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1. IntrodutionOne of the most striking features of string theory ompati�ations is the lose onne-tion between the geometry of the ompat spae and the four dimensional physis. Whilein priniple one is free to hoose the spae in whih one ompati�es the higher dimen-sional theory, this onnetion fores the hoie of geometries that yield the desired fourdimensional physis. For a variety of reason supersymmetry is a highly desirable featureto have in the four dimensional theory. For ompati�ations of ten dimensional type IIBstring theory, the requirement of N = 1 theories in 4D fores one to onsider Calabi-Yauorientifold ompati�ations [1, 2℄.The geometry of these Calabi-Yau spaes is parameterized by the geometri mod-uli: K�ahler and omplex struture. Intuitively, K�ahler moduli desribe the volumes whileomplex struture moduli give the shape of the ompati�ation spae. From the four di-mensional theory point of view they are Plank oupled massless salar �elds. Suh �eldsfae severe onstraints both from �fth-fore onstraints [3℄ and from onsistent osmolog-ial evolution. Furthermore the vauum expetation values of these �elds determine themasses and ouplings of the four dimensional �eld theory, and so unstabilized moduli leadto ill de�ned masses and ouplings. We then see that in order to have a sensible theory ofosmology and partile physis in four dimensions it is imperative that these at diretionsare lifted. { 1 {



Over the last deade signi�ant progress has been made in the physis of modulistabilization, in partiular in type IIB string theory, where a ombination of gauge uxin the extra dimensions and perturbative and non-perturbative orretions to the treelevel e�etive ation have yielded quasi-realisti ompati�ations of the ten dimensionaltheory [2, 4, 5, 6℄. Of partiular interest are the LARGE volume ompati�ations of[6℄ due to their robustness and rih phenomenology (for a review of this senario see e.g.[8, 9℄). These ompati�ations allow for the stabilization of the ompat spae at anon-supersymmetri AdS minimum at exponentially large volumes, allowing us to haveontrol over the perturbative expansion without having to pay for it with �ne-tuning ofthe parameters.It is usually assumed that moduli stabilization happens in the same way throughoutspaetime, however suh assumption needs to be heked. Given that the moduli vevsdetermine the masses and ouplings of the partiles in the four dimensional theory, thesepartiles will soure the moduli potential and an in priniple distort it, shifting the vevsof the moduli �elds. The robustness of the moduli stabilization mehanism against loalperturbations soured by matter �elds has been studied in [7℄ where it was found that eventhe densest known forms of matter ould not have a measurable e�et in the potential forthe lightest Plank oupled modulus. The fundamental reason for this was that even withinthe densest astrophysial objets, like neutron stars, there is a large hierarhy between thesale of the modulus potential and the sale of the loal perturbation: �matter=MP � 1.There were however two notable exeptions to this behaviour in the ontext of systemsundergoing gravitational ollapse: the superinationary expansion of the ompat spaeat the �nal stages of the ollapse of a positively urved matter dominated FRW universeand deompati�ation in the proess of blak hole formation. For other setups in whiha loalized distribution of matter distorts the potential of a gravitationally oupled salar�eld see also [10, 11℄.In this paper we will analyze the interplay between moduli stabilization and gravita-tional ollapse in the formation of a blak hole. This onstitutes an extension of the workarried out in [7℄ and a hek of the results reported there. The method used in [7℄ for thestudy of gravitational ollapse onsisted in gluing a positively urved FRW universe �lledwith matter to an exterior Shwarzshild spaetime, this allowed for a study of the ollapse�a la Oppenheimer-Snyder [12℄.This previous work should be extended