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t: We study va
uum expe
tation values (VEVs) of 
ir
ular half BPS Wilsonloops in arbitrary representations in ABJM theory. We �nd that those in hook represen-tations are redu
ed to elementary integrations thanks to the Fermi gas formalism, whi
hare a

essible from the numeri
al studies similar to the partition fun
tion in the previousstudies. For non-hook representations, we show that the VEVs in the grand 
anoni
alformalism 
an be exa
tly expressed as determinants of those in the hook representations.Using these fa
ts, we 
an study the instanton e�e
ts of the VEVs in various representa-tions. Our results are 
onsistent with the worldsheet instanton e�e
ts studied from thetopologi
al string and a pres
ription to in
lude the membrane instanton e�e
ts by shiftingthe 
hemi
al potential, whi
h has been su

essful for the partition fun
tion.
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1 Introdu
tionRe
ently, there has been mu
h progress in understanding membranes in M-theory. It wasproposed in [1℄ that the low energy e�e
tive theory on the N multiple M2-branes on thegeometry C 4=Zk is des
ribed by the 3-dimensional N = 6 supersymmetri
 generalizationof the Chern-Simons matter theory with gauge group U(N)k�U(N)�k 
ommonly referredas ABJM theory. Furthermore it has been shown by using the lo
alization te
hnique [2℄that a 
lass of supersymmetri
 observables in the ABJM theory on S3 are des
ribed byso-
alled ABJM matrix model [3{6℄. { 1 {



The partition fun
tion Z(N) is the �rst fundamental quantity to be studied. Afterthe rather standard matrix model analysis in [7{9℄, there appeared a seminal paper, whi
hrewrites the ABJM partition fun
tion into the partition fun
tion of an ideal Fermi gassystem [10℄ (see also [11{13℄). One of the advantages in this Fermi gas formalism is thatinstead of the stringy 't Hooft expansion, we 
an a

ess to the M-theory region dire
tlyby taking large N limit with k �xed. As is usual in the statisti
al system, instead of thepartition fun
tion, it is 
onvenient to de�ne the grand partition fun
tion�(z) = 1XN=0 zNZ(N); (1.1)by introdu
ing the fuga
ity z = e� with the 
hemi
al potential �. Subsequently in [14{20℄, the partition fun
tion of the ABJM theory was studied extensively from this grandpartition fun
tion of the Fermi gas system. Finally, it turned out that the grand potentialJ(�) = log �(z) 
an be separated into the perturbative, worldsheet instanton [21℄, mem-brane instanton [8, 22℄ and bound state part. The worldsheet instanton part is determineddire
tly from the topologi
al string result [17℄. The membrane instanton part is also re-lated to the re�ned topologi
al string [20℄. As found in [19℄, the 
ontributions from all ofthe bound states 
an be in
orporated to the worldsheet instanton e�e
ts by shifting the
hemi
al potential � to an \e�e
tive" 
hemi
al potential �e� , whi
h is des
ribed by thesum of � and a part of the pure membrane instanton e�e
ts.Here we pro
eed to study the se
ond fundamental quantity, namely, the va
uum ex-pe
tation value (VEV) of the 
ir
ular half BPS Wilson loop �rstly introdu
ed in [23, 24℄.The half BPS Wilson loops have ni
e 
ounterparts in the open topologi
al string, as waspointed out in [7, 24℄. This is one of our motivation that we fo
us on them here. The halfBPS Wilson loops are 
lassi�ed by representations R of the supergroup U(N jN), whi
hin
ludes the gauge group U(N)�U(N) as the bosoni
 subgroup. By using the lo
alizationmethod [3{6℄, the unnormalized VEV of the Wilson loop WR in the representation R iswritten ashWRiN = 1(N !)2 Z Yi d�i2� d�i2� Qi<j(2 sinh �i��j2 )2(2 sinh �i��j2 )2Qi;j(2 
osh �i��j2 )2 e� 12gs Pi(�2i��2i ) StrR U;U =  U� 00 �U�! ; U� = diag(e�i); U� = diag(e�i); (1.2)where gs = 2�ik is the 
oupling 
onstant, and StrR is the U(N jN) 
hara
ter in the represen-tation R. A pres
ription to obtain StrR is summarized as follows. First, a representationof the supergroup U(N jN) is 
hara
terized by the super Young diagram, whi
h has thesame form as the usual Young diagram of the bosoni
 group U(1) (for example, see [25℄).Then, the supertra
e StrR U of the supergroup U(N jN) is found if we formally repla
ethe power sum trUn in trR U of U(1) by StrUn. Note that U appearing in StrR U is a2N � 2N matrix de�ned by (1.2).The 
omputation of the VEVs using the Fermi gas formalism was initiated in [26℄,where the inserted observables are restri
ted to the operators with winding number n,{ 2 {



λ4

λ3

λ2

λ1

λ
′

1 λ
′

2 λ
′

3 λ
′

4 λ
′

5

l3

l2l1

a3

a2

a1

(a) Partition notation (b) Frobenius notationFigure 1. (a) The partition notation [�1�2�3 � � � ℄ with its transpose [�01�02�03 � � � ℄ and (b) theFrobenius notation (a1a2 � � �arjl1l2 � � � lr) for the same Young diagram. Here r = maxfsj�s � s �0g = maxfsj�0s � s � 0g is the number of diagonal boxes, and ap, lq denote the horizontal andverti
al distan
es from ea
h diagonal box, respe
tively, given by ap = �p � p; lq = �0q � q. Inthe above 
ase, the Young diagram is [�1�2�3�4℄ = [5; 3; 3; 2℄ in the partition notation with itstranspose [�01�02�03�04�05℄ = [4; 4; 3; 1; 1℄, while it is (a1a2a3jl1l2l3) = (4; 1; 0j3; 2; 0) in the Frobeniusnotation.StrUn. Very re
ently, it was proposed in [27℄ that it is possible to study the perturbativepart and the worldsheet instanton part using the topologi
al strings. This subje
t keepson attra
ting various studies.1In this paper, we present a Fermi gas formalism for the VEVs in arbitrary represen-tations, suitable for numeri
al study, and study these non-perturbative e�e
ts. As in thepartition fun
tion, besides the worldsheet instanton 
ontribution, we also �nd the 
on-tribution 
oming from the membrane instanton, whi
h is diÆ
ult to be known from thetopologi
al string theory. In the following of this introdu
tion, we would like to explainour results in more details. Just as in the partition fun
tion, it is useful to 
onsider theVEV in the grand 
anoni
al ensemble de�ned byhWRiGC = 1�(z) 1XN=0 zN hWRiN : (1.3)Note that on
e we know hWRiGC, the VEVs in the 
anoni
al ensemble is easily re
overed.First, we �nd a formula for the VEV of the Wilson loop in the hook representation2R = (ajl) in terms of a 
ertain 
onvolution of integrationshW(ajl)iGC = haj z1 + z�1 jli: (1.4)1 See, for example, [28℄ for perturbative studies of the Wilson loop VEVs, [29, 30℄ for the holographi
studies and [31℄ for an attempt to generalizations.2 Throughout this paper, we use the Frobenius notation to express representations of U(N jN) illustratedin Figure 1.
{ 3 {



