�H ; �B ; �S ; �B ; �S)+ �Rsub0 (p
utT ; R) + �ns0 (p
utT ; R; �ns) ; (56)where the 
ombined renormalization group evolution fa
-tor U0 is given byU0(p
utT ; R;�H ; �B ; �S ; �B ; �S)= ����exp�Z �B�H d�0�0 
gH(mH ; �0)�����2� exp�Z �B�S d�0�0 
gS(�0; �S)�� exp�ln �B�S 
g� (p
utT ; R; �B)� : (57)Next, we dis
uss how to 
hoose numeri
al values forthe s
ales �H ; �B ; �S ; �B , and �S as a fun
tion of p
utT ,whi
h are referred to as pro�le s
ales [48, 49℄. For this

purpose we 
an distinguish three di�erent regimes a
-
ording to the relative importan
e of the singular andnonsingular 
ross se
tion 
ontributions. In Fig. 4, thesingular and nonsingular terms are plotted against thetotal �xed-order 
ross se
tion at O(�2s).In the resummation region at low values of p
utT ,the singular 
ontributions dominate and must be re-summed, while the nonsingular 
ontributions are pertur-bative power 
orre
tions. To resum the logarithms, thes
ales should parametri
ally follow their 
anoni
al valuesdi
tated by the RGE,�H � �imH ; �B � �S � p
utT ;�B � mH ; �S � p
utT : (58)At large p
utT >� mH=2, the singular and nonsingular 
on-tributions are equally important, and �xed-order pertur-bation theory should be used. In this �xed-order regionit is essential that the resummation is turned o� to en-sure that the 
orre
t �xed-order 
ross se
tion is obtained.The reason is that there are important 
an
ellations be-tween singular and nonsingular terms, whi
h are spoiledif the resummation is kept on too long. In this region,all virtuality s
ales must approa
h a 
ommon �xed-orders
ale and the rapidity s
ales must be equal,j�H j = �B = �S = �ns = �FO ; �B = �S : (59)Finally, in the transition between the resummation and�xed-order regions typi
ally both the logarithmi
 resum-mation as well as the �xed-order 
orre
tions are impor-tant. To obtain a proper des
ription of this transitionregion, whi
h in our 
ase also in
ludes the experimentalrange of interest, we have to use pro�les that in
orpo-rate the 
onstraints imposed by the resummation towardsmall p
utT and the �xed-order mat
hing toward large p
utT ,together with a smooth interpolation between these tworegimes. There is a growing body of literature on the
onstru
tion of appropriate pro�les in a variety of 
on-texts [7, 13, 14, 48{56℄.For the 
entral pro�les we take�H = �i�FO ; �ns = �FO ;�B = �FO ;�B = �S = �S = �FO frun(p
utT =mH) : (60)That is, we take �xed values for �H , �ns, and �B , while�B , �S , and �S are 
onstru
ted in terms of the 
ommonpro�le fun
tion
frun(x) =8>>>>>>>>><>>>>>>>>>:

x0�1 + (x=x0)2=4� x � 2x0 ;x 2x0 � x � x1 ;x+ (2� x2 � x3)(x � x1)22(x2 � x1)(x3 � x1) x1 � x � x2 ;1� (2� x1 � x2)(x � x3)22(x3 � x1)(x3 � x2) x2 � x � x3 ;1 x3 � x : (61)
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FIG. 4: Singular and nonsingular 
ontributions to the �xed NNLO 
ross se
tion (using R = 0:4 and �FO = mH). Left: Themagnitude of the 
ontributions di�erential in pjetT . Right: The 
orresponding 
ontributions to the integrated 
ross se
tion asa fun
tion of p
utT . The resummation, transition, and �xed-order regions are 
learly visible as the relative importan
e of thesingular and nonsingular terms 
hanges with pjetT and p
utT .The �rst regime, x � 2x0, is the nonperturbative regionand the s
ales �B;S and �S asymptote as x ! 0 to a�xed s
ale x0�FO >� �QCD. This ensures that fa
torsof �s(�i) that enter from solving perturbatively de�nedanomalous dimension equations, never be
ome nonper-turbative. The se
ond regime has the 
anoni
al s
alingfor resummation. The third and fourth have quadrati
s
aling (of positive and negative se
ond derivative, re-spe
tively) and simply provide a smooth transition tothe �nal (
onstant) region where all s
ales are equal andresummation is turned o�. This pro�le fun
tion and its�rst derivative are both 
ontinuous.For the overall s
ale parameter we have �FO � mH andfor our 
entral result we will use �FO = mH in Eq. (60).In Eq. (61) the parameters xi mark the boundary be-tween the di�erent regimes, and their values are 
hosenby 
onsidering the importan
e of the singular versus non-singular 
ontributions plotted in Fig. 4. The singularand nonsingular 
ontributions be
ome 
omparable nearp
utT = 40GeV so the pro�le must transition towards the�xed-order result beyond this value. For our 
entral pro-�les we 
hoosex0 = 2:5GeV=�FO ; fx1; x2; x3g = f0:15; 0:4; 0:65g :(62)For �FO = mH = 125GeV the fx1; x2; x3g values 
orre-spond to f19; 50; 81gGeV. The resulting 
entral pro�les
ales are shown in Fig. 5, so we see that the transitiono

urs roughly between 30{65GeV. In the next subse
-tion, we dis
uss in detail the pro�le s
ale variations thatwe use to evaluate perturbative un
ertainties.Note that in the transition from small to large p
utT ,we are essentially for
ed to keep the hard s
ale at itsimaginary value �H = �imH . In prin
iple, one 
ould
ontemplate rotating it to the real axis as a fun
tionof p
utT to turn o� the resulting resummation of large�2 terms in the hard virtual 
orre
tions. However, this
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(for mH =125GeV)FIG. 5: The 
entral pro�le s
ale for the low s
ales �B ; �S ; �Sas a fun
tion of p
utT , together with the 
entral value for thehigh s
ales j�H j; �B .
would inevitably lead to an unphysi
al result of a de
reas-ing 
ross se
tion with in
reasing p
utT . What this meansis that the signi�
antly improved perturbative stabilityobserved in the small pT region also dire
tly translatesinto an improved 
onvergen
e in the �xed-order 
ross se
-tion at large p
utT , simply be
ause a large part of the total
ross se
tion 
omes from the small pT region. Further-more, as we have seen in Fig. 2, the imaginary s
ale alsotranslates into an improved 
onvergen
e of the nonsin-gular 
ontributions themselves. The total 
ross se
tionfor �H = �imH in
reases by about 7% 
ompared to theNNLO 
ross se
tion evaluated at �FO = mH=2. This in-
rease is quite 
onsistent with the expe
ted in
rease inthe total 
ross se
tion at N3LO from the re
ent estimatein Ref. [57℄.