in two ways. Firstly, the Oppenheimer-Snyderollapse relies on a juntion between a Shwarzshild blak hole and a FRW universepermeated by a perfet uid. This setup seems to be quite idealized and so we aim toextend the analysis for a more generi geometry and initial onditions using a dynamialmetri and a dynamial matter �eld. Seondly, we need to study the ausal strutureduring the gravitational ollapses to understand whether the destabilized e�et an a�etthe future in�nity or if it is inside of the event horizon and hene there is no hope tosee any e�ets of the destabilization; whether the destabilized �eld is maintained eternallyand form a kind of hair around the event horizon or if suh destabilized region disappearseventually, et. We aim to answer these questions by using the more advaned double nullformalism [13, 14, 15℄. { 2 {



This paper is organized as follows: In Se. 2, we onstrut the model within the ontextof the LVS of type IIB string theory, fousing on the potential for the volume modulus. Weshow that this gravitationally oupled salar �eld is the lightest modulus whih makes itthe easiest one to destabilize. In Se. 3, we disuss the details of the moduli destabilizationvia gravitational ollapses. First, we show the details of gravitational ollapses using doublenull numerial simulations. Seond, we disuss qualitative onditions for destabilization.Finally, in Se. 4, we summarize our results.2. The volume modulus2.1 The bakground potentialWe work within the framework of the LARGE volume senario of type IIB string theory[6℄. Fousing on the bosoni setor and negleting gauge interations, the theory is de�nedby the Lagrangian L = Ki�j��	i�� �	j + V (f	g); (2.1)where 	i denotes a generi modulus, Ki�j is the metri in moduli spae de�ned by Ki�j =�2K�	i� �	j . V (f	g) is the F -term potential given byV (f	g) = eK �Ki�jDiWD�j �W � 3jW j2� ; (2.2)where DiW = �iW +W�iK.The spei�ation of the K�ahler potential K and of the holomorphi superpotential Wompletely determines the ation for the moduli �elds. These two funtions an be foundexpliitly via dimensional redution of the 10 D ation. It is well known that by takingonly the leading terms in the perturbative expansion in the 10 D theory one ends up with aompati�ed theory with a no-sale struture. To see how this arises note that the K�ahlerand superpotential take the shemati formK0 = KT (T ) +KU (U) +KS(S) and W =W0(U; S); (2.3)and so the salar potential beomesV = eK0 �Ki�jT DT iWD �Tj �W +KU i�jDUiWD �Uj �W +KSS �SDSWD �S �W � 3jW j2� : (2.4)Non-vanishing uxes on the ompat spae [2℄, hW0i 6= 0, stabilize the omplex struturemoduli (Ui) and the axio-dilaton S at a supersymmetri lous DUW = DSW = 0. These�elds then get a mass at a high sale and an essentially be integrated out when studyingthe low energy physis. The following no-sale identityKT i�jDTiWD �Tj �W = KT i�j jW j2�iKT ��jKT = 3jW j2 (2.5)then implies that the K�ahler moduli (Ti) survive as exatly at diretions of the potential,with all the phenomenologial hallenges this poses. In partiular note that at this level thetheory is unable to satisfatory explain why we seem to live in 4 dimensions if spaetimeis intrinsially 10 dimensional. { 3 {



In order to break this struture and stabilize the K�ahler moduli it is therefore essentialto go beyond leading order and inlude subleading orretions to the supergravity ation. Inthe realm of e�etive �eld theory, the orretions to the leading order ation an be lassi�edas perturbative or non-perturbative. It follows from the properties of supersymmetri �eldtheory that the holomorphi superpotential W is not renormalized and so the only newontributions to W will ome from non-perturbative e�ets. These will originate fromEulidean D3 instantons or gaugino ondensation in D7 branes and generate terms of theform Wnp / e�aiTi , suh that the full superpotential for the moduli setor is given byW =W0 +Xi Aie�aiTi : (2.6)These non-perturbative orretions to W are essential to stabilize the geometry of theompat spae as initially demonstrated in [5℄. The K�ahler potential is not protetedby non-renormalization theorems and so it an, and in generally will, reeive both per-turbative and non-perturbative orretions. It is usually assumed that the perturbativeontributions will be dominant. Realling that the ation is a perturbative expansion inboth the string length ls � 2�p�0 and the string oupling gs � hRe(S)i we see that ingeneral the perturbative K�ahler potential an be written asK = K0 + ÆKgs + ÆK�0 : (2.7)Of partiular relevane for the large volume onstrutions of [6℄ that we onsider throughoutthis work are the �03 orretions to K [4℄. These originate from a 10 dimensional term ofthe form �03R4 and give rise to a orretion to the K�ahler potential for the K�ahler moduli[4℄: KK = �2 ln"V + �2g3=2s # ; (2.8)where � is related to the Euler number of the ompat spae. In the spirit of LVS om-pati�ations we demand that � > 0 [6℄.In order to write the salar potential expliitly we need to speify the geometry of theompat spae. We hoose it to be of the Swiss-heese type, suh that its volume is writtenas V = 1� "�Tb + �Tb2 �3=2 ��Ts + �Ts2 �3=2# = 1� ��3=2b � �3=2s � ; (2.9)where we have used the de�nition Ti � �i + ibi. Then taking into aount Eqs. (2.6) and(2.8), the salar potential for the K�ahler moduli setor an be written as:V = 83 �a2jAj2V e�2a�sp�s � 4 jAW jV2 a�se�a�s + 34 jW j2�V3g3=2s ; (2.10)in the limit where �s � �b � V2=3. The position of minimum is found by solving �V�V =�V��s = 0, from whih we �ndhVi = 3jW0j4�ajAjp�sea�s �1� 34a�s +O (a�s)�2� ; (2.11)
{ 4 {



and h�si3=2 � ��g3=2s �12 + 14a�s +O (a�s)�2� : (2.12)Given that h�si & 1 in the ontrollable regime of the theory, we see that the minimum forthe volume naturally lies at exponentially large values: hVi � ea�s .An interesting feature of the large volume minimum is the mass hierarhy in the K�ahlermoduli setor, with the volume mode substantially lighter that the small moduli. This willbe important in the ensuing disussion as it allows us to integrate out the small modulusand to identify the volume mode as the easiest modulus to destabilize. To see this oneomputes the eigenvalues of the physial mass matrix de�ned asM = �K�1�i�j ��jkV (2.13)at the minimum. Noting that sine V � 1 then 1=V � 1 is a good expansion parameter.To leading order in the inverse volume expansion, the eigenvalues of M are thenmb � MPV3=2 and ms � MPV : (2.14)In the large volume limit we then �nd mb � ms, and so at energies bellow ms we anstudy single �eld dynamis by integrating out the heavier small modulus. Using Eq. (2.11)to eliminate the �s dependene from Eq. (2.10) we �nd that the potential for the volumemodulus an be written as V (V) = 1V3 �1� �(log V)3=2� (2.15)where � is a funtion of the ompati�ation parameters that will determine the positionof the minimum of the potential. In Eq. (2.15) we have negleted an unimportant overallO(1) fator.The minimum for the volume modulus is loated atloghVi�ploghVi � 1=2� = 1=� (2.16)whih an be approximated to loghVi = ��2=3 in the limit when loghVi � 1. As expetedform the large volume senario, the minimum is at this level AdS, its depth being given byhV i = ��2 loghVihVi3 : (2.17)It is essential that the LVS minimum is uplifted to Minkowsky or dS. That an beahieved by onsidering orretions to the potential oming from tension of anti branes atthe tip of warped throats [5℄, D-terms from magnetized branes [16℄ or dilaton-dependentnon-perturbative e�ets [17℄. Regardless of the mirosopi origin of the uplifting term itgenerates a term of the form Vup = �Vp ; (2.18)where � is tuned suh that V (hVi) = 0. Throughout this work we will assume p = 2 asgenerated by D3 branes [5℄. { 5 {