Here �1 is the density operator of the Fermi-gas system de�ned later in (2.9), and the stateshaj and jli in the 
oordinate basis are given by (3.9). The expression (1.4) is a

essiblefrom the numeri
al studies with very high pre
ision.Se
ond, we extend our analysis to general representation R = (a1a2 � � � arjl1l2 � � � lr).In operator level, the Wilson loop is simply given by the determinant of those in the hookrepresentations, known as the Giambelli formula,3W(a1a2���arjl1l2���lr)(e�; e�) = det p;qW(apjlq)(e�; e�): (1.5)In this paper, we �nd that the VEVs in the grand 
anoni
al ensemble exa
tly satisfy thesame type of the formula,hW(a1a2���arjl1l2���lr)iGC = hdet p;qW(apjlq)iGC = det p;q�hW(apjlq)iGC�: (1.6)Hen
e the VEVs of the half BPS Wilson loops in general representations 
an be 
om-puted only from those in hook representations. We emphasize that this result is veryunexpe
ted and non-trivial. In the mathemati
al 
ontext, a normalized linear fun
tionalhOi of symmetri
 fun
tions O satisfying the above property is 
alled Giambelli 
ompatible(see e.g. [32℄). Let us further 
all a linear fun
tional being fa
torizable if it satis�es theproperty hO1O2i = hO1ihO2i. Note that the fa
torizability implies the Giambelli 
ompa-bility. In this terminology, we show that the grand 
anoni
al VEV of the half BPS Wilsonloop is Giambelli 
ompatible but not fa
torizable. We also �nd that its perturbative partis fa
torizable (see (5.10)). Note that the fa
torization of the grand 
anoni
al VEV alsoimplies that of the 
anoni
al VEV in the large N limit, whi
h is natural from the physi
alviewpoint. The fa
torization property, however, is generi
ally broken by the instanton 
on-tributions. Nevertheless, the Giambelli 
ompatibility is still preserved after the instantone�e
ts are taken into a

ount.Finally, using our results (1.4) and (1.6), we also study the stru
ture of the instanton
orre
tions to the VEVs in various representations by the numeri
al studies. The VEVs,in general, re
eive the following 
orre
tions,hWRiGC =WGC(pert)R (�; k)(1 +WGC(WS)R (�; k) +WGC(others)R (�; k)); (1.7)where WGC(pert)R (�; k) is the perturbative part, WGC(WS)R (�; k) is the worldsheet instanton
orre
tion, and WGC(others)R (�; k) 
onsists of the pure membrane instanton 
orre
tion andthe 
ontribution from the bound states. We have found that our numeri
al results mat
hwith the topologi
al string predi
tion of the perturbative part and the worldsheet instantonpart with the 
hemi
al potential shifted from � to �e� to in
orporate the 
ontribution fromthe membrane instantons and the bound states:hWRiGC =WGC(pert)R (�e� ; k)(1 +WGC(WS)R (�e� ; k)); (1.8)exa
tly the same as in the partition fun
tion. Here the \e�e
tive" 
hemi
al potential�e� was introdu
ed in [19℄ in order to explain the bound state 
ontribution in the grand3 We often write WR(e�; e�) instead of StrRU to represent the Wilson loop insertion apparently.{ 4 {



potential, �e� = �+ �2k2 1X̀=1 a`(k)e�2`�; (1.9)where a`(k) are the fun
tions appearing in the membrane instanton 
orre
tion in the grandpotential. The forms of a`(k) are exa
tly 
omputed by the re�ned topologi
al string onlo
al P1�P1 [20℄. We should stress that the perturbative part and the worldsheet instantonpart in (1.8) are 
omputed from the open topologi
al string on lo
al P1 � P1 as we willsee in se
tion 5. Thus our result states that on
e we determine the topologi
al string freeenergy on this ba
kground, we 
an exa
tly �nd the VEVs of the half BPS Wilson loops ingeneral representations in the ABJM theory.The organization of this paper is as follows. In the next se
tion we present a generalframework to study the VEVs of the BPS Wilson loops and apply it to the half BPS 
ase inthe hook representation in se
tion 3. Sin
e it is diÆ
ult to apply this formalism dire
tly tothe half BPS Wilson loops in the non-hook representation, we shall present an alternativemethod in se
tion 4, whi
h works only for the half BPS Wilson loop. After reviewingthe results from the topologi
al strings in se
tion 5, we summarize our numeri
al study inse
tion 6. Finally we 
on
lude in se
tion 7.2 BPS Wilson loops in general representationsHere we present methods to study the VEV of the Wilson loop in the ABJM theory usingthe Fermi gas formalism. We shall �rst present a framework to study general 1=6 BPSWilson loop 
onstru
ted in [33℄ (see also [34, 35℄), whi
h in
ludes the half BPS Wilson loopas a spe
ial 
ase.2.1 Partition fun
tionFor this purpose let us �rst review the derivation of the Fermi gas formalism for thepartition fun
tion [10℄ 
arefully be
ause our Wilson loop insertion is based heavily on it.The starting point is the partition fun
tion of the ABJM matrix model [3{6℄:Z(N) = 1(N !)2 Z Yi d�i2� d�i2� Qi<j(2 sinh �i��j2 )2(2 sinh �i��j2 )2Qi;j(2 
osh �i��j2 )2 e� 12gs (Pi �2i�Pj �2j ); (2.1)By using the Cau
hy identity and performing a Fourier transformation, the partition fun
-tion (2.1) is rewritten intoZ(N) = 1N ! Z Yi dxi~ dyi~ X�2SN(�1)�� Z Yi dpi2� dqi2� Yi �e� i~pi(xi�yi)2 
osh pi2 e� i~qi(xi�y��1(i))2 
osh qi2 �e i2~ (Pi x2i�Pj y2j ); (2.2)
{ 5 {



where we res
ale the integration variables as �i = xik ; �j = yjk and ~ = 2�k. Afterperforming the Gaussian integral over x and y by 
ompleting the square in the exponenti2~x2i � i~xi(pi + qi)� i2~y2i + i~yi(pi + q�(i))= i2~(xi � pi � qi)2 � i2~ (yi � pi � q�(i))2 � i2~ (pi + qi)2 + i2~(pi + q�(i))2; (2.3)and noting the 
an
ellation of the p2 and q2 terms, the partition fun
tion be
omesZ(N) = 1N ! Z Yi dpidqi2�~ X�2SN(�1)�Yi eipi(q�(i)�qi)=~2 
osh pi2 � 2 
osh qi2 : (2.4)If we further integrate over p in (2.4), then we �ndZ(N) = 1N ! Z Yi dqi~ X�2SN (�1)�Yi 1q2 
osh q�(i)2 12 
osh q�(i)�qi2k 1q2 
osh qi2 : (2.5)Sin
e the partition fun
tion Z(N) has the form of an ideal Fermi gas system asZ(N) = 1N ! X�2SN (�1)� Z Yi dqi~ Yi �1(qi; q�(i)); (2.6)with �1(qi; qj) = 1q2 
osh qj2 12 
osh qj�qi2k 1q2 
osh qi2 ; (2.7)it is easier to 
onsider the grand 
anoni
al partition fun
tion (1.1) by introdu
ing thefuga
ity z = e�. One 
an show that the grand partition fun
tion is expressed as a Fredholmdeterminant, �(z) = Det(1 + z�1); (2.8)where the determinant Det is taken over the whole Hilbert spa
e of the Fermi gas system.In the operator formalism, the density matrix �1 is given by�1 =pQPpQ; with P = 12 
osh p2 ; Q = 12 
osh q2 ; (2.9)where q and p satis�es the 
anoni
al 
ommutation relation [q; p℄ = i~ with ~ = 2�k. Weadopt this notation in what follows.2.2 Operator insertionGeneral 1=6 BPS Wilson loops in the ABJM theory are generated by the following type ofoperator [3℄: Yi f(e�i)g(e�i); (2.10)
{ 6 {



where f(x) and g(x) are rational fun
tions of x. In this se
tion we translate the insertionof this operator into the one of a 
ertain quantum me
hani
al operator expressed by (q; p).As a warming up, let us �rst 
onsider the operator insertionen�M = e 2�nxM~ ; (2.11)into the partition fun
tion (2.2). After 
ompleting the square in integrating over xM and
ombining with the 
ontribution from integrating yM as in the 
omputation of the partitionfun
tion, we �nd an extra 
ontribution into the exponent:i~pM(�2�in) + 2�n~ (qM + �in): (2.12)Performing the integration over pM , the unnormalized VEV is �nally given byhen�M iN = 1N ! Z Yi dqi~ X�2SN (�1)� Yi 6=M �1(q�(i); qi)� 1q2 
osh q�(M)2 e 2�n~ (qM+�in)2 
osh q�(M)�qM�2�in2k 1q2 
osh qM2 : (2.13)In the language of quantum me
hani
al operators, the se
ond line 
an be interpreted asthe matrix elementhq�(M)jpQPen(q+p)k pQjqM i = hq�(M)jpQenpk Pen(q+i�n)k pQjqM i: (2.14)Therefore we 
on
lude that the insertion of the operator en�M is amount to the insertionof the operator W n on the right-hand-side of P , where W is de�ned byW = e q+pk : (2.15)Similarly, we �nd that the insertion of the operator en�M amounts to insertion of thesame operator W n on the left-hand-side of P . This 
an be seen by repeating the square
ompletion in the exponent with an extra fa
tori~pM (�2�in) + 2�n~ (q�(M) � �in); (2.16)and 
omputing of the matrix elementhq�(i)jpQen(q+p)k PpQjqii = hq�(i)jpQen(q��in)k enpk PpQjqii: (2.17)Note that this interpretation is fa
tor-wise. Namely, not only other additive terms inthe insertion do not a�e
t this interpretation, but this interpretation is valid even if thisoperator is multiplied by other operators. We 
an also see that the simultaneous insertionat the same position M , namely, em�M+n�M also works well.Therefore we 
an summarize the 
omputation rule as follows. For the 
ase of thepartition fun
tion, we �nally end up with the summation over the 
onjuga
y 
lasses andthe study of Tr �m1 = TrpQPQPQPQP � � �pQ: (2.18){ 7 {



