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ontext of bla
k hole formation. We perform numeri
al simulations of the 
ollapseusing the double null formalism and show that the very dense regions one expe
ts to �nd inthe pro
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k hole formation are able to destabilize the volume modulus. We establishthat the e�e
ts of the destabilization will be visible to an observer at in�nity, opening upa window to a region in spa
etime where standard model's 
ouplings and masses 
an di�ersigni�
antly from their ba
kground values.

http://arxiv.org/abs/1306.6687v1
mailto:dongil.j.hwang@gmail.com
mailto:francisco.pedro@desy.de
mailto:innocent.yeom@gmail.com


Contents1. Introdu
tion 12. The volume modulus 32.1 The ba
kground potential 32.2 The lo
al 
ontribution to the potential 63. Moduli destabilization and gravitational 
ollapse 63.1 The method 83.2 Initial 
onditions 93.3 Simulations and results 103.4 Conditions for destabilization 144. Dis
ussion 16A. Einstein and stress-energy tensor 
omponents 17B. Consisten
y and 
onvergen
e 
he
ks 19
1. Introdu
tionOne of the most striking features of string theory 
ompa
ti�
ations is the 
lose 
onne
-tion between the geometry of the 
ompa
t spa
e and the four dimensional physi
s. Whilein prin
iple one is free to 
hoose the spa
e in whi
h one 
ompa
ti�es the higher dimen-sional theory, this 
onne
tion for
es the 
hoi
e of geometries that yield the desired fourdimensional physi
s. For a variety of reason supersymmetry is a highly desirable featureto have in the four dimensional theory. For 
ompa
ti�
ations of ten dimensional type IIBstring theory, the requirement of N = 1 theories in 4D for
es one to 
onsider Calabi-Yauorientifold 
ompa
ti�
ations [1, 2℄.The geometry of these Calabi-Yau spa
es is parameterized by the geometri
 mod-uli: K�ahler and 
omplex stru
ture. Intuitively, K�ahler moduli des
ribe the volumes while
omplex stru
ture moduli give the shape of the 
ompa
ti�
ation spa
e. From the four di-mensional theory point of view they are Plan
k 
oupled massless s
alar �elds. Su
h �eldsfa
e severe 
onstraints both from �fth-for
e 
onstraints [3℄ and from 
onsistent 
osmolog-i
al evolution. Furthermore the va
uum expe
tation values of these �elds determine themasses and 
ouplings of the four dimensional �eld theory, and so unstabilized moduli leadto ill de�ned masses and 
ouplings. We then see that in order to have a sensible theory of
osmology and parti
le physi
s in four dimensions it is imperative that these 
at dire
tionsare lifted. { 1 {



Over the last de
ade signi�
ant progress has been made in the physi
s of modulistabilization, in parti
ular in type IIB string theory, where a 
ombination of gauge 
uxin the extra dimensions and perturbative and non-perturbative 
orre
tions to the treelevel e�e
tive a
tion have yielded quasi-realisti
 
ompa
ti�
ations of the ten dimensionaltheory [2, 4, 5, 6℄. Of parti
ular interest are the LARGE volume 
ompa
ti�
ations of[6℄ due to their robustness and ri
h phenomenology (for a review of this s
enario see e.g.[8, 9℄). These 
ompa
ti�
ations allow for the stabilization of the 
ompa
t spa
e at anon-supersymmetri
 AdS minimum at exponentially large volumes, allowing us to have
ontrol over the perturbative expansion without having to pay for it with �ne-tuning ofthe parameters.It is usually assumed that moduli stabilization happens in the same way throughoutspa
etime, however su
h assumption needs to be 
he
ked. Given that the moduli vevsdetermine the masses and 
ouplings of the parti
les in the four dimensional theory, theseparti
les will sour
e the moduli potential and 
an in prin
iple distort it, shifting the vevsof the moduli �elds. The robustness of the moduli stabilization me
hanism against lo
alperturbations sour
ed by matter �elds has been studied in [7℄ where it was found that eventhe densest known forms of matter 
ould not have a measurable e�e
t in the potential forthe lightest Plank 
oupled modulus. The fundamental reason for this was that even withinthe densest astrophysi
al obje
ts, like neutron stars, there is a large hierar
hy between thes
ale of the modulus potential and the s
ale of the lo
al perturbation: �matter=MP � 1.There were however two notable ex
eptions to this behaviour in the 
ontext of systemsundergoing gravitational 
ollapse: the superin
ationary expansion of the 
ompa
t spa
eat the �nal stages of the 
ollapse of a positively 
urved matter dominated FRW universeand de
ompa
ti�
ation in the pro
ess of bla
k hole formation. For other setups in whi
ha lo
alized distribution of matter distorts the potential of a gravitationally 
oupled s
alar�eld see also [10, 11℄.In this paper we will analyze the interplay between moduli stabilization and gravita-tional 
ollapse in the formation of a bla
k hole. This 
onstitutes an extension of the work
arried out in [7℄ and a 
he
k of the results reported there. The method used in [7℄ for thestudy of gravitational 
ollapse 
onsisted in gluing a positively 
urved FRW universe �lledwith matter to an exterior S
hwarzs
hild spa
etime, this allowed for a study of the 
ollapse�a la Oppenheimer-Snyder [12℄.This previous work should be extended in two ways. Firstly, the Oppenheimer-Snyder
ollapse relies on a jun
tion between a S
hwarzs
hild bla
k hole and a FRW universepermeated by a perfe
t 
uid. This setup seems to be quite idealized and so we aim toextend the analysis for a more generi
 geometry and initial 
onditions using a dynami
almetri
 and a dynami
al matter �eld. Se
ondly, we need to study the 
ausal stru
tureduring the gravitational 
ollapses to understand whether the destabilized e�e
t 
an a�e
tthe future in�nity or if it is inside of the event horizon and hen
e there is no hope tosee any e�e
ts of the destabilization; whether the destabilized �eld is maintained eternallyand form a kind of hair around the event horizon or if su
h destabilized region disappearseventually, et
. We aim to answer these questions by using the more advan
ed double nullformalism [13, 14, 15℄. { 2 {