13C. Yield and Resummation Un
ertainties ViaPro�le S
ale VariationsTo evaluate the perturbative un
ertainties in our pre-di
tions we vary the pro�le s
ales about the 
entral pro-�les de�ned in the previous se
tion. We 
onsider severaltypes of variation in turn, and dis
uss how they are usedto determine the yield and resummation un
ertaintiesthat appear in the matri
es C� and Cresum in Eq. (51).The �rst type of variation is a 
olle
tive variation ofall of the s
ales up or down by a fa
tor of 2. This isa

omplished by taking �FO = 2mH or �FO = mH=2 inEq. (60). At large p
utT , where all s
ales be
ome equal to�FO, this variation be
omes equivalent to the usual s
alevariation in the �xed-order 
ross se
tion. Indeed, in thelimit of very large p
utT it reprodu
es the �xed-order s
alevariation of the total 
ross se
tion.3 When varying �FO,all s
ale ratios are kept �xed, so this does not 
hangeany of the arguments inside the logarithms ln(�H=�B;S)and ln(�B=�S) that sum up the large ln(mH=p
utT ) terms.Hen
e, this variation is 
learly identi�ed as 
ontributingto the yield un
ertainties.A se
ond type of variation is to the pro�le shape. Thevalues fx1; x2; x3g determine the boundaries between thedi�erent s
aling regions of the low-s
ale pro�les as afun
tion of p
utT . We a

ount for the ambiguity in thisshape by using four di�erent 
hoi
es for fx1; x2; x3g toprovide a variation away from the 
entral s
ale 
hoi
efx1; x2; x3g = f0:15; 0:4; 0:65g:fx1; x2; x3g : f0:1; 0:3; 0:5g ; f0:2; 0:5; 0:8g ;f0:04; 0:4; 0:8g ; f0:2; 0:35; 0:5g : (63)These 
hanges to the pro�le have an impa
t on the un
er-tainty from varying �FO sin
e they determine the transi-tion between the region where the resummation is a
tiveand where the �xed-order predi
tion is used and hen
ethe extent of the �xed-order region. They also vary thelogarithms ln(�H=�B;S), and hen
e have some impa
t onun
ertainties that would be asso
iated to resummation.In pra
ti
e, with �FO = mH the e�e
t of varying the xi inthe 
entral pro�le is smaller than the other resummationun
ertainties (dis
ussed below), whereas when varying�FO up and down there is a noti
eable impa
t on theyield un
ertainties. Therefore we will group this varia-tion with the yield un
ertainty, and use ea
h of the �vepro�les spe
i�ed by fx1; x2; x3g together with ea
h of thethree values of �FO. This set of pro�le variations is plot-ted in the left panel of Fig. 6. We still note that the rangeof 
ross se
tion values obtained from 
hanging �FO witha �xed pro�le is signi�
antly larger than the range from3 For p
utT > x3mH and real �H = �FO we exa
tly reprodu
e the�xed-order 
ross se
tion s
ale variation for equal fa
torizationand renormalization s
ales. If these two s
ales are varied inde-pendently they give essentially the same �nal result sin
e therenormalization s
ale variation dominates by far.


hanging the pro�le via x1;2;3 for a �xed �FO, and hen
ethe �FO variation is the more important variation by far.The total yield un
ertainty for the 0-jet 
ross se
tionis thus de�ned as the maximum absolute deviation fromthe 
entral s
ale over all 14 variations,��0(p
utT ) = maxvi2V����vi0 (p
utT )� �
entral0 (p
utT )�� : (64)where V� is the set of variations. To determine the to-tal un
ertainty in the �xed-order 
ross se
tion we makeuse of the fa
t that limp
utT !1��0(p
utT ) = �tot, and inpra
ti
e we extra
t �tot for p
utT = 600GeV. Togetherthis determines the two parameters o

urring in the yield
ovarian
e matrix C�.Resummation un
ertainties are estimated throughvariations of the beam and soft s
ales, while keeping�FO = mH at its 
entral value. The variations of thebeam and soft s
ales are performed with a multipli
ativevariation fa
tor fvary(p
utT ). For a generi
 beam or softs
ale �i or �i, the up and down variations are performedvia the variations�upi (p
utT ) = �
entrali (p
utT )� fvary(p
utT =mH) ;�downi (p
utT ) = �
entrali (p
utT ) = fvary(p
utT =mH) ;�upi (p
utT ) = �
entrali (p
utT )� fvary(p
utT =mH) ;�downi (p
utT ) = �
entrali (p
utT ) = fvary(p
utT =mH) : (65)The variation fa
tor is de�ned byfvary(x) = 8><>:2(1� x2=x23) 0 � x � x3=2 ;1 + 2(1� x=x3)2 x3=2 � x � x3 ;1 x3 � x : (66)It is designed to smoothly turn o� these variations, sin
ethey must turn o� when the resummation is turned o�at high p
utT values. These variations for �B ; �S ; �B , and�S are plotted in the right panel of Fig. 6.The resummation un
ertainty is a 
ombination of a setof up, down, and 
entral values for the �B ; �S ; �B , and�S s
ales. The dependen
e on ea
h of these s
ales 
an
elsbetween RG evolution and the �xed-order 
ontributionsat the order we are working, while the remaining resid-ual dependen
e probes the higher-order 
ontributions inresummed perturbation theory.The purpose of an individual s
ale variation is to varythe argument of the logarithms it appears in by a fa
-tor in order to probe the potential size of higher-orderlogarithms of that s
ale. For our pro�les the variationfa
tor above is 1=2 or 2 for p
utT ! 0 and goes towards 1for p
utT ! x3mH where the resummation is turned o�.Certain 
ombinations of s
ale variations are undesirableas they double the variations of the logarithms, for ex-ample f�upB ; �downS g gives a fa
tor of 4 variation for thelogarithm of �B=�S . To avoid varying the s
ales in log-arithms outside of the desired fa
tor of 2 range, we 
on-sider all the ratios of beam and soft s
ales that appear in
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FIG. 6: The variations of the 
entral pro�les as des
ribed in the text. On the left, the variations are shown that 
ontribute tothe yield un
ertainty, where all s
ales are 
olle
tively multiplied by a fa
tor 2 or 1/2, for all four pro�le shapes. The 
entralpro�le shape is shown with thi
k lines, while the other pro�le shapes are shown with dotted lines, and we shade betweenthe shapes. On the right, the variations of �B , �S , and �S (solid lines, yellow shading) and �B (dotted lines, green shading)are shown whi
h 
ontribute to the resummation un
ertainty. Combinations of variations of these s
ales make up the set ofvariations that we perform to asses the un
ertainties in our predi
tion.the fa
torization,�S�B � �S�S � 1 ; �B�S � mHp
utT : (67)All of these s
alings are respe
ted by the 
entral pro-�les. We then 
onstrain the variations about the 
entralpro�les to not violate any of these s
aling relations bymore than a fa
tor of 2 (as would happen for instan
e byvarying �B up and �S down). We make one additional
onstraint on the variations by 
onsidering the evolutionfa
tor U0 in Eq. (57). The summation of rapidity loga-rithms 
ontains the fa
torexp�ln��B�S �
g� (p
utT ; R; �B)� : (68)This is a unique 
ombination as it features a large loga-rithm of �B=�S multiplying a rapidity anomalous dimen-sion that depends on �B . A simultaneous variation of�B down with either �S down or �B up gives sensitivityto small s
ales �s(�B), and the e�e
t is e�e
tively dou-bled by the ln(�S=�B) variation, leading us to eliminatethese two 
ombinations from the set of s
ale variationswe 
onsider.With these restri
tions, there are 35 remaining (of anoriginal possible 80) pro�le s
ale variations of �B ; �S ; �B ;and �S away from their 
entral pro�le whi
h probe the re-summation un
ertainty. We note that without separatelyvarying �B and �S , and without expli
it variations of the�B and �S s
ales there would be only a single up/downvariation and a signi�
ant redu
tion in the resummationun
ertainty. Exploring a mu
h larger spa
e for the s
alevariations is 
ru
ial to reliably estimate the un
ertaintyfrom the summation of logarithms. Note that at small Rthe large lnR2 e�e
ts appear through the rapidity RGE,so it is important to vary the rapidity s
ales to probe the