For the 
ase of Wilson loop, we insert W into various slots between Q and P in this tra
e.The insertion pattern depends on the representation, but sin
e we are 
onsidering the gaugeinvariant operator, we have to take a tra
e, namely, sum over all the insertion slots. Hen
eour formula 
an be summarized as�(z)DYi f(e�i)g(e�i)EGC = Det�1 + zpQg(W )Pf(W )pQ�; (2.19)where hOiGC denotes the expe
tation value of the operator O in the grand 
anoni
alensemble (1.3). On
e the grand 
anoni
al VEV is understood, one 
an easily return to the
anoni
al VEV via hOiN = 12�i I dzzN+1 �(z)hOiGC: (2.20)Alternatively, we 
an show the relation (2.19) using the operator formalism as follows.The expe
tation value of Qi f(e�i)g(e�i) at �xed N is given byDYi f(e�i)g(e�i)EN = 1N ! X�2SN(�1)� Z Yi d�i2� d�i2��Yi f(e�i)g(e�i)e ik4� (�2i��2i )Yi 12 
osh ��(i)��i2 12 
osh �i��i2 : (2.21)By res
aling �i = xik ; �i = yik , this is rewritten asDYi f(e�i)g(e�i)EN = 1N ! X�2SN(�1)� Z Yi dyi~ Yi �(yi; y�(i)); (2.22)where � denotes the density matrix in the presen
e of operator insertion�(yi; yj) = Z dx~ e i2~ (x2�y2j )f(exk )g(e yjk )2 
osh yj�x2k � 2 
osh x�yi2k= Z dx~ hyjje� iq22~ g(e qk ) 12 
osh p2 jxihxjf(e qk )e iq22~ 12 
osh p2 jyii= hyj je� iq22~ g(e qk ) 12 
osh p2 f(e qk )e iq22~ 12 
osh p2 jyii: (2.23)This 
an be written as an operator equation� = e� iq22~ g(e qk ) 12 
osh p2 f(e qk )e iq22~ 12 
osh p2= e� iq22~ e� ip22~ g(e q+pk ) 12 
osh p2 f(e q+pk ) 12 
osh q2 e ip22~ e iq22~ ; (2.24)where we have usede iq22~ F (p)e� iq22~ = F (p� q); e ip22~ G(q)e� ip22~ = G(q + p): (2.25)Therefore, up to a similarity transformation the density matrix in (2.24) be
omes� =pQg(W )Pf(W )pQ; (2.26)whi
h reprodu
es (2.19). { 8 {



3 Half BPS Wilson loops I: hook representationsIn the previous se
tion, we have presented a general framework to study the VEVs of thegeneral 1/6 BPS Wilson loop in the Fermi gas formalism. Espe
ially we have redu
edthe problem into 
omputing the tra
e with alternating operators Q and P and variousW -insertions. This quantity, however, is still diÆ
ult to 
ompute, at least, numeri
allywith high pre
ision. Here we would like to see what kind of simpli�
ation will o

ur if werestri
t ourselves to the half BPS Wilson loops.3.1 Representations of the superalgebraThe half BPS Wilson loop is 
lassi�ed by the representation of U(N jN) [23, 24℄. Inthis subse
tion we review representations of the supergroup U(N jN). For this purpose,it is 
onvenient to 
onsider representations of U(1). A simple pres
ription to derive the
hara
ter of U(N jN) is to formally repla
e trUn in the 
hara
ter trR U of U(1) by StrUn:StrRU = trRU jtrUn!StrUn : (3.1)Note that the 
hara
ter trR U is given by the S
hur fun
tion asso
iated with the Youngdiagram R. The supertra
e StrRU 
an be expressed by a 
ombination of 
hara
ters of twobosoni
 subgroups U(N) of U(N jN). For example, in the 
ase of the 2nd anti-symmetri
representation (0j1), the superalgebrai
 generalization turns out to beStr(0j1)U = 12(StrU)2 � 12 StrU2= tr(0j1) U� + tr(0j0) U� tr(0j0) U� + tr(1j0) U� : (3.2)where U� and U� are the bosoni
 parts of U (see (1.2)). Below, we often denote thesupertra
e StrRU by WR(e�; e�), and use the abbreviation WR = WR(e�; e�) as long asthere is no risk of 
onfusion.3.2 Beyond winding Wilson loopsThe Wilson loop with the winding number nStrUn =Xi en�i � (�1)nXi en�i ; (3.3)was studied extensively in [26℄. By revisiting this in our formalism, we will obtain a hintto study the more general representations as in the following.In our formalism, applying the rule in (2.19) with the 
hoi
e,f(W ) = 1 + tW n; g(W ) = 11 + t(�W )n = 1f(�W ) ; (3.4)and pi
king up the linear term in t, the grand 
anoni
al VEV of StrUn is given byhStrUniGC = Tr hR(z)pQ (PW n � (�W )nP )pQi ; (3.5)
{ 9 {



with R(z) de�ned by R(z) = z1 + z�1 : (3.6)One 
an easily see that the operator appearing on the right-hand-side is expanded asPW n � (�W )nP = n�1Xl=0(�1)lW l(WP + PW )W n�1�l: (3.7)Note that the operator appearing in the right-hand-side of (3.7) has the fa
torized formhq2jW n(WP + PW )Wmjq1i = hq2j 1pQ jnihmj 1pQ jq1i; (3.8)where the 
oordinate q representations of jni and hmj are de�ned byhqjni = e(n+ 12 ) qk��ik n(n+1)q2 
osh q2 ; hmjqi = hqjmi� = e(m+ 12 ) qk+�ik m(m+1)q2 
osh q2 : (3.9)As a formal operator relation, (3.8) is also written aspQW n(WP + PW )WmpQ = jnihmj: (3.10)Thus we �nally obtain the grand 
anoni
al VEV of the winding Wilson loop (3.5) ashStrUniGC = n�1Xl=0 (�1)lhn� 1� ljR(z)jli: (3.11)Comparing with the relation between the winding Wilson loop StrUn and the Wilson loopW(ajl) in the hook representationStrUn = n�1Xl=0(�1)lW(n�1�ljl); (3.12)it is tantalizing to expe
t the relationhW(ajl)iGC = hajR(z)jli; (3.13)whi
h is true as we will see in the next subse
tion.More generally, the 
omputation of the VEVs of the half BPS operators redu
es topi
king up a 
ertain fun
tion f(W ) and 
omputing the Fredholm determinant of the 
or-responding density matrix �f�(z)DYi f(e�i)f(�e�i)EGC = Det(1 + z�f ) with �f =pQ 1f(�W )Pf(W )pQ: (3.14)Rewriting the density matrix in the above expression as�f � �1 =pQ 1f(�W )�Pf(W )� f(�W )P�pQ=pQ 1f(�W ) 1Xn=0 f (n)(0)n! (PW n � (�W )nP )pQ; (3.15)and re
alling (3.7), one 
an see that the grand 
anoni
al VEV of the half BPS Wilson loops
an always be written as a sum of the fa
torized fun
tions.{ 10 {



