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1 IntrodutionReently, there has been muh progress in understanding membranes in M-theory. It wasproposed in [1℄ that the low energy e�etive theory on the N multiple M2-branes on thegeometry C 4=Zk is desribed by the 3-dimensional N = 6 supersymmetri generalizationof the Chern-Simons matter theory with gauge group U(N)k�U(N)�k ommonly referredas ABJM theory. Furthermore it has been shown by using the loalization tehnique [2℄that a lass of supersymmetri observables in the ABJM theory on S3 are desribed byso-alled ABJM matrix model [3{6℄. { 1 {



The partition funtion Z(N) is the �rst fundamental quantity to be studied. Afterthe rather standard matrix model analysis in [7{9℄, there appeared a seminal paper, whihrewrites the ABJM partition funtion into the partition funtion of an ideal Fermi gassystem [10℄ (see also [11{13℄). One of the advantages in this Fermi gas formalism is thatinstead of the stringy 't Hooft expansion, we an aess to the M-theory region diretlyby taking large N limit with k �xed. As is usual in the statistial system, instead of thepartition funtion, it is onvenient to de�ne the grand partition funtion�(z) = 1XN=0 zNZ(N); (1.1)by introduing the fugaity z = e� with the hemial potential �. Subsequently in [14{20℄, the partition funtion of the ABJM theory was studied extensively from this grandpartition funtion of the Fermi gas system. Finally, it turned out that the grand potentialJ(�) = log �(z) an be separated into the perturbative, worldsheet instanton [21℄, mem-brane instanton [8, 22℄ and bound state part. The worldsheet instanton part is determineddiretly from the topologial string result [17℄. The membrane instanton part is also re-lated to the re�ned topologial string [20℄. As found in [19℄, the ontributions from all ofthe bound states an be inorporated to the worldsheet instanton e�ets by shifting thehemial potential � to an \e�etive" hemial potential �e� , whih is desribed by thesum of � and a part of the pure membrane instanton e�ets.Here we proeed to study the seond fundamental quantity, namely, the vauum ex-petation value (VEV) of the irular half BPS Wilson loop �rstly introdued in [23, 24℄.The half BPS Wilson loops have nie ounterparts in the open topologial string, as waspointed out in [7, 24℄. This is one of our motivation that we fous on them here. The halfBPS Wilson loops are lassi�ed by representations R of the supergroup U(N jN), whihinludes the gauge group U(N)�U(N) as the bosoni subgroup. By using the loalizationmethod [3{6℄, the unnormalized VEV of the Wilson loop WR in the representation R iswritten ashWRiN = 1(N !)2 Z Yi d�i2� d�i2� Qi<j(2 sinh �i��j2 )2(2 sinh �i��j2 )2Qi;j(2 osh �i��j2 )2 e� 12gs Pi(�2i��2i ) StrR U;U =  U� 00 �U�! ; U� = diag(e�i); U� = diag(e�i); (1.2)where gs = 2�ik is the oupling onstant, and StrR is the U(N jN) harater in the represen-tation R. A presription to obtain StrR is summarized as follows. First, a representationof the supergroup U(N jN) is haraterized by the super Young diagram, whih has thesame form as the usual Young diagram of the bosoni group U(1) (for example, see [25℄).Then, the supertrae StrR U of the supergroup U(N jN) is found if we formally replaethe power sum trUn in trR U of U(1) by StrUn. Note that U appearing in StrR U is a2N � 2N matrix de�ned by (1.2).The omputation of the VEVs using the Fermi gas formalism was initiated in [26℄,where the inserted observables are restrited to the operators with winding number n,{ 2 {
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(a) Partition notation (b) Frobenius notationFigure 1. (a) The partition notation [�1�2�3 � � � ℄ with its transpose [�01�02�03 � � � ℄ and (b) theFrobenius notation (a1a2 � � �arjl1l2 � � � lr) for the same Young diagram. Here r = maxfsj�s � s �0g = maxfsj�0s � s � 0g is the number of diagonal boxes, and ap, lq denote the horizontal andvertial distanes from eah diagonal box, respetively, given by ap = �p � p; lq = �0q � q. Inthe above ase, the Young diagram is [�1�2�3�4℄ = [5; 3; 3; 2℄ in the partition notation with itstranspose [�01�02�03�04�05℄ = [4; 4; 3; 1; 1℄, while it is (a1a2a3jl1l2l3) = (4; 1; 0j3; 2; 0) in the Frobeniusnotation.StrUn. Very reently, it was proposed in [27℄ that it is possible to study the perturbativepart and the worldsheet instanton part using the topologial strings. This subjet keepson attrating various studies.1In this paper, we present a Fermi gas formalism for the VEVs in arbitrary represen-tations, suitable for numerial study, and study these non-perturbative e�ets. As in thepartition funtion, besides the worldsheet instanton ontribution, we also �nd the on-tribution oming from the membrane instanton, whih is diÆult to be known from thetopologial string theory. In the following of this introdution, we would like to explainour results in more details. Just as in the partition funtion, it is useful to onsider theVEV in the grand anonial ensemble de�ned byhWRiGC = 1�(z) 1XN=0 zN hWRiN : (1.3)Note that one we know hWRiGC, the VEVs in the anonial ensemble is easily reovered.First, we �nd a formula for the VEV of the Wilson loop in the hook representation2R = (ajl) in terms of a ertain onvolution of integrationshW(ajl)iGC = haj z1 + z�1 jli: (1.4)1 See, for example, [28℄ for perturbative studies of the Wilson loop VEVs, [29, 30℄ for the holographistudies and [31℄ for an attempt to generalizations.2 Throughout this paper, we use the Frobenius notation to express representations of U(N jN) illustratedin Figure 1.
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Here �1 is the density operator of the Fermi-gas system de�ned later in (2.9), and the stateshaj and jli in the oordinate basis are given by (3.9). The expression (1.4) is aessiblefrom the numerial studies with very high preision.Seond, we extend our analysis to general representation R = (a1a2 � � � arjl1l2 � � � lr).In operator level, the Wilson loop is simply given by the determinant of those in the hookrepresentations, known as the Giambelli formula,3W(a1a2���arjl1l2���lr)(e�; e�) = det p;qW(apjlq)(e�; e�): (1.5)In this paper, we �nd that the VEVs in the grand anonial ensemble exatly satisfy thesame type of the formula,hW(a1a2���arjl1l2���lr)iGC = hdet p;qW(apjlq)iGC = det p;q�hW(apjlq)iGC�: (1.6)Hene the VEVs of the half BPS Wilson loops in general representations an be om-puted only from those in hook representations. We emphasize that this result is veryunexpeted and non-trivial. In the mathematial ontext, a normalized linear funtionalhOi of symmetri funtions O satisfying the above property is alled Giambelli ompatible(see e.g. [32℄). Let us further all a linear funtional being fatorizable if it satis�es theproperty hO1O2i = hO1ihO2i. Note that the fatorizability implies the Giambelli ompa-bility. In this terminology, we show that the grand anonial VEV of the half BPS Wilsonloop is Giambelli ompatible but not fatorizable. We also �nd that its perturbative partis fatorizable (see (5.10)). Note that the fatorization of the grand anonial VEV alsoimplies that of the anonial VEV in the large N limit, whih is natural from the physialviewpoint. The fatorization property, however, is generially broken by the instanton on-tributions. Nevertheless, the Giambelli ompatibility is still preserved after the instantone�ets are taken into aount.Finally, using our results (1.4) and (1.6), we also study the struture of the instantonorretions to the VEVs in various representations by the numerial studies. The VEVs,in general, reeive the following orretions,hWRiGC =WGC(pert)R (�; k)(1 +WGC(WS)R (�; k) +WGC(others)R (�; k)); (1.7)where WGC(pert)R (�; k) is the perturbative part, WGC(WS)R (�; k) is the worldsheet instantonorretion, and WGC(others)R (�; k) onsists of the pure membrane instanton orretion andthe ontribution from the bound states. We have found that our numerial results mathwith the topologial string predition of the perturbative part and the worldsheet instantonpart with the hemial potential shifted from � to �e� to inorporate the ontribution fromthe membrane instantons and the bound states:hWRiGC =WGC(pert)R (�e� ; k)(1 +WGC(WS)R (�e� ; k)); (1.8)exatly the same as in the partition funtion. Here the \e�etive" hemial potential�e� was introdued in [19℄ in order to explain the bound state ontribution in the grand3 We often write WR(e�; e�) instead of StrRU to represent the Wilson loop insertion apparently.{ 4 {



