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Local measurements of the Hubble expansion rate are affected by structures like galaxy clusters or
voids. Here we present a fully relativistic treatment of this effect, studying how clustering modifies
the mean distance (modulus)-redshift relation and its dispersion in a standard ΛCDM universe.
The best estimates of the local expansion rate stem from supernova observations at small redshifts
(0.01 < z < 0.1). It is interesting to compare these local measurements with global fits to data from
cosmic microwave background anisotropies. In particular, we argue that cosmic variance (i.e. the
effects of the local structure) is of the same order of magnitude as the current observational errors
and must be taken into account in local measurements of the Hubble expansion rate.

PACS numbers: 98.80.-k, 95.36.+x, 98.80.Es

The Hubble constant, H0, determines the present ex-
pansion rate of the Universe. For most cosmological phe-
nomena a precise knowledge of H0 is of utmost impor-
tance. In a perfectly homogeneous and isotropic world
H0 is defined globally. But the Universe contains struc-
tures like galaxy clusters and voids. Thus the local ex-
pansion rate, measured by means of cepheids and su-
pernovae at small redshifts, does not necessarily agree
with the expansion rate of an isotropic and homogeneous
model that is used to describe the Universe at the largest
scales.

Recent local measurements of the Hubble rate [1, 2] are
claimed to be accurate at the few percent level, e.g. [1]
finds H0 = (73.8 ± 2.4) km s−1Mpc−1. In the near fu-
ture, observational techniques will improve further, such
that the local value of H0 will be determined at 1% accu-
racy [3], competitive with the current precision of indirect
measurements of the global H0 via the cosmic microwave
backgound anisotropies [4].

The observed distance modulus µ is related to the
bolometric flux Φ and the luminosity distance dL by
(log ≡ log10)

µ = −2.5 log[Φ/Φ10 pc] = 5 log[dL/(10 pc)]. (1)

The relation between the intrinsic luminosity, L, the
bolometric flux, Φ, and the luminosity distance dL of
a source is Φ = L/4πd2

L. In a flat ΛCDM universe with
present matter density parameter Ωm the luminosity dis-
tance as a function of redshift z is given by

dL(z) =
1 + z

H0/c

∫ z

0

dz′√
Ωm(1 + z′)3 + 1− Ωm

. (2)

As long as we consider only small redshifts, z ≤ 0.1, the
dependence on cosmology is weak, dL(z) ' c[z + (1 −
3Ωm/4)z2]/H0 and the result varies by about 0.2% when
Ωm varies within the 2σ error bars determined by Planck

[4]. However, neglecting the model dependent quadratic
term induces an error of nearly 8% for z ' 0.1.

The observed Universe is inhomogeneous and
anisotropic on small scales and the local Hubble rate is
expected to differ from its global value for two reasons.
First, any supernova (SN) sample is finite (sample
variance) and, second, we observe only one realization
of a random configuration of the local structure (cosmic
variance). Thus, even for arbitrarily precise measure-
ments of fluxes and redshifts, the local H0 differs from
the global H0. Sample variance is fully taken into
account in the literature, but cosmic variance is usually
not considered.

In the context of Newtonian cosmology, cosmic vari-
ance of the local H0 has been estimated in [5–8]. First
attempts to estimate cosmic variance of the local Hub-
ble rate in a relativistic approach can be found in [9, 10]
(see also [11]), based on the ensemble variance of the ex-
pansion rate averaged over a spatial volume. It has been
shown that this approach agrees very well with the New-
tonian one [9] and it predicts a cosmic variance which
depends on the sampling volume on the sub-per cent to
per cent level. However, this approach still neglects the
fact that observers probe the past light-cone and not a
spatial volume. Also, the measured quantity is not an
expansion rate, but a set of the bolometric fluxes and
redshifts.

