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Average gluon and quark jet multipli
ities at higherordersPaolo Bolzoni,1 Bernd A. Kniehl,1 Anatoly V. Kotikov 1;21 II. Institut f�ur Theoretis
he Physik, Universit�at Hamburg,Luruper Chaussee 149, 22761 Hamburg, Germany2 Bogoliubov Laboratory of Theoreti
al Physi
s,Joint Institute for Nu
lear Resear
h, 141980 Dubna, RussiaAbstra
tWe develop a new formalism for 
omputing and in
luding both the perturba-tive and nonperturbative QCD 
ontributions to the s
ale evolution of average gluonand quark jet multipli
ities. The new method is motivated by re
ent progress intimelike small-x resummation obtained in the MS fa
torization s
heme. We obtainnext-to-next-to-leading-logarithmi
 (NNLL) resummed expressions, whi
h representgeneralizations of previous analyti
 results. Our expressions depend on two non-perturbative parameters with 
lear and simple physi
al interpretations. A global�t of these two quantities to all available experimental data sets that are 
ompati-ble with regard to the jet algorithms demonstrates by its goodness how our resultssolve a longstandig problem of QCD. We show that the statisti
al and theoreti
alun
ertainties both do not ex
eed 5% for s
ales above 10 GeV. We �nally proposeto use the jet multipli
ity data as a new way to extra
t the strong-
oupling 
on-stant. In
luding all the available theoreti
al input within our approa
h, we obtain�(5)s (Mz) = 0:1199 � 0:0026 in the MS s
heme in an approximation equivalent tonext-to-next-to-leading order enhan
ed by the resummations of lnx terms throughthe NNLL level and of lnQ2 terms by the renormalization group, in ex
ellent agree-ment with the present world average.PACS numbers: 12.38.Cy, 12.39.St, 13.66.B
, 13.87.Fh
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1 Introdu
tionThe produ
tion of hadrons is due to the strong intera
tions of quarks and gluons. Quan-tum 
hromodynami
s (QCD), the gauge theory of the strong intera
tions, provides aquantitative des
ription of the transitions from quarks and gluons to jets of hadrons,whi
h may be tested experimentally. When jets are produ
ed at 
olliders, they 
an beinitiated either by a quark or a gluon. The two types of jets are expe
ted to exhibitdi�erent properties, above all be
ause quarks and gluons 
arry di�erent 
olor 
harges andspin. In fa
t, a gluon jet is typi
ally broader and 
ontains a larger amount of hadrons.Jets with di�erent mother partons 
an also be studied by looking for the jet 
harge distri-bution as dis
ussed in Ref. [1℄, with important 
onsequen
es for the physi
s at the CERNLarge Hadron Collider (LHC). To understand the interplay of quarks and gluons in a jetand to predi
t testable 
onsequen
es thereof lies at the very 
ore of QCD.The typi
al way to depi
t the produ
tion of a jet from a parton (quark or gluon) is thefollowing. An initial parton starts radiating gluons, whi
h in turn 
an radiate further glu-ons or split into se
ondary quark-antiquark pairs. This so-
alled parton showering pro
ess
auses the virtualities of the parent partons to de
rease. Finally, when the virtuality fallsbelow a 
ertain 
uto�, the 
as
ade stops and the �nal-state partons hadronize into 
olor-neutral hadrons, a pro
ess usually des
ribed by phenomenologi
al models. This happensbe
ause the produ
tion of hadrons is a typi
al pro
ess where nonperturbative phenomenaare involved. However, for parti
ular observables, this problem 
an be avoided. In parti
-ular, the 
ounting of hadrons in a jet that is initiated at a 
ertain s
ale Q belongs to this
lass of observables. In this 
ase, one 
an adopt with quite high a

ura
y the hypothesis ofLo
al Parton-Hadron Duality (LPHD), whi
h simply states that parton distributions arerenormalized in the hadronization pro
ess without 
hanging their shapes [2℄. Hen
e, if thes
ale Q is large enough, this would in prin
iple allow perturbative QCD to be predi
tivewithout the need to 
onsider phenomenologi
al models of hadronization. Nevertheless,su
h pro
esses are dominated by soft-gluon emissions, and it is a well-known fa
t that,in su
h kinemati
 regions of phase spa
e, �xed-order perturbation theory fails, renderingthe usage of resummation te
hniques indispensable. As we shall see, the 
omputation ofavarage jet multipli
ities indeed requires small-x resummation, as was already realizeda long time ago [3℄. In Ref. [3℄, it was shown that the singularities for x � 0, whi
hare en
oded in large logarithms of the kind 1=x lnk(1=x), spoil perturbation theory, andalso render integral observables in x ill-de�ned, disappear after resummation. Usually,resummation in
ludes the singularities from all orders a

ording to a 
ertain logarithmi
a

ura
y, for whi
h it restores perturbation theory.Small-x resummation has re
ently been 
arried out for timelike splitting fu
tions inthe MS fa
torization s
heme, whi
h is generally preferable to other s
hemes, yieldingfully analyti
 expressions. In a �rst step, the next-to-leading-logarithmi
 (NLL) level ofa

ura
y has been rea
hed [4,5℄. In a se
ond step, this has been pushed to the next-to-next-to-leading-logarithmi
 (NNLL), and partially even to the next-to-next-to-next-to-leading-logarithmi
 (N3LL), level [6℄. Thanks to these results, we are able to analyti
ally
ompute the NNLL 
ontributions to the evolutions of the average gluon and quark jet2



multipli
ities with normalization fa
tors evaluated to next-to-leading (NLO) and approx-imately to next-to-next-to-next-to-order (N3LO) in the p�s expansion. The previousliterature 
ontains a NLL result on the small-x resummation of timelike splitting fu
tionsobtained in a massive-gluon s
heme. Unfortunately, this is unsuitable for the 
ombinationwith available �xed-order 
orre
tions, whi
h are routinely evaluated in the MS s
heme.A general dis
ussion of the s
heme 
hoi
e and dependen
e in this 
ontext may be foundin Refs. [7,8℄.The average gluon and quark jet multipli
ities, whi
h we denote as hnh(Q2)ig andhnh(Q2)iq, respe
tively, represent the avarage numbers of hadrons in a jet initiated by agluon or a quark at s
ale Q. In the past, analyti
 predi
tions were obtained by solving theequations for the generating fun
tionals in the modi�ed leading-logarithmi
 approximation(MLLA) in Ref. [9℄ through N3LO in the expansion parameter p�s, i.e. through O(�3=2s ).However, the theoreti
al predi
tion for the ratio r(Q2) = hnh(Q2)ig=hnh(Q2)iq given inRef. [9℄ is about 10% higher than the experimental data at the s
ale of the Z0 boson, andthe di�eren
e with the data be
omes even larger at lower s
ales, although the perturbativeseries seems to 
onverge very well. An alternative approa
h was proposed in Ref. [10℄,where a di�erential equation for the average gluon-to-quark jet multipli
ity ratio wasobtained in the MLLA within the framework of the 
olour-dipole model, and the 
onstantof integration, whi
h is supposed to en
ode nonperturbative 
ontributions, was �tted toexperimental data. A 
onstant o�set to the average gluon and quark jet multipli
itieswas also introdu
ed in Ref. [11℄.Re
ently, we proposed a new formalism [12,13℄ that solves the problem of the appar-ent good 
onvergen
e of the perturbative series and does not require any ad-ho
 o�set,on
e the e�e
ts due to the mixing between quarks and gluons are fully in
luded. Ourresult is a generalization of the result obtained in Ref. [9℄. In our new approa
h, thenonperturbative informations to the gluon-to-quark jet multipli
ity ratio are en
oded inthe initial 
onditions of the evolution equations. Motivated by the ex
ellent agreement ofour results with the experimental data found in Ref. [13℄, we propose here to also use ourapproa
h to extra
t the strong-
oupling 
onstant �s(Q20) at some referen
e s
ale Q0 andthus extend our analysis by adding an apropriate �t parameter.The paper is organized as follows. In Se
tion 2, we introdu
e the equations governingthe evolution of the average gluon and quark jet multipli
ities with the s
ale Q at whi
hthe jet is initiated, develop a formalism to solve them, and improve our results by resum-mation. In Se
tion 3, we explain how we 
an predi
t the average-jet-multipli
ity evolutionsin our framework adding as mu
h as possible available information on small-x timelikeresummation. In Se
tion 4, we �t our resummed formulae to the available experimentaldata ex
tra
ting the initial 
onditions for the evolutions, and dis
uss the un
ertainties
oming from both the statisti
al analysis of the data and the missing higher-order terms.In Se
tion 5, we inje
t the strong-
oupling 
onstant into our analysis and extra
t it.Finally, in Se
tion 6, we summarize our 
on
lusions and present an outlook.
3