potential, �e� = �+ �2k2 1X̀=1 a`(k)e�2`�; (1.9)where a`(k) are the funtions appearing in the membrane instanton orretion in the grandpotential. The forms of a`(k) are exatly omputed by the re�ned topologial string onloal P1�P1 [20℄. We should stress that the perturbative part and the worldsheet instantonpart in (1.8) are omputed from the open topologial string on loal P1 � P1 as we willsee in setion 5. Thus our result states that one we determine the topologial string freeenergy on this bakground, we an exatly �nd the VEVs of the half BPS Wilson loops ingeneral representations in the ABJM theory.The organization of this paper is as follows. In the next setion we present a generalframework to study the VEVs of the BPS Wilson loops and apply it to the half BPS ase inthe hook representation in setion 3. Sine it is diÆult to apply this formalism diretly tothe half BPS Wilson loops in the non-hook representation, we shall present an alternativemethod in setion 4, whih works only for the half BPS Wilson loop. After reviewingthe results from the topologial strings in setion 5, we summarize our numerial study insetion 6. Finally we onlude in setion 7.2 BPS Wilson loops in general representationsHere we present methods to study the VEV of the Wilson loop in the ABJM theory usingthe Fermi gas formalism. We shall �rst present a framework to study general 1=6 BPSWilson loop onstruted in [33℄ (see also [34, 35℄), whih inludes the half BPS Wilson loopas a speial ase.2.1 Partition funtionFor this purpose let us �rst review the derivation of the Fermi gas formalism for thepartition funtion [10℄ arefully beause our Wilson loop insertion is based heavily on it.The starting point is the partition funtion of the ABJM matrix model [3{6℄:Z(N) = 1(N !)2 Z Yi d�i2� d�i2� Qi<j(2 sinh �i��j2 )2(2 sinh �i��j2 )2Qi;j(2 osh �i��j2 )2 e� 12gs (Pi �2i�Pj �2j ); (2.1)By using the Cauhy identity and performing a Fourier transformation, the partition fun-tion (2.1) is rewritten intoZ(N) = 1N ! Z Yi dxi~ dyi~ X�2SN(�1)�� Z Yi dpi2� dqi2� Yi �e� i~pi(xi�yi)2 osh pi2 e� i~qi(xi�y��1(i))2 osh qi2 �e i2~ (Pi x2i�Pj y2j ); (2.2)
{ 5 {



where we resale the integration variables as �i = xik ; �j = yjk and ~ = 2�k. Afterperforming the Gaussian integral over x and y by ompleting the square in the exponenti2~x2i � i~xi(pi + qi)� i2~y2i + i~yi(pi + q�(i))= i2~(xi � pi � qi)2 � i2~ (yi � pi � q�(i))2 � i2~ (pi + qi)2 + i2~(pi + q�(i))2; (2.3)and noting the anellation of the p2 and q2 terms, the partition funtion beomesZ(N) = 1N ! Z Yi dpidqi2�~ X�2SN(�1)�Yi eipi(q�(i)�qi)=~2 osh pi2 � 2 osh qi2 : (2.4)If we further integrate over p in (2.4), then we �ndZ(N) = 1N ! Z Yi dqi~ X�2SN (�1)�Yi 1q2 osh q�(i)2 12 osh q�(i)�qi2k 1q2 osh qi2 : (2.5)Sine the partition funtion Z(N) has the form of an ideal Fermi gas system asZ(N) = 1N ! X�2SN (�1)� Z Yi dqi~ Yi �1(qi; q�(i)); (2.6)with �1(qi; qj) = 1q2 osh qj2 12 osh qj�qi2k 1q2 osh qi2 ; (2.7)it is easier to onsider the grand anonial partition funtion (1.1) by introduing thefugaity z = e�. One an show that the grand partition funtion is expressed as a Fredholmdeterminant, �(z) = Det(1 + z�1); (2.8)where the determinant Det is taken over the whole Hilbert spae of the Fermi gas system.In the operator formalism, the density matrix �1 is given by�1 =pQPpQ; with P = 12 osh p2 ; Q = 12 osh q2 ; (2.9)where q and p satis�es the anonial ommutation relation [q; p℄ = i~ with ~ = 2�k. Weadopt this notation in what follows.2.2 Operator insertionGeneral 1=6 BPS Wilson loops in the ABJM theory are generated by the following type ofoperator [3℄: Yi f(e�i)g(e�i); (2.10)
{ 6 {



where f(x) and g(x) are rational funtions of x. In this setion we translate the insertionof this operator into the one of a ertain quantum mehanial operator expressed by (q; p).As a warming up, let us �rst onsider the operator insertionen�M = e 2�nxM~ ; (2.11)into the partition funtion (2.2). After ompleting the square in integrating over xM andombining with the ontribution from integrating yM as in the omputation of the partitionfuntion, we �nd an extra ontribution into the exponent:i~pM(�2�in) + 2�n~ (qM + �in): (2.12)Performing the integration over pM , the unnormalized VEV is �nally given byhen�M iN = 1N ! Z Yi dqi~ X�2SN (�1)� Yi 6=M �1(q�(i); qi)� 1q2 osh q�(M)2 e 2�n~ (qM+�in)2 osh q�(M)�qM�2�in2k 1q2 osh qM2 : (2.13)In the language of quantum mehanial operators, the seond line an be interpreted asthe matrix elementhq�(M)jpQPen(q+p)k pQjqM i = hq�(M)jpQenpk Pen(q+i�n)k pQjqM i: (2.14)Therefore we onlude that the insertion of the operator en�M is amount to the insertionof the operator W n on the right-hand-side of P , where W is de�ned byW = e q+pk : (2.15)Similarly, we �nd that the insertion of the operator en�M amounts to insertion of thesame operator W n on the left-hand-side of P . This an be seen by repeating the squareompletion in the exponent with an extra fatori~pM (�2�in) + 2�n~ (q�(M) � �in); (2.16)and omputing of the matrix elementhq�(i)jpQen(q+p)k PpQjqii = hq�(i)jpQen(q��in)k enpk PpQjqii: (2.17)Note that this interpretation is fator-wise. Namely, not only other additive terms inthe insertion do not a�et this interpretation, but this interpretation is valid even if thisoperator is multiplied by other operators. We an also see that the simultaneous insertionat the same position M , namely, em�M+n�M also works well.Therefore we an summarize the omputation rule as follows. For the ase of thepartition funtion, we �nally end up with the summation over the onjugay lasses andthe study of Tr �m1 = TrpQPQPQPQP � � �pQ: (2.18){ 7 {