This paper is organized as follows: In Se
. 2, we 
onstru
t the model within the 
ontextof the LVS of type IIB string theory, fo
using on the potential for the volume modulus. Weshow that this gravitationally 
oupled s
alar �eld is the lightest modulus whi
h makes itthe easiest one to destabilize. In Se
. 3, we dis
uss the details of the moduli destabilizationvia gravitational 
ollapses. First, we show the details of gravitational 
ollapses using doublenull numeri
al simulations. Se
ond, we dis
uss qualitative 
onditions for destabilization.Finally, in Se
. 4, we summarize our results.2. The volume modulus2.1 The ba
kground potentialWe work within the framework of the LARGE volume s
enario of type IIB string theory[6℄. Fo
using on the bosoni
 se
tor and negle
ting gauge intera
tions, the theory is de�nedby the Lagrangian L = Ki�j��	i�� �	j + V (f	g); (2.1)where 	i denotes a generi
 modulus, Ki�j is the metri
 in moduli spa
e de�ned by Ki�j =�2K�	i� �	j . V (f	g) is the F -term potential given byV (f	g) = eK �Ki�jDiWD�j �W � 3jW j2� ; (2.2)where DiW = �iW +W�iK.The spe
i�
ation of the K�ahler potential K and of the holomorphi
 superpotential W
ompletely determines the a
tion for the moduli �elds. These two fun
tions 
an be foundexpli
itly via dimensional redu
tion of the 10 D a
tion. It is well known that by takingonly the leading terms in the perturbative expansion in the 10 D theory one ends up with a
ompa
ti�ed theory with a no-s
ale stru
ture. To see how this arises note that the K�ahlerand superpotential take the s
hemati
 formK0 = KT (T ) +KU (U) +KS(S) and W =W0(U; S); (2.3)and so the s
alar potential be
omesV = eK0 �Ki�jT DT iWD �Tj �W +KU i�jDUiWD �Uj �W +KSS �SDSWD �S �W � 3jW j2� : (2.4)Non-vanishing 
uxes on the 
ompa
t spa
e [2℄, hW0i 6= 0, stabilize the 
omplex stru
turemoduli (Ui) and the axio-dilaton S at a supersymmetri
 lo
us DUW = DSW = 0. These�elds then get a mass at a high s
ale and 
an essentially be integrated out when studyingthe low energy physi
s. The following no-s
ale identityKT i�jDTiWD �Tj �W = KT i�j jW j2�iKT ��jKT = 3jW j2 (2.5)then implies that the K�ahler moduli (Ti) survive as exa
tly 
at dire
tions of the potential,with all the phenomenologi
al 
hallenges this poses. In parti
ular note that at this level thetheory is unable to satisfa
tory explain why we seem to live in 4 dimensions if spa
etimeis intrinsi
ally 10 dimensional. { 3 {