2 Fragmentation fun
tions and their evolutionWhen one 
onsiders average multipli
ity observables, the basi
 equation is the one gov-erning the evolution of the fragmentation fun
tions Da(x; �2) for the gluon{quark-singletsystem a = g; s. In Mellin spa
e, it reads:�2 ���2 �Ds(!; �2)Dg(!; �2)� = �Pqq(!; as) Pgq(!; as)Pqg(!; as) Pgg(!; as)��Ds(!; �2)Dg(!; �2)� ; (1)where Pij(!; as), with i; j = g; q, are the timelike splitting fun
tions, ! = N � 1, withN being the standard Mellin moments with respe
t to x, and as(�2) = �s(�)=(4�) is the
ouplant. The standard de�nition of the hadron multipli
ities in terms of the fragmen-tation fun
tions is given by their integral over x, whi
h 
learly 
orresponds to the �rstMellin moment, with ! = 0 (see, e.g., Ref. [14℄):hnh(Q2)ia � �Z 10 dx x!Da(x;Q2)�!=0 = Da(! = 0; Q2); (2)where a = g; s for a gluon and quark jet, respe
tively.The timelike splitting fun
tions Pij(!; as) in Eq. (1) may be 
omputed perturbativelyin as, Pij(!; as) = 1Xk=0 ak+1s P (k)ij (!): (3)The fun
tions P (k)ij (!) for k = 0; 1; 2 in the MS s
heme may be found in Refs. [15,16,17℄through NNLO and in Refs. [4,5,6℄ with small-x resummation through NNLL a

ura
y.In the remainder of this se
tion, we explain in detail our new approa
h to solve Eq. (1) inorder to use its solution in Eq. (2) to obtain the average gluon and quark jet multipli
ities.To this end, we �rst dis
uss how Eq. (1) 
an be diagonalized and then how to implementresummation to improve it, so as to obtain well-de�ned quantities at ! = 0.2.1 DiagonalizationIt is not in general possible to diagonalize Eq. (1) be
ause the 
ontributions to the timelike-splitting-fun
tion matrix do not 
ommute at di�erent orders. The usual approa
h is thento write a series expansion about the leading-order (LO) solution, whi
h 
an in turn bediagonalized. One thus starts by 
hoosing a basis in whi
h the timelike-splitting-fun
tionmatrix is diagonal at LO (see, e.g., Ref. [18℄),P (!; as) = �P++(!; as) P�+(!; as)P+�(!; as) P��(!; as)� = as P (0)++(!) 00 P (0)��(!)!+ a2sP (1)(!) +O(a3s); (4)with eigenvalues P (0)��(!). In one important simpli�
ation of QCD, namely N = 4 superYang-Mills theory, this basis is a
tually more natural than the (g; s) basis be
ause the4



diagonal splitting fun
tions P (k)��(!) may there be expressed in all orders of perturbationtheory as one universal fun
tion with shifted arguments [19℄.It is 
onvenient to represent the 
hange of basis for the fragmentation fun
tions orderby order for k � 0 as [18℄:D+(!; �20) = (1� �!)Ds(!; �20)� �!Dg(!; �20);D�(!; �20) = �!Ds(!; �20) + �!Dg(!; �20): (5)This implies for the 
omponents of the timelike-splitting-fun
tion matrix thatP (k)��(!) = �!P (k)qq (!) + �!P (k)qg (!) + �!P (k)gq (!) + (1� �!)P (k)gg (!);P (k)�+(!) = P (k)��(!)� �P (k)qq (!) + 1� �!�! P (k)gq (!)� ;P (k)++(!) = P (k)qq (!) + P (k)gg (!)� P (k)��(!);P (k)+�(!) = P (k)++(!)� �P (k)qq (!)� �!�! P (k)gq (!)� = P (k)gg (!)� �P (k)��(!)� �!�! P (k)gq (!)� ; (6)where�! = P (0)qq (!)� P (0)++(!)P (0)��(!)� P (0)++(!) ; �! = P (0)gq (!)P (0)��(!)� P (0)++(!) ; �! = P (0)qg (!)P (0)��(!)� P (0)++(!) : (7)Our approa
h to solve Eq. (1) di�ers from the usual one in that we write the solutionexpanding about the diagonal part of the all-order timelike-splitting-fun
tion matrix inthe plus-minus basis, instead of its LO 
ontribution. For this purpose, we rewrite Eq. (4)in the following way:P (!; as) = �P++(!; as) 00 P��(!; as)�+ a2s 0 P (1)�+(!)P (1)+�(!) 0 ! + �0 O(a3s)O(a3s) 0 � : (8)In general, the solution to Eq. (1) in the plus-minus basis 
an be formally written asD(�2) = T�2 (exp Z �2�20 d��2��2 P (��2))D(�20); (9)where T�2 denotes the path ordering with respe
t to �2 andD = �D+D�� : (10)As anti
ipated, we make the following ansatz to expand about the diagonal part of thetimelike-splitting-fun
tion matrix in the plus-minus basis:T�2 (exp Z �2�20 d��2��2 P (��2)) = Z�1(�2) exp"Z �2�20 d��2��2 PD(��2)#Z(�20); (11)5



where PD(!) = �P++(!) 00 P��(!)� (12)is the diagonal part of Eq. (8) and Z is a matrix in the plus-minus basis whi
h has aperturbative expansion of the formZ(�2) = 1 + as(�2)Z(1) +O(a2s): (13)In the following, we make use of the renormalization group (RG) equation for the runningof as(�2), �2 ���2as(�2) = �(as(�2)) = ��0a2s(�2)� �1a3s(�2) +O(a4s); (14)where �0 = 113 CA � 43nfTR;�1 = 343 C2A � 203 CAnfTR � 4CFnfTR; (15)with CA = 3, CF = 4=3, and TR = 1=2 being 
olour fa
tors and nf being the numberof a
tive quark 
avours. Using Eq. (14) to perform a 
hange of integration variable inEq. (11), we obtainTas (exp Z as(�2)as(�20) d�as�(�as)P (�as)) = Z�1(as(�2)) exp"Z as(�2)as(�20) d�as�(�as)PD(�as)#Z(as(�20)):(16)Substituting then Eq. (13) into Eq. (16), di�erentiating it with respe
t to as, and keepingonly the �rst term in the as expansion, we obtain the following 
ondition for the Z(1)matrix: Z(1) + �P (0)D�0 ; Z(1)� = P (1)OD�0 ; (17)where P (1)OD(!) =  0 P (1)�+(!)P (1)+�(!) 0 ! : (18)Solving it, we �nd:Z(1)��(!) = 0; Z(1)��(!) = P (1)��(!)�0 + P (0)��(!)� P (0)��(!) : (19)At this point, an important 
omment is in order. In the 
onventional approa
h tosolve Eq.(1), one expands about the diagonal LO matrix given in Eq. (4), while here weexpand about the all-order diagonal part of the matrix given in Eq. (8). The motivationfor us to do this arises from the fa
t that the fun
tional dependen
e of P��(!; as) on asis di�erent after resummation. 6



