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Abstract: The partition function of ABJM theory on the three-sphere has non-perturbative
corrections due to membrane instantons in the M-theory dual. We show that the full series of
membrane instanton corrections is completely determined by the refined topological string on the
Calabi–Yau manifold known as local P1 × P

1, in the Nekrasov–Shatashvili limit. Our result can
be interpreted as a first-principles derivation of the full series of non-perturbative effects for the
closed topological string on this Calabi–Yau background. Based on this, we make a proposal for
the non-perturbative free energy of topological strings on general, local Calabi–Yau manifolds.
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1. Introduction

Large N dualities relate gauge theories to string theories, and provide in principle a non-
perturbative definition of string theory on certain backgrounds. The genus expansion of string
theory amplitudes emerges then as an asymptotic, 1/N expansion of gauge theory amplitudes.
Most of the work on large N dualities has focused on the large N or planar limit of the correspon-
dence. One can also use these dualities to extract information about subleading 1/N corrections,
although this is typically more difficult and it has been comparatively much less explored. In
principle, large N dualities could be also used to study non-perturbative stringy effects, which
correspond to corrections which are exponentially suppressed as N becomes large. Results along
this direction have been even rarer.

In this paper we use large N dualities to completely determine the non-perturbative structure
of the free energy of M-theory on AdS4 × S

7/Zk. As a bonus, we obtain as well the non-
perturbative structure for the free energy of topological string theory on the Calabi–Yau manifold
known as local P1×P

1, since both problems are formally identical. The non-perturbative structure
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we find turns out to be encoded by the refined topological string on local P1×P
1, in the so-called

Nekrasov–Shatashvili (NS) limit [1].

The solution to this problem has been based on the convergence of many different results.
First of all, a large N dual to M-theory on AdS4 × S

7/Zk was proposed already in [2] in terms
of the theory of N coincident M2 branes. In [3], based on previous work [4], this theory was
constructed as an N = 6 supersymmetric U(N) × U(N) Chern–Simons–matter theory known
as ABJM theory. In this large N duality, the geometric parameter k in M-theory corresponds
to the Chern–Simons coupling. The second ingredient was the localization computation of [5],
where the partition function of ABJM theory on the three-sphere was reduced to a matrix integral
which we will call the ABJM matrix model. This matrix model has been intensively studied from
many points of view, and a variety of results have been found. The planar free energy, as well as
the subleading 1/N corrections in the standard ’t Hooft or genus expansion, were determined in
[6]. This expansion makes contact with the type IIA reduction of M-theory and it captures all
worldsheet instanton corrections to the partition function. However, in order to make contact
with the M-theory regime, one should study the ABJM matrix model in the so-called M-theory
expansion, where N is large but k is fixed. This was first done in [7], where the leading, large
N limit was studied. In order to understand in more detail the M-theory expansion, and the
corrections to the large N limit, a new method was introduced in [8], based on an equivalence
with an ideal Fermi gas. In this approach, the Planck constant of the quantum gas is naturally
identified with the inverse string coupling, and the semiclassical limit of the gas corresponds then
to the strong string coupling limit in type IIA theory. One of the main virtues of the Fermi gas
approach is that it makes it possible to calculate systematically non-perturbative stringy effects.
These effects were anticipated in [9], where they were interpreted as membrane instanton effects
in M-theory, or equivalently as D2-brane effects in type IIA theory. Thus, the Fermi gas approach
opened the way for a quantitative determination of these effects in the M-theory dual to ABJM
theory.

During the last year, the Fermi gas approach has led to many results on the partition function
of ABJM theory. The equivalence between this method and the TBA system of [10, 11] has been
particularly useful. We now have a lot of data, like for example WKB expansions at small k
of the membrane instanton corrections [8, 12]. The calculation of the values of the partition
function for various values of N and k [13, 14, 15], and their extrapolation to large N , have
produced numerical results for the exponentially small corrections. In [15, 16], it was noticed
that the corrections due to worldsheet instantons, which are known explicitly, are singular for
integer values of k. Since the partition function is regular for all k, it was postulated that
these singularities should be cancelled by membrane instanton corrections, as well as corrections
coming from bound states of membranes and fundamental strings. This principle, which we will
call the HMO cancellation mechanism, when combined with WKB expansions and numerical
results, has led to conjectural exact results in k for the very first membrane instanton corrections
[15, 12, 16] and to a conjecture for the structure of bound states [16]. According to this conjecture,
the bound states are completely determined by the worldsheet instantons and the membrane
instanton corrections. The remaining open problem is then to find an analytic description of the
membrane instanton corrections in the M-theory regime, i.e. as an expansion at large N but
exact in k.