3.3 Single-hook representationsFor the half BPS Wilson loop in a single-hook representation (ajl), the generating fun
tionis given by [36℄1 + (s+ t) 1Xa;l=0 satlW(ajl) = Sdet� 1 + tU1� sU� = NYj=1 (1 + te�j )(1 + se�j )(1� se�j )(1� te�j ) : (3.16)When plugging f(W ) = 1 + tW1� sW ; (3.17)into our formula (3.14), we �nd that the 
orresponding density matrix fa
torizes as�f = �1 + (s+ t) 1Xa;l=0 satljlihaj: (3.18)Therefore, the grand 
anoni
al VEV of (3.16) be
omesD1 + (s+ t) 1Xa;l=0 satlW(ajl)EGC = Det(1 + z�f )Det(1 + z�1)= Det0�1 + (s+ t) 1Xa;l=0 satlR(z)jlihaj1A = 1 + (s+ t) 1Xa;l=0 satlhajR(z)jli: (3.19)Finally, the grand 
anoni
al VEV of W(ajl) is found to be (3.13) whi
h is a

essible fromthe numeri
al studies similar to the partition fun
tion in the previous studies [15{17, 19℄.4 Half BPS Wilson loops II: general representationsIn the previous se
tions, we have presented a method to 
ompute the supersymmetri
Wilson loops and shown that espe
ially for the half BPS Wilson loop in the hook rep-resentation, there is a fa
torization, whi
h at least simpli�es the numeri
al study. Theabove analysis for the hook representation is, however, diÆ
ult to be extended to a generalnon-hook 
ase. Here we shall present a 
ompletely di�erent analysis whi
h is e�e
tive forstudying the non-hook representations from the hook representations but only suitable forthe half BPS Wilson loop.4.1 Non-hook representationsAfter understanding the VEV in the hook representation in the previous se
tion, we 
an gobeyond the hook representation step by step. Namely, we 
an substitute various fun
tionsfor f(W ) and subtra
t the known hook part. For example, if we plug f(W ) = etW , whi
h
orresponds to the generating fun
tion of (StrU)n, and 
ompare O(t4) terms, then we �ndhW(10j10)iGC = det hW(1j1)iGC hW(1j0)iGChW(0j1)iGC hW(0j0)iGC:! = det h1jR(z)j1i h1jR(z)j0ih0jR(z)j1i h0jR(z)j0i! (4.1)More generally, it is easy to imagine the expression in (1.6). By 
hanging the fun
tionfor f(W ), we will en
ounter various relations supporting this 
onje
ture. However, it isdiÆ
ult to prove it dire
tly using this formulation.{ 11 {



4.2 A proofHere we give a proof of (1.6):hW(a1a2���ar jl1l2���lr)iGC = det p;q�hW(apjlq)iGC�;with a 
ompletely di�erent method.4 The Giambelli formula states thatW(a1a2���arjl1l2���lr)(e�; e�) = det p;qW(apjlq)(e�; e�):Therefore, we would like to studyhW(a1a2���arjl1l2���lr)(e�; e�)i = hdet p;qW(apjlq)(e�; e�)i: (4.2)Instead of 
omputing it dire
tly, here let us 
onsiderW (N) = hdet p;q(Æp;q + tW(apjlq)(e�; e�))i; (4.3)and pi
king up the 
oeÆ
ient of the highest tr term. The reason we want to 
onsiderW (N)is be
ause this is a generalization of the Cau
hy determinantdet i;j[(xi + yj)�1 + tPrp=1 xapi ylpj ℄det i;j[(xi + yj)�1℄ = det p;q[Æp;q + tW(apjlq)(x; y)℄: (4.4)The proof of this formula for r = 1 is simply redu
ed to a more general formula in [37℄.5The proof for r > 1 is redu
ed to the 
ase of r = 1 by the formuladet I;J=1;��� ;N�ÆI;J + nXk=1(V )Ik(UT)kJ� = det i;j=1;��� ;n�Æi;j + NXK=1(UT)iK(V )Kj�; (4.6)whi
h is true sin
e tr(V UT)m = tr(UTV )m for any positive integer m. To simplify our
omputation in the following, let us de�ne[d�i℄ = d�i2� e� 12gs �2i ; [d�i℄ = d�i2� e 12gs �2i : (4.7)Then the quantity we want to 
ompute be
omesW (N) = 1N ! Z Yi [d�i℄[d�i℄ det p;q(Æp;q + tW(ap;lq)(e�; e�))4We are grateful to Sho Matsumoto for his 
ollaborative 
ontribution in sharing his idea of proof andthe referen
es with us in this subse
tion.5The formula of [37℄ for the r = 1 
ase is written asW(ajl)(x; y) = NXi;j=1 yliM�1ij xaj (4.5)where M�1 is the inverse of Cau
hy matrix Mij = 1=(xi + yj). One 
an show that the generating fun
tionof (4.5) reprodu
es (3.16).
{ 12 {



� X�2SN(�1)�Yi 12 
osh ��(i)��i2 12 
osh �i��i2 : (4.8)Using the formula (4.4), we 
an rewrite this asW (N) = 1N ! X�2SN (�1)� Z Yi [d�i℄Yi �(�i; ��(i)); (4.9)where �(�i; �j) = Z [d�℄� 12 
osh �j��2 + t rXp=1 e(lp+1=2)�j e(ap+1=2)�� 12 
osh ���i2 : (4.10)Sin
e the VEV 
an be interpreted as the partition fun
tion of the ideal Fermi gas systemjust as the partition fun
tion (2.6), it is natural to introdu
e the generating fun
tion as
(z) = 1XN=0 zNW (N) = Det(1 + z�); (4.11)where Det is de�ned through the tra
e over the indi
es � with the measure in (4.7).Therefore, if we de�neQ(�; �) = 12 
osh ���2 ; P (�; �) = 12 
osh ���2 ; �1 =pQPpQ;�haj 1pQ� (�) = e(a+1=2)�; � 1pQ jli� (�) = e(l+1=2)� ; (4.12)then we �nd 
(z) = Det�1 + z�P + t rXp=1 1pQ jlpihapj 1pQ�Q�= Det(1 + z�1) det p;q�Æp;q + zthapj(1 + z�1)�1jlqi�: (4.13)where the multipli
ation among variables in the boldfa
e 
hara
ter are understood as ma-trix multipli
ation with indi
es �; � and measures in (4.7). Note that the square root pQshould be regarded as a formal notation. We 
an express the integrations without it. Thereason we introdu
e it is be
ause of the relation to the previous quantities as we shall seebelow. Here, in the last equation we have used the formuladet i;j=1;��� ;D�Æi;j + rXp=1(lp)i(ap)j� = det p;q=1;��� ;r�Æp;q + DXi=1(ap)i(lq)i�; (4.14)whi
h is the same as (4.6) if we 
hange the variables by (V )Ik = (lk)I , (UT)kJ = (ak)J .Now if we pi
k up the tr term, then we �nd�(z)D det p;qW(apjlq)(e�; e�)EGC = Det(1 + z�1) det p;qhapjz(1 + z�1)�1jlqi: (4.15)
{ 13 {



This holds for both the hook and the non-hook 
ases.Now using this result (4.15) we 
an redu
e the proof of (1.6) to the result of (1.4)given in the previous se
tion or we 
an prove (1.4) independently. Let us �rst 
onsider toredu
e to the previous result. If we pi
k up the 
onstant term by taking the limit t ! 0,we �nd 1XN=0 zN h1iN = Det(1 + z�1): (4.16)Comparing with the expression for the partition fun
tion (2.8), we �ndDet(1 + z�1) = Det(1 + z�1): (4.17)Also, if we apply the above results to the single-hook 
ase, we �nd�(z)hW(ap jlq)(e�; e�)iGC = Det(1 + z�1)zhapj(1 + z�1)�1jlqi: (4.18)Again 
omparing with the expression for the hook representation we have, we �ndhapj(1 + z�1)�1jlqi = hapj(1 + z�1)�1jlqi: (4.19)Plugging (4.17) and (4.19) ba
k to (4.15), we have shown thatDW(a1a2���ar jl1l1���lr)EGC = det p;q�hapjR(z)jlqi�: (4.20)Instead of our 
omparison with the known results, the argument here also suggests thatif we restri
t ourselves to the half BPS Wilson loop, we 
an have an alternative derivationfor the hook 
ase if we evaluate 
arefully Det(1 + z�1) and hapj(1 + z�1)�1jlqi. The
omputation of Det(1 + z�1) is exa
tly what we did around (2.4). Also, the 
omputationof haj(1 + z�1)�1jli be
omesZ dx~ eix2=(2~) � � � Z dy~ e�iy2=(2~)e2�(a+ 12 )x=~ e�iqx(x�y0)=~2 
osh qx2 � � � e�iqy(x0�y)=~2 
osh qy2 e2�(l+ 12 )y=~; (4.21)In 
ompleting the square for x and y we �ndi2~x2 � iqx~ x+ 2�(a+ 1=2)~ x = i2~(x� qx � 2�i(a + 1=2))2 � i2~ (qx + 2�i(a+ 1=2))2;� i2~y2 + iqy~ y + 2�(l + 1=2)~ y = � i2~(y � qy + 2�i(l + 1=2))2 + i2~ (qy � 2�i(l + 1=2))2:(4.22)Note that q2 terms 
an
el with the square 
ompletion from the neighboring terms. Hen
e,we are left with 12k ((a+ 1=2)qx + 2�ia(a+ 1) + (l + 1=2)qy � 2�il(l + 1)): (4.23)This is nothing but the exponent we found in (3.8) with (3.9). We note in passing that theabove 
omputation 
an be done also in the operator formalism.{ 14 {