Now reverting the 
hange of basis spe
i�ed in Eq. (5), we �nd the gluon and quark-singlet fragmentation fun
tions to be given byDg(!; �2) =��!�! D+(!; �2) + �1� �!�! �D�(!; �2);Ds(!; �2) =D+(!; �2) +D�(!; �2): (20)As expe
ted, this suggests to write the gluon and quark-singlet fragmentation fun
tionsin the following way:Da(!; �2) � D+a (!; �2) +D�a (!; �2); a = g; s; (21)where D+a (!; �2) evolves like a plus 
omponent and D�a (!; �2) like a minus 
omponent.We now expli
itly 
ompute the fun
tions D�a (!; �2) appearing in Eq. (21). To thisend, we �rst substitute Eq. (11) into Eq. (9). Using Eqs. (12) and (19), we then obtainD+(!; �2) = ~D+(!; �20)T̂+(!; �2; �20)� as(�2)Z(1)�+(!) ~D�(!; �20)T̂�(!; �2; �20);D�(!; �2) = ~D�(!; �20)T̂�(!; �2; �20)� as(�2)Z(1)+�(!) ~D+(!; �20)T̂+(!; �2; �20); (22)where ~D�(!; �20) = D�(!; �20) + as(�20)Z(1)��(!)D�(!; �20); (23)and T̂�(!; �2; �20) = exp "Z as(�2)as(�20) d�as�(�as) P��(!; �as)# : (24)has a RG-type exponential form. Finally, inserting Eq. (22) into Eq. (20), we �nd by
omparison with Eq. (21) thatD�a (!; �2) = ~D�a (!; �20)T̂�(!; �2; �20)H�a (!; �2); (25)where ~D+g (!; �20) =��!�! ~D+s (!; �20); ~D�g (!; �20) = 1� �!�! ~D�s (!; �20);~D+s (!; �20) = ~D+(!; �20); ~D�s (!; �20) = ~D�(!; �20); (26)and H�a (!; �2) are perturbative fun
tions given byH�a (!; �2) = 1� as(�2)Z(1)��;a(!) +O(a2s): (27)At O(�s), we haveZ(1)��;g(!) = �Z(1)��(!)�1� �!�! ��1; Z(1)��;s(!) = Z(1)��(!); (28)where Z(1)��(!) is given by Eq. (19). 7



2.2 ResummationAs already mentioned in Se
tion 1, reliable 
omputations of average jet multipli
itiesrequire resummed analyti
 expressions for the splitting fun
tions be
ause one has to eval-uate the �rst Mellin moment (
orresponding to ! = N � 1 = 0), whi
h is a divergentquantity in the �xed-order perturbative approa
h. As is well known, resummation over-
omes this problem, as demonstrated in the pioneering works by Mueller [3℄ and others[20,21,22,23℄.In parti
ular, as we shall see in Se
tion 3, resummed expressions for the �rst Mellinmoments of the timelike splitting fun
tions in the plus-minus basis appearing in Eq. (4)are required in our approa
h. Up to the NNLL level in the MS s
heme, these may beextra
ted from the available literature [3,4,5,6℄ in 
losed analyti
 form using the relationsin Eq. (6). Note that the expressions are generally simpler in the plus-minus basis,1 whilethe 
orresponding results for the resummation of Pgg(!; as) and Pgq(!; as) 
an be highlynontrivial and 
ompli
ated in higher orders of resummation. An analogous observationwas made for the double-logarithm aymptoti
s in the Kirs
hner-Lipatov approa
h [24,25℄,where the 
orresponding amplitudes obey nontrivial equations, whose solutions are rather
ompli
ated spe
ial fun
tions.For future 
onsiderations, we remind the reader of an assumpion already made inRef. [5℄ a

ording to whi
h the splitting fun
tions P (k)��(!) and P (k)+�(!) are supposed to befree of singularities in the limit ! ! 0. In fa
t, this is expe
ted to be true to all orders.This is 
ertainly true at the LL and NLL levels for the timelike splitting fun
tions, as wasveri�ed in our previous work [5℄. This is also true at the NNLL level, as may be expli
itly
he
ked by inserting the results of Ref. [6℄ in Eq. (6). Moreover, this is true through NLOin the spa
elike 
ase [26℄ and holds for the LO and NLO singularities [27,28℄ to all ordersin the framework of the Balitski-Fadin-Kuraev-Lipatov (BFKL) dynami
s [29,30,31,32℄, afa
t that was exploited in various approa
hes (see, e.g., Refs. [33,34℄ and referen
es 
itedtherein). We also note that the timelike splitting fun
tions share a number of simpleproperties with their spa
elike 
ounterparts. In parti
ular, the LO splitting fun
tions arethe same, and the diagonal splitting fun
tions grow like ln! for ! !1 at all orders. Thissuggests the 
onje
ture that the double-logarithm resummation in the timelike 
ase andthe BFKL resummation in the spa
elike 
ase are only related via the plus 
omponents.The minus 
omponents are devoid of singularities as ! ! 0 and thus are not resummed.Now that this is known to be true for the �rst three orders of resummation, one has reasonto expe
t this to remain true for all orders.Using the relationships between the 
omponents of the splitting fun
tions in the twobases given in Eq. (6), we �nd that the absen
e of singularities for ! = 0 in P��(!; as)1In fa
t, one 
an see from Eq. (3.3) of Ref. [6℄ that the resummation of the 
ombination Pgg(!; as) +Pqq(!; as), whi
h a

ording to Eq. (5) gives P++(!; as) be
ause P��(!; as) does not need resummation,is mu
h simpler than that of Pgg(!; as) alone.
8



and P+�(!; as) implies that the singular terms are related asP singgq (!; as) = � �!�!P singgg (!; as); (29)P singqg (!; as) = ��!�! P singqq (!; as); (30)where, through the NLL level,� �!�! = CACF �1� !6 �1 + 2nfTRCA � 4 CFnfTRC2A ��+O(!2): (31)An expli
it 
he
k of the appli
ability of the relationships in Eqs. (29) and (30) for Pij(!; as)with i; j = g; g themselves is performed in the Appendix. Of 
ourse, the relationships inEqs. (29) and (30) may be used to �x the singular terms of the o�-diagonal timelikesplitting fun
tions Pqg(!; as) and Pgq(!; as) using known results for the diagonal timelikesplitting fun
tions Pqq(!; as) and Pgg(!; as). Sin
e Refs. [4,17℄ be
ame available duringthe preparation of Ref. [5℄, the relations in Eqs. (29) and (30) provided an importantindependent 
he
k rather than a predi
tion.We take here the opportunity to point out that Eqs. (25) and (26) together withEq. (31) support the motivations for the numeri
al e�e
tive approa
h that we used inRef. [12℄ to study the average gluon-to-quark jet multipli
ity ratio. In fa
t, a

ording tothe �ndings of Ref. [12℄, substituting ! = !e� , where!e� = 2p2CAas; (32)into Eq. (31) exa
tly reprodu
es the result for the average gluon-to-quark jet multipli
ityratio r(Q2) obtained in Ref. [35℄. In the next se
tion, we shall obtain improved analyti
formulae for the ratio r(Q2) and also for the average gluon and quark jet multipli
ities.Here we would also like to note that, at �rst sight, the substitution ! = !e� shouldindu
e a Q2 dependen
e in Eq. (7), whi
h should 
ontribute to the diagonalization matrix.This is not the 
ase, however, be
ause to double-logarithmi
 a