In this letter, we present the first fully relativistic esti-
mation of the effects of clustering on the local measure-
ment of the Hubble parameter without making any spe-
cial hypothesis about how the fluctuations can be mod-
eled around us. Considering only the measured quanti-
ties and the cosmological standard model with stochas-
tic inhomogeneities, we study the effect of cosmic struc-
tures on the local determination of H0, i.e., taking light
propagation effects fully into account. Other relativistic
approaches were recently proposed in [12, 13]. In [12] a

ar
X

iv
:1

40
1.

79
73

v3
  [

as
tr

o-
ph

.C
O

] 
 2

2 
M

ay
 2

01
4



2

”Swiss cheese” model was used in modeling the local Uni-
verse, in [13] a “Hubble bubble” model was used and the
perturbation of the expansion rate, which is not directly
measurable, was considered.

We shall find that the mean value of the Hubble pa-
rameter is modified at sub-percent level, while the con-
tribution from clustering to the error budget is larger,
typically 2 to 3%, hence as large as observational errors
quoted in the literature [1]. As we shall see, the small
modification of the mean of the Hubble parameter can
be reduced by a factor of 3 by using the flux instead of
the distance modulus. On the other hand, the cosmic
variance induced by inhomogeneities on H0 is indepen-
dent of the observable used. Finally, we find that even
for an infinite number of SNIa within 0.01 < z < 0.1
with identical redshift distribution compared to a finite
sample considered, clustering induces a minimal error of
about 2% for a local determination of H0.

Following [14, 15] we use cosmological perturbation
theory up to second order with an almost scale-invariant
initial power spectrum to determine the mean perturba-
tion of the bolometric flux (and of the distance modulus)
from a standard candle and its variance.

Let us first consider the fluctuation of the mean on
a sphere at fixed observed redshift z. We denote the
light-cone average [16] over a surface at fixed redshift by
〈· · · 〉, and a statistical average by · · ·. Using the results
of [17, 18] (see also [19]) the fluctuation of the flux Φ ∝
d−2
L , away from its background value in the Friedmann-

Lemâıtre Universe (denoted by (dFL
L )−2), is given by

d−2
L = (dFL

L )−2 [1 + Φ1/Φ0 + Φ2/Φ0] , (3)

where we expand Φ = Φ0 + Φ1 + Φ2 up to second or-
der in perturbation theory. The ensemble average of
〈Φ1/Φ0〉 vanishes at first order, but not at second order
and must be added to another second order contribution
from Φ2/Φ0; we obtain (see, e.g. [20])

〈d−2
L 〉(z) = (dFL

L )−2 [1 + fΦ(z)] , (4)

where for z � 1

fΦ(z) ' −
(

1

H(z)∆η

)2

〈(~vs · ~n)
2〉 . (5)

Here ~n denotes the direction to a given SN and ~vs its
peculiar velocity, η is conformal time, ∆η = η0 − η(z) is
the difference between the present time and the time at
redshift z, and H is the conformal Hubble parameter. In
[15] the full contribution is given in terms of 39 Fourier
integrals over the dimensionless power spectrum of the
Bardeen potential today, Pψ(k) = (k3/2π2)|Ψk(η0)|2
with different kernels. We have removed the observer ve-
locity since observations are usually quoted in the CMB
frame, corresponding to ~v0 = 0. A non-vanishing ob-
server velocity would nearly double the effect in Eq. (5).

The dominant peculiar velocity contribution at low red-
shift gives

fΦ(z) ' −
(

1

H(z)∆η

)2
τ2(z)

3

∫ kUV

H0

dk

k
k2Pψ(k), (6)

where

τ(z) =

∫ ηs

ηin

dη
a(η)

a(ηs)

g(η)

g(η0)
.

g(η) is the growth factor and the source and the observer
times are indicated with the suffix s and 0.

The brightness of supernovae is typically expressed in
terms of the distance modulus µ. Due to the nonlinear
function relating µ and Φ one obtains different second
order contributions,

〈µ〉 − µFL = − 2.5

ln(10)

[
fΦ −

1

2
〈(Φ1/Φ0)

2〉
]
, (7)

where, at z � 1, we also find

〈(Φ1/Φ0)
2〉 ' −4fΦ . (8)

The approximate equalities in Eqs. (5) and (8) are
valid for z � 1, where the first order squared contri-
bution of the peculiar velocity terms dominates over the
other second order contributions. For z ∼ 0.3 and larger,
additional contributions notably due to lensing become
relevant, see [14, 15].