4.3 Fermioni
 representationOur general expression (4.20) of the Wilson loop VEV suggests that there is an underlyingfermioni
 stru
ture. This is expe
ted from the fermioni
 nature of D-branes in topologi
alstring theory [38℄. Introdu
ing the fermions (x) =Xn2Z n+ 12x�n�1;  �(x) =Xn2Z �n+ 12x�n�1; (4.24)with the standard anti-
ommutation relationf r;  �sg = Ær+s;0; (4.25)su
h that the va
uum is annihilated by the positive modes as rj0i =  �r j0i = 0 for r > 0; (4.26)we de�ne the state jV i asjV i = exp24 1Xa;l=0hW(ajl)iGC �a� 12 ��l� 1235 j0i = exp24 1Xa;l=0hajR(z)jli �a� 12 ��l� 1235 j0i:(4.27)In terms of this state jV i, the grand 
anoni
al VEV of the Wilson loop W(a1a2���arjl1l2���lr)is 
ompa
tly written asDW(a1a2���arjl1l1���lr)EGC = h0j rYi=1 �ai+ 12 li+ 12 jV i: (4.28)This is reminis
ent of the expression of topologi
al vertex in [38℄. Indeed, the perturbativepart of a single-hook Wilson loop is determined by the topologi
al vertex of C 3hW(ajl)iGC(pert) = q 14a(a+1)� 14 l(l+1)[a+ l + 1℄[a℄![l℄! ia+l+1e 2(a+l+1)�k ; (4.29)with [n℄ = q n2 � q�n2 and q = e 4�ik . Using the q-binomial formula, one 
an show that thealternating sum of (4.29) reprodu
es the perturbative part of winding Wilson loop [26℄Xa+l=n�1(�1)l q 14a(a+1)� 14 l(l+1)[a+ l + 1℄[a℄![l℄! ia+l+1e 2(a+l+1)�k = in[n℄e 2n�k = in�12 sin 2�k e 2n�k : (4.30)5 Relation to open topologi
al stringsIn this se
tion, we see a relation between the VEVs of the half BPS Wilson loops and theopen topologi
al string amplitudes. As is well-known, the ABJM matrix model is related tothe L(2; 1) lens spa
e matrix model by analyti
 
ontinuation [7, 24℄ (see also [39, 40℄). Thislens spa
e matrix model is also related to the topologi
al string on lo
al P1 � P1 through{ 15 {



the large N duality [41℄. In fa
t, the perturbative and the worldsheet instanton parts in theABJM partition fun
tion 
an be 
aptured by the result of the 
losed topologi
al string onlo
al P1�P1. Similarly, the VEVs of the half BPS Wilson loops are des
ribed by the opentopologi
al string. Here we are interested in the VEVs in the grand 
anoni
al ensemble,whi
h 
orresponds to the so-
alled large radius frame on the topologi
al string side. Theopen topologi
al string in this frame was re
ently studied in detail in [27℄.We note that the membrane instanton 
orre
tions are diÆ
ult to be known from thetopologi
al string be
ause these 
orre
tions 
orrespond to the non-perturbative e�e
ts inthe topologi
al string. We will explore the membrane instanton 
orre
tions in the nextse
tion with the help of the numeri
al analysis.First we brie
y summarize the result of [27℄. The open topologi
al string amplitudestake the following general form [42{44℄,F open(t; V ) = X�2H2(X) 1Xg=0 1Xh=1X̀ 1Xm=1 1h!ng;�;` 1m�2 sinhmgtop2 �2g�2� hYj=1� 2̀j sinhm`jgtop2 trV m`j�e�m��t; (5.1)where t is the K�ahler moduli of the lo
al Calabi-Yau X, and V is the open string moduli.For the ABJM theory, we are interested in lo
al P1 � P1. The string 
oupling in thetopologi
al string is related to the Chern-Simons level,gtop = 4�ik : (5.2)There are two K�ahler moduli, whi
h are identi�ed as the 
hemi
al potential � dual to theoriginal rank N , t1 = t2 = T = 4�k � �i; Q � e�T = �e� 4�k : (5.3)Similarly, the open string moduli V is also identi�ed with the dual variable for the Wilsonloop insertion U . Then, we 
an relate the perturbative part and worldsheet instanton partof the grand 
anoni
al VEVs in the ABJM theory to the above open topologi
al stringamplitudes. The 
on
rete relation is given expli
itly by [27℄,eF open(t;bV ) = �exp� 1Xj=1 1j StrU j trV j��GC(pert+WS) (5.4)= Xn1;n2;::: 
n1;n2;:::h(StrU)n1(StrU2)n2 � � �iGC(pert+WS)(trV )n1(tr V 2)n2 � � � ;with 
n1;n2;::: = 1=(Qj jnjnj!). Note that to write down the relation we have to plug a newparameter bV = Q�1=2V = ie 2�k V; (5.5)into (5.1). { 16 {



5.1 Perturbative partLet us 
onsider the perturbative part. We negle
t all the exponentially suppressed termsin (5.1). We observe that the leading order 
ontribution � = (0; 0) 
omes only fromn0;(0;0);(1) = 1: (5.6)Thus we obtain F openpert (V ) = 1i 1Xm=1 1m 12 sin 2�mk trV m: (5.7)Plugging this into (5.4), we geteF openpert (bV ) = 1 + e 2�k2 sin 2�k trV + e 4�k8 sin2 2�k (tr V )2 + ie 4�k4 sin 4�k trV 2 (5.8)+ e 6�k48 sin3 2�k (trV )3 + ie 6�k8 sin 2�k sin 4�k trV trV 2 � e 6�k6 sin 6�k trV 3 + � � � :Therefore we immediately �ndhStrUniGC(pert) = in�12 sin 2�nk e 2n�k ; (5.9)and the fa
torization propertyh(StrU)n1(StrU2)n2 � � �iGC(pert) = (hStrUiGC(pert))n1(hStrU2iGC(pert))n2 � � � : (5.10)Note that this fa
torization property does not hold if the instanton e�e
t is taken intoa

ount. One 
an 
he
k that these results reprodu
e (4.29) for the hook representations.From the fa
torization property (5.10), one �nds that the perturbative part of the halfBPS Wilson loop in the representation R s
ales ashWRiGC(pert) � e 2n�k ; (5.11)where n is the number of boxes of Young diagram R and we have dropped the prefa
torindependent of �. Coming ba
k to the VEV in the 
anoni
al ensemble via (2.20), we �ndthat the perturbative part of the half BPS Wilson loop in arbitrary representation givesthe following Airy fun
tion behaviorhWRi(pert)N � Ai"� 2�2k��1=3�N � k24 � 6n+ 13k �#; (5.12)where the proportional 
oeÆ
ient depends only on k. From this expression, we 
an also�nd the large N limit as hWRiNZ(N) � en�p2� (N !1); (5.13)where � = N=k is the 't Hooft 
oupling. Note that this exponent is the same as n times ofan 
lassi
al string a
tion on the gravity side [23℄.{ 17 {