ura
y the Q2 dependen
eof as(Q2) 
an be negle
ted, so that the fa
tor �!=�! does not re
ieve any Q2 dependen
eupon the substitution ! = !e� . This supports the possibility to use this substitutionin our analysis and gives an explanation of the good agreement with other approa
hes,e.g. that of Ref. [35℄. Nevertheless, this substitution only 
arries a phenomenologi
almeaning. It should only be done in the fa
tor �!=�!, but not in the RG exponents ofEq. (24), where it would lead to a double-
ounting problem. In fa
t, the dangerous termsare already resummed in Eq. (24).In order to be able to obtain the average jet multipli
ities, we have to �rst evaluatethe �rst Mellin momoments of the timelike splitting fun
tions in the plus-minus basis.A

ording to Eq. (6) together with the results given in Refs. [3,6℄, we havePNNLL++ (! = 0) = 
0(1�K1
0 +K2
20); (33)9



where
0 = P LL++(! = 0) =p2CAas; (34)K1 = 112 �11 + 4nfTRCA �1� 2CFCA �� ; (35)K2 = 1288 �1193� 576�2 � 56nfTRCA �5 + 2CFCA��+ 16n2fT 2RC2A �1 + 4CFCA � 12C2FC2A� ; (36)and PNNLL�+ (! = 0) = �CFCA PNNLLqg (! = 0); (37)wherePNNLLqg (! = 0) = 163 nfTRas � 23nfTR �17� 4 nfTRCA �1� 2CFCA ���2CAa3s�1=2: (38)For the P+� 
omponent, we obtainPNNLL+� (! = 0) = O(a2s): (39)Finally, as for the P�� 
omponent, we note that its LO expression produ
es a �nite,nonvanishing term for ! = 0 that is of the same order in as as the NLL-resummed resultsin Eq. (33), whi
h leads us to use the following expression for the P�� 
omponent:PNNLL�� (! = 0) = �8nfTRCF3CA as +O(a2s); (40)at NNLL a

ura
y.We 
an now perform the integration in Eq. (24) through the NNLL level, whi
h yieldsT̂NNLL� (0; Q2; Q20) = TNNLL� (Q2)TNNLL� (Q20) ; (41)TNNLL+ (Q2) = exp� 4CA�0
0(Q2) �1 + (b1 � 2CAK2) as(Q2)�� �as(Q2)�d+ ; (42)TNNLL� (Q2) = TNLL� (Q2) = �as(Q2)�d� ; (43)where b1 = �1�0 ; d� = 8nfTRCF3CA�0 ; d+ = 2CAK1�0 : (44)In order to estimate the 
ontribution to an observable of interest from orders of pertur-bation theory beyond our 
al
ulation, we may shift the argument of the strong-
oupling
onstant as as(Q2)! as(�Q2): (45)Applying this shift to Eqs. (37){(44), there is only one 
hange in the RG exponents,namelyTNNLL+ (Q2) = exp� 4CA�0
0(�Q2) �1 + �b1 � 2CAK2 � �02 ln �� as(�Q2)���as(�Q2)�d+ :(46)10



3 Multipli
itiesA

ording to Eqs. (24) and (25), the �� 
omponents are not involved in the Q2 evolutionof average jet multipli
ities, whi
h is performed at ! = 0 using the resummed expressionsfor the plus and minus 
omponents given in Eq. (33) and (40), respe
tively. We are nowready to de�ne the average gluon and quark jet multipli
ities in our formalism, namelyhnh(Q2)ia � Da(0; Q2) = D+a (0; Q2) +D�a (0; Q2); (47)with a = g; s, respe
tively.On the other hand, from Eqs. (25) and (26), it follows thatr+(Q2) � D+g (0; Q2)D+s (0; Q2) = � lim!!0 �!�! H+g (!;Q2)H+s (!;Q2) ; (48)r�(Q2) � D�g (0; Q2)D�s (0; Q2) = lim!!0 1� �!�! H�g (!;Q2)H�s (!;Q2) : (49)Using these de�nitions and again Eq. (25), we may write general expressions for theaverage gluon and quark jet multipli
ities:hnh(Q2)ig = ~D+g (0; Q20)T̂ res+ (0; Q2; Q20)H+g (0; Q2)+ ~D�s (0; Q20)r�(Q2)T̂ res� (0; Q2; Q20)H�s (0; Q2);hnh(Q2)is = ~D+g (0; Q20)r+(Q2) T̂ res+ (0; Q2; Q20)H+g (0; Q2)+ ~D�s (0; Q20)T̂ res� (0; Q2; Q20)H�s (0; Q2): (50)At the LO in as, the 
oeÆ
ients of the RG exponents are given byr+(Q2) = CACF ; r�(Q2) = 0;H�s (0; Q2) = 1; ~D�a (0; Q20) = D�a (0; Q20); (51)for a = g; s.It would, of 
ourse, be desirable to in
lude higher-order 
orre
tions in Eqs. (51). How-ever, this is highly nontrivial be
ause the general perturbative stru
tures of the fun
tionsH�a (!; �2) and Z��;a(!; as), whi
h would allow us to resum those higher-order 
orre
-tions, are presently unknown. Fortunatly, some approximations 
an be made. On the onehand, it is well-known that the plus 
omponents by themselves represent the dominant
ontributions to both the average gluon and quark jet multipli
ities (see, e.g., Ref. [36℄for the gluon 
ase and Ref. [37℄ for the quark 
ase). On the other hand, Eq. (49) tells usthat D�g (0; Q2) is suppressed with respe
t to D�s (0; Q2) be
ause �! � 1 + O(!). Thesetwo observations suggest that keeping r�(Q2) = 0 also beyond LO should represent agood approximation. Nevertheless, we shall explain below how to obtain the �rst non-vanishing 
ontribution to r�(Q2). Furthermore, we noti
e that higher-order 
orre
tions11



to H�a (0; Q2) and ~D�a (0; Q20) just represent rede�nitions of D�a (0; Q20) by 
onstant fa
torsapart from running-
oupling e�e
ts. Therefore, we assume that these 
orre
tions 
an benegle
ted.Note that the resummation of the �� 
omponents was performed similarly to Eq. (24)for the 
ase of parton distribution fun
tions in Ref. [26℄. Su
h resummations are veryimportant be
ause they redu
e the Q2 dependen
es of the 
onsidered results at �xed orderin perturbation theory by properly taking into a

ount terms that are potentially large inthe limit ! ! 0 [38,39℄. We anti
ipate similar properties in the 
onsidered 
ase, too, whi
his in line with our approximations. Some additional support for this may be obtained fromN = 4 super Yang-Mills theory, where the diagonalization 
an be performed exa
tly inany order of perturbation theory be
ause the 
oupling 
onstant and the 
orrespondingmarti
es for the diagonalization do not depended on Q2. Consequently, there are noZ(k)��;a(!) terms, and only P (k)��(!) terms 
ontribute to the integrand of the RG exponent.Looking at the r.h.s. of Eqs. (23) and (27), we indeed observe that the 
orre
tions of O(as)would 
an
el ea
h other if the 
oupling 
onstant were s
ale independent.We now dis
uss higher-order 
orre
tions to r+(Q2). As already mentioned above, weintrodu
ed in Ref. [12℄ an e�e
tive approa
h to perform the resummation of the �rstMellin moment of the plus 
omponent of the anomalous dimension. In that approa
h,resummation is performed by taking the �xed-order plus 
omponent and substituting! = !e� , where !e� is given in Eq. (32). We now show that this approa
h is exa
t toO(pas). We indeed re
over Eq. (34) by substituting ! = !e� in the leading singular termof the LO splitting fun
tion P++(!; as),P LO++(!) = 4CAas! +O(!0): (52)We may then also substitute ! = !e� in Eq. (48) before taking the limit in ! = 0. Usingalso Eq. (31), we thus �ndr+(Q2) = CACF "1� p2as(Q2)CA3 �1 + 2nfTRCA � 4CFnfTRC2A �#+O(as); (53)whi
h 
oin
ides with the result obtained by Mueller in Ref. [35℄. For this reason andbe
ause, in Ref. [40℄, the average gluon and quark jet multipli
ities evolve with only oneRG exponent, we inteprete the result in Eq. (5) of Ref. [9℄ as higher-order 
orre
tions toEq. (53). Complete analyti
 expressions for all the 
oeÆ
ients of the expansion throughO(a3=2s ) may be found in Appendix 1 of Ref. [9℄. This interpretation is also expli
itely
on�rmed in Chapter 7 of Ref. [41℄ through O(as).Sin
e we showed that our approa
h reprodu
es exa
t analyti
 results at O(pas), wemay safely apply it to predi
t the �rst non-vanishing 
orre
tion to r�(Q2) de�ned inEq. (49), whi
h yields r�(Q2) = �4nfTR3 s2as(Q2)CA +O(as): (54)12