For measurements of the Hubble parameter, low red-
shift SNe are used in order to minimize the dependence of
the result on cosmological parameters. As a consequence,
Eqs. (5) and (8) are good approximations for the aim of
this Letter.

Hereafter we use the cosmological parameters from
Planck [4], the linear transfer function given in [21] tak-
ing baryons into account, and kUV = 0.1hMpc−1, see
[15] for details. Increasing the cut-off does not change
our result due to two effects: the kernel k2Pψ(k) of the
peculiar velocity contribution decreases at large k and
small scale fluctuations are incoherent (see below) and
their contribution to the variance decays like 1/N , where
N is the number of supernovae.

As an illustration for the effects of cosmic structure on
the observed flux from SN, we plot in Fig. 1 the aver-

age 〈d−2
L 〉(z) and its variance (as defined in [20]), using

Eqs. (4-6) and (8). Figure 1 clearly shows how at low red-
shift the dispersion of the flux is much more important
than the shift of the average (see also [14, 15]).

Comparing Eqs. (4) and (7), we see that the flux av-
eraged over a sphere at constant redshift, experiences a
different effect than the distance modulus averaged over
the same sphere.

On the other hand, the induced theoretical dispersion
on the bare value of H0, which is entirely due to squared
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FIG. 1: The average 〈d−2
L 〉(z) of Eq. (5) in units of Mpc−2

(thick solid curve), its dispersion (shaded region), and the ho-
mogeneous value (dashed curve) are computed within a range
z = 0.01 and z = 0.03. We have used a best-fit cosmology
from Planck [4] and a UV cut-off of kUV = 0.1hMpc−1.

first order perturbations, is independent of the observable
considered to infer H0. To determine the dispersion of H0

from a sample of SNe we consider that at small redshift
H2

0 ' c2z2/d2
L. H0 inferred from the observation of a

single SN at redshift z � 1, is then expected to deviate
from the true H0 by approximately [20]

(∆H0)2 =
H2

0

4
〈(Φ1/Φ0)

2〉 . (9)

Of course in practice, observers do not have at their dis-
posal many SNe at the same redshift, so the average over
a sphere cannot be performed. Hence, we now go beyond
this simplifying assumption of previous works.

Let us estimate the (ensemble) variance of the locally
measured Hubble parameter H0 from the covariance ma-
trix of the fluxes, given an arbitrarily distributed sample
of N observed SNe at positions (zi, ~ni), which reads(

∆H0

H0

)2

=
1

4N2

∑
ij

Φ1(zi, ~ni)

Φ0(zi)

Φ1(zj , ~nj)

Φ0(zj)

=
1

N2

∑
ij

Vij
H(zi)∆ηiH(zj)∆ηj

, (10)

with

Vij =τ(zi)τ(zj)

∫ kUV

H0

dk

k
k2Pψ(k)I

(
k∆ηj , k∆ηi, (~ni ·~nj)

)
,

(11)
and

I(x, y, ν) =
1

4π

∫
dΩk̂e

ix(k̂·~ni)e−iy(k̂·~nj)(k̂ · ~nj)(k̂ · ~ni)

=
xy(1−ν2)

R2
j2(R)+

ν

3

[
j0(R)− 2j2(R)

]
, (12)

where ν = (~ni·~nj) and R =
√
x2 + y2 − 2νxy = kd. Here

d is the comoving distance between the SNe at (zi, ~ni)
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FIG. 2: The redshift distribution of the 155 SNe of the
CfA3+OLD sample [22, 23] with redshift within 0.01 and 0.1
considered here.

and (zj , ~nj), j` denotes the spherical Bessel function of

order ` and k̂ is the unit vector in direction ~k. To arrive
at (12), we have introduced the Fourier representation of

Φ1(zi, ~ni) = 2/(H(zi)∆ηi)~vs(~k) · ~ni and used some well
known identities. Note that with I(x, x, 1) = 1/3 and
Eqs.(6) and (8), the auto-correlation term reproduces (9).