e�e
t of these terms on the p
utT resummation. For the�nal resummation un
ertainty we use�resum(p
utT ) = maxvi2Vresum���vi0 (p
utT )��
entral0 (p
utT )�� ; (69)where Vresum is the above set of 35 resummation s
alevariations. This un
ertainty determines the 
ovarian
ematrix Cresum, and together with C� gives the full 
o-varian
e matrix.D. Un
ertainties from Clustering E�e
tsThe purpose of the pro�le s
ale variations is to es-timate the e�e
t of un
al
ulated higher-order terms inthe 
ross se
tion. This in
ludes the higher-order 
orre
-tions in the perturbative series of the various anoma-lous dimensions, whi
h would be needed for the resum-mation at N3LL. While this is e�e
tive for the loga-rithms of p
utT =mH , whi
h are being resummed, the 
lus-tering e�e
ts generate an all-orders series of logarithmsof p
utT =mH and logarithms of R2. In parti
ular, as ex-plained at the end of Se
. II B, the lnR2 terms appear asan unresummed series of large logarithms in the rapidityanomalous dimension. The e�e
t of these terms on theresummed 
ross se
tion is not ne
essarily well estimatedfrom s
ale variation of the lowest order term alone.The new 
lustering e�e
ts (those not determined fromsoft fun
tion exponentiation) arising at O(�ns ) dependon a 
oeÆ
ient Cn(R), whose small R limit has the formin Eq. (3). The term with the most fa
tors of lnR2 atO(�ns ) gives a 
ontribution to the 
ross se
tion of the



15order mat
hing (Hgg, Bg , Sgg) nonsingular 
gH;B;S 
g� �g
usp � PDF �s(mZ)NLLpT LO - 1-loop 1-loop 2-loop 2-loop LO 0:13939NLL0pT+NLO NLO NLO 1-loop 1-loop 2-loop 2-loop NLO 0:12018NNLL0pT+NNLO NNLO NNLO 2-loop 2-loop 3-loop 3-loop NNLO 0:11707TABLE I: Perturbative ingredients entering at ea
h order in resummed perturbation theory.form ln �(n)0 (p
utT )�LO � Cn;n�1��s(p
utT )CA� lnR2�n�1� ��s(p
utT )CA� ln mHp
utT � ; (70)where only the lowest O(�2s) 
lustering 
oeÆ
ient C2;1 =�2:49 is known [see Eq. (24)℄. Note that lnR2 depen-dent terms with more powers of ln(mH=p
utT ) are deter-mined by exponentiation through the rapidity RGE [i.e.the terms in Eq. (70) arise as higher-order 
orre
tions in
g� (R)℄.Until a 
al
ulation of any of the higher-order 
luster-ing 
oeÆ
ients exists, the best we 
an do is to estimatetheir e�e
t on the 
ross se
tion. To derive an un
er-tainty estimate from higher-order 
lustering e�e
ts, weuse the ansatz C3;2 = �C2;1 and add the 
orrespondingO(�3s) term to the rapidity anomalous dimension. Wehave 
hosen the above way of fa
toring out 
olor fa
torsand de�ning the higher-order 
lustering 
oeÆ
ients, su
hthat C2;1 is roughly an O(1) number and the higher-order
orre
tions s
ale with a power of�s(p
utT )CA� lnR2 : (71)In this way, taking C3;2 = �C2;1 leads to a reasonable es-timate of the potential size of the higher-order 
lustering
orre
tions. For example, for R = 0:4, p
utT = 25GeV,this fa
tor is �0:25, so taking C3;2 = �C2;1 the O(�3s)
lustering term would give a 25% 
orre
tion to the O(�2s)
lustering term. This leads to a 
lustering un
ertaintywhi
h is not negligible but fortunately does not dominatethe un
ertainty. Numeri
al results for di�erent parame-ters of phenomenologi
al interest are given in the nextse
tion.IV. PREDICTIONS FOR THE LHCIn this se
tion we present our predi
tions for the ex-
lusive 0-jet 
ross se
tion �0, the in
lusive 1-jet 
ross se
-tion ��1, and the ex
lusive 0-jet fra
tion �0. In analyzingour results we will 
onsider varying: the perturbative or-der (NLLpT , NLL0pT+NLO, and NNLL0pT+NNLO), the
hoi
e of jet radius R, and the 
hoi
e of p
utT . The Higgsmass dependen
e may also be examined, but we will �xmH = 125GeV. The order of the hard, beam, andsoft fun
tions, nonsingular 
orre
tions, and anomalous

dimensions entering at ea
h order in the resummed 
rossse
tion are given in Table I. We use the MSTW 2008PDFs [58℄ with their �s(mZ) at the relevant order asshown in Table I.4We start with a summary of our main results. In Ta-ble II we give our predi
tions for ea
h of ��0, �0, ��1,and �0 using p
utT 2 f25; 30gGeV and R 2 f0:4; 0:5; 0:7g.The un
ertainties are determined by the 
ovarian
e ma-trix in Eq. (51). The basi
 parameters in the matrix arethe resummation un
ertainty �resum and the �xed-orderun
ertainties �tot, ��0, and ���1 = �tot � ��0. Thevalues of these un
ertainties for two examples arep
utT = 25GeV p
utT = 30GeVR = 0:4 R = 0:5�tot : 1:49 pb 1:49 pb�resum : 0:86 pb 0:52 pb (72)��0 : 0:87 pb 0:70 pb���1 : 0:62 pb 0:79 pbwhi
h 
an be 
ompared to total un
ertainties quoted inTable II. In Eq. (72) the redu
tion in resummation un-
ertainties at larger R and p
utT is to be expe
ted, andis mainly driven by the in
rease in p
utT . This is also themain reason for the redu
ed un
ertainties with in
reasingp
utT in �0 and �0 at NNLL0pT+NNLO, seen in Table II.We will dis
uss additional aspe
ts of Table II and as-so
iated �gures for �0, ��1, and �0 in the following sub-se
tions. In Figs. 7, 8, and 9 we will show predi
tions atdi�erent orders and 
ompare our most a