However, 
ontributions beyond O(p�s) obtained in this way 
annot be trusted, andfurther investigation is required. Therefore, we refrain from 
onsidering su
h 
ontributionshere.For the reader's 
onvenien
e, we list here expressions with numeri
al 
oeÆ
ients forr+(Q2) through O(a3=2s ) and for r�(Q2) through O(pas) in QCD with nf = 5:r+(Q2) = 2:25� 2:18249pas(Q2)� 27:54 as(Q2) + 10:8462 a3=2s (Q2) +O(a2s); (55)r�(Q2) =�2:72166pas(Q2) +O(as): (56)We denote the approximation in whi
h Eqs. (41){(43) and (51) are used as LO+NNLL,the improved approximation in whi
h the expression for r+(Q2) in Eq. (51) is repla
edby Eq. (55), i.e. Eq. (5) in Ref. [9℄, as N3LOapprox + NNLL, and our best approximationin whi
h, on top of that, the expression for r�(Q2) in Eq. (51) is repla
ed by Eq. (56) asN3LOapprox+NLO+NNLL. We shall see in Se
tion 4, where we 
ompare with the experi-mental data and extra
t the strong-
oupling 
onstant, that the latter two approximationsare a
tually very good and that the last one yields the best results, as expe
ted.In all the approximations 
onsidered here, we may summarize our main theoreti
alresults for the avarage gluon and quark jet multipli
ities in the following way:hnh(Q2)ig = n1(Q20)T̂ res+ (0; Q2; Q20) + n2(Q20) r�(Q2)T̂ res� (0; Q2; Q20);hnh(Q2)is = n1(Q20) T̂ res+ (0; Q2; Q20)r+(Q2) + n2(Q20) T̂ res� (0; Q2; Q20); (57)where n1(Q20) = r+(Q20)Dg(0; Q20)� r�(Q20)Ds(0; Q20)r+(Q20)� r�(Q20) ;n2(Q20) = r+(Q20)Ds(0; Q20)�Dg(0; Q20)r+(Q20)� r�(Q20) : (58)The average gluon-to-quark jet multipli
ity ratio may thus be written asr(Q2) � hnh(Q2)ighnh(Q2)is = r+(Q2)"1 + r�(Q2)R(Q20)T̂ res� (0; Q2; Q20)=T̂ res+ (0; Q2; Q20)1 + r+(Q2)R(Q20)T̂ res� (0; Q2; Q20)=T̂ res+ (0; Q2; Q20)# ; (59)where R(Q20) = n2(Q20)n1(Q20) : (60)It follows from the de�nition of T̂ res� (0; Q2; Q20 in Eq. (41) and from Eq. (58) that, forQ2 = Q20, Eqs. (57) and (59) be
omehnh(Q20)ig = Dg(0; Q20); hnh(Q20)iq = Ds(0; Q20); r(Q20) = Dg(0; Q20)Ds(0; Q20) : (61)13



These represent the initial 
onditions for the Q2 evolution at an arbitrary initial s
ale Q0.In fa
t, Eq. (57) is independ of Q20, as may be observed by noti
ing thatT̂ res� (0; Q2; Q20) = T̂ res� (0; Q2; Q21)T̂ res� (0; Q21; Q20); (62)for an arbitrary s
ale Q1 (see also Ref. [42℄ for a detailed dis
ussion of this point).In the approximations with r�(Q2) = 0 [13℄, i.e. the LO + NNLL and N3LOapprox +NNLL ones, our general results in Eqs. (57), and (59) 
ollapse tohnh(Q2)ig =Dg(0; Q20)T̂ res+ (0; Q2; Q20);hnh(Q2)is =Dg(0; Q20) T̂ res+ (0; Q2; Q20)r+(Q2) + �Ds(0; Q20)� Dg(0; Q20)r+(Q20) � T̂ res� (0; Q2; Q20);r(Q2) = r+(Q2)h1 + r+(Q2)r+(Q20) �Ds(0;Q20)r+(Q20)Dg(0;Q20) � 1� T̂ res� (0;Q2;Q20)T̂ res+ (0;Q2;Q20)i : (63)The NNLL-resummed expressions for the average gluon and quark jet multipli
itesgiven by Eq. (57) only depend on two nonperturbative 
onstants, namely Dg(0; Q20) andDs(0; Q20). These allow for a simple physi
al interpretation. In fa
t, a

ording to Eq. (61),they are the average gluon and quark jet multipli
ities at the arbitrary s
aleQ0. We shouldalso mention that identifying the quantity r+(Q2) with the one 
omputed in Ref. [9℄, weassume the s
heme dependen
e to be negligible. This should be justi�ed be
ause of thes
heme independen
e through NLL established in Ref. [5℄.We note that the Q2 dependen
e of our results is always generated via as(Q2) a

ordingto Eq. (14). This allows us to express Eq. (41) entirely in terms of �s(Q2). In fa
t,substituting the QCD values for the 
olor fa
tors and 
hoosing nf = 5 in the formulaegiven in Ref. [13℄, we may write at NNLLT̂ res� (Q2; Q20) = ��s(Q2)�s(Q20)�d1 ;T̂ res+ (Q2; Q20) = exp"d2 1p�s(Q2) � 1p�s(Q20)!+ d3�p�s(Q2)�q�s(Q20)�#� ��s(Q2)�s(Q20)�d4 ; (64)where d1 = 0:38647; d2 = 2:65187; d3 = �3:87674; d4 = 0:97771: (65)We 
on
lude this se
tion by dis
ussing the theoreti
al un
ertainties in r+(Q2) andr�(Q2) due to unknown higher-order 
orre
tions. Similarly to Eq. (46), we may estimatethem by studying the s
ale dependen
e. Performing the shift of Eq. (45) in Eqs. (55) and14
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Figure 1: S
ale dependen
es of T̂+(0; Q2; Q20) for Q = 30 GeV and Q0 = 1 GeV at the LL (dashed/blueline), NLL (dotted/red line), and NNLL (
ontinuous/green line) levels.(56), we obtainr+(Q2) = 2:25� 2:18249pas(�Q2)� 27:54�s(�Q2)+ �10:8462� 2:18249 �02 ln �� a3=2s (�Q2) +O(a2s);r�(Q2) =�2:72166pas(�Q2) +O(as): (66)4 AnalysisWe are now in a position to perform a global �t to the available experimental data of ourformulas in Eq. (57) in the LO+NNLL, N3LOapprox+NNLL, and N3LOapprox+NLO+NNLLapproximations, so as to extra
t the nonperturbative 
onstants Dg(0; Q20) and Ds(0; Q20).We have to make a 
hoi
e for the s
ale Q0, whi
h, in prin
iple, is arbitrary. Wewish to 
hoose it by optimizing the apparent 
onvergen
e properties of the perturbativeQCD expansion. To this end, we analyse in Figs. 1 and 2 the dependen
e on the s
alingparameter � of T̂+(0; Q2; Q20) governed by Eq. (46) at di�erent logarithmi
 a