5.2 Worldsheet instantonsLet us 
onsider the worldsheet instanton 
orre
tions. We �rst denote the general openstring amplitude byF open(t; V ) = 1Xh=1X̀ 1Xm=1A(m)`1;:::;`h trV m`1 � � � trV m`h : (5.14)withA(m)`1;:::;`h =X� 1Xg=0 1h!ng;�;` 1m�2 sinh mgtop2 �2g�2 hYj=1� 2̀j sinhm`jgtop2 �e�m��t: (5.15)After spe
ifying � = (d1; d2) and take the \diagonal" sum for the open GV invariantsng;d;` = Xd1+d2=dng;(d1;d2);`; (5.16)this be
omesA(m)`1;:::;`h = 1Xd=0 1Xg=0 (�1)g�1h! ng;d;` 1m�2 sin 2�mk �2g�2 hYj=1�2i`j sin 2�m`jk �Qmd: (5.17)Thus we �nd from (5.14), for example,hStrUiGC(pert+WS) trV = A(1)1 tr bV ;12 hStrU2iGC(pert+WS) trV 2 = (A(1)2 +A(2)1 ) tr bV 2;12h(StrU)2iGC(pert+WS)(tr V )2 = �A(1)1;1 + 12(A(1)1 )2�(tr bV )2; (5.18)where the relation between V and bV is given by (5.5).Using the expli
it values of the open GV invariants listed in Tables 1 and 2 of [27℄, weobtain the worldsheet instanton 
orre
tions up to order Q5,hStrUiGC(pert+WS) = e 2�k2 sin 2�k �1 + 2Q+ 3Q2 + 10Q3 +�49� 32 sin2 2�k �Q4+�288� 576 sin2 2�k + 352 sin4 2�k �Q5 +O(Q6)�;hStrU2iGC(pert+WS) = ie 4�ksin 4�k sin2 2�k �12 sin2 2�k + 12 sin2 4�k Q+�sin2 2�k + sin2 4�k �Q2 + 4 sin2 4�k Q3+�32 sin2 2�k + 18 sin2 4�k � 14 sin2 2�k sin2 4�k �Q4+�104� 224 sin2 2�k + 160 sin4 2�k � sin2 4�k Q5 +O(Q6)�;
{ 18 {



h(StrU)2iGC(pert+WS) = e 4�ksin2 2�k �14 +�1� sin2 2�k �Q+�52 � 2 sin2 2�k �Q2+�8� 8 sin2 2�k �Q3 +�1474 � 64 sin2 2�k + 28 sin4 2�k �Q4+�208� 656 sin2 2�k + 768 sin4 2�k � 320 sin6 2�k �Q5 +O(Q6)�: (5.19)As dis
ussed in [45℄, the g = 0 terms of hStrUiGC(pert+WS) are given by the fa
tor(Q=z) 12 representing the worldsheet instanton 
orre
tions to the disk amplitude. Here zand Q are related by the mirror map of lo
al P1 � P1 along the diagonal sli
e z1 = z2 = z12 log Qz = 2z 4F3�1; 1; 32 ; 32 ; 2; 2; 2; 16z� : (5.20)Inverting this relation, the worldsheet instanton 
orre
tions to the disk amplitude are foundto bef(Q) � �Qz � 12= 1 + 2Q+ 3Q2 + 10Q3 + 49Q4 + 288Q5 + 1892Q6 + 13390Q7 + � � � ; (5.21)whi
h reprodu
e the invariants ng=0;d;(1) listed in [27℄. Interstingly, we �nd from [46℄ thatthe VEV of the Wilson loop with widing n is generi
ally written as the following form,hStrUniGC(pert+WS) = e 2n�k f(Qn)Xg;d Xn=`mNg~em;d�2 sin 2�`k �2g�2�2 sin 2�nk �Qd` (5.22)where Ng~em;d are integers, whi
h are related to the open GV invariants ng;d;`. Insteadof the topologi
al string 
onsideration, we 
an also �x su
h integers by 
omparing thematrix model results [7, 24, 26℄ in the 't Hooft limit be
ause the genus expansion in thislimit 
aptures all the worldsheet instanton 
orre
tions. The similar 
omparison on theworldsheet instanton 
orre
tions to the grand potential has been done in [17℄. In this way,we have �xed the values of Ng~em;d in the very �rst few 
ases. The result is summarized inTable 1. For n = 1; 2, one 
an 
he
k that (5.22) with Table 1 indeed reprodu
e (5.19).In the next se
tion, we will 
on�rm that these worldsheet instanton 
orre
tions areindeed 
onsistent with our numeri
al results.6 Numeri
al study and membrane instantonsIn this se
tion, we numeri
ally evaluate the VEVs of the half BPS Wilson loops in hookrepresentations by using the formulation presented in se
tions 3 and 4. The main moti-vation of this analysis is to explore the membrane instanton e�e
ts, whi
h are very hardto be des
ribed in the topologi
al string theory. The similar analysis has been alreadydone for the grand partition fun
tion in [17, 19℄. We 
ompute the VEVs in various hookrepresentations for some values of k. Here we propose that the membrane instanton 
or-re
tions are 
ompletely en
oded by the repla
ement �! �e� in the perturbative part and{ 19 {