For the ase of Wilson loop, we insert W into various slots between Q and P in this trae.The insertion pattern depends on the representation, but sine we are onsidering the gaugeinvariant operator, we have to take a trae, namely, sum over all the insertion slots. Heneour formula an be summarized as�(z)DYi f(e�i)g(e�i)EGC = Det�1 + zpQg(W )Pf(W )pQ�; (2.19)where hOiGC denotes the expetation value of the operator O in the grand anonialensemble (1.3). One the grand anonial VEV is understood, one an easily return to theanonial VEV via hOiN = 12�i I dzzN+1 �(z)hOiGC: (2.20)Alternatively, we an show the relation (2.19) using the operator formalism as follows.The expetation value of Qi f(e�i)g(e�i) at �xed N is given byDYi f(e�i)g(e�i)EN = 1N ! X�2SN(�1)� Z Yi d�i2� d�i2��Yi f(e�i)g(e�i)e ik4� (�2i��2i )Yi 12 osh ��(i)��i2 12 osh �i��i2 : (2.21)By resaling �i = xik ; �i = yik , this is rewritten asDYi f(e�i)g(e�i)EN = 1N ! X�2SN(�1)� Z Yi dyi~ Yi �(yi; y�(i)); (2.22)where � denotes the density matrix in the presene of operator insertion�(yi; yj) = Z dx~ e i2~ (x2�y2j )f(exk )g(e yjk )2 osh yj�x2k � 2 osh x�yi2k= Z dx~ hyjje� iq22~ g(e qk ) 12 osh p2 jxihxjf(e qk )e iq22~ 12 osh p2 jyii= hyj je� iq22~ g(e qk ) 12 osh p2 f(e qk )e iq22~ 12 osh p2 jyii: (2.23)This an be written as an operator equation� = e� iq22~ g(e qk ) 12 osh p2 f(e qk )e iq22~ 12 osh p2= e� iq22~ e� ip22~ g(e q+pk ) 12 osh p2 f(e q+pk ) 12 osh q2 e ip22~ e iq22~ ; (2.24)where we have usede iq22~ F (p)e� iq22~ = F (p� q); e ip22~ G(q)e� ip22~ = G(q + p): (2.25)Therefore, up to a similarity transformation the density matrix in (2.24) beomes� =pQg(W )Pf(W )pQ; (2.26)whih reprodues (2.19). { 8 {



3 Half BPS Wilson loops I: hook representationsIn the previous setion, we have presented a general framework to study the VEVs of thegeneral 1/6 BPS Wilson loop in the Fermi gas formalism. Espeially we have reduedthe problem into omputing the trae with alternating operators Q and P and variousW -insertions. This quantity, however, is still diÆult to ompute, at least, numeriallywith high preision. Here we would like to see what kind of simpli�ation will our if werestrit ourselves to the half BPS Wilson loops.3.1 Representations of the superalgebraThe half BPS Wilson loop is lassi�ed by the representation of U(N jN) [23, 24℄. Inthis subsetion we review representations of the supergroup U(N jN). For this purpose,it is onvenient to onsider representations of U(1). A simple presription to derive theharater of U(N jN) is to formally replae trUn in the harater trR U of U(1) by StrUn:StrRU = trRU jtrUn!StrUn : (3.1)Note that the harater trR U is given by the Shur funtion assoiated with the Youngdiagram R. The supertrae StrRU an be expressed by a ombination of haraters of twobosoni subgroups U(N) of U(N jN). For example, in the ase of the 2nd anti-symmetrirepresentation (0j1), the superalgebrai generalization turns out to beStr(0j1)U = 12(StrU)2 � 12 StrU2= tr(0j1) U� + tr(0j0) U� tr(0j0) U� + tr(1j0) U� : (3.2)where U� and U� are the bosoni parts of U (see (1.2)). Below, we often denote thesupertrae StrRU by WR(e�; e�), and use the abbreviation WR = WR(e�; e�) as long asthere is no risk of onfusion.3.2 Beyond winding Wilson loopsThe Wilson loop with the winding number nStrUn =Xi en�i � (�1)nXi en�i ; (3.3)was studied extensively in [26℄. By revisiting this in our formalism, we will obtain a hintto study the more general representations as in the following.In our formalism, applying the rule in (2.19) with the hoie,f(W ) = 1 + tW n; g(W ) = 11 + t(�W )n = 1f(�W ) ; (3.4)and piking up the linear term in t, the grand anonial VEV of StrUn is given byhStrUniGC = Tr hR(z)pQ (PW n � (�W )nP )pQi ; (3.5)
{ 9 {



with R(z) de�ned by R(z) = z1 + z�1 : (3.6)One an easily see that the operator appearing on the right-hand-side is expanded asPW n � (�W )nP = n�1Xl=0(�1)lW l(WP + PW )W n�1�l: (3.7)Note that the operator appearing in the right-hand-side of (3.7) has the fatorized formhq2jW n(WP + PW )Wmjq1i = hq2j 1pQ jnihmj 1pQ jq1i; (3.8)where the oordinate q representations of jni and hmj are de�ned byhqjni = e(n+ 12 ) qk��ik n(n+1)q2 osh q2 ; hmjqi = hqjmi� = e(m+ 12 ) qk+�ik m(m+1)q2 osh q2 : (3.9)As a formal operator relation, (3.8) is also written aspQW n(WP + PW )WmpQ = jnihmj: (3.10)Thus we �nally obtain the grand anonial VEV of the winding Wilson loop (3.5) ashStrUniGC = n�1Xl=0 (�1)lhn� 1� ljR(z)jli: (3.11)Comparing with the relation between the winding Wilson loop StrUn and the Wilson loopW(ajl) in the hook representationStrUn = n�1Xl=0(�1)lW(n�1�ljl); (3.12)it is tantalizing to expet the relationhW(ajl)iGC = hajR(z)jli; (3.13)whih is true as we will see in the next subsetion.More generally, the omputation of the VEVs of the half BPS operators redues topiking up a ertain funtion f(W ) and omputing the Fredholm determinant of the or-responding density matrix �f�(z)DYi f(e�i)f(�e�i)EGC = Det(1 + z�f ) with �f =pQ 1f(�W )Pf(W )pQ: (3.14)Rewriting the density matrix in the above expression as�f � �1 =pQ 1f(�W )�Pf(W )� f(�W )P�pQ=pQ 1f(�W ) 1Xn=0 f (n)(0)n! (PW n � (�W )nP )pQ; (3.15)and realling (3.7), one an see that the grand anonial VEV of the half BPS Wilson loopsan always be written as a sum of the fatorized funtions.{ 10 {



3.3 Single-hook representationsFor the half BPS Wilson loop in a single-hook representation (ajl), the generating funtionis given by [36℄1 + (s+ t) 1Xa;l=0 satlW(ajl) = Sdet� 1 + tU1� sU� = NYj=1 (1 + te�j )(1 + se�j )(1� se�j )(1� te�j ) : (3.16)When plugging f(W ) = 1 + tW1� sW ; (3.17)into our formula (3.14), we �nd that the orresponding density matrix fatorizes as�f = �1 + (s+ t) 1Xa;l=0 satljlihaj: (3.18)Therefore, the grand anonial VEV of (3.16) beomesD1 + (s+ t) 1Xa;l=0 satlW(ajl)EGC = Det(1 + z�f )Det(1 + z�1)= Det0�1 + (s+ t) 1Xa;l=0 satlR(z)jlihaj1A = 1 + (s+ t) 1Xa;l=0 satlhajR(z)jli: (3.19)Finally, the grand anonial VEV of W(ajl) is found to be (3.13) whih is aessible fromthe numerial studies similar to the partition funtion in the previous studies [15{17, 19℄.4 Half BPS Wilson loops II: general representationsIn the previous setions, we have presented a method to ompute the supersymmetriWilson loops and shown that espeially for the half BPS Wilson loop in the hook rep-resentation, there is a fatorization, whih at least simpli�es the numerial study. Theabove analysis for the hook representation is, however, diÆult to be extended to a generalnon-hook ase. Here we shall present a ompletely di�erent analysis whih is e�etive forstudying the non-hook representations from the hook representations but only suitable forthe half BPS Wilson loop.4.1 Non-hook representationsAfter understanding the VEV in the hook representation in the previous setion, we an gobeyond the hook representation step by step. Namely, we an substitute various funtionsfor f(W ) and subtrat the known hook part. For example, if we plug f(W ) = etW , whihorresponds to the generating funtion of (StrU)n, and ompare O(t4) terms, then we �ndhW(10j10)iGC = det hW(1j1)iGC hW(1j0)iGChW(0j1)iGC hW(0j0)iGC:! = det h1jR(z)j1i h1jR(z)j0ih0jR(z)j1i h0jR(z)j0i! (4.1)More generally, it is easy to imagine the expression in (1.6). By hanging the funtionfor f(W ), we will enounter various relations supporting this onjeture. However, it isdiÆult to prove it diretly using this formulation.{ 11 {