2.2 The loal ontribution to the potentialThe last remaining ontribution to the potential for the modulus is the term parameterizingthe interation with loal distributions of matter. In [7℄ it was argued that low energy masssales and ouplings depended on the volume of the ompati�ation through RG running.In partiular the dependene would arise from the fat that in string ompati�ations thehigh energy ut-o� �UV from whih the ouplings start running is dependent on the volume.Typially one �nds that �UV = MP=Vq. The value of q depends on whih physial saleorresponds to �UV. The partiular value of q was found to have only a limited inueneon the qualitative results and so throughout this analysis we identify �UV =Mstring whihsets q = 1=2 and yields a ontribution to the modulus potential that sales asVloal / �4UV / 1V2 : (2.19)It is onvenient to formulate the problem in terms of the anonially normalized volumemodulus. From Eqs. (2.8) and (2.1) we �ndLK = 34�2b ���b���b (2.20)whih prompts the de�nition � �r32 log �b =r23 log V: (2.21)The uplifted large volume potential for the anonially normalized volume modulus is thenV = �1� ��3=2� e�p27=2� + �e�p6�; (2.22)and the loal ontribution to the potential isVloal = �e��LM: (2.23)In Fig. 1 we depit the e�et of the loal term, Eq. (2.23), on the bakground potential forthe volume modulus, Eq. (2.22).3. Moduli destabilization and gravitational ollapseThe main aim of this paper is to study the stability of the moduli vauum taking intoaount the interation with matter. In partiular we investigate if the volume modulusan be destabilized in the proess of blak hole formation and if an observer outside thehorizon is able to probe the destabilized region.Intuitively one expets that as an initial matter distribution ollapses and the loalenergy density inreases, the system will eventually reah a state where the energy density isof the order of the large volume potential and is then able to destabilize the volume modulusausing a shift in its vev or in extreme ases triggering runaway and deompati�ation.The system's ontinued ollapse under its own gravitational attration eventually results{ 6 {
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Figure 1: Volume modulus potential in regions of di�erent loal density. We see that as densityinreases, the minimum gets lifted until it eases to exist, leading to destabilization of the volumemodulus.in the birth of a blak hole with all the matter hidden behind the event horizon. Theinteresting question is whether the destabilization that seems inevitable in these simplemodels is visible to an observer at in�nity or if the destabilized region is always shieldedby the event horizon.This system was originally studied in [7℄ where it was assumed that the blak hole wasformed from a initially dilute spherial distribution of pressureless dust. The spaetimeinside this sphere was assumed to be a positively urved FRW whih was smoothly joinedto a Shwarzshild spaetime at the surfae of the dust sphere. Time dependene aroseonly through the FRW spaetime sale fator, with the modulus assumed to lie at the loalminimum of the potential. It was found that a small destabilized region would lie for a�nite time outside the horizon and so an external observer would in priniple be able toobserve it. This region would eventually fall beyond the Shwarzshild radius making itinaessible for outside observers.Here we aim to extend the work of [7℄ by onsidering a fully dynamial system, whereboth the metri and the modulus are allowed to vary over spaetime. To do so we onsidera oupled system of four dimensional gravity, volume modulus and matter. The ation forthe system is given byS = Z dx4p�g � 116�R� 12r��r��� V (�) + �e��LM� ; (3.1)where V (�) is the uplifted large volume potential of Eq. (2.22). We model the matter{ 7 {



omponent by a salar �eld of mass m, with LagrangianLM = �12g���;��;� � 12m2�2; (3.2)and assume the spaetime metri to take the formds2 = ��2(u; v)dudv + r2(u; v)d