urate predi
-tion to the NNLO result. In Eq. (73) we will estimate theun
ertainty from higher-order 
lustering terms. Then inFig. 10 we will plot various 
orrelation 
oeÆ
ients as afun
tion of p
utT , and in Table III give 
orrelation 
oeÆ-
ients for two di�erent values of R. In App. A, we willdis
uss in more detail the impa
t of the �2 summationon our analysis.4 At NLL, the �s running order required by the LO PDFs and theresummation di�er. In this 
ase, we use the pragmati
 solutionof in
luding the required 2-loop beta fun
tion 
oeÆ
ients in theRGE evolution kernels, but use the 1-loop running required bythe LO PDFs to obtain the numeri
al value of �s at a givens
ale. This mismat
h does not happen at the higher orders.



16��0 [pb℄ �0(p
utT ) [pb℄ ��1(p
utT ) [pb℄ �0(p
utT )NLL0pT+NLOp
utT = 25GeV 20:46 � 3:37 (16:5%) 11:19 � 1:98 (17:7%) 9:27 � 2:76 (29:7%) 0:547 � 0:086 (15:8%)p
utT = 30GeV 20:46 � 3:37 (16:5%) 12:70 � 2:07 (16:3%) 7:76 � 2:67 (34:5%) 0:621 � 0:090 (14:5%)NNLL0pT+NNLO (R = 0:4)p
utT = 25GeV 21:68 � 1:49 (6:9%) 12:67 � 1:22 (9:6%) 9:01 � 1:06 (11:8%) 0:584 � 0:040 (6:8%)p
utT = 30GeV 21:68 � 1:49 (6:9%) 14:09 � 0:96 (6:8%) 7:60 � 0:93 (12:3%) 0:650 � 0:028 (4:4%)NNLL0pT+NNLO (R = 0:5)p
utT = 25GeV 21:68 � 1:49 (6:9%) 12:40 � 1:12 (9:0%) 9:28 � 1:03 (11:1%) 0:572 � 0:036 (6:2%)p
utT = 30GeV 21:68 � 1:49 (6:9%) 13:85 � 0:87 (6:3%) 7:83 � 0:94 (12:0%) 0:639 � 0:026 (4:1%)NNLL0pT+NNLO (R = 0:7)p
utT = 25GeV 21:68 � 1:49 (6:9%) 11:97 � 1:05 (8:8%) 9:71 � 0:97 (10:0%) 0:552 � 0:032 (5:7%)p
utT = 30GeV 21:68 � 1:49 (6:9%) 13:48 � 0:83 (6:2%) 8:20 � 0:92 (11:2%) 0:622 � 0:024 (3:8%)TABLE II: Predi
tions for various 
ross se
tions with 
omplex s
ale setting �H = �i�FO and �FO = mH as the 
entral s
ale
hoi
e, and with the total 
ombined perturbative un
ertainties. For 
onvenien
e we also show the equivalent per
ent un
ertaintyin bra
kets after ea
h result.A. The 0-Jet Cross Se
tionThe fundamental quantity measured by experimentsthat needs to be 
al
ulated theoreti
ally is �0(p
utT ; R),the �du
ial 
ross se
tion in the 0-jet bin. For this reasonthe predi
tions dis
ussed here for the 0-jet 
ross se
tionat NNLL0pT+NNLO are our main results. The purposeof the resummation is to improve the pre
ision and a
-
ura
y of the �xed-order 
ross se
tion when p
utT � mH ,so it is natural to 
ompare the resummed result to theNNLO 
ross se
tion. For NNLO we use the 
entral s
ale�FO = mH throughout. In addition, to verify the valid-ity of our un
ertainty analysis it is important to studythe 
onvergen
e of the resummation by studying di�er-ent orders in the resummed perturbation theory. Wemake these 
omparisons in Fig. 7 using R = 0:4. Fromthe top left panel one sees that there is indeed a sub-stantial redu
tion of un
ertainties when in
reasing thea

ura
y of the resummation/mat
hing, with higher or-ders falling inside the un
ertainty bands of the lower or-der results, as desired. From the top right panel onesees that the NNLL0pT+NNLO predi
tion has noti
eablysmaller un
ertainties than the NNLO predi
tion. Thisis expe
ted for smaller p
utT , but even remains true forlarger p
utT due to the �2 summation that is present inthe NNLL0pT+NNLO result, but not in the NNLO result.(The 
orresponding 
omparisons for R = 0:5 are quitesimilar, yielding the same 
on
lusions.)The bottom left panel shows per
ent un
ertainties forthe two highest order resummation results, and alsobreaks them down into the 
ontributions from the re-summation un
ertainty �resum and the total un
ertaintyfrom 
ombining yield and resummation un
ertainties inquadrature. For large p
utT the yield un
ertainties dom-inate at both NLL0pT+NLO and NNLL0pT+NNLO, sin
ethe resummation is not important in this region. For

both of these orders the resummation un
ertainty startsto have a relevant impa
t for p
utT <� 40GeV.In the bottom right panel of Fig. 7 we show the per-
ent un
ertainties relative to the 
entral 
urve for theNNLL0pT+NNLO and NNLO 
ross se
tions. In this �g-ure the size of the improvement is 
lear. For instan
e,for R = 0:4 and p
utT = 25GeV the un
ertainty de
reasesfrom 20% at NNLO to 9:6% at NNLL0pT+NNLO. Simi-lar improvements by roughly a fa
tor of 2 are observedfor p
utT = 30GeV and for R = 0:5. Jet binning is akey aspe
t of the experimental H ! WW and H ! ��analyses, whi
h will therefore dire
tly bene�t from thissubstantial improvement in the theoreti
al un
ertainties.The 
lustering e�e
ts provide an additional un
er-tainty. Using the pro
edure dis
ussed in Se
. III D, therelative un
ertainty from 
lustering, �
lus0 (p
utT )=�0(p
utT ),is(�
lus0 =�0)(p
utT ) p
utT = 25GeV p
utT = 30GeVR = 0:4 : 3:6% 2:9%R = 0:5 : 2:1% 1:7% (73)R = 0:7 : 0:5% 0:4%Sin
e our method of estimating these un
ertainties islikely to be improved in the future by 
al
ulations ora better understanding of 
lustering e�e
ts, we have notin
luded them in the plots or in our numbers in Table II.These 
lustering un
ertainties are small 
ompared to theperturbative un
ertainties dis
ussed above and shown inTable II, but are nonnegligible, so we will quote them asan additional un
ertainty on ea
h 0-jet 
ross se
tion. Oneshould interpret these with 
are sin
e they 
ome from arough estimate of the higher-order 
lustering 
oeÆ
ientwhi
h 
ould easily be twi
e as large or one-half as large.As representative �nal results we quote the following val-
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FIG. 7: The 0-jet 
ross se
tion for R = 0:4 and mH = 125GeV. On the left we show the NLLpT , NLL0pT+NLO, andNNLL0pT+NNLO predi
tions. A good 
onvergen
e and redu
tion of un
ertainties at su