In order to break this stru
ture and stabilize the K�ahler moduli it is therefore essentialto go beyond leading order and in
lude subleading 
orre
tions to the supergravity a
tion. Inthe realm of e�e
tive �eld theory, the 
orre
tions to the leading order a
tion 
an be 
lassi�edas perturbative or non-perturbative. It follows from the properties of supersymmetri
 �eldtheory that the holomorphi
 superpotential W is not renormalized and so the only new
ontributions to W will 
ome from non-perturbative e�e
ts. These will originate fromEulidean D3 instantons or gaugino 
ondensation in D7 branes and generate terms of theform Wnp / e�aiTi , su
h that the full superpotential for the moduli se
tor is given byW =W0 +Xi Aie�aiTi : (2.6)These non-perturbative 
orre
tions to W are essential to stabilize the geometry of the
ompa
t spa
e as initially demonstrated in [5℄. The K�ahler potential is not prote
tedby non-renormalization theorems and so it 
an, and in generally will, re
eive both per-turbative and non-perturbative 
orre
tions. It is usually assumed that the perturbative
ontributions will be dominant. Re
alling that the a
tion is a perturbative expansion inboth the string length ls � 2�p�0 and the string 
oupling gs � hRe(S)i we see that ingeneral the perturbative K�ahler potential 
an be written asK = K0 + ÆKgs + ÆK�0 : (2.7)Of parti
ular relevan
e for the large volume 
onstru
tions of [6℄ that we 
onsider throughoutthis work are the �03 
orre
tions to K [4℄. These originate from a 10 dimensional term ofthe form �03R4 and give rise to a 
orre
tion to the K�ahler potential for the K�ahler moduli[4℄: KK = �2 ln"V + �2g3=2s # ; (2.8)where � is related to the Euler number of the 
ompa
t spa
e. In the spirit of LVS 
om-pa
ti�
ations we demand that � > 0 [6℄.In order to write the s
alar potential expli
itly we need to spe
ify the geometry of the
ompa
t spa
e. We 
hoose it to be of the Swiss-
heese type, su
h that its volume is writtenas V = 1� "�Tb + �Tb2 �3=2 ��Ts + �Ts2 �3=2# = 1� ��3=2b � �3=2s � ; (2.9)where we have used the de�nition Ti � �i + ibi. Then taking into a

ount Eqs. (2.6) and(2.8), the s
alar potential for the K�ahler moduli se
tor 
an be written as:V = 83 �a2jAj2V e�2a�sp�s � 4 jAW jV2 a�se�a�s + 34 jW j2�V3g3=2s ; (2.10)in the limit where �s � �b � V2=3. The position of minimum is found by solving �V�V =�V��s = 0, from whi
h we �ndhVi = 3jW0j4�ajAjp�sea�s �1� 34a�s +O (a�s)�2� ; (2.11)
{ 4 {



and h�si3=2 � ��g3=2s �12 + 14a�s +O (a�s)�2� : (2.12)Given that h�si & 1 in the 
ontrollable regime of the theory, we see that the minimum forthe volume naturally lies at exponentially large values: hVi � ea�s .An interesting feature of the large volume minimum is the mass hierar
hy in the K�ahlermoduli se
tor, with the volume mode substantially lighter that the small moduli. This willbe important in the ensuing dis
ussion as it allows us to integrate out the small modulusand to identify the volume mode as the easiest modulus to destabilize. To see this one
omputes the eigenvalues of the physi
al mass matrix de�ned asM = �K�1�i�j ��jkV (2.13)at the minimum. Noting that sin
e V � 1 then 1=V � 1 is a good expansion parameter.To leading order in the inverse volume expansion, the eigenvalues of M are thenmb � MPV3=2 and ms � MPV : (2.14)In the large volume limit we then �nd mb � ms, and so at energies bellow ms we 
anstudy single �eld dynami
s by integrating out the heavier small modulus. Using Eq. (2.11)to eliminate the �s dependen
e from Eq. (2.10) we �nd that the potential for the volumemodulus 
an be written as V (V) = 1V3 �1� �(log V)3=2� (2.15)where � is a fun
tion of the 
ompa
ti�
ation parameters that will determine the positionof the minimum of the potential. In Eq. (2.15) we have negle
ted an unimportant overallO(1) fa
tor.The minimum for the volume modulus is lo
ated atloghVi�ploghVi � 1=2� = 1=� (2.16)whi
h 
an be approximated to loghVi = ��2=3 in the limit when loghVi � 1. As expe
tedform the large volume s
enario, the minimum is at this level AdS, its depth being given byhV i = ��2 loghVihVi3 : (2.17)It is essential that the LVS minimum is uplifted to Minkowsky or dS. That 
an bea
hieved by 
onsidering 
orre
tions to the potential 
oming from tension of anti branes atthe tip of warped throats [5℄, D-terms from magnetized branes [16℄ or dilaton-dependentnon-perturbative e�e
ts [17℄. Regardless of the mi
ros
opi
 origin of the uplifting term itgenerates a term of the form Vup = �Vp ; (2.18)where � is tuned su
h that V (hVi) = 0. Throughout this work we will assume p = 2 asgenerated by D3 branes [5℄. { 5 {