In this paper we find precisely such a description. It turns out that the membrane instanton
expansion at large N , which involves two independent generating functionals, is completely
determined by the NS limit of the refined topological string on local P

1 × P
1. This limit is

described by the two quantum periods of the mirror manifold [17, 18, 19], which are equal to the
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two generating functionals we were looking for. The Chern–Simons coupling k of ABJM theory
corresponds to the quantum deformation parameter ~, and the standard large radius expansion
of the periods corresponds precisely to the large N expansion in ABJM theory. Since the periods
can be calculated exactly as a function of ~, this equivalence solves the problem of computing
the non-perturbative corrections to the free energy of ABJM theory.

So far we are lacking a proof of this equivalence, which we have checked by comparing the
existing results on membrane instantons in ABJM theory to the explicit results for the quantum
periods, so our result here should be regarded as a conjecture. It can be stated quite precisely as
an equivalence between the solution of the TBA system describing the ABJM partition function
which is analytic at k = 0, and the problem of quantizing the periods of local P1 × P

1.

One of the first insights which made possible a precise quantitative understanding of the
ABJM matrix model is its equivalence [20] to the matrix model describing Chern–Simons theory
on RP

3 [21], which is dual at large N to topological string theory on local P1 × P
1 [22]. This

implies, for example, that the worldsheet instanton corrections in ABJM theory are determined
by the worldsheet instanton corrections in this topological string theory. We can then define

the non-perturbative partition function of topological string on local P1×P
1 through the ABJM

matrix model. With this non-perturbative definition, our computation of exponentially small
corrections to this matrix model partition function can be also regarded as a derivation of the
full structure of non-perturbative effects for topological string theory on local P1 × P

1. The fact
that the Fermi gas approach could be used to obtain a precise quantitative understanding of
non-perturbative effects in this topological string model was pointed out in [8], and emphasized
in [23].

The non-perturbative structure of topological strings has been the subject of much specu-
lation in recent years, and there are by now various proposals on how it should look like. We
would like to emphasize, however, that our derivation of the non-perturbative structure in this
particular example is done from first principles, once we define it through the large N matrix
model dual, and it fits a large amount of data on the large N asymptotics of the matrix model.
Our result says that the non-perturbative part of the standard topological string free energy is
determined by the refined topological string in the NS limit, on the same background. Inspired
by this concrete result, we make a proposal for the non-perturbative structure of topological
strings on arbitrary local CY manifolds, where the non-perturbative effects are encoded in the
refined topological string. It turns out that our proposal (as well as our concrete, first-principles
calculation for local P1×P

1) is similar to a recent proposal by Lockhart and Vafa [24], which was
inspired by localization in five-dimensional supersymmetric Yang–Mills theories, and we point
out the resemblances as well as the differences between the two proposals.

The organization of this paper is as follows. In section 2 we review the known results on
the grand potential of ABJM theory obtained in [8, 13, 14, 15, 12, 16]. In section 3 we show
that these results are encoded in the NS limit of the refined topological string, and in particular
in the quantum periods. In section 4 we point out that this leads to the determination of the
non-perturbative structure of the topological string on local P1 × P

1, and we make a proposal
on how to extend this to arbitrary, local CY manifolds. We also discuss the relationship of our
results and proposal to the work of [24]. Finally, in section 5 we conclude and discuss some
avenues for further research. In Appendix A we explain how to calculate the quantum A-periods
from the TBA system of the Fermi gas, and in Appendix B we make some comments on the
quantum mirror map.