4.2 A proofHere we give a proof of (1.6):hW(a1a2���ar jl1l2���lr)iGC = det p;q�hW(apjlq)iGC�;with a ompletely di�erent method.4 The Giambelli formula states thatW(a1a2���arjl1l2���lr)(e�; e�) = det p;qW(apjlq)(e�; e�):Therefore, we would like to studyhW(a1a2���arjl1l2���lr)(e�; e�)i = hdet p;qW(apjlq)(e�; e�)i: (4.2)Instead of omputing it diretly, here let us onsiderW (N) = hdet p;q(Æp;q + tW(apjlq)(e�; e�))i; (4.3)and piking up the oeÆient of the highest tr term. The reason we want to onsiderW (N)is beause this is a generalization of the Cauhy determinantdet i;j[(xi + yj)�1 + tPrp=1 xapi ylpj ℄det i;j[(xi + yj)�1℄ = det p;q[Æp;q + tW(apjlq)(x; y)℄: (4.4)The proof of this formula for r = 1 is simply redued to a more general formula in [37℄.5The proof for r > 1 is redued to the ase of r = 1 by the formuladet I;J=1;��� ;N�ÆI;J + nXk=1(V )Ik(UT)kJ� = det i;j=1;��� ;n�Æi;j + NXK=1(UT)iK(V )Kj�; (4.6)whih is true sine tr(V UT)m = tr(UTV )m for any positive integer m. To simplify ouromputation in the following, let us de�ne[d�i℄ = d�i2� e� 12gs �2i ; [d�i℄ = d�i2� e 12gs �2i : (4.7)Then the quantity we want to ompute beomesW (N) = 1N ! Z Yi [d�i℄[d�i℄ det p;q(Æp;q + tW(ap;lq)(e�; e�))4We are grateful to Sho Matsumoto for his ollaborative ontribution in sharing his idea of proof andthe referenes with us in this subsetion.5The formula of [37℄ for the r = 1 ase is written asW(ajl)(x; y) = NXi;j=1 yliM�1ij xaj (4.5)where M�1 is the inverse of Cauhy matrix Mij = 1=(xi + yj). One an show that the generating funtionof (4.5) reprodues (3.16).
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� X�2SN(�1)�Yi 12 osh ��(i)��i2 12 osh �i��i2 : (4.8)Using the formula (4.4), we an rewrite this asW (N) = 1N ! X�2SN (�1)� Z Yi [d�i℄Yi �(�i; ��(i)); (4.9)where �(�i; �j) = Z [d�℄� 12 osh �j��2 + t rXp=1 e(lp+1=2)�j e(ap+1=2)�� 12 osh ���i2 : (4.10)Sine the VEV an be interpreted as the partition funtion of the ideal Fermi gas systemjust as the partition funtion (2.6), it is natural to introdue the generating funtion as
(z) = 1XN=0 zNW (N) = Det(1 + z�); (4.11)where Det is de�ned through the trae over the indies � with the measure in (4.7).Therefore, if we de�neQ(�; �) = 12 osh ���2 ; P (�; �) = 12 osh ���2 ; �1 =pQPpQ;�haj 1pQ� (�) = e(a+1=2)�; � 1pQ jli� (�) = e(l+1=2)� ; (4.12)then we �nd 
(z) = Det�1 + z�P + t rXp=1 1pQ jlpihapj 1pQ�Q�= Det(1 + z�1) det p;q�Æp;q + zthapj(1 + z�1)�1jlqi�: (4.13)where the multipliation among variables in the boldfae harater are understood as ma-trix multipliation with indies �; � and measures in (4.7). Note that the square root pQshould be regarded as a formal notation. We an express the integrations without it. Thereason we introdue it is beause of the relation to the previous quantities as we shall seebelow. Here, in the last equation we have used the formuladet i;j=1;��� ;D�Æi;j + rXp=1(lp)i(ap)j� = det p;q=1;��� ;r�Æp;q + DXi=1(ap)i(lq)i�; (4.14)whih is the same as (4.6) if we hange the variables by (V )Ik = (lk)I , (UT)kJ = (ak)J .Now if we pik up the tr term, then we �nd�(z)D det p;qW(apjlq)(e�; e�)EGC = Det(1 + z�1) det p;qhapjz(1 + z�1)�1jlqi: (4.15)
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This holds for both the hook and the non-hook ases.Now using this result (4.15) we an redue the proof of (1.6) to the result of (1.4)given in the previous setion or we an prove (1.4) independently. Let us �rst onsider toredue to the previous result. If we pik up the onstant term by taking the limit t ! 0,we �nd 1XN=0 zN h1iN = Det(1 + z�1): (4.16)Comparing with the expression for the partition funtion (2.8), we �ndDet(1 + z�1) = Det(1 + z�1): (4.17)Also, if we apply the above results to the single-hook ase, we �nd�(z)hW(ap jlq)(e�; e�)iGC = Det(1 + z�1)zhapj(1 + z�1)�1jlqi: (4.18)Again omparing with the expression for the hook representation we have, we �ndhapj(1 + z�1)�1jlqi = hapj(1 + z�1)�1jlqi: (4.19)Plugging (4.17) and (4.19) bak to (4.15), we have shown thatDW(a1a2���ar jl1l1���lr)EGC = det p;q�hapjR(z)jlqi�: (4.20)Instead of our omparison with the known results, the argument here also suggests thatif we restrit ourselves to the half BPS Wilson loop, we an have an alternative derivationfor the hook ase if we evaluate arefully Det(1 + z�1) and hapj(1 + z�1)�1jlqi. Theomputation of Det(1 + z�1) is exatly what we did around (2.4). Also, the omputationof haj(1 + z�1)�1jli beomesZ dx~ eix2=(2~) � � � Z dy~ e�iy2=(2~)e2�(a+ 12 )x=~ e�iqx(x�y0)=~2 osh qx2 � � � e�iqy(x0�y)=~2 osh qy2 e2�(l+ 12 )y=~; (4.21)In ompleting the square for x and y we �ndi2~x2 � iqx~ x+ 2�(a+ 1=2)~ x = i2~(x� qx � 2�i(a + 1=2))2 � i2~ (qx + 2�i(a+ 1=2))2;� i2~y2 + iqy~ y + 2�(l + 1=2)~ y = � i2~(y � qy + 2�i(l + 1=2))2 + i2~ (qy � 2�i(l + 1=2))2:(4.22)Note that q2 terms anel with the square ompletion from the neighboring terms. Hene,we are left with 12k ((a+ 1=2)qx + 2�ia(a+ 1) + (l + 1=2)qy � 2�il(l + 1)): (4.23)This is nothing but the exponent we found in (3.8) with (3.9). We note in passing that theabove omputation an be done also in the operator formalism.{ 14 {