2.2 The lo
al 
ontribution to the potentialThe last remaining 
ontribution to the potential for the modulus is the term parameterizingthe intera
tion with lo
al distributions of matter. In [7℄ it was argued that low energy masss
ales and 
ouplings depended on the volume of the 
ompa
ti�
ation through RG running.In parti
ular the dependen
e would arise from the fa
t that in string 
ompa
ti�
ations thehigh energy 
ut-o� �UV from whi
h the 
ouplings start running is dependent on the volume.Typi
ally one �nds that �UV = MP=Vq. The value of q depends on whi
h physi
al s
ale
orresponds to �UV. The parti
ular value of q was found to have only a limited in
uen
eon the qualitative results and so throughout this analysis we identify �UV =Mstring whi
hsets q = 1=2 and yields a 
ontribution to the modulus potential that s
ales asVlo
al / �4UV / 1V2 : (2.19)It is 
onvenient to formulate the problem in terms of the 
anoni
ally normalized volumemodulus. From Eqs. (2.8) and (2.1) we �ndLK = 34�2b ���b���b (2.20)whi
h prompts the de�nition � �r32 log �b =r23 log V: (2.21)The uplifted large volume potential for the 
anoni
ally normalized volume modulus is thenV = �1� ��3=2� e�p27=2� + �e�p6�; (2.22)and the lo
al 
ontribution to the potential isVlo
al = �e�
�LM: (2.23)In Fig. 1 we depi
t the e�e
t of the lo
al term, Eq. (2.23), on the ba
kground potential forthe volume modulus, Eq. (2.22).3. Moduli destabilization and gravitational 
ollapseThe main aim of this paper is to study the stability of the moduli va
uum taking intoa

ount the intera
tion with matter. In parti
ular we investigate if the volume modulus
an be destabilized in the pro
ess of bla
k hole formation and if an observer outside thehorizon is able to probe the destabilized region.Intuitively one expe
ts that as an initial matter distribution 
ollapses and the lo
alenergy density in
reases, the system will eventually rea
h a state where the energy density isof the order of the large volume potential and is then able to destabilize the volume modulus
ausing a shift in its vev or in extreme 
ases triggering runaway and de
ompa
ti�
ation.The system's 
ontinued 
ollapse under its own gravitational attra
tion eventually results{ 6 {
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Figure 1: Volume modulus potential in regions of di�erent lo
al density. We see that as densityin
reases, the minimum gets lifted until it 
eases to exist, leading to destabilization of the volumemodulus.in the birth of a bla
k hole with all the matter hidden behind the event horizon. Theinteresting question is whether the destabilization that seems inevitable in these simplemodels is visible to an observer at in�nity or if the destabilized region is always shieldedby the event horizon.This system was originally studied in [7℄ where it was assumed that the bla
k hole wasformed from a initially dilute spheri
al distribution of pressureless dust. The spa
etimeinside this sphere was assumed to be a positively 
urved FRW whi
h was smoothly joinedto a S
hwarzs
hild spa
etime at the surfa
e of the dust sphere. Time dependen
e aroseonly through the FRW spa
etime s
ale fa
tor, with the modulus assumed to lie at the lo
alminimum of the potential. It was found that a small destabilized region would lie for a�nite time outside the horizon and so an external observer would in prin
iple be able toobserve it. This region would eventually fall beyond the S
hwarzs
hild radius making itina

essible for outside observers.Here we aim to extend the work of [7℄ by 
onsidering a fully dynami
al system, whereboth the metri
 and the modulus are allowed to vary over spa
etime. To do so we 
onsidera 
oupled system of four dimensional gravity, volume modulus and matter. The a
tion forthe system is given byS = Z dx4p�g � 116�R� 12r��r��� V (�) + �e�
�LM� ; (3.1)where V (�) is the uplifted large volume potential of Eq. (2.22). We model the matter{ 7 {




omponent by a s
alar �eld of mass m, with LagrangianLM = �12g���;��;� � 12m2�2; (3.2)and assume the spa
etime metri
 to take the formds2 = ��2(u; v)dudv + r2(u; v)d
2; (3.3)where u and v are null 
oordinates.The large volume potential's parameter � determined the volume of the 
ompa
ti�-
ation and through it the moduli masses. The uplift parameter � is tuned su
h that theva
uum at in�nity is Minkowski or dS. The parameters � and 
 determine the strength ofthe intera
tion between the modulus and matter. Guided by the fa
t that in [7℄ the valueof 
 did not have a signi�
ant impa
t on the results we 
hoose 
 = p6. Furthermore weset � exp�
�m = 1, where �m is the lo
al minimum of the potential V (�)1. Note that,there is a s
aling symmetry (�; �)! �D�; �pD� (3.4)for arbitrary D. And hen
e, for any 
al
ulation with �, we 
an res
ale and restore theresults.With the model in pla
e, we 
onsider the gravitational 
ollapses and study the modulidestabilization pro
ess.3.1 The methodIn this se
tion we solve the �eld equations numeri
ally using the double null formalism.We allow for a fully dynami
al metri
 as well as dynami
 matter s
alar �eld � and volumemodulus �, in an interesting appli
ation of the double null formalism of s
alar-tensorgravity. In [14℄, the authors dis
ussed responses of the Brans-Di
ke type �eld, but did notfo
us on the possibility to see the destabilization.We solve the Einstein equations:G�� = 8� �T��� + �e�
�TM��� ; (3.5)where the stress energy tensors areT��� = �;��;� � 12�;��;�g��g�� � V (�)g�� ; (3.6)TM�� = �;��;� � 12�;��;�g��g�� � 12m2�2g�� : (3.7)The �eld equations for the s
alar �elds are given by0 = �;��g�� � dVd� � 
�e�
�LM; (3.8)0 = �;��g�� � 
�;��;�g�� �m2�: (3.9)1Note that this amounts to 
hoosing the position of the minimum of the volume modulus �m.{ 8 {



