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Average gluon and quark jet multipliities at higherordersPaolo Bolzoni,1 Bernd A. Kniehl,1 Anatoly V. Kotikov 1;21 II. Institut f�ur Theoretishe Physik, Universit�at Hamburg,Luruper Chaussee 149, 22761 Hamburg, Germany2 Bogoliubov Laboratory of Theoretial Physis,Joint Institute for Nulear Researh, 141980 Dubna, RussiaAbstratWe develop a new formalism for omputing and inluding both the perturba-tive and nonperturbative QCD ontributions to the sale evolution of average gluonand quark jet multipliities. The new method is motivated by reent progress intimelike small-x resummation obtained in the MS fatorization sheme. We obtainnext-to-next-to-leading-logarithmi (NNLL) resummed expressions, whih representgeneralizations of previous analyti results. Our expressions depend on two non-perturbative parameters with lear and simple physial interpretations. A global�t of these two quantities to all available experimental data sets that are ompati-ble with regard to the jet algorithms demonstrates by its goodness how our resultssolve a longstandig problem of QCD. We show that the statistial and theoretialunertainties both do not exeed 5% for sales above 10 GeV. We �nally proposeto use the jet multipliity data as a new way to extrat the strong-oupling on-stant. Inluding all the available theoretial input within our approah, we obtain�(5)s (Mz) = 0:1199 � 0:0026 in the MS sheme in an approximation equivalent tonext-to-next-to-leading order enhaned by the resummations of lnx terms throughthe NNLL level and of lnQ2 terms by the renormalization group, in exellent agree-ment with the present world average.PACS numbers: 12.38.Cy, 12.39.St, 13.66.B, 13.87.Fh
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1 IntrodutionThe prodution of hadrons is due to the strong interations of quarks and gluons. Quan-tum hromodynamis (QCD), the gauge theory of the strong interations, provides aquantitative desription of the transitions from quarks and gluons to jets of hadrons,whih may be tested experimentally. When jets are produed at olliders, they an beinitiated either by a quark or a gluon. The two types of jets are expeted to exhibitdi�erent properties, above all beause quarks and gluons arry di�erent olor harges andspin. In fat, a gluon jet is typially broader and ontains a larger amount of hadrons.Jets with di�erent mother partons an also be studied by looking for the jet harge distri-bution as disussed in Ref. [1℄, with important onsequenes for the physis at the CERNLarge Hadron Collider (LHC). To understand the interplay of quarks and gluons in a jetand to predit testable onsequenes thereof lies at the very ore of QCD.The typial way to depit the prodution of a jet from a parton (quark or gluon) is thefollowing. An initial parton starts radiating gluons, whih in turn an radiate further glu-ons or split into seondary quark-antiquark pairs. This so-alled parton showering proessauses the virtualities of the parent partons to derease. Finally, when the virtuality fallsbelow a ertain uto�, the asade stops and the �nal-state partons hadronize into olor-neutral hadrons, a proess usually desribed by phenomenologial models. This happensbeause the prodution of hadrons is a typial proess where nonperturbative phenomenaare involved. However, for partiular observables, this problem an be avoided. In parti-ular, the ounting of hadrons in a jet that is initiated at a ertain sale Q belongs to thislass of observables. In this ase, one an adopt with quite high auray the hypothesis ofLoal Parton-Hadron Duality (LPHD), whih simply states that parton distributions arerenormalized in the hadronization proess without hanging their shapes [2℄. Hene, if thesale Q is large enough, this would in priniple allow perturbative QCD to be preditivewithout the need to onsider phenomenologial models of hadronization. Nevertheless,suh proesses are dominated by soft-gluon emissions, and it is a well-known fat that,in suh kinemati regions of phase spae, �xed-order perturbation theory fails, renderingthe usage of resummation tehniques indispensable. As we shall see, the omputation ofavarage jet multipliities indeed requires small-x resummation, as was already realizeda long time ago [3℄. In Ref. [3℄, it was shown that the singularities for x � 0, whihare enoded in large logarithms of the kind 1=x lnk(1=x), spoil perturbation theory, andalso render integral observables in x ill-de�ned, disappear after resummation. Usually,resummation inludes the singularities from all orders aording to a ertain logarithmiauray, for whih it restores perturbation theory.Small-x resummation has reently been arried out for timelike splitting futions inthe MS fatorization sheme, whih is generally preferable to other shemes, yieldingfully analyti expressions. In a �rst step, the next-to-leading-logarithmi (NLL) level ofauray has been reahed [4,5℄. In a seond step, this has been pushed to the next-to-next-to-leading-logarithmi (NNLL), and partially even to the next-to-next-to-next-to-leading-logarithmi (N3LL), level [6℄. Thanks to these results, we are able to analytiallyompute the NNLL ontributions to the evolutions of the average gluon and quark jet2



multipliities with normalization fators evaluated to next-to-leading (NLO) and approx-imately to next-to-next-to-next-to-order (N3LO) in the p�s expansion. The previousliterature ontains a NLL result on the small-x resummation of timelike splitting futionsobtained in a massive-gluon sheme. Unfortunately, this is unsuitable for the ombinationwith available �xed-order orretions, whih are routinely evaluated in the MS sheme.A general disussion of the sheme hoie and dependene in this ontext may be foundin Refs. [7,8℄.The average gluon and quark jet multipliities, whih we denote as hnh(Q2)ig andhnh(Q2)iq, respetively, represent the avarage numbers of hadrons in a jet initiated by agluon or a quark at sale Q. In the past, analyti preditions were obtained by solving theequations for the generating funtionals in the modi�ed leading-logarithmi approximation(MLLA) in Ref. [9℄ through N3LO in the expansion parameter p�s, i.e. through O(�3=2s ).However, the theoretial predition for the ratio r(Q2) = hnh(Q2)ig=hnh(Q2)iq given inRef. [9℄ is about 10% higher than the experimental data at the sale of the Z0 boson, andthe di�erene with the data beomes even larger at lower sales, although the perturbativeseries seems to onverge very well. An alternative approah was proposed in Ref. [10℄,where a di�erential equation for the average gluon-to-quark jet multipliity ratio wasobtained in the MLLA within the framework of the olour-dipole model, and the onstantof integration, whih is supposed to enode nonperturbative ontributions, was �tted toexperimental data. A onstant o�set to the average gluon and quark jet multipliitieswas also introdued in Ref. [11℄.Reently, we proposed a new formalism [12,13℄ that solves the problem of the appar-ent good onvergene of the perturbative series and does not require any ad-ho o�set,one the e�ets due to the mixing between quarks and gluons are fully inluded. Ourresult is a generalization of the result obtained in Ref. [9℄. In our new approah, thenonperturbative informations to the gluon-to-quark jet multipliity ratio are enoded inthe initial onditions of the evolution equations. Motivated by the exellent agreement ofour results with the experimental data found in Ref. [13℄, we propose here to also use ourapproah to extrat the strong-oupling onstant �s(Q20) at some referene sale Q0 andthus extend our analysis by adding an apropriate �t parameter.The paper is organized as follows. In Setion 2, we introdue the equations governingthe evolution of the average gluon and quark jet multipliities with the sale Q at whihthe jet is initiated, develop a formalism to solve them, and improve our results by resum-mation. In Setion 3, we explain how we an predit the average-jet-multipliity evolutionsin our framework adding as muh as possible available information on small-x timelikeresummation. In Setion 4, we �t our resummed formulae to the available experimentaldata extrating the initial onditions for the evolutions, and disuss the unertaintiesoming from both the statistial analysis of the data and the missing higher-order terms.In Setion 5, we injet the strong-oupling onstant into our analysis and extrat it.Finally, in Setion 6, we summarize our onlusions and present an outlook.
3