ura
ies forQ0 = 1 GeV and Q0 = 50 GeV, respe
tively. We put Q = 30 GeV be
ause this is inthe 
enter of the range where the majority of the available data lo
ated. We observe astrong redu
tion of the s
ale dependen
e as we pass from LL via NLL to NNLL, bothfor Q0 = 1 GeV and Q0 = 50 GeV. The perturbative series appears to be more rapidly
onverging at relatively large values of Q0. Therefore, we adopt Q0 = 50 GeV in the15
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Figure 2: S
ale dependen
es of T̂+(0; Q2; Q20) for Q = 30 GeV and Q0 = 50 GeV at the LL (dashed/blueline), NLL (dotted/red line), and NNLL (
ontinuous/green line) levels.following. Another good reason for this 
hoi
e is that, a

ording to Eq. (61), Dg(0; Q20)and Ds(0; Q20) represent the avarage gluon and quark jet multipli
ities, respe
tively, atthe s
ale Q0, so that the �t results for our initial 
onditions may be dire
tly 
omparedwith the experimental data at Q0 = 50 GeV.In Fig. 3, we 
ompare the s
ale dependen
e of T̂�(0; Q2; Q20), whi
h is obtained by sim-ply repla
ing Q2 with �Q2 in Eq. (41), with the one of T̂+(0; Q2; Q20) evaluated a

ordingto Eq. (46), for Q = 30 GeV and Q0 = 50 GeV. We observe from Fig. 3 that the s
alevariation is very similar in both 
ases.In Fig. 4, we study the s
ale dependen
e of r+(Q2) evaluated at LO, NLO, NNLO, andN3LO a

ording to Eq. (66). We observe that the s
ale dependen
e gradually in
reases aswe pass from LO via NLO to NNLO, while it de
reases in the step from NNLO to N3LO,and hen
e 
on
lude that only the latter order may be trusted.Prior to presenting our �ts, we explain our de�nition of 
on�den
e level (CL), whi
hwe adopt from Ref. [43℄. Suppose a �t of the free parameters to n experimental datapoints yields the minimum �2 value �20. We then determine the 90% CL limits on a �tparameter by varying it so that the resulting �2 values stay within the range�2 < �20 �90�50 ; (67)where �50(90) are de�ned su
h thatZ �50(90)0 P (�2; n) d�2 = 0:50(0:90); (68)16
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LO + NNLL N3LOapprox +NNLL N3LOapprox +NLO+NNLLhnh(Q20)ig 24:31� 0:85 24:02� 0:36 24:17� 0:36hnh(Q20)iq 15:49� 0:90 15:83� 0:37 15:89� 0:33�2dof 18.09 3.71 2.92Table 1: Fit results for hnh(Q20)ig and hnh(Q20)iq at Q0 = 50 GeV with 90% CL errors and minimumvalues of �2dof a
hieved in the LO + NNLL, N3LOapprox + NNLL, and N3LOapprox + NLO + NNLLapproximations.with P (�2; n) = 2�n=2�(n=2) ��2�n=2�1 e��2=2: (69)The average gluon and quark jet multipli
ities extra
ted from experimental datastrongly depend on the 
hoi
e of jet algorithm. We adopt the sele
tion of experimentaldata from Ref. [44℄ performed in su
h a way that they 
orrespond to 
ompatible jet algo-rithms. Spe
i�
ally, these in
lude the measurements of average gluon jet multipli
ities inRefs. [44,45,46,47,48℄ and those of average quark jet multipli
ities in Refs. [45,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77℄,whi
h in
lude 27 and 51 experimental data points, respe
tively. The results for hnh(Q20)igand hnh(Q20)iq at Q0 = 50 GeV together with the �2dof values obtained in our LO+NNLL,N3LOapprox+NNLL, and N3LOapprox+NLO+NNLL �ts are listed in Table 1. The errors
orrespond to 90% CL as explained above. All these �t results are in agreement with theexperimental data. Looking at the �2dof values, we observe that the qualities of the �tsimprove as we go to higher orders, as they should. The improvement is most dramati
in the step from LO + NNLL to N3LOapprox +NNLL, where the errors on hnh(Q20)ig andhnh(Q20)iq are more than halved. The improvement in the step from N3LOapprox +NNLLto N3LOapprox +NLO+NNLL, albeit less pronoun
ed, indi
ates that the in
lusion of the�rst 
orre
tion to r�(Q2) as given in Eq. (54) is favored by the experimental data. Wehave veri�ed that the values of �2dof are insensitive to the 
hoi
e of Q0, as they should.Furthermore, the 
entral values 
onverge in the sense that the shifts in the step fromN3LOapprox + NNLL to N3LOapprox + NLO + NNLL are 
onsiderably smaller than thosein the step from LO + NNLL to N3LOapprox + NNLL and that, at the same time, the
entral values after ea
h step are 
ontained within error bars before that step. In the �tspresented so far, the strong-
oupling 
onstant was taken to be the 
entral value of theworld avarage, �(5)s (m2Z) = 0:1184 [78℄. In Se
tion 5, we shall in
lude �(5)s (m2Z) among the�t parameters.In Fig. 5, we show as fun
tions of Q the average gluon and quark jet multipli
itiesevaluated from Eq. (57) at LO + NNLL and N3LOapprox + NLO + NNLL using the 
or-responding �t results for hnh(Q20)ig and hnh(Q20)iq at Q0 = 50 GeV from Table 1. For
larity, we refrain from in
luding in Fig. 5 the N3LOapprox+NNLL results, whi
h are verysimilar to the N3LOapprox + NLO + NNLL ones already presented in Ref. [13℄. In theN3LOapprox +NLO+NNLL 
ase, Fig. 5 also displays two error bands, namely the exper-imental one indu
ed by the 90% CL errors on the respe
tive �t parameters in Table 1and the theoreti
al one, whi
h is evaluated from Eqs. (46) and (66) by varying the s
ale18
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Figure 5: The average gluon (upper 
urves) and quark (lower 
urves) jet multipli
ities evaluated fromEq. (57), respe
tively, in the LO+NNLL (dashed/gray lines) and N3LOapprox+NLO+NNLL (solid/orangelines) approximations using the 
orresponding �t results for hnh(Q20)ig and hnh(Q20)iq from Table 1 are
ompared with the experimental data in
luded in the �ts. The experimental and theoreti
al un
ertaintiesin the N3LOapprox+NLO+NNLL results are indi
ated by the shaded/orange bands and the bands en
losedbetween the dot-dashed 
urves, respe
tively.
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Figure 6: Experimental (shaded/orange band) and theoreti
al (band en
losed between dot-dashed
urves) un
ertainties in the N3LOapprox + NLO + NNLL result for the average gluon jet multipli
itynormalized with respe
t to default evaluation with � = 1.parameter � in the range 1=4 � � � 4. For a more detailed dis
ussion of the un
ertaintieson the average gluon and quark jet multipli
ities in the N3LOapprox+NLO+NNLL approx-imation, we display them as fun
tions of Q in Fig. 6 and 7, respe
tively, normalized withrespe
t to the default results, evaluated with � = 1. We observe that the un
ertaintiesde
rease with in
reasing value of Q, whi
h is a 
onsequen
e of the asymptoti
 freedom ofQCD. They typi
ally fall below �5% at Q � 10 GeV, but be
ome signi�
ant at low Qvalues indi
ating the onset of the breakdown of the perturbative expansion in p�s.While our �ts rely on individual measurements of the average gluon and quark jetmultipli
ities, the experimental literature also reports determinations of their ratio; seeRefs. [11,44,46,48,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93℄, whi
h essentially 
over allthe available measurements. In order to �nd out how well our �ts des
ribe the latterand thus to test the global 
onsisten
y of the individual measurements, we 
ompare inFig. 8 the experimental data on the average gluon-to-quark jet multipli
ity ratio with ourevaluations of Eq. (59) in the LO+NNLL and N3LOapprox+NLO+NNLL approximationsusing the 
orresponding �t results from Table 1. As in Fig. 5, we present in Fig. 8 also theexperimental and theoreti
al un
ertainties in the N3LOapprox + NLO + NNLL result. Asin Figs. 6 and 7, they are represented relative to the default result, with � = 1, in Fig. 9.For 
omparison, we in
lude in Fig. 8 also the predi
tion of Ref. [9℄ given by Eq. (55).Looking at Fig. 8, we observe that the experimental data are very well des
ribed bythe N3LOapprox + NLO +NNLL result for Q values above 10 GeV, while they somewhat20