It is 
onvenient to analyze the system in the double null 
oordinate system of Eq. (3.3).We de�ne the res
aled matter �eld and volume modulus as:p4�� � s; p4�� � S; (3.10)and their derivatives with respe
t to the null 
oordinates asW � S;u; Z � S;v; w � s;u; z � s;v: (3.11)In addition, the derivatives of the metri
 are de�ned asg � r;v; h � �;u� ; d � �;v� ; f � r;u: (3.12)We now write Eqs. (3.5)-(3.9) in terms of these new variables. Here we present only the�nal expressions, the intermediate steps are given in Appendix A. The Einstein equationsare f;u = 2fh� 4�rTuu; (3.13)g;v = 2gd � 4�rTvv ; (3.14)f;v = g;u = ��24r � fgr + 4�rTuv; (3.15)h;v = d;u = �2��2r2 T�� � f;vr ; (3.16)where the 
omponents of the stress-energy tensor are given by Eqs. (A.5)-(A.8). TheKlein-Gordon equations for the s
alars be
omez;u = w;v = �fzr � gwr + 
2p4� (Wz + Zw)� 14�2m2s; (3.17)Z;u =W;v = �fZr � gWr � ��2�V 0(S) + 
p4��e�
S=p4�LM� ; (3.18)where the matter Lagrangian is LM = wz2��2 � m28� s2: (3.19)The physi
s of the interplay between gravitational 
ollapse and moduli stability isen
oded by the solutions of the set of 
oupled �rst order di�erential Eqs. (3.13)-(3.18), forwhi
h me must provide appropriate initial 
onditions.3.2 Initial 
onditionsWe need initial 
onditions for all fun
tions (�; h; d; r; f; g; S;W;Z; s; w; z) on the initialu = ui and v = vi surfa
es, where we set ui = vi = 0.We have gauge freedom to 
hoose the initial r fun
tion. Although all 
onstant u andv lines are null, there remains freedom to 
hoose the distan
es between these null lines.Here, we 
hoose r(0; 0) = r0, f(u; 0) = ru0, and g(0; v) = rv0, where ru0 < 0 and rv0 > 0su
h that the radial fun
tion for an in-going observer de
reases and that for an out-goingobserver in
reases. { 9 {