2; (3.3)where u and v are null oordinates.The large volume potential's parameter � determined the volume of the ompati�-ation and through it the moduli masses. The uplift parameter � is tuned suh that thevauum at in�nity is Minkowski or dS. The parameters � and  determine the strength ofthe interation between the modulus and matter. Guided by the fat that in [7℄ the valueof  did not have a signi�ant impat on the results we hoose  = p6. Furthermore weset � exp��m = 1, where �m is the loal minimum of the potential V (�)1. Note that,there is a saling symmetry (�; �)! �D�; �pD� (3.4)for arbitrary D. And hene, for any alulation with �, we an resale and restore theresults.With the model in plae, we onsider the gravitational ollapses and study the modulidestabilization proess.3.1 The methodIn this setion we solve the �eld equations numerially using the double null formalism.We allow for a fully dynamial metri as well as dynami matter salar �eld � and volumemodulus �, in an interesting appliation of the double null formalism of salar-tensorgravity. In [14℄, the authors disussed responses of the Brans-Dike type �eld, but did notfous on the possibility to see the destabilization.We solve the Einstein equations:G�� = 8� �T��� + �e��TM��� ; (3.5)where the stress energy tensors areT��� = �;��;� � 12�;��;�g��g�� � V (�)g�� ; (3.6)TM�� = �;��;� � 12�;��;�g��g�� � 12m2�2g�� : (3.7)The �eld equations for the salar �elds are given by0 = �;��g�� � dVd� � �e��LM; (3.8)0 = �;��g�� � �;��;�g�� �m2�: (3.9)1Note that this amounts to hoosing the position of the minimum of the volume modulus �m.{ 8 {



It is onvenient to analyze the system in the double null oordinate system of Eq. (3.3).We de�ne the resaled matter �eld and volume modulus as:p4�� � s; p4�� � S; (3.10)and their derivatives with respet to the null oordinates asW � S;u; Z � S;v; w � s;u; z � s;v: (3.11)In addition, the derivatives of the metri are de�ned asg � r;v; h � �;u� ; d � �;v� ; f � r;u: (3.12)We now write Eqs. (3.5)-(3.9) in terms of these new variables. Here we present only the�nal expressions, the intermediate steps are given in Appendix A. The Einstein equationsare f;u = 2fh� 4�rTuu; (3.13)g;v = 2gd � 4�rTvv ; (3.14)f;v = g;u = ��24r � fgr + 4�rTuv; (3.15)h;v = d;u = �2��2r2 T�� � f;vr ; (3.16)where the omponents of the stress-energy tensor are given by Eqs. (A.5)-(A.8). TheKlein-Gordon equations for the salars beomez;u = w;v = �fzr � gwr + 2p4� (Wz + Zw)� 14�2m2s; (3.17)Z;u =W;v = �fZr � gWr � ��2�V 0(S) + p4��e�S=p4�LM� ; (3.18)where the matter Lagrangian is LM = wz2��2 � m28� s2: (3.19)The physis of the interplay between gravitational ollapse and moduli stability isenoded by the solutions of the set of oupled �rst order di�erential Eqs. (3.13)-(3.18), forwhih me must provide appropriate initial onditions.3.2 Initial onditionsWe need initial onditions for all funtions (�; h; d; r; f; g; S;W;Z; s; w; z) on the initialu = ui and v = vi surfaes, where we set ui = vi = 0.We have gauge freedom to hoose the initial r funtion. Although all onstant u andv lines are null, there remains freedom to hoose the distanes between these null lines.Here, we hoose r(0; 0) = r0, f(u; 0) = ru0, and g(0; v) = rv0, where ru0 < 0 and rv0 > 0suh that the radial funtion for an in-going observer dereases and that for an out-goingobserver inreases. { 9 {



In-going null surfae: We use a shell-shaped salar �eld. Therefore, its interior is nota�eted by the shell. First, it is onvenient to hoose ru0 = �1=2 and rv0 = 1=2; wehoose that the mass funtion on ui = vi = 0 vanish, where the Misner-Sharp mass ism(u; v) = r2 �1 + 4r;ur;v�2 � 8�V (S)3 r2� : (3.20)Hene, to speify a pure de Sitter bakground, for given r(0; 0) = r0 and S(0; 0) = Sm(loal minimum), then �(0; 0) = �1� 8�V (Sm)3 ��1=2 : (3.21)In addition, S(u; 0) = Sm and W (u; 0) = s(u; 0) = w(u; 0) = h(u; 0) = 0 hold.We need more information to determine d; g; z, and Z on the v = 0 surfae. We obtaind from Eq. (3.16), g from Eq. (3.15), z from Eq. (3.17), and Z from Eq. (3.18).Out-going null surfae: We �rst hoose S(0; v) = Sm. We an hoose an arbitraryfuntion for s(0; v) to indue a ollapsing pulse. In this paper, we uses(ui; v) = Ap2D sin2�� v � vivf � vi� os�2� v � vivf � vi� (3.22)for vi � v � vf and otherwise s(ui; v) = 0, where ui = 0, vi = 0, and vf = 20 denotesthe end of the pulse in the initial surfae. We then obtain z(0; v) = s(0; v);v . Thisimplements one pulse of energy (Tvv � z2) along the out-going null diretion by theontinuous funtion z(0; v).Furthermore, from Eq. (3.14) we an use obtain d(0; v), sine g;v(0; v) = 0. Byintegrating d along v, we get �(0; v).We need more information for h; f; w and W on the u = 0 surfae. We obtain hfrom Eq. (3.16), f from Eq. (3.15), w from Eq. (3.17), and W from Eq. (3.18). This�nishes the assignments of the initial onditions.Finally, we an interpret this setup as follows (Fig. 2). We obtain a numerial resultsfor a given integration domain (u = 0; u = umax)� (v = 0; v = vmax) (left). By tilting 45-degree, we obtain a Penrose diagram (middle), sine the two oordinates are null. Initially,there was no blak hole, as the matter shell ollapses a blak hole forms. In the distantfuture, the geometry asymptotially approahes that of a stati neutral blak hole (right).3.3 Simulations and resultsWe run the simulations with the aim of testing the intuitive piture developed in [7℄, namelythat the denser the initial matter distribution, the more drasti the destabilization will be.The two relevant parameters to vary in this ontext are the mass and the amplitude ofthe matter salar �eld, m and A respetively. We also want to probe how the hight of themodulus potential barrier inuenes the dynamis and the �nal state of the system. Thisan be done by varying � keeping the remaining parameters unhanged.With this in mind we perform 3 distint runs:{ 10 {
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Figure 3: Run 1 results: solutions for r and � for m2 = 0:01; 0:05; 0:1; 0:2, A = 7000, � = 0:05.region in Fig. 3) but where the loal density is high enough, the volume modulus movesbeyond the position of the loal maximum (yellow-red region in Fig. 3). As the mass m2of the matter �eld inreases, the destabilized region grows. The inreased destabilizedregion postpones the formation of the blak hole. However, suh non-trivial �eld dynamis{ 12 {
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Figure 4: Interpretation of the result on the Penrose diagram. Some e�ets of the destabilizedregion (dotted arrow) an be observed by an asymptoti observer, sine the destabilized region anbe outside of the event horizon (blue line).eventually disappear as a suÆient time elapses, as one would expet from the no-hairtheorem. One ruial point is that the destabilized region is partially outside of the eventhorizon. In priniple any physial proess happening in that region will di�er from the sameproess taking plae at in�nity, sine the di�erent volume modulus vauum expetationvalue an lead to di�erent masses and ouplings. Outgoing light from that region (that inFig. 3 travels along horizontal lines) an reah an asymptoti observer sitting at in�nity (seeFig. 4 for an interpretation). This observer is therefore able to probe a region of spaetimewhere the standard model masses and ouplings are distint from the ones measured inthe laboratory. To onlude the analysis of Run 1, we note that the destabilization is moresevere for larger values of the matter �eld's mass, as one intuitively expeted.In Run 2, whose results are presented in Fig. 5, we vary the amplitude of the matter�eld, A. The results are similar to Run 1 and in aordane with the expetation thatthe larger the amplitude, the more energy will be stored in the matter shell and the morepronouned the destabilization of the volume modulus. In addition, as the �eld amplitudeinreases, the size of the event horizon also inreases.Fig. 6 depits the e�ets of varying �, Run 3. The hange of � implies the hange of themass sale around the loal minimum of the volume modulus's potential and the hangein the hight of the potential barrier separating the minimum from deompati�ation. Wenote that the potential is very sensitive to the value of � and so it suÆes to vary thisquantity in a very narrow range. Here, we denote �, where the blak region is beyondthe loal maximum and white region is around the loal minimum. As � inreases, the{ 13 {