2 Fragmentation funtions and their evolutionWhen one onsiders average multipliity observables, the basi equation is the one gov-erning the evolution of the fragmentation funtions Da(x; �2) for the gluon{quark-singletsystem a = g; s. In Mellin spae, it reads:�2 ���2 �Ds(!; �2)Dg(!; �2)� = �Pqq(!; as) Pgq(!; as)Pqg(!; as) Pgg(!; as)��Ds(!; �2)Dg(!; �2)� ; (1)where Pij(!; as), with i; j = g; q, are the timelike splitting funtions, ! = N � 1, withN being the standard Mellin moments with respet to x, and as(�2) = �s(�)=(4�) is theouplant. The standard de�nition of the hadron multipliities in terms of the fragmen-tation funtions is given by their integral over x, whih learly orresponds to the �rstMellin moment, with ! = 0 (see, e.g., Ref. [14℄):hnh(Q2)ia � �Z 10 dx x!Da(x;Q2)�!=0 = Da(! = 0; Q2); (2)where a = g; s for a gluon and quark jet, respetively.The timelike splitting funtions Pij(!; as) in Eq. (1) may be omputed perturbativelyin as, Pij(!; as) = 1Xk=0 ak+1s P (k)ij (!): (3)The funtions P (k)ij (!) for k = 0; 1; 2 in the MS sheme may be found in Refs. [15,16,17℄through NNLO and in Refs. [4,5,6℄ with small-x resummation through NNLL auray.In the remainder of this setion, we explain in detail our new approah to solve Eq. (1) inorder to use its solution in Eq. (2) to obtain the average gluon and quark jet multipliities.To this end, we �rst disuss how Eq. (1) an be diagonalized and then how to implementresummation to improve it, so as to obtain well-de�ned quantities at ! = 0.2.1 DiagonalizationIt is not in general possible to diagonalize Eq. (1) beause the ontributions to the timelike-splitting-funtion matrix do not ommute at di�erent orders. The usual approah is thento write a series expansion about the leading-order (LO) solution, whih an in turn bediagonalized. One thus starts by hoosing a basis in whih the timelike-splitting-funtionmatrix is diagonal at LO (see, e.g., Ref. [18℄),P (!; as) = �P++(!; as) P�+(!; as)P+�(!; as) P��(!; as)� = as P (0)++(!) 00 P (0)��(!)!+ a2sP (1)(!) +O(a3s); (4)with eigenvalues P (0)��(!). In one important simpli�ation of QCD, namely N = 4 superYang-Mills theory, this basis is atually more natural than the (g; s) basis beause the4



diagonal splitting funtions P (k)��(!) may there be expressed in all orders of perturbationtheory as one universal funtion with shifted arguments [19℄.It is onvenient to represent the hange of basis for the fragmentation funtions orderby order for k � 0 as [18℄:D+(!; �20) = (1� �!)Ds(!; �20)� �!Dg(!; �20);D�(!; �20) = �!Ds(!; �20) + �!Dg(!; �20): (5)This implies for the omponents of the timelike-splitting-funtion matrix thatP (k)��(!) = �!P (k)qq (!) + �!P (k)qg (!) + �!P (k)gq (!) + (1� �!)P (k)gg (!);P (k)�+(!) = P (k)��(!)� �P (k)qq (!) + 1� �!�! P (k)gq (!)� ;P (k)++(!) = P (k)qq (!) + P (k)gg (!)� P (k)��(!);P (k)+�(!) = P (k)++(!)� �P (k)qq (!)� �!�! P (k)gq (!)� = P (k)gg (!)� �P (k)��(!)� �!�! P (k)gq (!)� ; (6)where�! = P (0)qq (!)� P (0)++(!)P (0)��(!)� P (0)++(!) ; �! = P (0)gq (!)P (0)��(!)� P (0)++(!) ; �! = P (0)qg (!)P (0)��(!)� P (0)++(!) : (7)Our approah to solve Eq. (1) di�ers from the usual one in that we write the solutionexpanding about the diagonal part of the all-order timelike-splitting-funtion matrix inthe plus-minus basis, instead of its LO ontribution. For this purpose, we rewrite Eq. (4)in the following way:P (!; as) = �P++(!; as) 00 P��(!; as)�+ a2s 0 P (1)�+(!)P (1)+�(!) 0 ! + �0 O(a3s)O(a3s) 0 � : (8)In general, the solution to Eq. (1) in the plus-minus basis an be formally written asD(�2) = T�2 (exp Z �2�20 d��2��2 P (��2))D(�20); (9)where T�2 denotes the path ordering with respet to �2 andD = �D+D�� : (10)As antiipated, we make the following ansatz to expand about the diagonal part of thetimelike-splitting-funtion matrix in the plus-minus basis:T�2 (exp Z �2�20 d��2��2 P (��2)) = Z�1(�2) exp"Z �2�20 d��2��2 PD(��2)#Z(�20); (11)5



where PD(!) = �P++(!) 00 P��(!)� (12)is the diagonal part of Eq. (8) and Z is a matrix in the plus-minus basis whih has aperturbative expansion of the formZ(�2) = 1 + as(�2)Z(1) +O(a2s): (13)In the following, we make use of the renormalization group (RG) equation for the runningof as(�2), �2 ���2as(�2) = �(as(�2)) = ��0a2s(�2)� �1a3s(�2) +O(a4s); (14)where �0 = 113 CA � 43nfTR;�1 = 343 C2A � 203 CAnfTR � 4CFnfTR; (15)with CA = 3, CF = 4=3, and TR = 1=2 being olour fators and nf being the numberof ative quark avours. Using Eq. (14) to perform a hange of integration variable inEq. (11), we obtainTas (exp Z as(�2)as(�20) d�as�(�as)P (�as)) = Z�1(as(�2)) exp"Z as(�2)as(�20) d�as�(�as)PD(�as)#Z(as(�20)):(16)Substituting then Eq. (13) into Eq. (16), di�erentiating it with respet to as, and keepingonly the �rst term in the as expansion, we obtain the following ondition for the Z(1)matrix: Z(1) + �P (0)D�0 ; Z(1)� = P (1)OD�0 ; (17)where P (1)OD(!) =  0 P (1)�+(!)P (1)+�(!) 0 ! : (18)Solving it, we �nd:Z(1)��(!) = 0; Z(1)��(!) = P (1)��(!)�0 + P (0)��(!)� P (0)��(!) : (19)At this point, an important omment is in order. In the onventional approah tosolve Eq.(1), one expands about the diagonal LO matrix given in Eq. (4), while here weexpand about the all-order diagonal part of the matrix given in Eq. (8). The motivationfor us to do this arises from the fat that the funtional dependene of P��(!; as) on asis di�erent after resummation. 6