In-going null surfa
e: We use a shell-shaped s
alar �eld. Therefore, its interior is nota�e
ted by the shell. First, it is 
onvenient to 
hoose ru0 = �1=2 and rv0 = 1=2; we
hoose that the mass fun
tion on ui = vi = 0 vanish, where the Misner-Sharp mass ism(u; v) = r2 �1 + 4r;ur;v�2 � 8�V (S)3 r2� : (3.20)Hen
e, to spe
ify a pure de Sitter ba
kground, for given r(0; 0) = r0 and S(0; 0) = Sm(lo
al minimum), then �(0; 0) = �1� 8�V (Sm)3 ��1=2 : (3.21)In addition, S(u; 0) = Sm and W (u; 0) = s(u; 0) = w(u; 0) = h(u; 0) = 0 hold.We need more information to determine d; g; z, and Z on the v = 0 surfa
e. We obtaind from Eq. (3.16), g from Eq. (3.15), z from Eq. (3.17), and Z from Eq. (3.18).Out-going null surfa
e: We �rst 
hoose S(0; v) = Sm. We 
an 
hoose an arbitraryfun
tion for s(0; v) to indu
e a 
ollapsing pulse. In this paper, we uses(ui; v) = Ap2D sin2�� v � vivf � vi� 
os�2� v � vivf � vi� (3.22)for vi � v � vf and otherwise s(ui; v) = 0, where ui = 0, vi = 0, and vf = 20 denotesthe end of the pulse in the initial surfa
e. We then obtain z(0; v) = s(0; v);v . Thisimplements one pulse of energy (Tvv � z2) along the out-going null dire
tion by the
ontinuous fun
tion z(0; v).Furthermore, from Eq. (3.14) we 
an use obtain d(0; v), sin
e g;v(0; v) = 0. Byintegrating d along v, we get �(0; v).We need more information for h; f; w and W on the u = 0 surfa
e. We obtain hfrom Eq. (3.16), f from Eq. (3.15), w from Eq. (3.17), and W from Eq. (3.18). This�nishes the assignments of the initial 
onditions.Finally, we 
an interpret this setup as follows (Fig. 2). We obtain a numeri
al resultsfor a given integration domain (u = 0; u = umax)� (v = 0; v = vmax) (left). By tilting 45-degree, we obtain a Penrose diagram (middle), sin
e the two 
oordinates are null. Initially,there was no bla
k hole, as the matter shell 
ollapses a bla
k hole forms. In the distantfuture, the geometry asymptoti
ally approa
hes that of a stati
 neutral bla
k hole (right).3.3 Simulations and resultsWe run the simulations with the aim of testing the intuitive pi
ture developed in [7℄, namelythat the denser the initial matter distribution, the more drasti
 the destabilization will be.The two relevant parameters to vary in this 
ontext are the mass and the amplitude ofthe matter s
alar �eld, m and A respe
tively. We also want to probe how the hight of themodulus potential barrier in
uen
es the dynami
s and the �nal state of the system. This
an be done by varying � keeping the remaining parameters un
hanged.With this in mind we perform 3 distin
t runs:{ 10 {
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Figure 2: Left: We obtain the left �gure from simulations. Middle: Tilting 45-degree, we obtain aPenrose diagram. Initially, there was no bla
k hole. At a 
ertain time, a matter shell 
ollapses anda bla
k hole is generated. After a long time, the geometry approa
hes a stati
 limit. Right: ThePenrose diagram for a stati
 neutral bla
k hole.� Run 1: We keep A = 7000, � = 0:05 �xed and vary the mass of the matter �eld inthe range m2 = 0:01; 0:05; 0:1; 0:2;� Run 2: We keep � = 0:05 , m2 = 0:05 �xed and vary the amplitude of the matter�eld in the range A = 6000; 6500; 7000; 7500;� Run 3: We keep A = 7000 , m2 = 0:05 �xed and vary the modulus potential param-eter in the range � = 0:05; 0:050001; 0:05001; 0:0501, adjusting � a

ordingly.Throughout all 3 runs we keep the initial size of the matter shell �xed at r0 = 10and its range at vf = 20. Furthermore we 
an use the s
aling freedom of Eq. (3.4) to set� = exp 
�m and set as in [7℄ the parameter in the exponential 
 = p6.For any given 
hoi
e of parameter we then 
an 
al
ulate all fun
tions in the inte-gration domain, using the se
ond order Runge-Kutta method [18℄. We have 
he
ked the
onvergen
e and 
onsisten
y of the simulation and present the analysis in Appendix B.In Fig. 3, we plot the result of Run 1, where we test the e�e
t of the mass of thematter �eld on the stability of the volume modulus. The plots on the left show the lines of
onstant radius while the plots on the right display the pro�le of the volume modulus. Westart by observing that all 
ausal stru
tures show a formation of a typi
al neutral bla
khole: a singularity is spa
e-like and an apparent horizon is also spa
e-like and approa
hesto a null dire
tion. However, the dynami
s of modulus �eld � is non trivial: we see thatthere are regions in spa
etime where � stays at its ba
kground minimum (sky blue-blue{ 11 {
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Figure 3: Run 1 results: solutions for r and � for m2 = 0:01; 0:05; 0:1; 0:2, A = 7000, � = 0:05.region in Fig. 3) but where the lo
al density is high enough, the volume modulus movesbeyond the position of the lo
al maximum (yellow-red region in Fig. 3). As the mass m2of the matter �eld in
reases, the destabilized region grows. The in
reased destabilizedregion postpones the formation of the bla
k hole. However, su
h non-trivial �eld dynami
s{ 12 {



d
estabilized

event horizon

Figure 4: Interpretation of the result on the Penrose diagram. Some e�e
ts of the destabilizedregion (dotted arrow) 
an be observed by an asymptoti
 observer, sin
e the destabilized region 
anbe outside of the event horizon (blue line).eventually disappear as a suÆ
ient time elapses, as one would expe
t from the no-hairtheorem. One 
ru
ial point is that the destabilized region is partially outside of the eventhorizon. In prin
iple any physi
al pro
ess happening in that region will di�er from the samepro
ess taking pla
e at in�nity, sin
e the di�erent volume modulus va
uum expe
tationvalue 
an lead to di�erent masses and 
ouplings. Outgoing light from that region (that inFig. 3 travels along horizontal lines) 
an rea
h an asymptoti
 observer sitting at in�nity (seeFig. 4 for an interpretation). This observer is therefore able to probe a region of spa
etimewhere the standard model masses and 
ouplings are distin
t from the ones measured inthe laboratory. To 
on
lude the analysis of Run 1, we note that the destabilization is moresevere for larger values of the matter �eld's mass, as one intuitively expe
ted.In Run 2, whose results are presented in Fig. 5, we vary the amplitude of the matter�eld, A. The results are similar to Run 1 and in a

