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Abstract

We perform the first systematic analysis of particle spectra obtained from heterotic string
compactifications on non—Abelian toroidal orbifolds. After developing a new technique to com-
pute the particle spectrum in the case of standard embedding based on higher dimensional
supersymmetry, we compute the Hodge numbers for all recently classified 331 non—Abelian
orbifold geometries which yield A/ = 1 supersymmetry for heterotic compactifications. Surpris-
ingly, most Hodge numbers follow the empiric pattern h(1Y) — (21 = 0 mod 6, which might
be related to the number of three standard model generations. Furthermore, we study the fun-
damental groups in order to identify the possibilities for non—local gauge symmetry breaking.
Three examples are discussed in detail: the simplest non—Abelian orbifold S3 and two more
elaborate examples, T and A(27), which have only one untwisted K&hler and no untwisted
complex structure modulus. Such models might be especially interesting in the context of no—
scale supergravity. Finally, we briefly discuss the case of orbifolds with vanishing Euler numbers
in the context of enhanced (spontaneously broken) supersymmetry.
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1 Introduction

Ten—dimensional superstring theory is perhaps the most promising candidate to yield an ultraviolet
completion of particle physics and to explain some persisting cosmological puzzles. One useful
mechanism to overcome the challenge of reducing the number of dimensions while preserving N’ = 1
supersymmetry and other phenomenologically appealing features is to compactify the six extra
spatial dimensions on a toroidal orbifold.

Toroidal orbifolds offer a fairly simple geometrical structure that allows one to deal with the
compactification in terms of the conformal-field framework of string theory [I, [2]. Moreover,
in recent years these constructions have become a fruitful source of semi-realistic models in the
heterotic stringsﬂ. The resulting scenarios can simultaneously reproduce the matter spectrum of the
minimal supersymmetric version of the standard model [I5] 16} 17, 18] (or its singlet extensions [19])
and provide new approaches for solving puzzles such as the existence of hierarchies [20} 21], family
symmetries [22] and proton stability [23] [24].

Despite these encouraging features, not all possible toroidal orbifold geometries have been ex-
plored. In the past, several efforts have led to partial classifications of orbifold geometries. The
first attempts were restricted to Zy orbifolds [25] [26]. Much later, Zs x Zso orbifolds including
so—called roto-translationdd were successfully classified [28] (see also [29] [30]). However, it is evi-
dent that more general orbifolds, which include not only Abelian (i.e. Zy and Zys x Zy) but also
non—Abelian point groups (for example, S, for n = 3,4 and Dy, for n = 2,3), could also lead to
appealing physics. Only recently a full classification of all (symmetricﬁ) toroidal orbifold geometries
which preserve N’ =1 SUSY in the context of heterotic compactifications has been achieved [32].

Even though most of the A/ = 1 heterotic orbifolds of Ref. [32] (331 out of 469) are based on the
discrete action of non—Abelian point groups, the geometrical aspects and phenomenology of these
non—Abelian orbifolds have been studied only in few cases [33, [34]. The purpose of this paper is to
provide the first tools to address these questions.

With this goal in mind, after a brief description of orbifold compactifications of the heterotic
string, we develop a technique to systematically determine all twisted sectors and their fixed
points/tori of all toroidal orbifolds in Section Further, for the so—called standard embedding
of the orbifold action into the gauge degrees of freedom, which leads to an Eg gauge group, we
develop a technique based on supersymmetry in four and six dimensions to compute the number of
27 and 27 matter representations. This provides, as is known, the Hodge numbers Ab! and h?!,
respectively. Furthermore, we determine the fundamental groups of all non—Abelian orbifolds in
order to identify the possibility of non—local GUT breaking [35], 36 [37]. Section Blis devoted to a
detailed study of three sample non-Abelian orbifolds, with point groups Ss, 77 and A(27), which
illustrate the main properties of these constructions. Finally, we discuss our findings in Section [l
Our most important results are summarized in Table B] for a list of all non—trivial fundamental
groups and Table [2] for a list of Hodge numbers and their geometrical origin.