Now reverting the hange of basis spei�ed in Eq. (5), we �nd the gluon and quark-singlet fragmentation funtions to be given byDg(!; �2) =��!�! D+(!; �2) + �1� �!�! �D�(!; �2);Ds(!; �2) =D+(!; �2) +D�(!; �2): (20)As expeted, this suggests to write the gluon and quark-singlet fragmentation funtionsin the following way:Da(!; �2) � D+a (!; �2) +D�a (!; �2); a = g; s; (21)where D+a (!; �2) evolves like a plus omponent and D�a (!; �2) like a minus omponent.We now expliitly ompute the funtions D�a (!; �2) appearing in Eq. (21). To thisend, we �rst substitute Eq. (11) into Eq. (9). Using Eqs. (12) and (19), we then obtainD+(!; �2) = ~D+(!; �20)T̂+(!; �2; �20)� as(�2)Z(1)�+(!) ~D�(!; �20)T̂�(!; �2; �20);D�(!; �2) = ~D�(!; �20)T̂�(!; �2; �20)� as(�2)Z(1)+�(!) ~D+(!; �20)T̂+(!; �2; �20); (22)where ~D�(!; �20) = D�(!; �20) + as(�20)Z(1)��(!)D�(!; �20); (23)and T̂�(!; �2; �20) = exp "Z as(�2)as(�20) d�as�(�as) P��(!; �as)# : (24)has a RG-type exponential form. Finally, inserting Eq. (22) into Eq. (20), we �nd byomparison with Eq. (21) thatD�a (!; �2) = ~D�a (!; �20)T̂�(!; �2; �20)H�a (!; �2); (25)where ~D+g (!; �20) =��!�! ~D+s (!; �20); ~D�g (!; �20) = 1� �!�! ~D�s (!; �20);~D+s (!; �20) = ~D+(!; �20); ~D�s (!; �20) = ~D�(!; �20); (26)and H�a (!; �2) are perturbative funtions given byH�a (!; �2) = 1� as(�2)Z(1)��;a(!) +O(a2s): (27)At O(�s), we haveZ(1)��;g(!) = �Z(1)��(!)�1� �!�! ��1; Z(1)��;s(!) = Z(1)��(!); (28)where Z(1)��(!) is given by Eq. (19). 7



2.2 ResummationAs already mentioned in Setion 1, reliable omputations of average jet multipliitiesrequire resummed analyti expressions for the splitting funtions beause one has to eval-uate the �rst Mellin moment (orresponding to ! = N � 1 = 0), whih is a divergentquantity in the �xed-order perturbative approah. As is well known, resummation over-omes this problem, as demonstrated in the pioneering works by Mueller [3℄ and others[20,21,22,23℄.In partiular, as we shall see in Setion 3, resummed expressions for the �rst Mellinmoments of the timelike splitting funtions in the plus-minus basis appearing in Eq. (4)are required in our approah. Up to the NNLL level in the MS sheme, these may beextrated from the available literature [3,4,5,6℄ in losed analyti form using the relationsin Eq. (6). Note that the expressions are generally simpler in the plus-minus basis,1 whilethe orresponding results for the resummation of Pgg(!; as) and Pgq(!; as) an be highlynontrivial and ompliated in higher orders of resummation. An analogous observationwas made for the double-logarithm aymptotis in the Kirshner-Lipatov approah [24,25℄,where the orresponding amplitudes obey nontrivial equations, whose solutions are ratherompliated speial funtions.For future onsiderations, we remind the reader of an assumpion already made inRef. [5℄ aording to whih the splitting funtions P (k)��(!) and P (k)+�(!) are supposed to befree of singularities in the limit ! ! 0. In fat, this is expeted to be true to all orders.This is ertainly true at the LL and NLL levels for the timelike splitting funtions, as wasveri�ed in our previous work [5℄. This is also true at the NNLL level, as may be expliitlyheked by inserting the results of Ref. [6℄ in Eq. (6). Moreover, this is true through NLOin the spaelike ase [26℄ and holds for the LO and NLO singularities [27,28℄ to all ordersin the framework of the Balitski-Fadin-Kuraev-Lipatov (BFKL) dynamis [29,30,31,32℄, afat that was exploited in various approahes (see, e.g., Refs. [33,34℄ and referenes itedtherein). We also note that the timelike splitting funtions share a number of simpleproperties with their spaelike ounterparts. In partiular, the LO splitting funtions arethe same, and the diagonal splitting funtions grow like ln! for ! !1 at all orders. Thissuggests the onjeture that the double-logarithm resummation in the timelike ase andthe BFKL resummation in the spaelike ase are only related via the plus omponents.The minus omponents are devoid of singularities as ! ! 0 and thus are not resummed.Now that this is known to be true for the �rst three orders of resummation, one has reasonto expet this to remain true for all orders.Using the relationships between the omponents of the splitting funtions in the twobases given in Eq. (6), we �nd that the absene of singularities for ! = 0 in P��(!; as)1In fat, one an see from Eq. (3.3) of Ref. [6℄ that the resummation of the ombination Pgg(!; as) +Pqq(!; as), whih aording to Eq. (5) gives P++(!; as) beause P��(!; as) does not need resummation,is muh simpler than that of Pgg(!; as) alone.
8



and P+�(!; as) implies that the singular terms are related asP singgq (!; as) = � �!�!P singgg (!; as); (29)P singqg (!; as) = ��!�! P singqq (!; as); (30)where, through the NLL level,� �!�! = CACF �1� !6 �1 + 2nfTRCA � 4 CFnfTRC2A ��+O(!2): (31)An expliit hek of the appliability of the relationships in Eqs. (29) and (30) for Pij(!; as)with i; j = g; g themselves is performed in the Appendix. Of ourse, the relationships inEqs. (29) and (30) may be used to �x the singular terms of the o�-diagonal timelikesplitting funtions Pqg(!; as) and Pgq(!; as) using known results for the diagonal timelikesplitting funtions Pqq(!; as) and Pgg(!; as). Sine Refs. [4,17℄ beame available duringthe preparation of Ref. [5℄, the relations in Eqs. (29) and (30) provided an importantindependent hek rather than a predition.We take here the opportunity to point out that Eqs. (25) and (26) together withEq. (31) support the motivations for the numerial e�etive approah that we used inRef. [12℄ to study the average gluon-to-quark jet multipliity ratio. In fat, aording tothe �ndings of Ref. [12℄, substituting ! = !e� , where!e� = 2p2CAas; (32)into Eq. (31) exatly reprodues the result for the average gluon-to-quark jet multipliityratio r(Q2) obtained in Ref. [35℄. In the next setion, we shall obtain improved analytiformulae for the ratio r(Q2) and also for the average gluon and quark jet multipliities.Here we would also like to note that, at �rst sight, the substitution ! = !e� shouldindue a Q2 dependene in Eq. (7), whih should ontribute to the diagonalization matrix.This is not the ase, however, beause to double-logarithmi auray the Q2 dependeneof as(Q2) an be negleted, so that the fator �!=�! does not reieve any Q2 dependeneupon the substitution ! = !e� . This supports the possibility to use this substitutionin our analysis and gives an explanation of the good agreement with other approahes,e.g. that of Ref. [35℄. Nevertheless, this substitution only arries a phenomenologialmeaning. It should only be done in the fator �!=�!, but not in the RG exponents ofEq. (24), where it would lead to a double-ounting problem. In fat, the dangerous termsare already resummed in Eq. (24).In order to be able to obtain the average jet multipliities, we have to �rst evaluatethe �rst Mellin momoments of the timelike splitting funtions in the plus-minus basis.Aording to Eq. (6) together with the results given in Refs. [3,6℄, we havePNNLL++ (! = 0) = 0(1�K10 +K220); (33)9