essively higher orders is observed. Onthe right we 
ompare our best predi
tion at NNLL0pT+NNLO to the �xed NNLO predi
tion. The lower plots show the relativeun
ertainty in per
ent for ea
h predi
tion. On the lower left the lighter inside bands show the 
ontribution from �resum only,while the darker outer bands show the total un
ertainty from adding �resum and �� in quadrature.ues for �0(p
utT ; R) with both theoreti
al un
ertainties:�0(25GeV; 0:4) = 12:67� 1:22pert � 0:46
lust pb ;�0(30GeV; 0:5) = 13:85� 0:87pert � 0:24
lust pb : (74)It is interesting to 
ompare our results and un
ertain-ties for �0 to the NNLL+NNLO results presented ear-lier in Ref. [9℄. Our results build on their results in afew ways. In parti
ular, our RG approa
h in
ludes �2resummation, our results are quoted as NNLL0 be
ausethey go beyond NNLL by in
luding the 
omplete NNLOsingular terms in the �xed-order mat
hing (whi
h are the
orre
t boundary 
onditions for the N3LL resummation),and �nally we use a fa
torization based approa
h to un-
ertainties, whi
h also makes predi
tions for the 
orrela-tions between the di�erent jet bins.Comparing �0 at p
utT = 25GeV and R = 0:4 our 
en-tral values agree with those in Ref. [9℄, and are well withinea
h other's un
ertainties. Our perturbative un
ertaintyof 9:6% is a bit smaller than the 13:3% un
ertainty for�0 of Ref. [9℄ whi
h seems reasonable given the above

mentioned additions. One important ingredient in this
omparison is the in
lusion of the �2 resummation whi
himproves the 
onvergen
e of our results and de
reases ourun
ertainty. On the other hand, in Ref. [9℄ the 
entrals
ale is 
hosen to be �FO = mH=2 whi
h also works in thesame dire
tion, de
reasing the un
ertainty relative to the
hoi
e �FO = mH . For the total 
ross se
tion Ref. [9℄ hasa 7:4% un
ertainty, whereas we have 6:9% un
ertaintyusing �FO = mH and in
luding �2 resummation (see Ta-ble II). From Table IV in appendix App. A we see thatour perturbative un
ertainty for �0(25GeV; 0:4) wouldin
rease to 12:8% if the �2 resummation were turned o�(while still taking the 
entral �FO = mH), and that atthis level the un
ertainty would be
ome 
omparable tothat of Ref. [9℄. For p
utT = 30GeV and R = 0:5 our
entral values remain perfe
tly 
ompatible with Ref. [9℄,and the un
ertainties follow a pattern similar to the 
aseabove.



18B. The In
lusive 1-Jet Cross Se
tionThe in
lusive 1-jet 
ross se
tion 
ontains the same jet-veto logarithms as the ex
lusive 0-jet 
ross se
tion,��1(p
utT ) = ��0 � �0(p
utT ) : (75)Here, p
utT in ��1(p
utT ) is now the lower limit on the pTof the leading jet in this in
lusive 
ross se
tion. Sin
eour resummation framework 
onsistently in
ludes both�0(p
utT ) and ��0, we 
an determine a resummed predi
-tion for ��1(p
utT ) from their di�eren
e. A nontrivial in-gredient in this predi
tion is determining its perturbativeun
ertainty via the theory 
ovarian
e matrix determinedin Se
. III.In Fig. 8, we show the 
onvergen
e of the resummedand mat
hed predi
tions at di�erent orders, as well asthe 
omparison to the �xed-order 
ross se
tion. The to-tal 
ross se
tion used to obtain ��1(p
utT ) is evaluatedwith an a

ura
y equal to the �xed-order mat
hing re-sults 
ontained in �0(p
utT ). This is required to enfor
e��1(p
utT ! 1) ! 0. For this reason in the left panelof Fig. 8 the NLLpT distribution (whose mat
hing doesnot even in
lude the full tree-level matrix element forthe H + 1 jet rate) is lower than the higher-order distri-butions. The NNLL0pT+NNLO distribution is well 
on-tained within the NLL0pT+NLO un
ertainty band, withthe expe
ted improvement in a

ura
y. Note that whenin
luding the resummation, ��1(p
utT ) approa
hes the to-tal 
ross se
tion as p
utT ! 0, whereas it would diverge at�xed order.In the right panel of Fig. 8 we 
ompare the �xed-orderresult for ��1(p
utT ) with the result obtained from Eq. (75)using our NNLL0pT+NNLO 0-jet distribution. (We labelthe NNLL0pT+NNLO predi
tion as su
h to be 
onsistentwith our predi
tions for other observables, although interms of the �xed-order 
ontributions it is not beyond theNLO result forH+�1 jet denoted as NLO1 in the �gure.)The resummed predi
tion for ��1(p
utT ) is larger than theNLO1 result due to the summation of �2 terms in ��0and �0(p
utT ) in Eq. (75). Without this �2 summation,the resummed ��1(p
utT ) would give a slightly lower ratethan at �xed order. For R = 0:4 and p
utT = 25GeV the�xed-order un
ertainty is 20%. It is redu
ed to 11:8% atNNLL0pT+NNLO (see Table II). This redu
tion is similarto what was observed for �0, as is the mild dependen
e onR. On the other hand, in
reasing p
utT to 30GeV does notreally 
hange the relative un
ertainty for ��1, unlike for�0. Note the importan
e of the theory 
orrelations here,sin
e we 
an see from Eq. (72) that the yield un
ertainty���1 alone behaves in the opposite fashion.Our resummed results for the in
lusive 1-jet 
ross se
-tion ��1(p
utT ; R) provide improved predi
tions 
omparedto the a

ura
y of its NLO result, but should be usedtogether with the appropriate theory un
ertainty 
orre-lations determined here. As representative �nal resultsfor ��1(p
utT ; R), where we also in
lude the un
ertainty