Table 1. The values of Ng~em;d.Ng~e1;d d = 0 1 2 3 4 5g = 0 1 0 0 0 0 01 0 0 0 0 �8 �1282 0 0 0 0 0 22 Ng~e2;d d = 0 1 2 3g = 0 0 1 2 61 0 0 0 0Ng~e3;d d = 0 1 2 3g = 0 0 1 3 91 0 0 0 0 Ng~e4;d d = 0 1 2 3g = 0 0 1 4 141 0 0 �4 �8the worldsheet instanton part as in (1.8). The e�e
tive 
hemi
al potential �e� is expli
itlygiven [19℄ for even k = 2n as�e� = �+ (�1)n�12e�2� 4F3�1; 1; 32 ; 32; 2; 2; 2; (�1)n16e�2�� ; (6.1)and 
onje
tured for odd k as�e� = �+ e�4� 4F3�1; 1; 32 ; 32; 2; 2; 2;�16e�4�� : (6.2)Below, we will 
he
k the proposal (1.8) by the numeri
al study.6.1 A pro
edureLet us 
onsider the VEV for the half BPS Wilson loops in the hook representation (ajl).The VEV is given by (1.4),hW(ajl)iGC = Z dxdy(2�k)2 hajxihxj z1 + z�1 jyihyjli: (6.3)Let us �rst note that, the 
omplex phase dependen
e only 
ome from hajxi and hyjli, whi
his trivially given in (3.9),hW(ajl)iGC = ea(a+1)�ik � l(l+1)�ik jhW(ajl)iGCj: (6.4)Hen
e we de�ne a real fun
tion W(ajl) with its series expansion W(m)(ajl) asW(ajl) � jhW(ajl)iGCj = 1Xm=0(�1)mzm+1W(m)(ajl); (6.5)where W(m)(ajl) is given byW(m)(ajl) = Z dxdy(2�k)2 bfa(x)�m1 (x; y) bfl(y); bfn(x) � e(n+ 12 )xkp2 
osh x2 : (6.6)
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Of 
ourse, the VEVs for (ajl) and (lja) should be 
omplex 
onjugate to ea
h other, thereforewe immediately �nd W(ajl) =W(lja): (6.7)Our task is to evaluate the integral (6.6). This 
an be done as follows. Let us introdu
ethe fun
tion by �(m)l (x) = 1p2 
osh x2 Z dy2�k�m1 (x; y) bfl(y): (6.8)One easily �nds that this fun
tion satis�es the re
urren
e relation�(m)l (x) = 12 
osh x2 Z dy2�k 12 
osh x�y2k �(m�1)l (y); (6.9)with the initial 
ondition �(0)l (x) = e(l+ 12 )xk2 
osh x2 : (6.10)On
e the fun
tion �(m)l (x) is known, the integral (6.6) is easily evaluated asW(m)(ajl) = Z dx2�k e(a+ 12 )xk�(m)l (x): (6.11)We noti
e that the integral equation (6.9) is essentially the same as that appearing in[15{17℄. One 
an solve it for any k at least numeri
ally. Pra
ti
ally, we solve the integralequation up to 
ertain value m = mmax, and make an approximation1Xm=0(�1)mzm+1W(m)(ajl) � mmaxXm=0 (�1)mzm+1W(m)(ajl): (6.12)Then, we extrapolate it to the large � regime. This is the same strategy as that in [17℄.Before 
losing this subse
tion, we will brie
y 
omment on the 
onvergen
e of integral.In (6.10) and (6.11), there appear the exponential fa
tors that diverge in large x limit. Dueto these fa
tors, the integral (6.11) 
onverges only ifk > 2(a+ l + 1) = 2jRhookj; (6.13)where jRhookj is the size of Young diagram 
orresponding to the hook representationRhook.Therefore the grand 
anoni
al VEVs are also well-de�ned only for su
h values of k. Su
ha behavior has also found for the multiple winding Wilson loop in [26℄.6.2 Fundamental representationThe simplest representation is the fundamental representation (0j0),hW(0j0)iGC =W(0j0); (6.14)
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We would like to evaluate W(0j0) numeri
ally for some values of k. By solving the integralequation, we have performed the numeri
al 
omputation, and �nd the non-perturbative
orre
tions to W(0j0) for k = 3; 4; 6; 8; 12. The results are as follows:W(0j0)jk=3 =W(pert)(0j0) �1 + 2Q+ 3Q2 + 283 Q3 + 793 Q4 + 60Q5 + 15629 Q6 +O(Q7)� ;W(0j0)jk=4 =W(pert)(0j0) �1 + 2Q+ 2Q2 + 12Q3 + 22Q4 + 124Q5 + 276Q6 +O(Q7)� ;W(0j0)jk=6 =W(pert)(0j0) �1 + 2Q+ 3Q2 + 283 Q3 + 793 Q4 + 60Q5 + 15629 Q6 +O(Q7)� ;W(0j0)jk=8 =W(pert)(0j0) �1 + 2Q+ 3Q2 + 10Q3 + 652 Q4 + 89Q5 + 4652 Q6 +O(Q7)� ;W(0j0)jk=12 =W(pert)(0j0) �1 + 2Q+ 3Q2 + 10Q3 + 41Q4 + 166Q5 + 18443 Q6 +O(Q7)� ;(6.15)where W(pert)(0j0) is W(pert)(0j0) = e 2�k2 sin 2�k : (6.16)Let us 
ompare these results with the theoreti
al predi
tion. The worldsheet instanton
orre
tions of hW(0j0)iGC = hStrUiGC are given by (5.19). As mentioned before, we proposethat the membrane instanton 
orre
tion 
an be in
orporated by the repla
ement �! �e�in the worldsheet instanton 
orre
tion. Thus our 
onje
ture, in
luding the membraneinstanton e�e
ts, isW(0j0) = e 2�e�k2 sin 2�k �1 + 2Qe� + 3Q2e� + 10Q3e� +�49� 32 sin2 2�k �Q4e�+�288 � 576 sin2 2�k + 352 sin4 2�k �Q5e� +O(Q6e�)�; (6.17)where Qe� = �e� 4�e�k . For the 
omparison, we need to rewrite it in terms of Q = �e� 4�k .Using the relations (6.1) and (6.2) between � and �e� , we �ndQe� = 8>>>>><>>>>>:Q+ 43Q4 +O(Q7) (k = 3; 6)Q+ 2Q3 + 11Q5 +O(Q7) (k = 4)Q+Q5 +O(Q9) (k = 8)Q+ 23Q7 +O(Q13) (k = 12): (6.18)Plugging these into (6.17), one 
an 
he
k that the 
orre
tions exa
tly agree with the nu-meri
al ones (6.15) up to Q5. We emphasize that only the worldsheet instanton 
orre
tiondoes not explain the numeri
al results (6.15). We need to repla
e � by �e� to reprodu
ethem. This is due to the membrane instanton e�e
ts.
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6.3 Young diagrams with two boxesThere are two representations with two-box Young diagrams:hW(1j0)iGC = e 2�ik W(1j0); hW(0j1)iGC = e� 2�ik W(0j1): (6.19)We have the relation W(1j0) = W(0j1). By the similar 
omputation to the fundamentalrepresentation, we �ndW(1j0)jk=6 =W(pert)(1j0) �1 +Q+ 4Q2 + 203 Q3 + 18Q4 + 1723 Q5 + 11909 Q6 +O(Q7)� ;W(1j0)jk=8 =W(pert)(1j0) �1 + 2Q+ 6Q2 + 16Q3 + 46Q4 + 128Q5 + 364Q6 +O(Q7)� ;W(1j0)jk=12 =W(pert)(1j0) �1 + 3Q+ 8Q2 + 24Q3 + 90Q4 + 348Q5 + 38623 Q6 +O(Q7)� ;(6.20)with W(pert)(1j0) = e 4�k4 sin 2�k sin 4�k : (6.21)Let us also 
ompare these results with our predi
tion. Note that hW(1j0)iGC is givenby hW(1j0)iGC = 12h(StrU)2iGC + 12 hStrU2iGC: (6.22)The worldsheet instanton 
orre
tions of h(StrU)2iGC and hStrU2iGC are given by (5.19).Thus our predi
tion isW(1j0) = e 4�e�k4 sin3 2�k sin 4�k �sin2 2�k + sin2 4�k Qe� + �2 sin2 2�k + 2 sin2 4�k �Q2e�+ 8 sin2 4�k Q3e� + �3 sin2 2�k + 36 sin2 4�k � 28 sin2 2�k sin2 4�k �Q4e�+ �208 � 448 sin2 2�k + 320 sin4 2�k � sin2 4�k Q5e� +O(Q6e� )�: (6.23)Using the relation (6.18), one �nds that the 
orre
tions again agree with the numeri
alones (6.20) up to Q5.6.4 Young diagrams with three boxesFor the three-box Young diagrams, there are two non-trivial real fun
tions,hW(2j0)iGC = e 6�ik W(2j0); hW(1j1)iGC =W(1j1); hW(0j2)iGC = e� 6�ik W(0j2); (6.24)with the 
onstraint W(2j0) =W(0j2). From the numeri
al analysis, we �ndW(2j0)jk=8 =W(pert)(2j0) �1 +Q2 + 8Q3 + 332 Q4 + 40Q5 + 2352 Q6 +O(Q7)�;
{ 23 {



W(2j0)jk=12 =W(pert)(2j0) �1 + 2Q+ 8Q2 + 32Q3 + 116Q4 + 426Q5 + 1534Q6 +O(Q7)�;(6.25)andW(1j1)jk=8 =W(pert)(1j1) �1 + 2Q+ 5Q2 + 14Q3 + 732 Q4 + 105Q5 + 5912 Q6 +O(Q7)�;W(1j1)jk=12 =W(pert)(1j1) �1 + 4Q+ 12Q2 + 38Q3 + 136Q4 + 508Q5 + 1866Q6 +O(Q7)�:(6.26)Note that to 
ompare these results with the theoreti
al predi
tion, we need to know theopen GV invariants ng;d;` for ` = (3); (2; 1); (1; 1; 1), whose expli
it values are not foundin the literature. Instead, one 
an 
ompare the result for the Wilson loop with winding 3.The VEV of the Wilson loop with winding 3 is 
omputed ashW3iGC = hW(2j0)iGC � hW(1j1)iGC + hW(0j2)iGC= 2 
os�6�k �W(2j0) �W(1j1); (6.27)From (5.22) with Table 1, on the other hand, we obtainhW3iGC = �e 6�e�k �12 
s
 6�k + 12 
s
2 2�k sin 6�k Qe� + 32 
s
2 2�k sin 6�k Q2e�+ �
s
 6�k + 92 
s
2 2�k sin 6�k �Q3e� +O(Q4e�)�: (6.28)One 
an 
he
k that this reprodu
es the above results for k = 8; 12 up to Q3.6.5 Young diagrams with four boxesFor the four-box 
ase, there are four hook representations and one non-hook representation.For the hook representations, we havehW(3j0)iGC = e 12�ik W(3j0); hW(2j1)iGC = e 4�ik W(2j1);hW(0j3)iGC = e� 12�ik W(0j3); hW(1j2)iGC = e� 4�ik W(1j2); (6.29)with W(3j0) = W(0j3) and W(2j1) = W(1j2). For the non-hook representation (1; 0j1; 0), theVEV is given by the determinant formulahW(1;0j1;0)iGC = det hW(1j1)iGC hW(1j0)iGChW(0j1)iGC hW(0j0)iGC! =W(1j1)W(0j0) �W(1j0)W(0j1): (6.30)From the numeri
al analysis, we �ndW(3j0)jk=12 =W(pert)(3j0) �1 +Q2 + 12Q3 + 61Q4 + 216Q5 + 14172 Q6 +O(Q7)�;W(2j1)jk=12 =W(pert)(2j1) �1 + 3Q+ 10Q2 + 36Q3 + 133Q4 + 486Q5 + 52583 Q6 +O(Q7)�;(6.31)One 
an 
he
k that the VEV of the Wilson loop with winding 4 at k = 12 is reprodu
edfrom these results. { 24 {