where0 = P LL++(! = 0) =p2CAas; (34)K1 = 112 �11 + 4nfTRCA �1� 2CFCA �� ; (35)K2 = 1288 �1193� 576�2 � 56nfTRCA �5 + 2CFCA��+ 16n2fT 2RC2A �1 + 4CFCA � 12C2FC2A� ; (36)and PNNLL�+ (! = 0) = �CFCA PNNLLqg (! = 0); (37)wherePNNLLqg (! = 0) = 163 nfTRas � 23nfTR �17� 4 nfTRCA �1� 2CFCA ���2CAa3s�1=2: (38)For the P+� omponent, we obtainPNNLL+� (! = 0) = O(a2s): (39)Finally, as for the P�� omponent, we note that its LO expression produes a �nite,nonvanishing term for ! = 0 that is of the same order in as as the NLL-resummed resultsin Eq. (33), whih leads us to use the following expression for the P�� omponent:PNNLL�� (! = 0) = �8nfTRCF3CA as +O(a2s); (40)at NNLL auray.We an now perform the integration in Eq. (24) through the NNLL level, whih yieldsT̂NNLL� (0; Q2; Q20) = TNNLL� (Q2)TNNLL� (Q20) ; (41)TNNLL+ (Q2) = exp� 4CA�00(Q2) �1 + (b1 � 2CAK2) as(Q2)�� �as(Q2)�d+ ; (42)TNNLL� (Q2) = TNLL� (Q2) = �as(Q2)�d� ; (43)where b1 = �1�0 ; d� = 8nfTRCF3CA�0 ; d+ = 2CAK1�0 : (44)In order to estimate the ontribution to an observable of interest from orders of pertur-bation theory beyond our alulation, we may shift the argument of the strong-ouplingonstant as as(Q2)! as(�Q2): (45)Applying this shift to Eqs. (37){(44), there is only one hange in the RG exponents,namelyTNNLL+ (Q2) = exp� 4CA�00(�Q2) �1 + �b1 � 2CAK2 � �02 ln �� as(�Q2)���as(�Q2)�d+ :(46)10



3 MultipliitiesAording to Eqs. (24) and (25), the �� omponents are not involved in the Q2 evolutionof average jet multipliities, whih is performed at ! = 0 using the resummed expressionsfor the plus and minus omponents given in Eq. (33) and (40), respetively. We are nowready to de�ne the average gluon and quark jet multipliities in our formalism, namelyhnh(Q2)ia � Da(0; Q2) = D+a (0; Q2) +D�a (0; Q2); (47)with a = g; s, respetively.On the other hand, from Eqs. (25) and (26), it follows thatr+(Q2) � D+g (0; Q2)D+s (0; Q2) = � lim!!0 �!�! H+g (!;Q2)H+s (!;Q2) ; (48)r�(Q2) � D�g (0; Q2)D�s (0; Q2) = lim!!0 1� �!�! H�g (!;Q2)H�s (!;Q2) : (49)Using these de�nitions and again Eq. (25), we may write general expressions for theaverage gluon and quark jet multipliities:hnh(Q2)ig = ~D+g (0; Q20)T̂ res+ (0; Q2; Q20)H+g (0; Q2)+ ~D�s (0; Q20)r�(Q2)T̂ res� (0; Q2; Q20)H�s (0; Q2);hnh(Q2)is = ~D+g (0; Q20)r+(Q2) T̂ res+ (0; Q2; Q20)H+g (0; Q2)+ ~D�s (0; Q20)T̂ res� (0; Q2; Q20)H�s (0; Q2): (50)At the LO in as, the oeÆients of the RG exponents are given byr+(Q2) = CACF ; r�(Q2) = 0;H�s (0; Q2) = 1; ~D�a (0; Q20) = D�a (0; Q20); (51)for a = g; s.It would, of ourse, be desirable to inlude higher-order orretions in Eqs. (51). How-ever, this is highly nontrivial beause the general perturbative strutures of the funtionsH�a (!; �2) and Z��;a(!; as), whih would allow us to resum those higher-order orre-tions, are presently unknown. Fortunatly, some approximations an be made. On the onehand, it is well-known that the plus omponents by themselves represent the dominantontributions to both the average gluon and quark jet multipliities (see, e.g., Ref. [36℄for the gluon ase and Ref. [37℄ for the quark ase). On the other hand, Eq. (49) tells usthat D�g (0; Q2) is suppressed with respet to D�s (0; Q2) beause �! � 1 + O(!). Thesetwo observations suggest that keeping r�(Q2) = 0 also beyond LO should represent agood approximation. Nevertheless, we shall explain below how to obtain the �rst non-vanishing ontribution to r�(Q2). Furthermore, we notie that higher-order orretions11



to H�a (0; Q2) and ~D�a (0; Q20) just represent rede�nitions of D�a (0; Q20) by onstant fatorsapart from running-oupling e�ets. Therefore, we assume that these orretions an benegleted.Note that the resummation of the �� omponents was performed similarly to Eq. (24)for the ase of parton distribution funtions in Ref. [26℄. Suh resummations are veryimportant beause they redue the Q2 dependenes of the onsidered results at �xed orderin perturbation theory by properly taking into aount terms that are potentially large inthe limit ! ! 0 [38,39℄. We antiipate similar properties in the onsidered ase, too, whihis in line with our approximations. Some additional support for this may be obtained fromN = 4 super Yang-Mills theory, where the diagonalization an be performed exatly inany order of perturbation theory beause the oupling onstant and the orrespondingmarties for the diagonalization do not depended on Q2. Consequently, there are noZ(k)��;a(!) terms, and only P (k)��(!) terms ontribute to the integrand of the RG exponent.Looking at the r.h.s. of Eqs. (23) and (27), we indeed observe that the orretions of O(as)would anel eah other if the oupling onstant were sale independent.We now disuss higher-order orretions to r+(Q2). As already mentioned above, weintrodued in Ref. [12℄ an e�etive approah to perform the resummation of the �rstMellin moment of the plus omponent of the anomalous dimension. In that approah,resummation is performed by taking the �xed-order plus omponent and substituting! = !e� , where !e� is given in Eq. (32). We now show that this approah is exat toO(pas). We indeed reover Eq. (34) by substituting ! = !e� in the leading singular termof the LO splitting funtion P++(!; as),P LO++(!) = 4CAas! +O(!0): (52)We may then also substitute ! = !e� in Eq. (48) before taking the limit in ! = 0. Usingalso Eq. (31), we thus �ndr+(Q2) = CACF "1� p2as(Q2)CA3 �1 + 2nfTRCA � 4CFnfTRC2A �#+O(as); (53)whih oinides with the result obtained by Mueller in Ref. [35℄. For this reason andbeause, in Ref. [40℄, the average gluon and quark jet multipliities evolve with only oneRG exponent, we inteprete the result in Eq. (5) of Ref. [9℄ as higher-order orretions toEq. (53). Complete analyti expressions for all the oeÆients of the expansion throughO(a3=2s ) may be found in Appendix 1 of Ref. [9℄. This interpretation is also expliitelyon�rmed in Chapter 7 of Ref. [41℄ through O(as).Sine we showed that our approah reprodues exat analyti results at O(pas), wemay safely apply it to predit the �rst non-vanishing orretion to r�(Q2) de�ned inEq. (49), whih yields r�(Q2) = �4nfTR3 s2as(Q2)CA +O(as): (54)12