Figure 7: Experimental (shaded/orange band) and theoreti
al (band en
losed between dot-dashed
urves) un
ertainties in the N3LOapprox + NLO + NNLL result for the average quark jet multipli
itynormalized with respe
t to default evaluation with � = 1.overshoot it below. This dis
repan
y is likely to be due to the fa
t that, following Ref. [44℄,we ex
luded the older data from Ref. [11℄ from our �ts be
ause they are in
onsistent withthe experimental data sample 
ompiled in Ref. [44℄. Furthermore, Fig. 9 tells us thatthe theoreti
al un
ertainties are large in the small-Q2 region, whi
h indi
ates that the
onvergen
e properties of the perturbative series in p�s are unfavorable there. Finally,the experimental determination of the s
aleQ, whi
h in the theoreti
al expressions denotesthe virtuality of the parent parton of the 
onsidered jet, may be ambiguous in multi-jetevents and may be performed somewhat di�erently in di�erent experiments, whi
h mayexplain tensions between di�erent data sets. This additional type of un
ertainty shouldbe more important at small values of Q2, where the slope of the Q2 evolution is steeper.The Monte Carlo analysis of Ref. [10℄ suggests that the average gluon and quarkjet multipli
ities should 
oin
ide at about Q = 4 GeV. As is evident from Fig. 8, thisagrees with our N3LOapprox +NLO+NNLL result reasonably well given the 
onsiderableun
ertainties in the small-Q2 range dis
ussed above.As is obvious from Fig. 8, the approximation of r(Q2) by r+(Q2) given in Eq. (55)[9℄ leads to a poor approximation of the experimental data, whi
h rea
h up to Q valuesof about 50 GeV. It is, therefore, interesting to study the high-Q2 asymptoti
 behaviorof the average gluon-to-quark jet ratio. This is done in Fig. 10, where the N3LOapprox +NLO+NNLL result in
luding its experimental and theoreti
al un
ertainties is 
omparedwith the approximation by Eq. (55) way up to Q = 100 TeV. We observe from Fig. 1021
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Figure 8: The average gluon-to-quark jet multipli
ity ratio evaluated from Eq. (59) in the LO +NNLL (dashed/gray lines) and N3LOapprox+NLO+NNLL (solid/orange lines) approximations using the
orresponding �t results for hnh(Q20)ig and hnh(Q20)iq from Table 1 are 
ompared with experimental data.The experimental and theoreti
al un
ertainties in the N3LOapprox + NLO + NNLL result are indi
atedby the shaded/orange bands and the bands en
losed between the dot-dashed 
urves, respe
tively. Thepredi
tion given by Eq. (55) [9℄ is indi
ated by the 
ontinuous/gray line.

22



Figure 9: Experimental (dark/orange band) and theoreti
al (light/gray band) un
ertainties in theN3LOapprox +NLO +NNLL result for the average gluon-to-quark jet multipli
ity ratio normalized withrespe
t to default evaluation with � = 1.
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Figure 10: High-Q extension of Fig. 8.23



N3LOapprox +NNLL N3LOapprox +NLO+ NNLLhnh(Q20)ig 24:18� 0:32 24:22� 0:33hnh(Q20)iq 15:86� 0:37 15:88� 0:35�(5)s (m2Z) 0:1242� 0:0046 0:1199� 0:0044�2dof 2.84 2.85Table 2: Fit results for hnh(Q20)ig and hnh(Q20)iq at Q0 = 50 GeV and for �(5)s (m2Z) with 90% CLerrors and minimum values of �2dof a
hieved in the N3LOapprox+NNLL and N3LOapprox+NLO+NNLLapproximations.that the approximation approa
hes the N3LOapprox + NLO + NNLL result rather slowly.Both predi
tions agree within theoreti
al errors at Q = 100 TeV, whi
h is one order ofmagnitude beyond LHC energies, where they are still about 10% below the asymptoti
value CA=CF = 2:25. Figure 10 also ni
ely illustrates how, as a 
onsequen
e of theasymptoti
 freedom of QCD, the theoreti
al un
ertainty de
reases with in
reasing valueof Q2 and thus be
omes 
onsiderably smaller than the experimental error.5 Determination of strong-
oupling 
onstantIn Se
tion 4, we took �(5)s (m2Z) to be a �xed input parameter for our �ts. Motivated bythe ex
ellent goodness of our N3LOapprox + NNLL and N3LOapprox + NLO + NNLL �ts,we now in
lude it among the �t parameters, the more so as the �ts should be suÆ
ientlysensitive to it in view of the wide Q2 range populated by the experimental data �ttedto. We �t to the same experimental data as before and again put Q0 = 50 GeV. The�t results are summarized in Table 2. We observe from Table 2 that the results of theN3LOapprox+NNLL [42℄ and N3LOapprox+NLO+NNLL �ts for hnh(Q20)ig and hnh(Q20)iqare mutually 
onsistent. They are also 
onsistent with the respe
tive �t results in Table 1.As expe
ted, the values of �2dof are redu
ed by relasing �(5)s (m2Z) in the �ts, from 3.71 to2.84 in the N3LOapprox +NNLL approximation and from 2.95 to 2.85 in the N3LOapprox +NLO + NNLL one. The three-parameter �ts strongly 
on�ne �(5)s (m2Z), within an errorof 3.7% at 90% CL in both approximations. The in
lusion of the r�(Q2) term has thebene�
ial e�e
t of shifting �(5)s (m2Z) 
loser to the world average, 0:1184� 0:0007 [78℄. Infa
t, our N3LOapprox+NLO+NNLL value, 0:1199�0:0044 at 90% CL, whi
h 
orrespondsto 0:1199� 0:0026 at 68% CL, is in ex
ellent agreement with the former.In order to illustrate the sensitivity of our N3LOapprox+NNLL and N3LOapprox+NLO+NNLL �ts to �(5)s (m2Z), we show in Fig. 11 the values of �2 obtained by varying �(5)s (m2Z)while keeping hnh(Q20)ig and hnh(Q20)iq at their respe
tive 
entral values listed in Table 2.
24
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Figure 11: Values of �2 evaluated as fun
tions of �(5)s (m2Z) in the N3LOapprox+NNLL and N3LOapprox+NLO+NNLL approximations with the respe
tive 
entral values of hnh(Q20)ig and hnh(Q20)iq from Table 2.6 Con
lusionsPrior to our analysis in Ref. [13℄, experimental data on the average gluon and quark jetmultipli
ities 
ould not be simultaneously des
ribed in a satisfa
tory way mainly be
ausethe theoreti
al formalism failed to a

ount for the di�eren
e in hadroni
 
ontents betweengluon and quark jets, although the 
onvergen
e of perturbation theory seemed to be wellunder 
ontrol [9℄. This problem may be solved by in
luding the minus 
omponents gov-erned by T̂ res� (0; Q2; Q20) in Eqs. (57) and (59). This was done for the �rst time in Ref. [13℄,albeit in 
onne
tion with the LO result r�(Q2) = 0. The quark-singlet minus 
omponent
omes with an arbitrary normalization and has a slow Q2 dependen
e. Consequently, itsnumeri
al 
ontribution may be approximately mimi
ked by a 
onstant introdu
ed to theaverage quark jet multipli
ity as in Ref. [11℄.In the present paper, we improved the analysis of Ref. [13℄ in various ways. The mostnatural possible improvement 
onsists in in
luding higher-order 
orre
tion to r�(Q2).Here, we managed to obtain the NLO 
orre
tion, of O(p�s), using the e�e
tive approa
hintrodu
ed in Ref. [12℄, whi
h was shown to also exa
tly reprodu
e the O(p�s) 
orre
tionto r+(Q2). Our general result 
orresponding to Eq. (57) depends on two parameters,Dg(0; Q20) and Ds(0; Q20), whi
h, a