4.3 Fermioni representationOur general expression (4.20) of the Wilson loop VEV suggests that there is an underlyingfermioni struture. This is expeted from the fermioni nature of D-branes in topologialstring theory [38℄. Introduing the fermions (x) =Xn2Z n+ 12x�n�1;  �(x) =Xn2Z �n+ 12x�n�1; (4.24)with the standard anti-ommutation relationf r;  �sg = Ær+s;0; (4.25)suh that the vauum is annihilated by the positive modes as rj0i =  �r j0i = 0 for r > 0; (4.26)we de�ne the state jV i asjV i = exp24 1Xa;l=0hW(ajl)iGC �a� 12 ��l� 1235 j0i = exp24 1Xa;l=0hajR(z)jli �a� 12 ��l� 1235 j0i:(4.27)In terms of this state jV i, the grand anonial VEV of the Wilson loop W(a1a2���arjl1l2���lr)is ompatly written asDW(a1a2���arjl1l1���lr)EGC = h0j rYi=1 �ai+ 12 li+ 12 jV i: (4.28)This is reminisent of the expression of topologial vertex in [38℄. Indeed, the perturbativepart of a single-hook Wilson loop is determined by the topologial vertex of C 3hW(ajl)iGC(pert) = q 14a(a+1)� 14 l(l+1)[a+ l + 1℄[a℄![l℄! ia+l+1e 2(a+l+1)�k ; (4.29)with [n℄ = q n2 � q�n2 and q = e 4�ik . Using the q-binomial formula, one an show that thealternating sum of (4.29) reprodues the perturbative part of winding Wilson loop [26℄Xa+l=n�1(�1)l q 14a(a+1)� 14 l(l+1)[a+ l + 1℄[a℄![l℄! ia+l+1e 2(a+l+1)�k = in[n℄e 2n�k = in�12 sin 2�k e 2n�k : (4.30)5 Relation to open topologial stringsIn this setion, we see a relation between the VEVs of the half BPS Wilson loops and theopen topologial string amplitudes. As is well-known, the ABJM matrix model is related tothe L(2; 1) lens spae matrix model by analyti ontinuation [7, 24℄ (see also [39, 40℄). Thislens spae matrix model is also related to the topologial string on loal P1 � P1 through{ 15 {



the large N duality [41℄. In fat, the perturbative and the worldsheet instanton parts in theABJM partition funtion an be aptured by the result of the losed topologial string onloal P1�P1. Similarly, the VEVs of the half BPS Wilson loops are desribed by the opentopologial string. Here we are interested in the VEVs in the grand anonial ensemble,whih orresponds to the so-alled large radius frame on the topologial string side. Theopen topologial string in this frame was reently studied in detail in [27℄.We note that the membrane instanton orretions are diÆult to be known from thetopologial string beause these orretions orrespond to the non-perturbative e�ets inthe topologial string. We will explore the membrane instanton orretions in the nextsetion with the help of the numerial analysis.First we briey summarize the result of [27℄. The open topologial string amplitudestake the following general form [42{44℄,F open(t; V ) = X�2H2(X) 1Xg=0 1Xh=1X̀ 1Xm=1 1h!ng;�;` 1m�2 sinhmgtop2 �2g�2� hYj=1� 2̀j sinhm`jgtop2 trV m`j�e�m��t; (5.1)where t is the K�ahler moduli of the loal Calabi-Yau X, and V is the open string moduli.For the ABJM theory, we are interested in loal P1 � P1. The string oupling in thetopologial string is related to the Chern-Simons level,gtop = 4�ik : (5.2)There are two K�ahler moduli, whih are identi�ed as the hemial potential � dual to theoriginal rank N , t1 = t2 = T = 4�k � �i; Q � e�T = �e� 4�k : (5.3)Similarly, the open string moduli V is also identi�ed with the dual variable for the Wilsonloop insertion U . Then, we an relate the perturbative part and worldsheet instanton partof the grand anonial VEVs in the ABJM theory to the above open topologial stringamplitudes. The onrete relation is given expliitly by [27℄,eF open(t;bV ) = �exp� 1Xj=1 1j StrU j trV j��GC(pert+WS) (5.4)= Xn1;n2;::: n1;n2;:::h(StrU)n1(StrU2)n2 � � �iGC(pert+WS)(trV )n1(tr V 2)n2 � � � ;with n1;n2;::: = 1=(Qj jnjnj!). Note that to write down the relation we have to plug a newparameter bV = Q�1=2V = ie 2�k V; (5.5)into (5.1). { 16 {



5.1 Perturbative partLet us onsider the perturbative part. We neglet all the exponentially suppressed termsin (5.1). We observe that the leading order ontribution � = (0; 0) omes only fromn0;(0;0);(1) = 1: (5.6)Thus we obtain F openpert (V ) = 1i 1Xm=1 1m 12 sin 2�mk trV m: (5.7)Plugging this into (5.4), we geteF openpert (bV ) = 1 + e 2�k2 sin 2�k trV + e 4�k8 sin2 2�k (tr V )2 + ie 4�k4 sin 4�k trV 2 (5.8)+ e 6�k48 sin3 2�k (trV )3 + ie 6�k8 sin 2�k sin 4�k trV trV 2 � e 6�k6 sin 6�k trV 3 + � � � :Therefore we immediately �ndhStrUniGC(pert) = in�12 sin 2�nk e 2n�k ; (5.9)and the fatorization propertyh(StrU)n1(StrU2)n2 � � �iGC(pert) = (hStrUiGC(pert))n1(hStrU2iGC(pert))n2 � � � : (5.10)Note that this fatorization property does not hold if the instanton e�et is taken intoaount. One an hek that these results reprodue (4.29) for the hook representations.From the fatorization property (5.10), one �nds that the perturbative part of the halfBPS Wilson loop in the representation R sales ashWRiGC(pert) � e 2n�k ; (5.11)where n is the number of boxes of Young diagram R and we have dropped the prefatorindependent of �. Coming bak to the VEV in the anonial ensemble via (2.20), we �ndthat the perturbative part of the half BPS Wilson loop in arbitrary representation givesthe following Airy funtion behaviorhWRi(pert)N � Ai"� 2�2k��1=3�N � k24 � 6n+ 13k �#; (5.12)where the proportional oeÆient depends only on k. From this expression, we an also�nd the large N limit as hWRiNZ(N) � en�p2� (N !1); (5.13)where � = N=k is the 't Hooft oupling. Note that this exponent is the same as n times ofan lassial string ation on the gravity side [23℄.{ 17 {