However, ontributions beyond O(p�s) obtained in this way annot be trusted, andfurther investigation is required. Therefore, we refrain from onsidering suh ontributionshere.For the reader's onveniene, we list here expressions with numerial oeÆients forr+(Q2) through O(a3=2s ) and for r�(Q2) through O(pas) in QCD with nf = 5:r+(Q2) = 2:25� 2:18249pas(Q2)� 27:54 as(Q2) + 10:8462 a3=2s (Q2) +O(a2s); (55)r�(Q2) =�2:72166pas(Q2) +O(as): (56)We denote the approximation in whih Eqs. (41){(43) and (51) are used as LO+NNLL,the improved approximation in whih the expression for r+(Q2) in Eq. (51) is replaedby Eq. (55), i.e. Eq. (5) in Ref. [9℄, as N3LOapprox + NNLL, and our best approximationin whih, on top of that, the expression for r�(Q2) in Eq. (51) is replaed by Eq. (56) asN3LOapprox+NLO+NNLL. We shall see in Setion 4, where we ompare with the experi-mental data and extrat the strong-oupling onstant, that the latter two approximationsare atually very good and that the last one yields the best results, as expeted.In all the approximations onsidered here, we may summarize our main theoretialresults for the avarage gluon and quark jet multipliities in the following way:hnh(Q2)ig = n1(Q20)T̂ res+ (0; Q2; Q20) + n2(Q20) r�(Q2)T̂ res� (0; Q2; Q20);hnh(Q2)is = n1(Q20) T̂ res+ (0; Q2; Q20)r+(Q2) + n2(Q20) T̂ res� (0; Q2; Q20); (57)where n1(Q20) = r+(Q20)Dg(0; Q20)� r�(Q20)Ds(0; Q20)r+(Q20)� r�(Q20) ;n2(Q20) = r+(Q20)Ds(0; Q20)�Dg(0; Q20)r+(Q20)� r�(Q20) : (58)The average gluon-to-quark jet multipliity ratio may thus be written asr(Q2) � hnh(Q2)ighnh(Q2)is = r+(Q2)"1 + r�(Q2)R(Q20)T̂ res� (0; Q2; Q20)=T̂ res+ (0; Q2; Q20)1 + r+(Q2)R(Q20)T̂ res� (0; Q2; Q20)=T̂ res+ (0; Q2; Q20)# ; (59)where R(Q20) = n2(Q20)n1(Q20) : (60)It follows from the de�nition of T̂ res� (0; Q2; Q20 in Eq. (41) and from Eq. (58) that, forQ2 = Q20, Eqs. (57) and (59) beomehnh(Q20)ig = Dg(0; Q20); hnh(Q20)iq = Ds(0; Q20); r(Q20) = Dg(0; Q20)Ds(0; Q20) : (61)13