from 
lustering estimated as in Eq. (74), we quote��1(25GeV; 0:4) = 9:01� 1:06pert � 0:46
lust pb ;��1(30GeV; 0:5) = 7:83� 0:94pert � 0:24
lust pb : (76)Note that the 
lustering un
ertainties have a larger rel-ative size here (5:1% and 3:0%) sin
e ��1 is numeri
allysmaller than �0.Re
ently, the gg ! Hg 
ontribution to the H+�1-jet
ross se
tion has been 
al
ulated at NNLO [59℄. This
al
ulation in
ludes all O(�3s) 
orre
tions whi
h in
ludelogarithms of p
utT =mH , �2 terms, and nonsingular 
on-tributions. Our resummed 
al
ulation 
aptures all of thelogarithms of p
utT =mH ex
ept for the single logarithms(whi
h would require N3LL resummation) as well as the�2 terms at O(�3s), but does not in
lude any nonsingu-lar 
ontributions. In 
ontrast, the �xed-order 
al
ulationdoes not in
lude the resummation of the p
utT logarithmsor �2 terms beyond O(�3s). The di�erent theoreti
al in-gredients in these two 
al
ulations makes a 
omparisonbetween them interesting. In fa
t, for phenomenologi-
ally relevant parameters the gg ! Hg NNLO 
al
ula-tion �nds a K-fa
tor relative to NLO that is quantita-tively similar to the in
rease over the NLO 
ross se
tionthat we observe between the two 
entral 
urves in theright panel of Fig. 8. As mentioned above, in our 
asethe resummation of the p
utT logarithms lowers the 1-jetin
lusive 
ross se
tion relative to �xed NLO, but in
lud-ing also the �2 summation raises it above. Although thepurely virtual �2 terms from the hard fun
tion 
an
el outin Eq. (75), there are real-virtual 
ross terms involving �2fa
tors in ��0 that are not 
an
eled. This suggests thatthese �2 terms may play an important role in determiningthe magnitude of the NNLO K-fa
tor. (In 
ontrast, the�2 terms that 
an be determined from imaginary s
alesetting in the ex
lusive H+1-jet 
ross se
tion are knownto not play a dominant role at NLO [50℄.)C. The 0-Jet EÆ
ien
yAnother observable that 
an be predi
ted using ourresults is the 0-jet eÆ
ien
y,�0(p
utT ) = �0(p
utT )��0 : (77)On
e again it is important to a

ount for the 
orrelationsin theoreti
al un
ertainties when 
omputing the un
er-tainty in this observable a

ording to Eq. (53). In Fig. 9,we plot �0(p
utT ) and its un
ertainty as a fun
tion of p
utTfor R = 0:4 and we give expli
it numbers in Table II. AtNLL0pT+NLO the relative un
ertainties for �0 and �0 aresimilar, but this is no longer the 
ase at NNLL0pT+NNLO.With the de
reased un
ertainties that o

ur at this order,a more signi�
ant amount of the un
ertainties in the nu-merator and denominator of Eq. (77) be
ome positively
orrelated and 
an
el. As a result, our 0-jet eÆ
ien
y atNNLL0pT+NNLO has smaller relative un
ertainties than
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FIG. 8: The in
lusive 1-jet 
ross se
tion for R = 0:4 and mH = 125GeV. On the left we show the di�erent orders of ourresummed predi
tions, and on the right we 
ompare our best predi
tion to that derived from the �xed NNLO 
ross se
tion.As in the 0-jet 
ross se
tion, we observe a good 
onvergen
e and redu
tion in un
ertainties at su

essively higher orders ofa

ura
y.

0
0

1

10 20 30 40 50 60 70 80

0.2

0.4

0.6

0.8

pcut
T

[GeV]

mH =125GeV

ǫ
0
(p

cu
t

T
) gg → H (8TeV)

R = 0.4

NNLL′

pT

+NNLO

NLL′

pT

+NLO

NLLpT

0
0

1

10 20 30 40 50 60 70 80

0.2

0.4

0.6

0.8

pcut
T

[GeV]

mH =125GeVǫ
0
(p

cu
t

T
)

gg → H (8TeV)

R = 0.4

NNLO

NNLL′

pT

+NNLO

FIG. 9: The 0-jet eÆ
ien
y for R = 0:4 and mH = 125GeV. On the left we show the di�erent orders in our resummedpredi
tions, and on the right we 
ompare our best predi
tion to that derived from the �xed NNLO 
ross se
tion. Be
ause theeÆ
ien
y is the ratio of the 0-jet and total 
ross se
tions, the 
orrelated �xed-order s
ale un
ertainty in ea
h quantity redu
esthe un
ertainty in the 0-jet eÆ
ien
y, making it relatively more a

urate than the 
ross se
tion itself.our 0-jet 
ross se
tion. This is re
e
ted in both the num-bers in Table II and in the results shown in Fig. 9.In the left panel of Fig. 9 we show results forthe eÆ
ien
y at di�erent orders. The results atNNLL0pT+NNLO are within the un
ertainty band ofthe lower order NLL0pT+NLO results, and again displayan improved level of pre
ision. In the right panel ofFig. 9 we see that the 
omparison of �0(p
utT ) betweenNNLL0pT+NNLO and pure NNLO follows a similar pat-tern of improvement to what we have already observedfor the 0-jet and in
lusive 1-jet 
ross se
tions.Sin
e the 0-jet eÆ
ien
y is the more fundamental quan-tity in the framework of Ref. [9℄, it makes sense to ex-tend the 
omparison made in Se
. IVA to this observ-able, again taking R = 0:4 and p
utT = 25GeV. AtNNLL+NNLO Ref. [9℄ has a 11:5% perturbative un
er-

tainty for �0, whi
h in their framework is assumed to beindependent from the un
ertainty in the total 
ross se
-tion. Thus, their un
ertainty for �0 is always larger thanthat for �0. This 11:5% un
ertainty for their �0 is 
lose tothe 9:6% un
ertainty for our �0, but larger than the 6:8%un
ertainty for our �0. For the analysis of Ref. [9℄ thereis no 
orresponding 
an
ellation of un
ertainties betweenthe numerator and denominator of Eq. (77), and hen
ethe same 
an
ellation that we observe does not o