If the fluxes are perfectly coherent for all SNe so that
Φ1(zi, ~ni)Φ1(zj , ~nj) = 4σ2Φ0(zj)Φ0(zi), for all correla-
tions, we obtain (∆H0/H0)2 = σ2, while in the incoher-
ent case, Φ1(zi, ~ni)Φ1(zj , ~nj) = δij4σ

2Φ0(zj)Φ0(zi) we
obtain (∆H0/H0)2 = σ2/N . The reality lies somewhere
in-between, wavelengths with kd < 1 being rather coher-
ent while those with kd > 1 are rather incoherent.

In order to estimate the effect of the cosmic
(co)variance for a realistic sample of SNe, we consider the
following set up. We calculate ∆H0/H0 from Eqs. (10)
to (12) considering the redshifts of a sample of 155 SNe
selected to lie in the range 0.01 ≤ z ≤ 0.1 from the CfA3
and OLD samples [22, 23]. The redshift distribution of
the sample is shown in Fig 2. We do not use their actual
positions on the sky (see below). We then also study the
limiting case of infinitely many SNe.

For the redshift distribution of the 155 SNe of this
sample, Eq. (10) yields a dispersion induced by inho-
mogeneities between 2.2 and 3.3% for different angular
distributions for the SNe. From this range we infer

∆H0 = (1.6÷ 2.4) km s−1Mpc−1 , (13)

with H0 as given in [1] (where ”...÷...” stands for
”from...to...”). We have kept ν constant to different val-
ues and we have chosen a random distribution of direc-
tions over one hemisphere. The different choices give
rise to the range quoted above. The smallest error cor-
responds to a random distribution of directions over one
hemisphere, while the largest one corresponds to the case
where all SNe are inside a narrow cone (ν ' 1). The dis-
persion due to the actual angular distribution of real SN
samples is left for future studies.
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Let us also estimate the effect of inhomogeneities on
the measured value of H0 itself for this sample. In [1]
a partial reconstruction of the peculiar velocity field has
been applied, which however comes from the density field
in the neighborhood of the SNe and therefore contributes
only an incoherent part which we neglect. Consider-
ing a perfectly homogeneous Universe, a measured Hub-
ble parameter Ĥ0 is deduced from the measurement of
µ(z � 1) ' 5 log(cz/Ĥ0) + C, with C a constant, see
Eqs. (1,2). However this is not the true underlying H0,
since it ignores the local large-scale structure, and there-
fore gives a biased value. The true underlying Hubble
parameter is derived only by applying the appropriate
correction due to this structure. Comparing Eq. (7) with
the above expression, we have:

H0 ' Ĥ0

(
1− 3

2
fΦ

)
. (14)

We now consider the 155 SNe of the sample used here
and generate the mean value of the corrected H0, starting
from a value of Ĥ0 and for the given redshift distribution.
The final result is about 0.3% higher than Ĥ0

1. A simi-
lar global shift has already been included in the analysis
of [1] as a consequence of the partial reconstruction of
the peculiar velocity field [24]. Let us underline that the
correction to H0 would be three times smaller if we would
consider the backreaction on the flux instead of the one
on the distance modulus. In this case Eq. (14) should be
replaced by H0 ' Ĥ0

(
1− 1

2fΦ

)
.

Considering the quoted observational error of 2.4
km/s/Mpc [1] and the additional variance (13), we obtain

H0 = [73.8± 2.4± (1.6÷ 2.4)] km s−1Mpc−1.(15)

The tension with the Planck measurement [4], for which
a value (H0)CMB = 67.3± 1.2 km s−1Mpc−1 is reported,
is reduced when taking this additional variance into ac-
count. In particular, adding the above errors in quadra-
ture we obtain a deviation of 2.2 to 1.9σ from (H0)CMB,
while the difference is 2.7σ when using the error quoted
in [1]. This analysis is insensitive to smaller scales fluc-
tuations due to the incoherence of such contributions.
Further modeling of these scales, e.g. [12] (see also [25]),
might increase the uncertainty. However, effects from
nearby small-scale structure are at least partly included
in the analysis of [1].