5.2 Worldsheet instantonsLet us onsider the worldsheet instanton orretions. We �rst denote the general openstring amplitude byF open(t; V ) = 1Xh=1X̀ 1Xm=1A(m)`1;:::;`h trV m`1 � � � trV m`h : (5.14)withA(m)`1;:::;`h =X� 1Xg=0 1h!ng;�;` 1m�2 sinh mgtop2 �2g�2 hYj=1� 2̀j sinhm`jgtop2 �e�m��t: (5.15)After speifying � = (d1; d2) and take the \diagonal" sum for the open GV invariantsng;d;` = Xd1+d2=dng;(d1;d2);`; (5.16)this beomesA(m)`1;:::;`h = 1Xd=0 1Xg=0 (�1)g�1h! ng;d;` 1m�2 sin 2�mk �2g�2 hYj=1�2i`j sin 2�m`jk �Qmd: (5.17)Thus we �nd from (5.14), for example,hStrUiGC(pert+WS) trV = A(1)1 tr bV ;12 hStrU2iGC(pert+WS) trV 2 = (A(1)2 +A(2)1 ) tr bV 2;12h(StrU)2iGC(pert+WS)(tr V )2 = �A(1)1;1 + 12(A(1)1 )2�(tr bV )2; (5.18)where the relation between V and bV is given by (5.5).Using the expliit values of the open GV invariants listed in Tables 1 and 2 of [27℄, weobtain the worldsheet instanton orretions up to order Q5,hStrUiGC(pert+WS) = e 2�k2 sin 2�k �1 + 2Q+ 3Q2 + 10Q3 +�49� 32 sin2 2�k �Q4+�288� 576 sin2 2�k + 352 sin4 2�k �Q5 +O(Q6)�;hStrU2iGC(pert+WS) = ie 4�ksin 4�k sin2 2�k �12 sin2 2�k + 12 sin2 4�k Q+�sin2 2�k + sin2 4�k �Q2 + 4 sin2 4�k Q3+�32 sin2 2�k + 18 sin2 4�k � 14 sin2 2�k sin2 4�k �Q4+�104� 224 sin2 2�k + 160 sin4 2�k � sin2 4�k Q5 +O(Q6)�;
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h(StrU)2iGC(pert+WS) = e 4�ksin2 2�k �14 +�1� sin2 2�k �Q+�52 � 2 sin2 2�k �Q2+�8� 8 sin2 2�k �Q3 +�1474 � 64 sin2 2�k + 28 sin4 2�k �Q4+�208� 656 sin2 2�k + 768 sin4 2�k � 320 sin6 2�k �Q5 +O(Q6)�: (5.19)As disussed in [45℄, the g = 0 terms of hStrUiGC(pert+WS) are given by the fator(Q=z) 12 representing the worldsheet instanton orretions to the disk amplitude. Here zand Q are related by the mirror map of loal P1 � P1 along the diagonal slie z1 = z2 = z12 log Qz = 2z 4F3�1; 1; 32 ; 32 ; 2; 2; 2; 16z� : (5.20)Inverting this relation, the worldsheet instanton orretions to the disk amplitude are foundto bef(Q) � �Qz � 12= 1 + 2Q+ 3Q2 + 10Q3 + 49Q4 + 288Q5 + 1892Q6 + 13390Q7 + � � � ; (5.21)whih reprodue the invariants ng=0;d;(1) listed in [27℄. Interstingly, we �nd from [46℄ thatthe VEV of the Wilson loop with widing n is generially written as the following form,hStrUniGC(pert+WS) = e 2n�k f(Qn)Xg;d Xn=`mNg~em;d�2 sin 2�`k �2g�2�2 sin 2�nk �Qd` (5.22)where Ng~em;d are integers, whih are related to the open GV invariants ng;d;`. Insteadof the topologial string onsideration, we an also �x suh integers by omparing thematrix model results [7, 24, 26℄ in the 't Hooft limit beause the genus expansion in thislimit aptures all the worldsheet instanton orretions. The similar omparison on theworldsheet instanton orretions to the grand potential has been done in [17℄. In this way,we have �xed the values of Ng~em;d in the very �rst few ases. The result is summarized inTable 1. For n = 1; 2, one an hek that (5.22) with Table 1 indeed reprodue (5.19).In the next setion, we will on�rm that these worldsheet instanton orretions areindeed onsistent with our numerial results.6 Numerial study and membrane instantonsIn this setion, we numerially evaluate the VEVs of the half BPS Wilson loops in hookrepresentations by using the formulation presented in setions 3 and 4. The main moti-vation of this analysis is to explore the membrane instanton e�ets, whih are very hardto be desribed in the topologial string theory. The similar analysis has been alreadydone for the grand partition funtion in [17, 19℄. We ompute the VEVs in various hookrepresentations for some values of k. Here we propose that the membrane instanton or-retions are ompletely enoded by the replaement �! �e� in the perturbative part and{ 19 {