ur.D. CorrelationsWhen evaluating the perturbative un
ertainties via thepro�le s
ale variations as dis
ussed in Se
. III C, the 
or-relations in the total perturbative un
ertainties between
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FIG. 10: Predi
ted 
orrelation 
oeÆ
ients for the total perturbative un
ertainties within the resummed predi
tions betweendi�erent observables at NLL0pT+NLO (left) and NNLL0pT+NNLO (right, with R = 0:4). Sin
e the 
orrelations result from theinterplay between the relative sizes of the C� and Cresum 
omponents, the 
hanges between orders is not unexpe
ted.p
utT = 30GeV ��0 �0(p
utT ) ��1(p
utT ) �0(p
utT )R = 0:4��0 1 0:80 0:78 �0:34�0(p
utT ) 1 0:25 0:30��1(p
utT ) 1 �0:85�0(p
utT ) 1R = 0:5��0 1 0:81 0:84 �0:44�0(p
utT ) 1 0:35 0:18��1(p
utT ) 1 �0:86�0(p
utT ) 1TABLE III: Correlations in the perturbative un
ertainties be-tween di�erent observables at p
utT = 30GeV for R = 0:4 andR = 0:5.the di�erent observables are automati
ally predi
ted bythe resulting total 
ovarian
e matrix C�+Cresum. In pre-vious subse
tions we have highlighted a few 
ases wherethese 
orrelations are important for determining un
er-tainties, and in this se
tion we dis
uss them in more de-tail.As an example, in Table III we give the 
orrelation
oeÆ
ients obtained at p
utT = 30GeV for both R = 0:4and R = 0:5. One observes that they have a fairly milddependen
e on R. On the other hand, sin
e the 
orrela-tions arise from the interplay between the relative size ofthe anti
orrelated 
omponent C� and 
orrelated 
ompo-nent Cresum, they 
an have a mu
h stronger dependen
eon p
utT . Similarly, the 
orrelation matrix 
an also 
hangeby a large amount between perturbative orders be
auseun
ertainties are de
reased by going to higher order, andtherefore the relative importan
e of C� and Cresum 
an
hange. These two features are illustrated in Fig. 10. Thep
utT dependen
e is strongest in the 
orrelations between

the in
lusive 
ross se
tion, ��0, and the ex
lusive 0-jetobservables �0 (solid orange lines) and �0 (blue dashedlines). The reason for this is that the 0-jet observables re-
eive 
ontributions from Cresum, whose importan
e rela-tive to C� depends on p
utT , while ��0 has no 
ontributionfrom Cresum. We also see that at NNLL0pT+NNLO the
orrelation between �0 and ��1 de
reases toward smallerp
utT and turns negative below <� 30GeV, be
ause theanti
orrelated migration un
ertainties from Cresum startdominating over their 
ommon 
orrelated yield un
er-tainty in C�. This anti-
orrelation is not so evident inthe resummed result at NLL0pT+NLO sin
e C� plays abigger role at this order. Finally, we observe that in thelarge p
utT regime, where the resummation turns o� andthe C� 
ontributions dominate, the 
orrelations betweenthe 0-jet eÆ
ien
y and the total 
ross se
tion in our for-malism approa
hes �1, as it must. For large p
utT the
orrelations between any two 
ross se
tions tends to 1,also as they must.From this dis
ussion it should also be apparent thatwe do not expe
t the 
orrelations obtained after resum-mation to be the same as in the pure �xed-order 
al
u-lation. Indeed, in
luding the resummation the pertur-bative un
ertainties in the logarithmi
 series indu
ed bythe jet binning are signi�
antly redu
ed 
ompared to inthe �xed-order 
ase. This means the 
orrelation betweenthe un
ertainties in �0 and ��1 should be more nega-tive at �xed order. This is indeed what happens whenusing the method of Ref. [12℄, for whi
h at pure NNLOwe �nd �(�0; ��1) rises from �0:7 to �0:2 over the p
utTrange shown in Fig. 10. The added advantage of theresummation framework used here is that it automati-
ally provides theory based handles to estimate both the
orrelated 
ontributions C� and anti
orrelated 
ontribu-tions in Cresum without having to make an assumptionabout the 
orrelation between any two quantities. As a�nal 
autionary note, we remark that one should re
allthat the magnitude of the 
orrelation 
oeÆ
ients does



21not indi
ate the relative importan
e of their entries indetermining the �nal un
ertainties sin
e the size of the
orresponding diagonal un
ertainties is also required.V. CONCLUSIONSIn this paper we have presented results for Higgs pro-du
tion via gluon fusion with a jet veto. Jets are identi-�ed with a kT-type 
lustering algorithm (whi
h in
ludesthe experimentally used anti-kT algorithm) with jet ra-dius R, and are vetoed via the requirement pjetT < p
utT .The logarithms of p
utT =mH are resummed to NNLL0 andthe resummation is mat
hed to the full �xed NNLO 
rossse
tion. Our analysis is based around the small R limit,where the 
ross se
tion 
an be fa
torized into hard, beam,and soft fun
tions. To a
hieve NNLL0 order we 
omputedthe relevant soft fun
tion to O(�2s) and 
omputed the full�2s lnR2 term for the beam fun
tion, determining the re-maining p
utT independent O(�2s) terms in the beam fun
-tion numeri
ally. Our resummation results also in
lude�2 summation in the hard 
orre
tions through imagi-nary s
ale setting. To 
onsistently in
orporate the fullNNLO result we made use of pro�le fun
tions that prop-erly handle both the small and large p
utT regions, and inparti
ular the experimentally relevant transition regionin between. We also in
luded a pre
ise numeri
al deter-mination of the O(�2s) nonsingular terms. Our resultsin
lude predi
tions for the ex
lusive 0-jet 
ross se
tion,the 0-jet eÆ
ien
y, and the in
lusive 1-jet 
ross se
tion.A key aspe
t of our numeri
al analysis is the robust es-timation of perturbative un
ertainties. The un
ertainty
omes from two independent 
omponents: overall yieldun
ertainties (whi
h are 
orrelated between jet bins) andresummation un
ertainties (related to predi
ting the mi-gration between jet bins as we vary p
utT ). Ea
h of these
an be estimated through the variation of various invari-ant mass and rapidity s
ales in the fa
torization theorem.The un
ertainty framework dis
ussed in Se
. III allows usto 
onstru
t the 
omplete 
ovarian
e matrix for the total,ex
lusive 0-jet, and in
lusive 1-jet 
ross se
tions.In Se
. IV, we presented results for the 0-jet 
rossse
tion, the in
lusive 1-jet 
ross se
tion, and the 0-jet eÆ
ien
y. Our numeri
al results for several phe-nomenologi
al points of interest (p
utT = 25; 30GeV andR = 0:4; 0:5; 0:7) are given in Table II. The pre
ision ofthe predi
tions in
reases signi�
antly as the resummationand mat
hing is improved, from NLLpT to NLL0pT+NLOto NNLL0pT+NNLO. For the most pre
ise predi
tions,the un
ertainties are signi�
antly smaller than the �xed-order NNLO un
ertainties, whi
h are 
urrently the nom-inal ben
hmark un
ertainties for the experimental H !WW and H ! �� analyses. Our results add a few addi-tional ingredients on top of the NNLL results in Ref. [9℄,in parti
ular: by in
luding �2 summation [35℄, by in-
luding the 
omplete NNLO singular terms in the �xed-order mat
hing for soft and beam fun
tions atO(�2s), andbe
ause our fa
torization based framework also makes