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Figure 5: Run 2 results: � pro�le for A = 6000; 6500; 7000; 7500, � = 0:05, m2 = 0:05.blak oloured region suddenly disappears. In other words, as we inrease �, the mass salearound the loal minimum inreases, and hene the moduli �eld is on�ned by the loalminimum.3.4 Conditions for destabilizationHaving seen from the numerial results that destabilization of the volume modulus withina very dense region is indeed possible, we now try to identify the onditions for suhbehaviour. The fundamental premise of this work is that in the presene of the matterdistribution the moduli potential gets modi�ed toVe�(�) = �1� ��3=2� e�q 272 � + �e�p6�| {z }�V +LMe�p6�: (3.23)The destabilization will begin when the e�etive potential Ve� eases to have a loalminimum. To �rst approximation this happens when both extrema (LVS minimum andthe potential barrier's maximum) beome degenerate and give rise to a saddle point. Wede�ne the ritial orretion term �� suh thatVe�(�) = �1� ��3=2� e�q 272 � + �e�p6� +��e�p6�; (3.24)and this orretion term makesV 0e�(�0m) = V 0e�(�0M) = 0 and ���0m � �0M�� = 0: (3.25){ 14 {
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Figure 6: Run 3 results: � pro�le for � = 0:05; 0:050001; 0:05001; 0:0501, A = 7000, m2 = 0:05.The white region orresponds the loal minimum and the blak region denotes the �eld value greaterthan the loal maximum.Clearly, �� depends on the moduli potential shape. If LM & ��, then the moduli �eld anstart to roll.This ondition on the loal energy density is a neessary ondition but it is not suÆ-ient to guarantee destabilization in suh a highly dynamial proess. If the vauum energydominated region is too short (in time or length sale), then the modulus �eld will not rollsuÆiently and hene it will be perturbed but not destabilized. To guarantee that destabi-lization will take plae we require the width �v of the matter/vauum energy dominatedregion to be suÆiently wide. From the modulus �eld equation of motion, Eq. (3.18), ifthe gradients of the salar �eld �;u �W and �;v � Z are suÆiently small (and hene thevauum energy is dominant), thenS;uv ' ���2Ve�(S)0; (3.26)and the �eld moves �S after the time sale �u and �v�S ' ��2Ve�(S)0�u�v: (3.27)We an reasonably assume that spaetime around that region is only moderately urved,whih allows us to hoose � � 1, and that �u � �v with the similar time/length sale. Ifthe �eld moves a distane �� from the loal minimum to the loal maximum of the originalpotential, we require the reasonable time/length sale of the vauum energy dominated{ 15 {



region: �v 's 4��Ve�(�)0 : (3.28)If the vauum energy dominated region is suÆiently wide, of the order of �v, then oneexpets the modulus �eld to be destabilized beyond the loal maximum of the original po-tential. However, note that the proess is highly dynamial and hene detailed observationof numerial alulations is ruial.4. DisussionIn this work we have investigated the interplay between gravitational ollapse and modulistability in the proess of blak hole formation. We have worked within the frameworkof the large volume senario where the lightest modulus, and therefore the most easilydestabilized, orresponds to the salar �eld parameterizing the volume of the ompatspae. Modeling the blak hole formation with a ollapsing salar �eld shell we haveestablished that the volume modulus an indeed be destabilized and that the e�ets of thisdestabilization are visible to an asymptoti observer at in�nity. The fat that, for a �niteperiod of time, the destabilized region is aessible from the outside of the blak hole isa rather interesting sine it opens a window to regions where the physial ouplings aredi�erent from the ones measured in less extreme environments. The fundamental reasonbehind this observation is that in the ontext of string theory mass sales and ouplings aregiven as funtions of the moduli vevs. If these vevs hange, as they do in the destabilizedregion, masses and ouplings will hange too. As an example one an imagine that if aneletron-positron pair annihilate in the destabilized