These represent the initial onditions for the Q2 evolution at an arbitrary initial sale Q0.In fat, Eq. (57) is independ of Q20, as may be observed by notiing thatT̂ res� (0; Q2; Q20) = T̂ res� (0; Q2; Q21)T̂ res� (0; Q21; Q20); (62)for an arbitrary sale Q1 (see also Ref. [42℄ for a detailed disussion of this point).In the approximations with r�(Q2) = 0 [13℄, i.e. the LO + NNLL and N3LOapprox +NNLL ones, our general results in Eqs. (57), and (59) ollapse tohnh(Q2)ig =Dg(0; Q20)T̂ res+ (0; Q2; Q20);hnh(Q2)is =Dg(0; Q20) T̂ res+ (0; Q2; Q20)r+(Q2) + �Ds(0; Q20)� Dg(0; Q20)r+(Q20) � T̂ res� (0; Q2; Q20);r(Q2) = r+(Q2)h1 + r+(Q2)r+(Q20) �Ds(0;Q20)r+(Q20)Dg(0;Q20) � 1� T̂ res� (0;Q2;Q20)T̂ res+ (0;Q2;Q20)i : (63)The NNLL-resummed expressions for the average gluon and quark jet multipliitesgiven by Eq. (57) only depend on two nonperturbative onstants, namely Dg(0; Q20) andDs(0; Q20). These allow for a simple physial interpretation. In fat, aording to Eq. (61),they are the average gluon and quark jet multipliities at the arbitrary saleQ0. We shouldalso mention that identifying the quantity r+(Q2) with the one omputed in Ref. [9℄, weassume the sheme dependene to be negligible. This should be justi�ed beause of thesheme independene through NLL established in Ref. [5℄.We note that the Q2 dependene of our results is always generated via as(Q2) aordingto Eq. (14). This allows us to express Eq. (41) entirely in terms of �s(Q2). In fat,substituting the QCD values for the olor fators and hoosing nf = 5 in the formulaegiven in Ref. [13℄, we may write at NNLLT̂ res� (Q2; Q20) = ��s(Q2)�s(Q20)�d1 ;T̂ res+ (Q2; Q20) = exp"d2 1p�s(Q2) � 1p�s(Q20)!+ d3�p�s(Q2)�q�s(Q20)�#� ��s(Q2)�s(Q20)�d4 ; (64)where d1 = 0:38647; d2 = 2:65187; d3 = �3:87674; d4 = 0:97771: (65)We onlude this setion by disussing the theoretial unertainties in r+(Q2) andr�(Q2) due to unknown higher-order orretions. Similarly to Eq. (46), we may estimatethem by studying the sale dependene. Performing the shift of Eq. (45) in Eqs. (55) and14
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Figure 1: Sale dependenes of T̂+(0; Q2; Q20) for Q = 30 GeV and Q0 = 1 GeV at the LL (dashed/blueline), NLL (dotted/red line), and NNLL (ontinuous/green line) levels.(56), we obtainr+(Q2) = 2:25� 2:18249pas(�Q2)� 27:54�s(�Q2)+ �10:8462� 2:18249 �02 ln �� a3=2s (�Q2) +O(a2s);r�(Q2) =�2:72166pas(�Q2) +O(as): (66)4 AnalysisWe are now in a position to perform a global �t to the available experimental data of ourformulas in Eq. (57) in the LO+NNLL, N3LOapprox+NNLL, and N3LOapprox+NLO+NNLLapproximations, so as to extrat the nonperturbative onstants Dg(0; Q20) and Ds(0; Q20).We have to make a hoie for the sale Q0, whih, in priniple, is arbitrary. Wewish to hoose it by optimizing the apparent onvergene properties of the perturbativeQCD expansion. To this end, we analyse in Figs. 1 and 2 the dependene on the salingparameter � of T̂+(0; Q2; Q20) governed by Eq. (46) at di�erent logarithmi auraies forQ0 = 1 GeV and Q0 = 50 GeV, respetively. We put Q = 30 GeV beause this is inthe enter of the range where the majority of the available data loated. We observe astrong redution of the sale dependene as we pass from LL via NLL to NNLL, bothfor Q0 = 1 GeV and Q0 = 50 GeV. The perturbative series appears to be more rapidlyonverging at relatively large values of Q0. Therefore, we adopt Q0 = 50 GeV in the15
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Figure 2: Sale dependenes of T̂+(0; Q2; Q20) for Q = 30 GeV and Q0 = 50 GeV at the LL (dashed/blueline), NLL (dotted/red line), and NNLL (ontinuous/green line) levels.following. Another good reason for this hoie is that, aording to Eq. (61), Dg(0; Q20)and Ds(0; Q20) represent the avarage gluon and quark jet multipliities, respetively, atthe sale Q0, so that the �t results for our initial onditions may be diretly omparedwith the experimental data at Q0 = 50 GeV.In Fig. 3, we ompare the sale dependene of T̂�(0; Q2; Q20), whih is obtained by sim-ply replaing Q2 with �Q2 in Eq. (41), with the one of T̂+(0; Q2; Q20) evaluated aordingto Eq. (46), for Q = 30 GeV and Q0 = 50 GeV. We observe from Fig. 3 that the salevariation is very similar in both ases.In Fig. 4, we study the sale dependene of r+(Q2) evaluated at LO, NLO, NNLO, andN3LO aording to Eq. (66). We observe that the sale dependene gradually inreases aswe pass from LO via NLO to NNLO, while it dereases in the step from NNLO to N3LO,and hene onlude that only the latter order may be trusted.Prior to presenting our �ts, we explain our de�nition of on�dene level (CL), whihwe adopt from Ref. [43℄. Suppose a �t of the free parameters to n experimental datapoints yields the minimum �2 value �20. We then determine the 90% CL limits on a �tparameter by varying it so that the resulting �2 values stay within the range�2 < �20 �90�50 ; (67)where �50(90) are de�ned suh thatZ �50(90)0 P (�2; n) d�2 = 0:50(0:90); (68)16
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LO + NNLL N3LOapprox +NNLL N3LOapprox +NLO+NNLLhnh(Q20)ig 24:31� 0:85 24:02� 0:36 24:17� 0:36hnh(Q20)iq 15:49� 0:90 15:83� 0:37 15:89� 0:33�2dof 18.09 3.71 2.92Table 1: Fit results for hnh(Q20)ig and hnh(Q20)iq at Q0 = 50 GeV with 90% CL errors and minimumvalues of �2dof ahieved in the LO + NNLL, N3LOapprox + NNLL, and N3LOapprox + NLO + NNLLapproximations.with P (�2; n) = 2�n=2�(n=2) ��2�n=2�1 e��2=2: (69)The average gluon and quark jet multipliities extrated from experimental datastrongly depend on the hoie of jet algorithm. We adopt the seletion of experimentaldata from Ref. [44℄ performed in suh a way that they orrespond to ompatible jet algo-rithms. Spei�ally, these inlude the measurements of average gluon jet multipliities inRefs. [44,45,46,47,48℄ and those of average quark jet multipliities in Refs. [45,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77℄,whih inlude 27 and 51 experimental data points, respetively. The results for hnh(Q20)igand hnh(Q20)iq at Q0 = 50 GeV together with the �2dof values obtained in our LO+NNLL,N3LOapprox+NNLL, and N3LOapprox+NLO+NNLL �ts are listed in Table 1. The errorsorrespond to 90% CL as explained above. All these �t results are in agreement with theexperimental data. Looking at the �2dof values, we observe that the qualities of the �tsimprove as we go to higher orders, as they should. The improvement is most dramatiin the step from LO + NNLL to N3LOapprox +NNLL, where the errors on hnh(Q20)ig andhnh(Q20)iq are more than halved. The improvement in the step from N3LOapprox +NNLLto N3LOapprox +NLO+NNLL, albeit less pronouned, indiates that the inlusion of the�rst orretion to r�(Q2) as given in Eq. (54) is favored by the experimental data. Wehave veri�ed that the values of �2dof are insensitive to the hoie of Q0, as they should.Furthermore, the entral values onverge in the sense that the shifts in the step fromN3LOapprox + NNLL to N3LOapprox + NLO + NNLL are onsiderably smaller than thosein the step from LO + NNLL to N3LOapprox + NNLL and that, at the same time, theentral values after eah step are ontained within error bars before that step. In the �tspresented so far, the strong-oupling onstant was taken to be the entral value of theworld avarage, �(5)s (m2Z) = 0:1184 [78℄. In Setion 5, we shall inlude �(5)s (m2Z) among the�t parameters.In Fig. 5, we show as funtions of Q the average gluon and quark jet multipliitiesevaluated from Eq. (57) at LO + NNLL and N3LOapprox + NLO + NNLL using the or-responding �t results for hnh(Q20)ig and hnh(Q20)iq at Q0 = 50 GeV from Table 1. Forlarity, we refrain from inluding in Fig. 5 the N3LOapprox+NNLL results, whih are verysimilar to the N3LOapprox + NLO + NNLL ones already presented in Ref. [13℄. In theN3LOapprox +NLO+NNLL ase, Fig. 5 also displays two error bands, namely the exper-imental one indued by the 90% CL errors on the respetive �t parameters in Table 1and the theoretial one, whih is evaluated from Eqs. (46) and (66) by varying the sale18
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Figure 6: Experimental (shaded/orange band) and theoretial (band enlosed between dot-dashedurves) unertainties in the N3LOapprox + NLO + NNLL result for the average gluon jet multipliitynormalized with respet to default evaluation with � = 1.parameter � in the range 1=4 � � � 4. For a more detailed disussion of the unertaintieson the average gluon and quark jet multipliities in the N3LOapprox+NLO+NNLL approx-imation, we display them as funtions of Q in Fig. 6 and 7, respetively, normalized withrespet to the default results, evaluated with � = 1. We observe that the unertaintiesderease with inreasing value of Q, whih is a onsequene of the asymptoti freedom ofQCD. They typially fall below �5% at Q � 10 GeV, but beome signi�ant at low Qvalues indiating the onset of the breakdown of the perturbative expansion in p�s.While our �ts rely on individual measurements of the average gluon and quark jetmultipliities, the experimental literature also reports determinations of their ratio; seeRefs. [11,44,46,48,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93℄, whih essentially over allthe available measurements. In order to �nd out how well our �ts desribe the latterand thus to test the global onsisteny of the individual measurements, we ompare inFig. 8 the experimental data on the average gluon-to-quark jet multipliity ratio with ourevaluations of Eq. (59) in the LO+NNLL and N3LOapprox+NLO+NNLL approximationsusing the orresponding �t results from Table 1. As in Fig. 5, we present in Fig. 8 also theexperimental and theoretial unertainties in the N3LOapprox + NLO + NNLL result. Asin Figs. 6 and 7, they are represented relative to the default result, with � = 1, in Fig. 9.For omparison, we inlude in Fig. 8 also the predition of Ref. [9℄ given by Eq. (55).Looking at Fig. 8, we observe that the experimental data are very well desribed bythe N3LOapprox + NLO +NNLL result for Q values above 10 GeV, while they somewhat20