'References for other successful constructions are for example (see also references therein): for the free fermionic
construction [3], for Gepner constructions [4], for type II with D—branes [5] [6] [7], for M—theory on G> manifolds [§]
and for Calabi—Yau spaces [9, [I0]. For the connection between (singular) orbifolds and (smooth) Calabi-Yau com-
pactifications, see e.g. [IT], 12}, T3] [14].

>They are also known as shift orbifolds; see e.g. Ref. [27] for type ITA string theory on shift Z» x Z» orientifolds.

3For a recent work on asymmetric orbifolds, see e.g. [3].



2 Heterotic non—Abelian orbifolds

We consider compactifications of the ten—dimensional heterotic string on (symmetric) toroidal
orbifolds [T} 2], where points on the six-dimensional torus 7% are identified under the action of the
so—called orbifolding group G, i.e.

0 = T%/G = R%/S. (1)

Equivalently, the orbifold O is defined as R® with an identification of points under the action of
the so—called space group S. An element of S consists of a rotational part and a translation. In
detail,

g=, N €S actsonzcRlas gz=0z+\, (2)

where ) is a shift of z in R® and ¥ € SU(3) ¢ SO(6) a rotation. Then, g x ~ z for all g € S is
the equivalence relation that defines O. The pure—translational elements of S have the form (1, A),
where A\ can be expanded in terms of six basis vectors e; as A = n;e; with integer coefficients n;
and summation over i = 1,...,6. Hence, the pure translations define a lattice A and hereby the
torus 7% = R®/A. On the other hand, for ¥ # 1l there can additionally be elements (¥, \) € S with
A & A (i.e. with fractional n;), which are called roto—translations [36].

The rotational part ¥ of all elements g = (¥, A) € S forms a group, the so—called point group
P. We further define the orbifolding group G as the group generated by all g = (9, A) € S, where
two elements that are related by a pure lattice translation are identified. Therefore, the orbifolding
group G is equivalent to the point group P if no roto—translations are present.

The Abelian case is well studied, resulting in many phenomenological interesting models in, for
example, Zg-11 [38], 15}, 16} 17, 18], Z12-I [39], Za x Zs [40] and Zs x Z4 [41] (there were also earlier
phenomenological studies in Z3 and Zr, e.g. [42] [43]). In this paper we deal with non-Abelian
orbifolds, i.e. with orbifolds whose point groups P are non—Abelian. We consider all inequivalent
point groups (also known as Q-classes), all inequivalent lattices (called Z—classes) and all roto—
translations (i.e. affine classes)H. We use these six-dimensional spaces to compactify the 10D
Eg x E} heterotic string to four dimensions.

On heterotic orbifolds, there are two kinds of closed strings which contribute to the massless
particle spectrum of the resulting four—dimensional effective theory: (i) untwisted strings that
close already in flat R®, and (ii) twisted strings that close only on the orbifold due to a non-trivial
rotation ¥ (and possibly a translation A) in the respective boundary condition, e.g. a twisted string
generated by g = (9, \) closes under the boundary condition X (7,04 27) = ¢ X(7,0)+ 27\ for the
bosonic string coordinate. It follows that twisted strings are localized at the fixed points/fixed tori
of the orbifold geometry. In the case of standard embedding (which is a specific choice of how the
orbifold acts in the gauge degrees of freedom of the heterotic string), the matter spectrum consists
of 27—, 27-plets and singlets of the four-dimensional observable gauge group Eg. As we describe
in more detail in the next section, counting the numbers of the non-trivial representations of Eg
allows us to compute the Hodge numbers of these heterotic compactifications, which is the primary
purpose of this paper.

*For further details on the definitions of these classes, we suggest Refs. [44] 45 [32].



2.1 Hodge numbers

The Hodge numbers (h(l*l), h(z*l)) count the Kahler and complex structure moduli, respectively,
which correspond to deformations (of size and shape) of the geometry. For the heterotic orbifolds
under consideration, we can split these numbers into contributions from the untwisted sector and
from the twisted sectors,

(D, 1D = (b h ) + (bl ), 3)

and compute them as we explain in the following.