ordan
e with the expe
tation thatthe larger the amplitude, the more energy will be stored in the matter shell and the morepronoun
ed the destabilization of the volume modulus. In addition, as the �eld amplitudein
reases, the size of the event horizon also in
reases.Fig. 6 depi
ts the e�e
ts of varying �, Run 3. The 
hange of � implies the 
hange of themass s
ale around the lo
al minimum of the volume modulus's potential and the 
hangein the hight of the potential barrier separating the minimum from de
ompa
ti�
ation. Wenote that the potential is very sensitive to the value of � and so it suÆ
es to vary thisquantity in a very narrow range. Here, we denote �, where the bla
k region is beyondthe lo
al maximum and white region is around the lo
al minimum. As � in
reases, the{ 13 {
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Figure 5: Run 2 results: � pro�le for A = 6000; 6500; 7000; 7500, � = 0:05, m2 = 0:05.bla
k 
oloured region suddenly disappears. In other words, as we in
rease �, the mass s
alearound the lo
al minimum in
reases, and hen
e the moduli �eld is 
on�ned by the lo
alminimum.3.4 Conditions for destabilizationHaving seen from the numeri
al results that destabilization of the volume modulus withina very dense region is indeed possible, we now try to identify the 
onditions for su
hbehaviour. The fundamental premise of this work is that in the presen
e of the matterdistribution the moduli potential gets modi�ed toVe�(�) = �1� ��3=2� e�q 272 � + �e�p6�| {z }�V +LMe�p6�: (3.23)The destabilization will begin when the e�e
tive potential Ve� 
eases to have a lo
alminimum. To �rst approximation this happens when both extrema (LVS minimum andthe potential barrier's maximum) be
ome degenerate and give rise to a saddle point. Wede�ne the 
riti
al 
orre
tion term �� su
h thatVe�(�) = �1� ��3=2� e�q 272 � + �e�p6� +��e�p6�; (3.24)and this 
orre
tion term makesV 0e�(�0m) = V 0e�(�0M) = 0 and ���0m � �0M�� = 0: (3.25){ 14 {
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Figure 6: Run 3 results: � pro�le for � = 0:05; 0:050001; 0:05001; 0:0501, A = 7000, m2 = 0:05.The white region 
orresponds the lo
al minimum and the bla
k region denotes the �eld value greaterthan the lo
al maximum.Clearly, �� depends on the moduli potential shape. If LM & ��, then the moduli �eld 
anstart to roll.This 
ondition on the lo
al energy density is a ne
essary 
ondition but it is not suÆ-
ient to guarantee destabilization in su
h a highly dynami
al pro
ess. If the va
uum energydominated region is too short (in time or length s
ale), then the modulus �eld will not rollsuÆ
iently and hen
e it will be perturbed but not destabilized. To guarantee that destabi-lization will take pla
e we require the width �v of the matter/va
uum energy dominatedregion to be suÆ
iently wide. From the modulus �eld equation of motion, Eq. (3.18), ifthe gradients of the s
alar �eld �;u �W and �;v � Z are suÆ
iently small (and hen
e theva
uum energy is dominant), thenS;uv ' ���2Ve�(S)0; (3.26)and the �eld moves �S after the time s
ale �u and �v�S ' ��2Ve�(S)0�u�v: (3.27)We 
an reasonably assume that spa
etime around that region is only moderately 
urved,whi
h allows us to 
hoose � � 1, and that �u � �v with the similar time/length s
ale. Ifthe �eld moves a distan
e �� from the lo
al minimum to the lo
al maximum of the originalpotential, we require the reasonable time/length s
ale of the va
uum energy dominated{ 15 {



region: �v 's 4��Ve�(�)0 : (3.28)If the va
uum energy dominated region is suÆ
iently wide, of the order of �v, then oneexpe
ts the modulus �eld to be destabilized beyond the lo
al maximum of the original po-tential. However, note that the pro
ess is highly dynami
al and hen
e detailed observationof numeri
al 
al
ulations is 
ru
ial.4. Dis
ussionIn this work we have investigated the interplay between gravitational 
ollapse and modulistability in the pro
ess of bla
k hole formation. We have worked within the frameworkof the large volume s
enario where the lightest modulus, and therefore the most easilydestabilized, 
orresponds to the s
alar �eld parameterizing the volume of the 
ompa
tspa
e. Modeling the bla
k hole formation with a 
ollapsing s
alar �eld shell we haveestablished that the volume modulus 
an indeed be destabilized and that the e�e
ts of thisdestabilization are visible to an asymptoti
 observer at in�nity. The fa
t that, for a �niteperiod of time, the destabilized region is a