ording to Eq. (61), represent the average gluon andquark jet multipli
ities at an arbitrary referen
e s
ale Q0 and a
t as initial 
onditions forthe Q2 evolution. Looking at the perturbative behaviour of the expansion in p�s and thedistribution of the available experimental data, we argued that Q0 = 50 GeV is a good
hoi
e. We �tted these two parameters to all available experimental data on the average25



gluon and quark jet multipli
ities treating �(5)s (m2Z) as an input parameter �xed to theworld avarage [78℄. We worked in three di�erent approximations, labeled LO + NNLL,N3LOapprox + NNLL, and N3LOapprox + NLO + NNLL, in whi
h the logarithms lnx areresummed through the NNLL level, r+(Q2) is evaluated at LO or approximately at N3LO,and r�(Q2) is evaluated at LO or NLO. In
luding the NLO 
orre
tion to r�(Q2), givenin Eq. (54), signi�
antly improved the quality of the �t, as is evident by 
omparing thevalues of �2dof for the N3LOapprox +NNLL and N3LOapprox +NLO+NNLL �ts in Table 1.Motivated by the goodness of our N3LOapprox+NNLL and N3LOapprox+NLO+NNLL�ts with �xed value of �(5)s (m2Z) in Ref. [13℄ and here, we then in
luded �(5)s (m2Z) amongthe �t parameters, whi
h yielded a further redu
tion of �2dof . The �t results are listed inTable 2. Also here, the in
lusion of the NLO 
orre
tion to r�(Q2) is bene�
ial; it shifts�(5)s (m2Z) 
loser to the world average to be
ome 0:1199� 0:0026.A few 
omments are in order regarding the renormalization s
heme and the 
ounting ofhigher-order 
orre
tions in our analysis in order to allow for an appropriate 
lassi�
ationof our determination of �(5)s (m2Z) in the 
ontext of a global analysis yielding a worldaverage. We worked in the MS renormalization s
heme, whi
h has be
ome the standard
hoi
e in the literature. We rea
h beyond ordinary �xed-order analyses by resumming thelogarithms lnx through the NNLL level. Furthermore, our expressions are 
ompletely RG-improved in the sense that all Q2 dependen
e is a

ommodated in �s(Q2). Unlike usualhigher-order 
al
ulations in the QCD-improved parton model, the perturbation series ofthe 
oeÆ
ients r�(Q2) are organized in powers of p�s rather than �s. In the 
ase ofr+(Q2), whi
h starts at O(1), our exa
t knowledge rea
hes through O(�s), i.e. NNLO,while our O(�3=2s ) term represents an edu
ated guess in the sense that it was obtainedusing a pro
edure that, stri
tly speaking, was only tested through NNLO. In the 
ase ofr�(Q2), the O(1) term vanishes, and the O(p�s) term is listed in Eq. (54), i.e. we have
ontrol through NLO. However, the 
oeÆ
ients of r�(Q2) in Eq. (57) are numeri
allysuppressed relative to those of r+(Q2), by approximately a fa
tor of O(p�s). In fa
t, theshift in hnh(Q2)ig (hnh(Q2)is) indu
ed by the O(p�s) term of r�(Q2) is 
omparable to(about a fa
tor of three smaller than) the one indu
ed by the O(�s) term of r+(Q2). Wethus 
on
lude that our determination of �(5)s (m2Z) is e�e
tively of NNLO.The next steps towards O(�2s) a

ura
y in
lude an improved 
omputation of the 
o-eÆ
ient r�(Q2) and an extended resummation of the plus and minus 
omponents of thesplitting fun
tions. At the LHC, jet multipli
ity observables 
an be measured at unpre
e-dented values of Q2, whi
h will allow for stringent tests of QCD and provide a stronglever arm for high-pre
ision determinations of �(5)s (m2Z) using the formalism elaboratedin Ref. [13℄ and here.A
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e Time.AppendixHere we prove the relations given in Eqs. (29) and (30) between the singular parts of thediagonal and nondiagonal splitting fun
tions in Mellin spa
e Pab(!; as) with a; b = g; qand show that they are approximately true also for the regular parts.Following Ref. [6℄, we introdu
e the notation2� = 8CAas!2 ; s =p1 + 4�; L = ln 1 + s2 = ln 2�s� 1 : (70)In the following, the resummed fun
tions Pab(!; as) are built up by their parts P (i)ab (!)
orresponding to the 
onsidered levels of resummation, with i = 0; 1; 2 representing theLL, NLL, and NNLL levels, respe
tively. The results read:Pqq(!; as) = P (1)qq (!; as) + P (2)qq (!; as);P (1)qq (!; as) = 43CFfAas �1� s� 12� (L+ 1)� ;P (2)qq (!; as) = CFfAasKqqPgg(!; as) =�Pqq(!; as) + ~P (0)gg (!; as) + ~P (1)gg (!; as) + ~P (2)qq (!; as);~P (0)gg (!; as) = !4 (s� 1);~P (1)gg (!; as) = asCA6 �(11 + 2fA(1� 2CFA )� �1� s�1� ;~P (2)gg (!; as) = CAas! �Kgg1 (s� 1)�Kgg2 �1� s�1��Kgg3 �1� s�3�� ; (71)where CFA = CF=CA, fA = 2nfTR=CA, andKqq = 118 ��51� 12fA �7� 18CFA�� Ls � �11� 2fA �3� 10CFA���1� s� 12� �� �51� 3fA �1� 4CFA�� s� 12 � 20(s� 1)L2� � 2 �5� 2fA �1� 3CFA�� s� 12� L2� ;Kgg1 = 1193576 � �2 � 7fA144 �5 + 2CFA�+ f 2A144 �1 + 4CFA �1� 3CFA�� ;Kgg2 = 415288 � �2 + fA36 �5 + 2CFA�� f 2A72 �1� 4CFA �2� 3CFA�� ;Kgg3 = 1576 �1 + 2CFA �1� 2CFA��2 ; (72)2In order for all variables to be positive, we introdu
e here � instead of � used in Ref. [6℄.27



with �2 = �2=6.Through NNLL a

ura
y, the nondiagonal splitting fun
tions may be represented asPqg(!; as) =��!�! Pqq(!; as); (73)Pgq(!; as) =� �!�!Pgg(!; as) + P (1)gq (!; as) + P (2)gq (!; as); (74)where P (1)gq (!; as) =�23CFas �1 + fA �1� 2CFA�� ;P (2)gq (!; as) = CFas!�19Kgq1 �Kgq2 �1� s� 12� (L+ 2)�� ; (75)with Kgq1 = 3 + 5fA �1� 2CFA�� f 2A �1� 2CFA�2 ;Kgq2 = 3� 52CFA � 4�2 �1� 2CFA�� fA18 �23� 24CFA�+ 2f 2A9 CFA �1� 2CFA� : (76)We observe from Eq. (73) that the relation for the NNLL-resummed parts of thesplitting fun
tions Pqg(!; as) and Pqq(!; as) in Eq. (30) is not only 
orre
t for their termssingular as ! ! 0, but also for their regular ones. The situation is di�erent for the relationbetween Pgq(!; as) and Pgg(!; as) in Eq. (29), whi
h does not 
arry over to the regularterms, as is evident from Eq. (74). However, the additional terms in Eq. (75) have simpleforms 
ompared to the expression for Pgg(!; as) in Eq. (71).Referen
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