2.1.1 Contributions from the untwisted sectors

In this section, we demonstrate that the number of untwisted moduli can be computed directly
from the point group P using representation theory of finite groups.

(1,1)

The 4D untwisted Kahler and complex structure moduli, counted respectively by hy’’ and

hg ’1), originate from the nine plus nine internal components of the 10D supergravity multiplet of
the heterotic string, which correspond to the following string excitations

lg)r ® & {|0)1, for Kéhler moduli, (4a)

)R ® &’;1|O)L for complex structure moduli, (4b)

where j = 1,2,3 and |g)r denotes the ground state of the (supersymmetric) right-mover with
(bosonized) momenta
q= (0,_1a070) ) (5)

J

where the underline denotes permutations. Furthermore, &’ , or &’ excites the left-moving ground
state |0), in the j—th complex plane spanned by the complex coordinate 27 or z7.

On the orbifold only the invariant combinations of these (untwisted) states survive as unfixed
moduli. As untwisted moduli are uncharged with respect to the gauge group, they transform only
under the action of the point group P. From Table C.2 in Ref. [32] we know the explicit form of
the point group as a three-dimensional, in general reducible representation p of P, with P being
a finite sub-group of SU(3). Under the action of the point group P the right—-moving ground state
and the oscillator excitations transform as

|g)r  transforms as p (6a)
&, transforms as P (6b)
& , transforms as p. (6¢)

Hence, using Equations () and ([@l), one can count the number of untwisted moduli (hg ’1), hg ’1))

from the tensor products

pap — hIVpe@... and pep - MPVpe@. .., (7)

where pg denotes the trivial singlet representation of P and hg 1 and hg Y are the multiplicities
in the respective decomposition. These multiplicities can be computed most easily using characters



(the character of an element g € P in the representation p is given by x,(9) = Tr(p(g))). In
general, a decomposition of a tensor product reads p; ® p2 = @;_; nipi, where c is the number
of inequivalent irreducible representations, which are denoted as p;, and n; are the corresponding
multiplicities. Then, Xp,ops(9) = Y i—1 7iXp;(9) and one can compute the multiplicities n; using
the orthogonality of the rows of the character table, see e.g. Section 4.2 of Ref. [32].

We use the software GAP [46] and Mathematica to perform these computations. The results
are listed in Table[Il Note that there are many cases with only one untwisted Kéhler modulus (i.e.
only the overall volume of O is unfixed) and no complex structure modulus (for example P = T,
see Section [B.2]), which might be especially interesting in the context of no—scale supergravity [47,
48] [49] [50]. This is in contrast to orbifolds with Abelian point groups where always at least the
three Kahler moduli (associated with the sizes of the compact space split in three complex planes)
survive the orbifold projection (see e.g. [51]).

untwisted moduli
(h%1 ’1), hg ’1)) non—Abelian point groups

(2,2) S3a D4a Dﬁ

(2,1) QD1g, (Zy X Zig) X Lo, Ziy x S3, (Zg x Zia) » Ly,
GL(2,3), SL(2,3) x Zs

(2,0) Zg X Zz, Zg X 53, Zg X Zg, SL(2,3)—I, Zg X D4,

Z3 X Qg, (Z4 x Zg) x Ly, L3 x (L3 x Ls), Zg x Ss,
Zg X SL(2,3), Zg X ((ZG X Zg) A Zz), SL(2,3) X Z4

(L,1) Ay, Sy
(1,0) T7, A(Q?), Zg X A4, A(48), A(54), Z3 X 54, A(96>,
$(364), A(108), PSL(3,2), £(72¢), A(216)
Table 1: List of non—Abelian point groups with specified number of untwisted moduli (h%1 ’1), hg 1) ).
For example, orbifolds with point group S3, D4 and Dg have two untwisted Kahler moduli and two
untwisted complex structure moduli, i.e. (hg’l), hg’l)) =(2,2).