essible from the outside of the bla
k hole isa rather interesting sin
e it opens a window to regions where the physi
al 
ouplings aredi�erent from the ones measured in less extreme environments. The fundamental reasonbehind this observation is that in the 
ontext of string theory mass s
ales and 
ouplings aregiven as fun
tions of the moduli vevs. If these vevs 
hange, as they do in the destabilizedregion, masses and 
ouplings will 
hange too. As an example one 
an imagine that if anele
tron-positron pair annihilate in the destabilized region, the resulting photons will haveenergies di�erent from the 511 KeV one would expe
t if the same pro
ess happened awayfrom the bla
k hole. Sin
e we have established that these �nal state photons 
an traveltowards an observer at in�nity, this observer would have a

ess to a spa
etime region withdi�erent laws of physi
s.We have shown that two 
onditions must be met in order to ensure destabilization ofthe volume modulus: the lo
al energy density must be suÆ
iently high and the thi
knessof the va
uum energy dominated region must be wide enough.It is worth noting that traditionally there were two known ways to destabilize a s
alar�eld in a potential. Firstly, it is possible to destabilize via various quantum tunneling
hannels [20℄. Se
ondly, it is also possible that a �eld 
an be 
lassi
ally destabilized viabubble 
ollisions [21℄. In this paper, we establish that there is a third way: a �eld 
anbe destabilized by gravitational 
ollapse, when there is a non-minimal 
oupling between the�eld and gravity.The results presented here assume one parti
ular moduli stabilization me
hanism andone expli
it form of the matter/moduli 
oupling, generalization to other models of modulistabilization, to other types of non-minimal 
oupling, and to other kinds of matter �eldsremain interesting open problems. In addition, if su
h a destabilization is possible viagravitational 
ollapses, then behaviour 
ould in prin
iple be found in bubble 
ollisions. For{ 16 {



this 
ase, the destabilized region 
an expand to the asymptoti
 region, giving rise to fully
edged de
ompa
ti�
ation. This would be a more extreme �nal state than the one foundin this study where the extent of the destabilized region was limited. We plan to addressthis in future work.A
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omponentsIn this appendix we 
ompute the 
omponents of the Einstein tensor and of the stress-energy tensor in terms of the variables de�ned in Eqs. (3.10)-(3.12). The 
omponents ofthe Einstein tensor are: Guu = �2r (f;u � 2fh) ; (A.1)Guv = 12r2 �4rf;v + �2 + 4fg� ; (A.2)Gvv = �2r (g;v � 2gd) ; (A.3)G�� = �4 r2�2 �d;u + f;vr � : (A.4)The 
omponents of the energy-momentum tensor are:8�Tuu = 8� �T�uu + �e�
S=p4�TMuu� ; (A.5)8�Tuv = 8� �T�uv + �e�
S=p4�TMuv� ; (A.6)8�Tvv = 8� �T�vv + �e�
S=p4�TMvv� ; (A.7)8�T�� = 8� �T��� + �e�
S=p4�TM��� ; (A.8)
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and TMuu = 14�w2; (A.13)TMuv = �216�m2s2; (A.14)TMvv = 14�z2; (A.15)TM�� = r22��2wz � r28�m2s2: (A.16)B. Consisten
y and 
onvergen
e 
he
ksIn this appendix, we report on the 
onsisten
y and 
onvergen
e tests for our simulations.As a demonstration, we 
he
k the 
ase � = 0:05, A = 7000, m2 = 0:05.For 
onsisten
y, we test one of the 
onstraint fun
tions:C = jf;u � 2fh+ 4�rTuujjf;uj+ j2fhj+ j4�rTuuj (B.1)around v = 10; 30; 50. Fig. 7 shows that it is less than 1 % ex
ept some points, where thedenominator os
illatory vanishes (f;u � 0). This will not be a

umulated as one integratesalong v. Therefore, this shows good 
onsisten
y.For 
onvergen
e, we 
ompared �ner simulations: 1� 1, 2� 2, and 4� 4 times �ner foraround u = 5; 10; 15. In Fig. 8, we see that the di�eren
e between the 1�1 and 2�2 times�ner 
ases is 4 times the di�eren
e between the 2� 2 and 4� 4 times �ner 
ases, and thusour simulation 
onverges to se
ond order. The numeri
al error is . 10�5%, ex
ept nearthe singularity.
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