Table 1. The values of Ng~em;d.Ng~e1;d d = 0 1 2 3 4 5g = 0 1 0 0 0 0 01 0 0 0 0 �8 �1282 0 0 0 0 0 22 Ng~e2;d d = 0 1 2 3g = 0 0 1 2 61 0 0 0 0Ng~e3;d d = 0 1 2 3g = 0 0 1 3 91 0 0 0 0 Ng~e4;d d = 0 1 2 3g = 0 0 1 4 141 0 0 �4 �8the worldsheet instanton part as in (1.8). The e�etive hemial potential �e� is expliitlygiven [19℄ for even k = 2n as�e� = �+ (�1)n�12e�2� 4F3�1; 1; 32 ; 32; 2; 2; 2; (�1)n16e�2�� ; (6.1)and onjetured for odd k as�e� = �+ e�4� 4F3�1; 1; 32 ; 32; 2; 2; 2;�16e�4�� : (6.2)Below, we will hek the proposal (1.8) by the numerial study.6.1 A proedureLet us onsider the VEV for the half BPS Wilson loops in the hook representation (ajl).The VEV is given by (1.4),hW(ajl)iGC = Z dxdy(2�k)2 hajxihxj z1 + z�1 jyihyjli: (6.3)Let us �rst note that, the omplex phase dependene only ome from hajxi and hyjli, whihis trivially given in (3.9),hW(ajl)iGC = ea(a+1)�ik � l(l+1)�ik jhW(ajl)iGCj: (6.4)Hene we de�ne a real funtion W(ajl) with its series expansion W(m)(ajl) asW(ajl) � jhW(ajl)iGCj = 1Xm=0(�1)mzm+1W(m)(ajl); (6.5)where W(m)(ajl) is given byW(m)(ajl) = Z dxdy(2�k)2 bfa(x)�m1 (x; y) bfl(y); bfn(x) � e(n+ 12 )xkp2 osh x2 : (6.6)
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Of ourse, the VEVs for (ajl) and (lja) should be omplex onjugate to eah other, thereforewe immediately �nd W(ajl) =W(lja): (6.7)Our task is to evaluate the integral (6.6). This an be done as follows. Let us introduethe funtion by �(m)l (x) = 1p2 osh x2 Z dy2�k�m1 (x; y) bfl(y): (6.8)One easily �nds that this funtion satis�es the reurrene relation�(m)l (x) = 12 osh x2 Z dy2�k 12 osh x�y2k �(m�1)l (y); (6.9)with the initial ondition �(0)l (x) = e(l+ 12 )xk2 osh x2 : (6.10)One the funtion �(m)l (x) is known, the integral (6.6) is easily evaluated asW(m)(ajl) = Z dx2�k e(a+ 12 )xk�(m)l (x): (6.11)We notie that the integral equation (6.9) is essentially the same as that appearing in[15{17℄. One an solve it for any k at least numerially. Pratially, we solve the integralequation up to ertain value m = mmax, and make an approximation1Xm=0(�1)mzm+1W(m)(ajl) � mmaxXm=0 (�1)mzm+1W(m)(ajl): (6.12)Then, we extrapolate it to the large � regime. This is the same strategy as that in [17℄.Before losing this subsetion, we will briey omment on the onvergene of integral.In (6.10) and (6.11), there appear the exponential fators that diverge in large x limit. Dueto these fators, the integral (6.11) onverges only ifk > 2(a+ l + 1) = 2jRhookj; (6.13)where jRhookj is the size of Young diagram orresponding to the hook representationRhook.Therefore the grand anonial VEVs are also well-de�ned only for suh values of k. Suha behavior has also found for the multiple winding Wilson loop in [26℄.6.2 Fundamental representationThe simplest representation is the fundamental representation (0j0),hW(0j0)iGC =W(0j0); (6.14)
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We would like to evaluate W(0j0) numerially for some values of k. By solving the integralequation, we have performed the numerial omputation, and �nd the non-perturbativeorretions to W(0j0) for k = 3; 4; 6; 8; 12. The results are as follows:W(0j0)jk=3 =W(pert)(0j0) �1 + 2Q+ 3Q2 + 283 Q3 + 793 Q4 + 60Q5 + 15629 Q6 +O(Q7)� ;W(0j0)jk=4 =W(pert)(0j0) �1 + 2Q+ 2Q2 + 12Q3 + 22Q4 + 124Q5 + 276Q6 +O(Q7)� ;W(0j0)jk=6 =W(pert)(0j0) �1 + 2Q+ 3Q2 + 283 Q3 + 793 Q4 + 60Q5 + 15629 Q6 +O(Q7)� ;W(0j0)jk=8 =W(pert)(0j0) �1 + 2Q+ 3Q2 + 10Q3 + 652 Q4 + 89Q5 + 4652 Q6 +O(Q7)� ;W(0j0)jk=12 =W(pert)(0j0) �1 + 2Q+ 3Q2 + 10Q3 + 41Q4 + 166Q5 + 18443 Q6 +O(Q7)� ;(6.15)where W(pert)(0j0) is W(pert)(0j0) = e 2�k2 sin 2�k : (6.16)Let us ompare these results with the theoretial predition. The worldsheet instantonorretions of hW(0j0)iGC = hStrUiGC are given by (5.19). As mentioned before, we proposethat the membrane instanton orretion an be inorporated by the replaement �! �e�in the worldsheet instanton orretion. Thus our onjeture, inluding the membraneinstanton e�ets, isW(0j0) = e 2�e�k2 sin 2�k �1 + 2Qe� + 3Q2e� + 10Q3e� +�49� 32 sin2 2�k �Q4e�+�288 � 576 sin2 2�k + 352 sin4 2�k �Q5e� +O(Q6e�)�; (6.17)where Qe� = �e� 4�e�k . For the omparison, we need to rewrite it in terms of Q = �e� 4�k .Using the relations (6.1) and (6.2) between � and �e� , we �ndQe� = 8>>>>><>>>>>:Q+ 43Q4 +O(Q7) (k = 3; 6)Q+ 2Q3 + 11Q5 +O(Q7) (k = 4)Q+Q5 +O(Q9) (k = 8)Q+ 23Q7 +O(Q13) (k = 12): (6.18)Plugging these into (6.17), one an hek that the orretions exatly agree with the nu-merial ones (6.15) up to Q5. We emphasize that only the worldsheet instanton orretiondoes not explain the numerial results (6.15). We need to replae � by �e� to reproduethem. This is due to the membrane instanton e�ets.
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6.3 Young diagrams with two boxesThere are two representations with two-box Young diagrams:hW(1j0)iGC = e 2�ik W(1j0); hW(0j1)iGC = e� 2�ik W(0j1): (6.19)We have the relation W(1j0) = W(0j1). By the similar omputation to the fundamentalrepresentation, we �ndW(1j0)jk=6 =W(pert)(1j0) �1 +Q+ 4Q2 + 203 Q3 + 18Q4 + 1723 Q5 + 11909 Q6 +O(Q7)� ;W(1j0)jk=8 =W(pert)(1j0) �1 + 2Q+ 6Q2 + 16Q3 + 46Q4 + 128Q5 + 364Q6 +O(Q7)� ;W(1j0)jk=12 =W(pert)(1j0) �1 + 3Q+ 8Q2 + 24Q3 + 90Q4 + 348Q5 + 38623 Q6 +O(Q7)� ;(6.20)with W(pert)(1j0) = e 4�k4 sin 2�k sin 4�k : (6.21)Let us also ompare these results with our predition. Note that hW(1j0)iGC is givenby hW(1j0)iGC = 12h(StrU)2iGC + 12 hStrU2iGC: (6.22)The worldsheet instanton orretions of h(StrU)2iGC and hStrU2iGC are given by (5.19).Thus our predition isW(1j0) = e 4�e�k4 sin3 2�k sin 4�k �sin2 2�k + sin2 4�k Qe� + �2 sin2 2�k + 2 sin2 4�k �Q2e�+ 8 sin2 4�k Q3e� + �3 sin2 2�k + 36 sin2 4�k � 28 sin2 2�k sin2 4�k �Q4e�+ �208 � 448 sin2 2�k + 320 sin4 2�k � sin2 4�k Q5e� +O(Q6e� )�: (6.23)Using the relation (6.18), one �nds that the orretions again agree with the numerialones (6.20) up to Q5.6.4 Young diagrams with three boxesFor the three-box Young diagrams, there are two non-trivial real funtions,hW(2j0)iGC = e 6�ik W(2j0); hW(1j1)iGC =W(1j1); hW(0j2)iGC = e� 6�ik W(0j2); (6.24)with the onstraint W(2j0) =W(0j2). From the numerial analysis, we �ndW(2j0)jk=8 =W(pert)(2j0) �1 +Q2 + 8Q3 + 332 Q4 + 40Q5 + 2352 Q6 +O(Q7)�;
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W(2j0)jk=12 =W(pert)(2j0) �1 + 2Q+ 8Q2 + 32Q3 + 116Q4 + 426Q5 + 1534Q6 +O(Q7)�;(6.25)andW(1j1)jk=8 =W(pert)(1j1) �1 + 2Q+ 5Q2 + 14Q3 + 732 Q4 + 105Q5 + 5912 Q6 +O(Q7)�;W(1j1)jk=12 =W(pert)(1j1) �1 + 4Q+ 12Q2 + 38Q3 + 136Q4 + 508Q5 + 1866Q6 +O(Q7)�:(6.26)Note that to ompare these results with the theoretial predition, we need to know theopen GV invariants ng;d;` for ` = (3); (2; 1); (1; 1; 1), whose expliit values are not foundin the literature. Instead, one an ompare the result for the Wilson loop with winding 3.The VEV of the Wilson loop with winding 3 is omputed ashW3iGC = hW(2j0)iGC � hW(1j1)iGC + hW(0j2)iGC= 2 os�6�k �W(2j0) �W(1j1); (6.27)From (5.22) with Table 1, on the other hand, we obtainhW3iGC = �e 6�e�k �12 s 6�k + 12 s2 2�k sin 6�k Qe� + 32 s2 2�k sin 6�k Q2e�+ �s 6�k + 92 s2 2�k sin 6�k �Q3e� +O(Q4e�)�: (6.28)One an hek that this reprodues the above results for k = 8; 12 up to Q3.6.5 Young diagrams with four boxesFor the four-box ase, there are four hook representations and one non-hook representation.For the hook representations, we havehW(3j0)iGC = e 12�ik W(3j0); hW(2j1)iGC = e 4�ik W(2j1);hW(0j3)iGC = e� 12�ik W(0j3); hW(1j2)iGC = e� 4�ik W(1j2); (6.29)with W(3j0) = W(0j3) and W(2j1) = W(1j2). For the non-hook representation (1; 0j1; 0), theVEV is given by the determinant formulahW(1;0j1;0)iGC = det hW(1j1)iGC hW(1j0)iGChW(0j1)iGC hW(0j0)iGC! =W(1j1)W(0j0) �W(1j0)W(0j1): (6.30)From the numerial analysis, we �ndW(3j0)jk=12 =W(pert)(3j0) �1 +Q2 + 12Q3 + 61Q4 + 216Q5 + 14172 Q6 +O(Q7)�;W(2j1)jk=12 =W(pert)(2j1) �1 + 3Q+ 10Q2 + 36Q3 + 133Q4 + 486Q5 + 52583 Q6 +O(Q7)�;(6.31)One an hek that the VEV of the Wilson loop with winding 4 at k = 12 is reproduedfrom these results. { 24 {