Figure 7: Experimental (shaded/orange band) and theoretial (band enlosed between dot-dashedurves) unertainties in the N3LOapprox + NLO + NNLL result for the average quark jet multipliitynormalized with respet to default evaluation with � = 1.overshoot it below. This disrepany is likely to be due to the fat that, following Ref. [44℄,we exluded the older data from Ref. [11℄ from our �ts beause they are inonsistent withthe experimental data sample ompiled in Ref. [44℄. Furthermore, Fig. 9 tells us thatthe theoretial unertainties are large in the small-Q2 region, whih indiates that theonvergene properties of the perturbative series in p�s are unfavorable there. Finally,the experimental determination of the saleQ, whih in the theoretial expressions denotesthe virtuality of the parent parton of the onsidered jet, may be ambiguous in multi-jetevents and may be performed somewhat di�erently in di�erent experiments, whih mayexplain tensions between di�erent data sets. This additional type of unertainty shouldbe more important at small values of Q2, where the slope of the Q2 evolution is steeper.The Monte Carlo analysis of Ref. [10℄ suggests that the average gluon and quarkjet multipliities should oinide at about Q = 4 GeV. As is evident from Fig. 8, thisagrees with our N3LOapprox +NLO+NNLL result reasonably well given the onsiderableunertainties in the small-Q2 range disussed above.As is obvious from Fig. 8, the approximation of r(Q2) by r+(Q2) given in Eq. (55)[9℄ leads to a poor approximation of the experimental data, whih reah up to Q valuesof about 50 GeV. It is, therefore, interesting to study the high-Q2 asymptoti behaviorof the average gluon-to-quark jet ratio. This is done in Fig. 10, where the N3LOapprox +NLO+NNLL result inluding its experimental and theoretial unertainties is omparedwith the approximation by Eq. (55) way up to Q = 100 TeV. We observe from Fig. 1021
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Figure 9: Experimental (dark/orange band) and theoretial (light/gray band) unertainties in theN3LOapprox +NLO +NNLL result for the average gluon-to-quark jet multipliity ratio normalized withrespet to default evaluation with � = 1.
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Figure 10: High-Q extension of Fig. 8.23



N3LOapprox +NNLL N3LOapprox +NLO+ NNLLhnh(Q20)ig 24:18� 0:32 24:22� 0:33hnh(Q20)iq 15:86� 0:37 15:88� 0:35�(5)s (m2Z) 0:1242� 0:0046 0:1199� 0:0044�2dof 2.84 2.85Table 2: Fit results for hnh(Q20)ig and hnh(Q20)iq at Q0 = 50 GeV and for �(5)s (m2Z) with 90% CLerrors and minimum values of �2dof ahieved in the N3LOapprox+NNLL and N3LOapprox+NLO+NNLLapproximations.that the approximation approahes the N3LOapprox + NLO + NNLL result rather slowly.Both preditions agree within theoretial errors at Q = 100 TeV, whih is one order ofmagnitude beyond LHC energies, where they are still about 10% below the asymptotivalue CA=CF = 2:25. Figure 10 also niely illustrates how, as a onsequene of theasymptoti freedom of QCD, the theoretial unertainty dereases with inreasing valueof Q2 and thus beomes onsiderably smaller than the experimental error.5 Determination of strong-oupling onstantIn Setion 4, we took �(5)s (m2Z) to be a �xed input parameter for our �ts. Motivated bythe exellent goodness of our N3LOapprox + NNLL and N3LOapprox + NLO + NNLL �ts,we now inlude it among the �t parameters, the more so as the �ts should be suÆientlysensitive to it in view of the wide Q2 range populated by the experimental data �ttedto. We �t to the same experimental data as before and again put Q0 = 50 GeV. The�t results are summarized in Table 2. We observe from Table 2 that the results of theN3LOapprox+NNLL [42℄ and N3LOapprox+NLO+NNLL �ts for hnh(Q20)ig and hnh(Q20)iqare mutually onsistent. They are also onsistent with the respetive �t results in Table 1.As expeted, the values of �2dof are redued by relasing �(5)s (m2Z) in the �ts, from 3.71 to2.84 in the N3LOapprox +NNLL approximation and from 2.95 to 2.85 in the N3LOapprox +NLO + NNLL one. The three-parameter �ts strongly on�ne �(5)s (m2Z), within an errorof 3.7% at 90% CL in both approximations. The inlusion of the r�(Q2) term has thebene�ial e�et of shifting �(5)s (m2Z) loser to the world average, 0:1184� 0:0007 [78℄. Infat, our N3LOapprox+NLO+NNLL value, 0:1199�0:0044 at 90% CL, whih orrespondsto 0:1199� 0:0026 at 68% CL, is in exellent agreement with the former.In order to illustrate the sensitivity of our N3LOapprox+NNLL and N3LOapprox+NLO+NNLL �ts to �(5)s (m2Z), we show in Fig. 11 the values of �2 obtained by varying �(5)s (m2Z)while keeping hnh(Q20)ig and hnh(Q20)iq at their respetive entral values listed in Table 2.
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Figure 11: Values of �2 evaluated as funtions of �(5)s (m2Z) in the N3LOapprox+NNLL and N3LOapprox+NLO+NNLL approximations with the respetive entral values of hnh(Q20)ig and hnh(Q20)iq from Table 2.6 ConlusionsPrior to our analysis in Ref. [13℄, experimental data on the average gluon and quark jetmultipliities ould not be simultaneously desribed in a satisfatory way mainly beausethe theoretial formalism failed to aount for the di�erene in hadroni ontents betweengluon and quark jets, although the onvergene of perturbation theory seemed to be wellunder ontrol [9℄. This problem may be solved by inluding the minus omponents gov-erned by T̂ res� (0; Q2; Q20) in Eqs. (57) and (59). This was done for the �rst time in Ref. [13℄,albeit in onnetion with the LO result r�(Q2) = 0. The quark-singlet minus omponentomes with an arbitrary normalization and has a slow Q2 dependene. Consequently, itsnumerial ontribution may be approximately mimiked by a onstant introdued to theaverage quark jet multipliity as in Ref. [11℄.In the present paper, we improved the analysis of Ref. [13℄ in various ways. The mostnatural possible improvement onsists in inluding higher-order orretion to r�(Q2).Here, we managed to obtain the NLO orretion, of O(p�s), using the e�etive approahintrodued in Ref. [12℄, whih was shown to also exatly reprodue the O(p�s) orretionto r+(Q2). Our general result orresponding to Eq. (57) depends on two parameters,Dg(0; Q20) and Ds(0; Q20), whih, aording to Eq. (61), represent the average gluon andquark jet multipliities at an arbitrary referene sale Q0 and at as initial onditions forthe Q2 evolution. Looking at the perturbative behaviour of the expansion in p�s and thedistribution of the available experimental data, we argued that Q0 = 50 GeV is a goodhoie. We �tted these two parameters to all available experimental data on the average25