Before concluding, we want to determine the ultimate
error for an arbitrarily large sample when the SNe are
distributed isotropically over directions. In this case we
can integrate I(x, y, ν) over all directions. With

1

2

∫ 1

−1

dνI(x, y, ν) = j1(x)j1(y)

1 Choosing a larger cut-off affects only this result slightly.

we obtain, for a normalized redshift distribution s(z),(
∆H0

H0

)2

=

∫
dk

k
k2Pψ(k)

(∫
dzτ(z)s(z)

j1(k∆η(z))

H(z)∆η(z)

)2

(16)
with

∫
dzs(z) = 1. Approximating the redshift distribu-

tion of our sample using an interpolating function of the
histogram in Fig 2, integrating from z = 0.01 to 0.1, we
obtain a dispersion of about 1.8% which corresponds to
an error of

∆H0 = 1.3 km s−1Mpc−1 . (17)

This is the minimal dispersion of a SN sample with a
redshift space distribution given by the one in Fig 2. It
is not much smaller than the value obtained for the real
sample. Interestingly, this result is close to the ones ob-
tained in [8, 9, 13], some of them with a very different
analysis.

The errors from the nearby SNe with small ∆η(z) give
the largest contribution. Therefore, the dispersion can
be reduced by considering higher redshift SNe for which,
however, the model dependence becomes more relevant.
If we consider higher redshifts (close to or larger than
0.3), we have to take into account also the other contri-
butions to the perturbation of the luminosity distance,
see [17–19] for the full expression. As it is well known
(see, for example, [14, 15]), at redshift z > 0.3, the lens-
ing term begins to dominate.

In [26] the peculiar velocity field has been recon-
structed using the IRAS PSCz catalog [27]. As already
mentioned above, this is subtracted in the analysis of [1].
It is clear that this procedure also modifies the expected
mean and its variance in our method, but a detailed anal-
ysis of this is beyond the scope of this work. As the
(minimal) cosmic variance Eq. (17) receives mainly con-
tributions from scales larger than those considered in the
reconstruction, we expect that it still has to be taken
into account, in addition to the reconstructed peculiar
velocities.

To conclude, in this Letter we estimate the impact of
stochastic inhomogeneities on the local value of the Hub-
ble parameter and on its error budget for a given sample
of standard candles. Eqs. (10) to (12) and (16) are the
main result of this Letter, namely a general formula for
the cosmic variance contribution to ∆H0 from a sam-

ple of SNe with z
<∼ 0.2, where the Doppler term domi-

nates, and its limit for an arbitrarily large number of SNe
isotropically distributed over directions. This general for-
mula can be easily implemented and does not require an
N-body simulation for each set of cosmological parame-
ters. The required input are solely the linear power spec-
trum and the distribution of the observed SNe in position
and redshift space. In particular, we have found that for
samples presently under consideration, this error is not
negligible but of the same order as the experimental er-
ror, i.e. between 2.2 and 3.3%. We have also considered
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different samples (e.g. 95 SNe from [22]), in the range
0.01 < z < 0.1, and found similar results. This cosmic
variance is a fundamental barrier on the precision of a
local measurement of H0. It has to be added to the ob-
servational uncertainties and it reduces the tension with
the CMB measurement of H0 [4].

Finally, even when the number of SNe is arbitrarily
large, an irreducible error remains due to cosmic variance
of the local Universe. We have estimated this error and
found it to be about 1.8% for SNe with redshift 0.01 <
z < 0.1 and a distribution given by the one in Fig.2.
This error can only be reduced by considering SNe with
higher redshifts, but if too high redshifts are included the
result becomes strongly dependent on other cosmological
parameters like Ωm and curvature.
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