6.6 ImpliationsThe grand anonial VEVs of the half BPS Wilson loops are in general omplex. As wasseen before, however, their phase dependenes are trivial. This fat implies that there aresome non-trivial relation among open GV invariants ng;d;` for di�erent `. Let us see thishere. In the size 2 representations, we haveh(StrU)2iGC = hW(1j0)iGC + hW(0j1)iGC = 2 os 2�k W(1j0);hStrU2iGC = hW(1j0)iGC � hW(0j1)iGC = 2i sin 2�k W(1j0); (6.32)where we have used W(1j0) = W(0j1). These expressions immediately lead to the exatrelation, hStrU2iGCh(StrU)2iGC = i tan 2�k : (6.33)This relation gives a non-trivial relation among the open GV invariants ng;d;(1), ng;d;(2) andng;d;(1;1). For very lower g and d, we �ndn0;1;(2) = n0;1;(1;1) = n0;1;(1)2 ;n0;2;(2) = n0;2;(1;1) = 14(2n0;2;(1) + n20;1;(1) � n0;1;(1));n0;3;(2) = n0;3;(1;1) = 12(n0;3;(1) + n0;2;(1)n0;1;(1));n0;4;(2) = 14(2n0;4;(1) + 2n0;3;(1)n0;1;(1) + n20;2;(1) � n0;2;(1));n0;4;(1;1) � 4n1;4;(1;1) = 14(2n0;4;(1) + 2n0;3;(1)n0;1;(1) + n20;2;(1) � n0;2;(1) � 8n1;4;(1));n1;4;(1;1) = n1;4;(2): (6.34)One an hek that the expressions (5.19) indeed satisfy the relation (6.33) up to order Q5.Similarly, from the relation13 h(StrU)3iGC + 23hStrU3iGC = 2 os 6�k W(2j0);hStrU StrU2iGC = 2i sin 6�k W(2j0); (6.35)we �nd hStrU StrU2iGC = i tan 6�k �13h(StrU)3iGC + 23 hStrU3iGC� : (6.36)This gives an non-trivial relation among ng;d;` for ` = (1); (2); (1; 1); (3); (2; 1); (1; 1; 1).Also, the Giambelli formula (1.6) gives non-trivial relations among the open GV in-variants. For the representation R = (1; 0j1; 0), we �nd the relation112 h(StrU)4iGC � 13 hStrU StrU3iGC + 14h(StrU2)2iGC
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= 13 h(StrU)3iGChStrUiGC � 14(h(StrU)2iGC)2� 13hStrUiGChStrU3iGC + 14(hStrU2iGC)2; (6.37)or equivalently, in terms of A(m)`1;:::;`h de�ned by (5.17), the relation is written asA(1)1;1;1;1 �A(1)3;1 +A(1)2;2 = �A(2)1;1 � (A(1)1;1)2: (6.38)Substituting (5.17) into this, we obtain the relation among the open GV invariants.67 ConlusionIn this paper we have proposed the Fermi gas formalism for the VEVs of the half BPS Wil-son loops in arbitrary representations. For the ase of the hook representations, we presentthe formula in terms of the onvolution of integrations. For the ase of the non-hook repre-sentations, we redue the omputation to the hook ase by a determinant formula similarto the Giambelli formula for the Shur polynomial. After working out these expressionsfor the VEVs, we also present a numerial study. We �nd that besides the worldsheetinstanton orretions we also have the membrane instanton orretions whih an be in-orporated by shifting the hemial potential � into �e� as we did in studying the boundstates in the ABJM partition funtion.We onlude our paper by listing several disussions on the further diretions.Based on the numerial results, we onlude that the membrane instanton orretionis ompletely enoded in the perturbative and the worldsheet instanton parts by replaing� by �e� . Let us reall that in the partition funtion, there is also a pure membraneinstanton orretion, as well as the bound states of the worldsheet instantons and themembrane instantons. This pure membrane instanton orretion is diretly related to thenon-perturbative e�et in the losed topologial string [20℄ (see also [47℄). Our Wilson loopresult (1.8) implies that there seem to be no pure membrane instanton orretions in theopen topologial string on \diagonal" loal P1�P1. It would be interesting to on�rm thisin the topologial string framework.Most of our analysis here fous on the half BPS Wilson loops, whih have nie oun-terparts in the topologial string. Our method presented in setion 2, however, an beappliable to the 1=6 BPS Wilson loops. The topologial string ounterparts to suh 1=6BPS Wilson loops are unlear, thus it would be important to reveal the struture of in-stanton e�ets in the 1=6 BPS Wilson loops by using our method. It is also interestingto perform Monte Carlo simulation [48℄ of the 1=6 BPS Wilson loops in low dimensionalrepresentations, whih has been useful for the partition funtion [14℄. It would also beilluminating to apply our formalism to other observables in the ABJM theory suh as thevortex loop [6℄ and energy-momentum tensor orrelator [49℄, whih an be also simpli�edby the loalization method.6 To apture the membrane instanton orretion, we need to replae Q in (5.17) by Qe� , but thisreplaement does not hange the relations at all.
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In the topologial string theory, we have a set of open GV invariants for eah repre-sentation. In our Fermi gas formalism, we �nd several non-trivial relations among suhinvariants. The simplest one is the symmetry of taking the transpose in the Young dia-gram. For example, disregarding a di�erene in the trivial phase fator, the VEVs of thehalf BPS ABJM Wilson loops in the symmetri and anti-symmetri representations areequal with eah other. Hene this triviality of the phase fator imposes highly non-trivialrelations in the open GV invariants. The origin of this property is unlear on the topolog-ial string side at present. Besides, the VEVs in the non-hook representations enjoy theGiambelli property. Tehnially, the Giambelli property imposes many interesting relationsand redues largely the unknown open GV invariants. Using the Giambelli property, wean show that the number of unknown GV invariants at eah order redues the number ofboxes n, whih originally inreases with the number of representations, namely, partitionsp(n) � e�q 2n3 =(4p3n). It is interesting to larify what kind of relations the transpositionsymmetry and the Giambelli ompatibility will impose on the open GV invariants. We alsoask whether these kinds of relations appear in more general topologial string theories ornot. Sine we have studied only the loal P1�P1 topologial string, the relations might beaidental properties in this model. If these are ommon in a lass of topologial strings,we expet that there are some extra strutures, whih naturally explain the relations. Forexample, sine the topologial reursion of Eynard and Orantin [50℄ gives relations amongall open string invariants, this might explain the relations oming from the transpositionsymmetry and the Giambelli ompatibility.A natural open question is the physial interpretation of the Giambelli ompatibility.It would be nie to understand its meaning from the brane on�guration or the gravityanalysis. We hope that this would be a lue to understand M-theory.AknowledgementsWe are grateful to Heng-Yu Chen, Nadav Drukker, Maros Marino, Tomoki Nosaka, Kazu-toshi Ohta, Soo-Jong Rey, Masaki Shigemori, Takao Suyama for useful disussions. Espe-ially we would like to thank Sho Matsomoto for sharing his idea of the proof of Giambelliompatibity with us. The work of Y.H. is supported in part by the JSPS Researh Fellow-ship for Young Sientists, while the work of K.O. is supported in part by JSPS Grant-in-Aidfor Young Sientists (B) #23740178.Referenes[1℄ O. Aharony, O. Bergman, D. L. Ja�eris and J. Maldaena, \N=6 superonformalChern-Simons-matter theories, M2-branes and their gravity duals," JHEP 0810, 091 (2008)[arXiv:0806.1218 [hep-th℄℄.[2℄ V. Pestun, \Loalization of gauge theory on a four-sphere and supersymmetri Wilsonloops," [arXiv:0712.2824 [hep-th℄℄.[3℄ A. Kapustin, B. Willett, I. Yaakov, \Exat Results for Wilson Loops in SuperonformalChern-Simons Theories with Matter," JHEP 1003, 089 (2010). [arXiv:0909.4559 [hep-th℄℄.
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