– 3 –



2. The partition function of ABJM theory

2.1 The grand potential

As it was shown in [5], the partition function of ABJM theory on the three-sphere, Z(N, k), is
given by the matrix integral

Z(N, k)

=
1

N !2

∫

dNµ

(2π)N
dNν

(2π)N

∏

i<j

[

2 sinh
(

µi−µj

2

)]2 [

2 sinh
(

νi−νj
2

)]2

∏

i,j

[

2 cosh
(

µi−νj
2

)]2 exp

[

ik

4π

N
∑

i=1

(µ2
i − ν2i )

]

.
(2.1)

This matrix integral can be calculated in two different regimes. In the ’t Hooft expansion one
considers the limit

N → ∞, λ =
N

k
fixed, (2.2)

and the partition function has the standard 1/N expansion,

Z(N, k) = exp





∞
∑

g=0

N2−2gFg(λ)



 , (2.3)

which corresponds to the genus expansion of type IIA superstring theory on AdS4 × CP
3 [3].

The genus g free energies Fg(λ) can be calculated exactly as a function of λ, and order by order
in the genus expansion, by using matrix model techniques [6]. They contain non-perturbative
information in α′, since they involve exponentially small corrections of the form

O
(

e−2π
√
2λ
)

. (2.4)

It was conjectured in [6] that these terms correspond to worldsheet instantons wrapping a two-
cycle CP

1 ⊂ CP
3, which were first considered in [27].

In the M-theory expansion, one computes the partition function in the regime

N → ∞, k fixed. (2.5)

This is the regime which is suitable for the dual description in terms of M-theory on AdS4×S
7/Zk.

In this regime, one expects to find as well non-perturbative effects in the string coupling constant,
which in type IIA theory correspond to Euclidean D2-brane instantons wrapping three-cycles in
the target space. In [9] an appropriate, explicit family of generalized Lagrangian submanifolds
with the topology of RP3 ⊂ CP

3 was proposed as an explicit candidate for this type of cycles,
leading to exponentially small corrections of the form

exp
(

−kπ
√
2λ

)

. (2.6)

In order to understand the M-theory expansion of the ABJM matrix integral, one needs a
suitable approach, different from the standard 1/N expansion of matrix integrals. A first step
in this direction was taken in [7], where the leading contribution to the partition function at
large N and fixed k was determined for various N = 3 Chern–Simons–matter theories. A more
systematic approach to the problem was introduced in [8], and it is based on an analogy to a

– 4 –



quantum, ideal Fermi gas. One first notices (see also [28]) that the matrix integral (2.1) can be
written as

Z(N, k) =
1

N !

∑

σ∈SN

(−1)ǫ(σ)
∫

dNx

(2πk)N
1

∏

i 2 cosh
(

xi

2

)

2 cosh
(

xi−xσ(i)

2k

) . (2.7)

This in turn can be interpreted as the canonical partition function of a one-dimensional Fermi
gas with a non-trivial one-particle density matrix

ρ(x1, x2) =
1

2πk

1
(

2 cosh x1
2

)1/2

1
(

2 cosh x2
2

)1/2

1

2 cosh
(

x1−x2
2k

) . (2.8)

The one-particle Hamiltonian Ĥ of this system is then defined as

ρ̂ = e−Ĥ , 〈x1|ρ̂|x2〉 = ρ(x1, x2), (2.9)

and the Planck constant of the Fermi gas is

~FG = 2πk. (2.10)

The semiclassical or WKB expansion is then around k = 0, and it corresponds to the strong
string coupling expansion in the type IIA dual. The Fermi gas approach makes it possible to
determine both the subleading 1/N corrections and non-perturbative corrections due to D2-brane
instantons. Various aspects of this approach have been developed in [13, 14, 32, 13, 16, 33] and
we will review some of them in this section.

The Fermi gas approach suggests to look instead to the grand partition function (see also
[29])

Ξ(µ, k) = 1 +
∞
∑

N=1

Z(N, k)zN , (2.11)

where

z = eµ (2.12)

plays the rôle of the fugacity and µ is the chemical potential. The grand potential is then defined
as

J(µ, k) = log Ξ(µ, k). (2.13)

The canonical partition function is recovered from the grand-canonical potential as

Z(N, k) =

∮

dz

2πi

Ξ(µ, k)

zN+1
. (2.14)

As explained in [15], the grand potential has a “naive” part, which is the one obtained with
the standard techniques in Statistical Mechanics, and an oscillatory part which restores the 2πi
periodicity in µ. It turns out that the contour in (2.14) can be deformed to the imaginary axis if
one replaces the grand potential by its “naive” part, which will be the only one we will consider
in this paper. Therefore, we can write

Z(N, k) =
1

2πi

∫ i∞

−i∞
dµ exp [J(µ, k)− µN ] , (2.15)
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