region, the resulting photons will haveenergies di�erent from the 511 KeV one would expet if the same proess happened awayfrom the blak hole. Sine we have established that these �nal state photons an traveltowards an observer at in�nity, this observer would have aess to a spaetime region withdi�erent laws of physis.We have shown that two onditions must be met in order to ensure destabilization ofthe volume modulus: the loal energy density must be suÆiently high and the thiknessof the vauum energy dominated region must be wide enough.It is worth noting that traditionally there were two known ways to destabilize a salar�eld in a potential. Firstly, it is possible to destabilize via various quantum tunnelinghannels [20℄. Seondly, it is also possible that a �eld an be lassially destabilized viabubble ollisions [21℄. In this paper, we establish that there is a third way: a �eld anbe destabilized by gravitational ollapse, when there is a non-minimal oupling between the�eld and gravity.The results presented here assume one partiular moduli stabilization mehanism andone expliit form of the matter/moduli oupling, generalization to other models of modulistabilization, to other types of non-minimal oupling, and to other kinds of matter �eldsremain interesting open problems. In addition, if suh a destabilization is possible viagravitational ollapses, then behaviour ould in priniple be found in bubble ollisions. For{ 16 {



this ase, the destabilized region an expand to the asymptoti region, giving rise to fullyedged deompati�ation. This would be a more extreme �nal state than the one foundin this study where the extent of the destabilized region was limited. We plan to addressthis in future work.AknowledgmentsWe grateful to Joe Conlon for ollaboration in the initial stages of this projet. FGPwould also like to thank Alexander Westphal for interesting disussions and the Universityof Oxford, where this projet was initiated. DY and DH are supported by the NationalResearh Foundation of Korea (NRF) grant funded by the Korea government (MEST)through the Center for Quantum Spaetime (CQUeST) of Sogang University with grantnumber 2005-0049409. DY is supported by the JSPS Grant-in-Aid for Sienti� Researh(A) No. 21244033. DH is supported by Korea Researh Foundation grants (KRF-313-2007-C00164, KRF-341-2007-C00010) funded by the Korean government (MOEHRD) andBK21.A. Einstein and stress-energy tensor omponentsIn this appendix we ompute the omponents of the Einstein tensor and of the stress-energy tensor in terms of the variables de�ned in Eqs. (3.10)-(3.12). The omponents ofthe Einstein tensor are: Guu = �2r (f;u � 2fh) ; (A.1)Guv = 12r2 �4rf;v + �2 + 4fg� ; (A.2)Gvv = �2r (g;v � 2gd) ; (A.3)G�� = �4 r2�2 �d;u + f;vr � : (A.4)The omponents of the energy-momentum tensor are:8�Tuu = 8� �T�uu + �e�S=p4�TMuu� ; (A.5)8�Tuv = 8� �T�uv + �e�S=p4�TMuv� ; (A.6)8�Tvv = 8� �T�vv + �e�S=p4�TMvv� ; (A.7)8�T�� = 8� �T��� + �e�S=p4�TM��� ; (A.8)
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and TMuu = 14�w2; (A.13)TMuv = �216�m2s2; (A.14)TMvv = 14�z2; (A.15)TM�� = r22��2wz � r28�m2s2: (A.16)B. Consisteny and onvergene heksIn this appendix, we report on the onsisteny and onvergene tests for our simulations.As a demonstration, we hek the ase � = 0:05, A = 7000, m2 = 0:05.For onsisteny, we test one of the onstraint funtions:C = jf;u � 2fh+ 4�rTuujjf;uj+ j2fhj+ j4�rTuuj (B.1)around v = 10; 30; 50. Fig. 7 shows that it is less than 1 % exept some points, where thedenominator osillatory vanishes (f;u � 0). This will not be aumulated as one integratesalong v. Therefore, this shows good onsisteny.For onvergene, we ompared �ner simulations: 1� 1, 2� 2, and 4� 4 times �ner foraround u = 5; 10; 15. In Fig. 8, we see that the di�erene between the 1�1 and 2�2 times�ner ases is 4 times the di�erene between the 2� 2 and 4� 4 times �ner ases, and thusour simulation onverges to seond order. The numerial error is . 10�5%, exept nearthe singularity.
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