predi
tions for both 
orrelated and anti
orrelated 
on-tributions to the theory un
ertainty 
orrelation matrixbetween di�erent jet bins. We observe a 
orrespond-ing modest improvement in the size of the un
ertainties,where details 
an be found in Se
. IVA and Se
. IVC.Our results are part of an ongoing e�ort to more 
om-pletely understand jet vetoes for Higgs produ
tion andtheir asso
iated un
ertainties. The H + 0-jet 
ross se
-tion is an ex
ellent testing ground for the new methodsbeing developed to improve the theoreti
al predi
tions.Currently, the �xed-order perturbative un
ertainties dueto the jet binning in the H ! WW analysis are thedominant systemati
 un
ertainties. Our results 
an bedire
tly applied to provide improved theory predi
tionswith substantially redu
ed perturbative un
ertainties.A
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t No. DE-AC02-05CH11231.Note Added:While �nalizing this paper Ref. [60℄ appeared, whi
h alsomakes predi
tions for the H+0-jet 
ross se
tion in
luding
ontributions beyond the NNLL results of Ref. [9℄. In thisnote added we 
ompare their theoreti
al ingredients withours.Regarding the derivation of fa
torization for terms ofO(R2) we believe the dis
ussion of rapidity s
aling in ourfootnote 2 still applies to Ref. [60℄.A 
ommon goal of both our work and Ref. [60℄ is the in-
lusion of �xed-order 
orre
tions from the low-energyma-trix elements (
orresponding to beam and/or soft fun
-tions) that are needed as ingredients in a 
al
ulation atN3LL order. In our analysis we have fully 
al
ulated theO(�2s) soft fun
tion, in
luding the R-dependent anoma-lous dimension and �nite 
orre
tions that depend onlnR2. In addition, we have 
al
ulated the �nite 
orre
-tions in the beam fun
tion that depend on lnR2. Thus,the dominant R dependen
e has been fully determinedanalyti
ally, and the only numeri
al ingredient is the re-



22maining 
ontribution in the beam fun
tion. In 
ontrast,in Ref. [60℄ an analyti
 
al
ulation is done for the anoma-lous dimension terms, but a numeri
al extra
tion is donefor the 
ombined �nite soft + beam 
ontributions in
lud-ing their R dependen
e. We make use of the rapidityrenormalization group in our analysis, in
luding rapiditys
ale variations in our un
ertainties to estimate the size ofhigher-order rapidity logarithms, while Ref. [60℄ a

ountsfor these 
ontributions using the \
ollinear anomaly" for-malism without variations of the rapidity s
ales. A re-summation of �2 
ontributions through imaginary s
alesetting is used in both our work and their work.Ref. [60℄ refers to the a

ura
y of their resummationas \N3LLp", where \p" stands for partial, whi
h 
an be
ontrasted with our NNLL0. As far as perturbative in-gredients that have been either 
al
ulated analyti
allyor extra
ted numeri
ally, both our results in
lude thesame theoreti
al ingredients. Ref. [60℄ makes an addi-tional ansatz about the anomalous dimensions requiredfor N3LL resummation, sin
e none of the required 
oeÆ-
ients are 
urrently known. Their method of estimatingand varying the size of these 
oeÆ
ients in some rangeis another method for estimating un
ertainties from un-known higher-order perturbative 
orre
tions. It does nothowever improve the perturbative a

ura
y of the resum-mation beyond NNLL0 order.In our analysis we have used pro�le s
ales to prop-erly des
ribe the transition between the resummation and�xed-order regimes, whi
h ensures that we have 
anon-i
al s
ales in the small p
utT region and also reprodu
ethe �xed-order 
ross se
tion in the large p
utT limit. In
ontrast, Ref. [60℄ limit themselves to using 
anoni
als
ales, whi
h 
an only be used to properly des
ribe the
ross se
tion in the small p
utT region below the transi-tion region. As we have seen in our analysis, for phe-nomenologi
ally relevant values of p
utT , the 
ross se
tionand its un
ertainties are in
uen
ed by the transition re-gion. The 
onne
tion to the �xed-order 
ross se
tion alsoprovides an important 
onstraint when predi
ting 
orre-lations (whi
h are not 
onsidered in Ref. [60℄). Overall,our method of 
al
ulating perturbative un
ertainties byvarying all s
ales appearing in the RGE is therefore quite

di�erent from Ref. [60℄. Numeri
ally, the resummed per-turbation theory as organized in Ref. [60℄ show a slower
onvergen
e (as shown, e.g., in their Figs. 8 and 11)
ompared to our results shown in Fig. 7.Appendix A: Results for Real �HFor 
ompleteness and to demonstrate the bene�t of theimaginary s
ale setting for �H , in this Appendix we givepredi
tions for the real s
ale setting �H = �FO, whi
hex
ludes the large �2 terms from the resummation in thehard fun
tion.In Fig. 11, we plot the analog of Fig. 7 for �0(p
utT )but using real �H . Comparing these two �gures, it is
lear that in
luding the �2 terms in the resummationsigni�
antly improves the 
onvergen
e and pre
ision ofthe 0-jet predi
tions at small p
utT . This improvementalso translates into an improved 
onvergen
e and redu
edun
ertainties at larger values of p
utT . In Table IV, wegive the analogous values without �2 summation to thosein Table II. For p
utT = 25GeV, R = 0:4 and p
utT =30GeV, R = 0:5, the 
orresponding 
omponents of theun
ertainty are p
utT = 25GeV p
utT = 30GeVR = 0:4 R = 0:5�tot : 1:91 1:91�resum : 1:08 0:95 (A1)��0 : 1:16 1:32���1 : 0:75 0:59Both the resummed and �xed-order un
ertainties for the0-jet 
ross se
tion are larger when the �2 terms are ex-
luded from the resummation, indi
ating that these large�2 terms have an e�e
t on the shape as well as the nor-malization of the 
ross se
tion. This is also re
e
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FIG. 11: The 0-jet 
ross se
tion for mH = 125GeV and R = 0:4 using the real s
ale setting �H = �FO, whi
h ex
ludes the �2resummation. The poor 
onvergen
e of the hard fun
tion results in larger un
ertainties and a poorer 
onvergen
e of the 
rossse
tion at all values of p
utT . ��0 [pb℄ �0(p
utT ) [pb℄ ��1(p
utT ) [pb℄ �0(p
utT )NLL0pT+NLOp
utT = 25GeV 14:57 � 2:91 (20:0%) 8:96 � 2:44 (27:2%) 5:61 � 2:44 (43:5%) 0:615 � 0:136 (22:1%)p
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