gluon and quark jet multipliities treating �(5)s (m2Z) as an input parameter �xed to theworld avarage [78℄. We worked in three di�erent approximations, labeled LO + NNLL,N3LOapprox + NNLL, and N3LOapprox + NLO + NNLL, in whih the logarithms lnx areresummed through the NNLL level, r+(Q2) is evaluated at LO or approximately at N3LO,and r�(Q2) is evaluated at LO or NLO. Inluding the NLO orretion to r�(Q2), givenin Eq. (54), signi�antly improved the quality of the �t, as is evident by omparing thevalues of �2dof for the N3LOapprox +NNLL and N3LOapprox +NLO+NNLL �ts in Table 1.Motivated by the goodness of our N3LOapprox+NNLL and N3LOapprox+NLO+NNLL�ts with �xed value of �(5)s (m2Z) in Ref. [13℄ and here, we then inluded �(5)s (m2Z) amongthe �t parameters, whih yielded a further redution of �2dof . The �t results are listed inTable 2. Also here, the inlusion of the NLO orretion to r�(Q2) is bene�ial; it shifts�(5)s (m2Z) loser to the world average to beome 0:1199� 0:0026.A few omments are in order regarding the renormalization sheme and the ounting ofhigher-order orretions in our analysis in order to allow for an appropriate lassi�ationof our determination of �(5)s (m2Z) in the ontext of a global analysis yielding a worldaverage. We worked in the MS renormalization sheme, whih has beome the standardhoie in the literature. We reah beyond ordinary �xed-order analyses by resumming thelogarithms lnx through the NNLL level. Furthermore, our expressions are ompletely RG-improved in the sense that all Q2 dependene is aommodated in �s(Q2). Unlike usualhigher-order alulations in the QCD-improved parton model, the perturbation series ofthe oeÆients r�(Q2) are organized in powers of p�s rather than �s. In the ase ofr+(Q2), whih starts at O(1), our exat knowledge reahes through O(�s), i.e. NNLO,while our O(�3=2s ) term represents an eduated guess in the sense that it was obtainedusing a proedure that, stritly speaking, was only tested through NNLO. In the ase ofr�(Q2), the O(1) term vanishes, and the O(p�s) term is listed in Eq. (54), i.e. we haveontrol through NLO. However, the oeÆients of r�(Q2) in Eq. (57) are numeriallysuppressed relative to those of r+(Q2), by approximately a fator of O(p�s). In fat, theshift in hnh(Q2)ig (hnh(Q2)is) indued by the O(p�s) term of r�(Q2) is omparable to(about a fator of three smaller than) the one indued by the O(�s) term of r+(Q2). Wethus onlude that our determination of �(5)s (m2Z) is e�etively of NNLO.The next steps towards O(�2s) auray inlude an improved omputation of the o-eÆient r�(Q2) and an extended resummation of the plus and minus omponents of thesplitting funtions. At the LHC, jet multipliity observables an be measured at unpree-dented values of Q2, whih will allow for stringent tests of QCD and provide a stronglever arm for high-preision determinations of �(5)s (m2Z) using the formalism elaboratedin Ref. [13℄ and here.AknowledgmentsThe work P.B. and of A.V.K. was supported in part by the Heisenberg-Landau program.The work of A.V.K. was supported in part by the Russian Foundation for Basi ResearhRFBR through Grant No. 13-02-01005. This work was supported by the German Federal26



Ministry for Eduation and Researh BMBF through Grant No. 05H12GUE and by theGerman Researh Foundation DFG through the Collaborative Researh Centre No. 676Partiles, Strings and the Early Universe|The Struture of Matter and Spae Time.AppendixHere we prove the relations given in Eqs. (29) and (30) between the singular parts of thediagonal and nondiagonal splitting funtions in Mellin spae Pab(!; as) with a; b = g; qand show that they are approximately true also for the regular parts.Following Ref. [6℄, we introdue the notation2� = 8CAas!2 ; s =p1 + 4�; L = ln 1 + s2 = ln 2�s� 1 : (70)In the following, the resummed funtions Pab(!; as) are built up by their parts P (i)ab (!)orresponding to the onsidered levels of resummation, with i = 0; 1; 2 representing theLL, NLL, and NNLL levels, respetively. The results read:Pqq(!; as) = P (1)qq (!; as) + P (2)qq (!; as);P (1)qq (!; as) = 43CFfAas �1� s� 12� (L+ 1)� ;P (2)qq (!; as) = CFfAasKqqPgg(!; as) =�Pqq(!; as) + ~P (0)gg (!; as) + ~P (1)gg (!; as) + ~P (2)qq (!; as);~P (0)gg (!; as) = !4 (s� 1);~P (1)gg (!; as) = asCA6 �(11 + 2fA(1� 2CFA )� �1� s�1� ;~P (2)gg (!; as) = CAas! �Kgg1 (s� 1)�Kgg2 �1� s�1��Kgg3 �1� s�3�� ; (71)where CFA = CF=CA, fA = 2nfTR=CA, andKqq = 118 ��51� 12fA �7� 18CFA�� Ls � �11� 2fA �3� 10CFA���1� s� 12� �� �51� 3fA �1� 4CFA�� s� 12 � 20(s� 1)L2� � 2 �5� 2fA �1� 3CFA�� s� 12� L2� ;Kgg1 = 1193576 � �2 � 7fA144 �5 + 2CFA�+ f 2A144 �1 + 4CFA �1� 3CFA�� ;Kgg2 = 415288 � �2 + fA36 �5 + 2CFA�� f 2A72 �1� 4CFA �2� 3CFA�� ;Kgg3 = 1576 �1 + 2CFA �1� 2CFA��2 ; (72)2In order for all variables to be positive, we introdue here � instead of � used in Ref. [6℄.27



with �2 = �2=6.Through NNLL auray, the nondiagonal splitting funtions may be represented asPqg(!; as) =��!�! Pqq(!; as); (73)Pgq(!; as) =� �!�!Pgg(!; as) + P (1)gq (!; as) + P (2)gq (!; as); (74)where P (1)gq (!; as) =�23CFas �1 + fA �1� 2CFA�� ;P (2)gq (!; as) = CFas!�19Kgq1 �Kgq2 �1� s� 12� (L+ 2)�� ; (75)with Kgq1 = 3 + 5fA �1� 2CFA�� f 2A �1� 2CFA�2 ;Kgq2 = 3� 52CFA � 4�2 �1� 2CFA�� fA18 �23� 24CFA�+ 2f 2A9 CFA �1� 2CFA� : (76)We observe from Eq. (73) that the relation for the NNLL-resummed parts of thesplitting funtions Pqg(!; as) and Pqq(!; as) in Eq. (30) is not only orret for their termssingular as ! ! 0, but also for their regular ones. The situation is di�erent for the relationbetween Pgq(!; as) and Pgg(!; as) in Eq. (29), whih does not arry over to the regularterms, as is evident from Eq. (74). However, the additional terms in Eq. (75) have simpleforms ompared to the expression for Pgg(!; as) in Eq. (71).Referenes[1℄ W. J. Waalewijn, Phys. Rev. D 86 (2012) 094030 [arXiv:1209.3019 [hep-ph℄℄.[2℄ Ya. I. Azimov, Yu. L. Dokshitzer, V. A. Khoze and S. I. Troyan, Z. Phys. C 27 (1985)65.[3℄ A. H. Mueller, Phys. Lett. B 104 (1981) 161.[4℄ A. Vogt, JHEP 1110 (2011) 025 [arXiv:1108.2993 [hep-ph℄℄.[5℄ S. Albino, P. Bolzoni, B. A. Kniehl and A. V. Kotikov, Nul. Phys. B 855 (2012)801 [arXiv:1108.3948 [hep-ph℄℄.[6℄ C.-H. Kom, A. Vogt and K. Yeats, JHEP 1210 (2012) 033 [arXiv:1207.5631 [hep-ph℄℄.[7℄ S. Albino, P. Bolzoni, B. A. Kniehl and A. Kotikov, arXiv:1107.1142 [hep-ph℄.[8℄ S. Albino, P. Bolzoni, B. A. Kniehl and A. Kotikov, Nul. Phys. B 851 (2011) 86[arXiv:1104.3018 [hep-ph℄℄. 28
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