6.6 Impli
ationsThe grand 
anoni
al VEVs of the half BPS Wilson loops are in general 
omplex. As wasseen before, however, their phase dependen
es are trivial. This fa
t implies that there aresome non-trivial relation among open GV invariants ng;d;` for di�erent `. Let us see thishere. In the size 2 representations, we haveh(StrU)2iGC = hW(1j0)iGC + hW(0j1)iGC = 2 
os 2�k W(1j0);hStrU2iGC = hW(1j0)iGC � hW(0j1)iGC = 2i sin 2�k W(1j0); (6.32)where we have used W(1j0) = W(0j1). These expressions immediately lead to the exa
trelation, hStrU2iGCh(StrU)2iGC = i tan 2�k : (6.33)This relation gives a non-trivial relation among the open GV invariants ng;d;(1), ng;d;(2) andng;d;(1;1). For very lower g and d, we �ndn0;1;(2) = n0;1;(1;1) = n0;1;(1)2 ;n0;2;(2) = n0;2;(1;1) = 14(2n0;2;(1) + n20;1;(1) � n0;1;(1));n0;3;(2) = n0;3;(1;1) = 12(n0;3;(1) + n0;2;(1)n0;1;(1));n0;4;(2) = 14(2n0;4;(1) + 2n0;3;(1)n0;1;(1) + n20;2;(1) � n0;2;(1));n0;4;(1;1) � 4n1;4;(1;1) = 14(2n0;4;(1) + 2n0;3;(1)n0;1;(1) + n20;2;(1) � n0;2;(1) � 8n1;4;(1));n1;4;(1;1) = n1;4;(2): (6.34)One 
an 
he
k that the expressions (5.19) indeed satisfy the relation (6.33) up to order Q5.Similarly, from the relation13 h(StrU)3iGC + 23hStrU3iGC = 2 
os 6�k W(2j0);hStrU StrU2iGC = 2i sin 6�k W(2j0); (6.35)we �nd hStrU StrU2iGC = i tan 6�k �13h(StrU)3iGC + 23 hStrU3iGC� : (6.36)This gives an non-trivial relation among ng;d;` for ` = (1); (2); (1; 1); (3); (2; 1); (1; 1; 1).Also, the Giambelli formula (1.6) gives non-trivial relations among the open GV in-variants. For the representation R = (1; 0j1; 0), we �nd the relation112 h(StrU)4iGC � 13 hStrU StrU3iGC + 14h(StrU2)2iGC
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= 13 h(StrU)3iGChStrUiGC � 14(h(StrU)2iGC)2� 13hStrUiGChStrU3iGC + 14(hStrU2iGC)2; (6.37)or equivalently, in terms of A(m)`1;:::;`h de�ned by (5.17), the relation is written asA(1)1;1;1;1 �A(1)3;1 +A(1)2;2 = �A(2)1;1 � (A(1)1;1)2: (6.38)Substituting (5.17) into this, we obtain the relation among the open GV invariants.67 Con
lusionIn this paper we have proposed the Fermi gas formalism for the VEVs of the half BPS Wil-son loops in arbitrary representations. For the 
ase of the hook representations, we presentthe formula in terms of the 
onvolution of integrations. For the 
ase of the non-hook repre-sentations, we redu
e the 
omputation to the hook 
ase by a determinant formula similarto the Giambelli formula for the S
hur polynomial. After working out these expressionsfor the VEVs, we also present a numeri
al study. We �nd that besides the worldsheetinstanton 
orre
tions we also have the membrane instanton 
orre
tions whi
h 
an be in-
orporated by shifting the 
hemi
al potential � into �e� as we did in studying the boundstates in the ABJM partition fun
tion.We 
on
lude our paper by listing several dis
ussions on the further dire
tions.Based on the numeri
al results, we 
on
lude that the membrane instanton 
orre
tionis 
ompletely en
oded in the perturbative and the worldsheet instanton parts by repla
ing� by �e� . Let us re
all that in the partition fun
tion, there is also a pure membraneinstanton 
orre
tion, as well as the bound states of the worldsheet instantons and themembrane instantons. This pure membrane instanton 
orre
tion is dire
tly related to thenon-perturbative e�e
t in the 
losed topologi
al string [20℄ (see also [47℄). Our Wilson loopresult (1.8) implies that there seem to be no pure membrane instanton 
orre
tions in theopen topologi
al string on \diagonal" lo
al P1�P1. It would be interesting to 
on�rm thisin the topologi
al string framework.Most of our analysis here fo
us on the half BPS Wilson loops, whi
h have ni
e 
oun-terparts in the topologi
al string. Our method presented in se
tion 2, however, 
an beappli
able to the 1=6 BPS Wilson loops. The topologi
al string 
ounterparts to su
h 1=6BPS Wilson loops are un
lear, thus it would be important to reveal the stru
ture of in-stanton e�e
ts in the 1=6 BPS Wilson loops by using our method. It is also interestingto perform Monte Carlo simulation [48℄ of the 1=6 BPS Wilson loops in low dimensionalrepresentations, whi
h has been useful for the partition fun
tion [14℄. It would also beilluminating to apply our formalism to other observables in the ABJM theory su
h as thevortex loop [6℄ and energy-momentum tensor 
orrelator [49℄, whi
h 
an be also simpli�edby the lo
alization method.6 To 
apture the membrane instanton 
orre
tion, we need to repla
e Q in (5.17) by Qe� , but thisrepla
ement does not 
hange the relations at all.
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In the topologi
al string theory, we have a set of open GV invariants for ea
h repre-sentation. In our Fermi gas formalism, we �nd several non-trivial relations among su
hinvariants. The simplest one is the symmetry of taking the transpose in the Young dia-gram. For example, disregarding a di�eren
e in the trivial phase fa
tor, the VEVs of thehalf BPS ABJM Wilson loops in the symmetri
 and anti-symmetri
 representations areequal with ea
h other. Hen
e this triviality of the phase fa
tor imposes highly non-trivialrelations in the open GV invariants. The origin of this property is un
lear on the topolog-i
al string side at present. Besides, the VEVs in the non-hook representations enjoy theGiambelli property. Te
hni
ally, the Giambelli property imposes many interesting relationsand redu
es largely the unknown open GV invariants. Using the Giambelli property, we
an show that the number of unknown GV invariants at ea
h order redu
es the number ofboxes n, whi
h originally in
reases with the number of representations, namely, partitionsp(n) � e�q 2n3 =(4p3n). It is interesting to 
larify what kind of relations the transpositionsymmetry and the Giambelli 
ompatibility will impose on the open GV invariants. We alsoask whether these kinds of relations appear in more general topologi
al string theories ornot. Sin
e we have studied only the lo
al P1�P1 topologi
al string, the relations might bea

idental properties in this model. If these are 
ommon in a 
lass of topologi
al strings,we expe
t that there are some extra stru
tures, whi
h naturally explain the relations. Forexample, sin
e the topologi
al re
ursion of Eynard and Orantin [50℄ gives relations amongall open string invariants, this might explain the relations 
oming from the transpositionsymmetry and the Giambelli 
ompatibility.A natural open question is the physi
al interpretation of the Giambelli 
ompatibility.It would be ni
e to understand its meaning from the brane 
on�guration or the gravityanalysis. We hope that this would be a 
lue to understand M-theory.A
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