2.1.2 Contributions from the twisted sectors

The twisted sectors of the orbifold yield some twisted Ké&hler moduli (also known as blow—up
modes) and twisted complex structure moduli (which describe the shapes of unorbifolded fixed
tori, as explained in more detail later).

In order to determine their numbers, we analyze the standard embedding of the Eg x Eg heterotic
string, which results in a four—-dimensional ' = 1 theory with Eg x E§ gauge group [34] (for Abelian
point groups, the gauge group includes additional model-dependent gauge factors, such as U(1)?,
SU(2) x U(1) or SU(3)). Due to the (2,2) world-sheet supersymmetry, the number of twisted
27-plets corresponds to hsrl ) and the number of twisted 27-plets gives hfrz 1) [62] 53]. In order to
identify the number of twisted 27— and 27—plets we first have to consider the orbifold fixed points
and fixed tori in some detail, with a special focus on four— and six—dimensional supersymmetry
(see also Ref. [54] for a related discussion).



Twisted sectors. In Abelian orbifolds, the twisted sectors are labeled by their point group
elements, e.g. for a Zy X Zy point group with generators ¢ and w we use Ty ¢, with k = 0,..., M -1
and £ =0,...,N — 1, to denote the (twisted) sector produced by ¥*w® € P. In contrast, for non-
Abelian orbifolds a twisted sector is characterized by a conjugation class [¢] for ¢ € P and hence
it is denoted as Ty

Fixed points/tori. For a given twisted sector Ty}, a space group element g = (9, ) € S with
¥ # 1 is called a constructing element of a massless string if the fixed point equation associated
with g,

gf=f & O9f+A=f for feR®, (8)

has a zero— or a two—dimensional solution f. In the former case, f is called a fixed point, while in
the latter it is called a fixed torus.

Equivalence of fixed points/tori. Different solutions f can be geometrically equivalent in the
compact space due to the symmetries induced by the compactification. Equivalences between the
solutions are easily identified via their corresponding constructing elements. We distinguish two
different kinds of equivalences:

(i) Equivalence on the torus. Take two constructing elements of massless strings with the
same point group element, i.e. g3 = (9,A\;) € S and go = (J,\2) € S. They are said
to be equivalent on the torus if g; and go are in the same conjugacy class with respect to
translations, i.e.

g1 = hgah™!  for some h = (1,\) € S . (9)

In other words, g; ~ g2 on the torus if A € A exists such that Ay — A2 = (1 — J9) A\. Then, the
corresponding fixed points/tori differ by a lattice vector. Using this definition of equivalence
one can determine for each twisted sector Ty all inequivalent constructing elements on the
torus.

(ii) Equivalence on the orbifold. Fixed points/tori that are inequivalent on the torus can be
equivalent on the orbifold, i.e. fixed points/tori of a given twisted sector can be identified
by a further orbifold action. Again, this equivalence can be determined using the concept of
conjugacy classes, now allowing for general h € S, i.e.

g1 ~go if g1,92 €[g] = {hgh ! for all h € S} . (10)

Fixed points/tori associated with elements of the same conjugacy class are identified on the
orbifold. In more detail, take g1, g2 € [g] with

g1 fi=fi and g2 fo=fo, (11)

where fi,f> € RS denote the fixed points/tori. As gi,g2 € [g] there exists an element
h € S such that go = hglh_l. Then, (h_lfg) = (h_lgz) fo = (glh_l) fo =g (h_1f2).
Consequently, fi = h~1f> and we see that the fixed points/tori f; and f» are identified on
the orbifold.



Massless twisted matter. After obtaining all inequivalent constructing elements on the orbifold
we start with the determination of the associated twisted matter spectrum. FEach constructing
element g = (¥, A) € S defines a boundary condition for a closed string on the orbifold, i.e.

Z(ryo+2m) =g Z(1,0) =9 Z(1,0) + 27\ . (12)

For each twisted sector one can choose a basis of the three compactified complex coordinates Z*
such that the twist ¥ € SU(3) becomes diagonal. Using this basis, the twist can be expressed by
the so-called twist vector v = (v1,v2,v3), whose components are the rotational phases in units of
27. These twist vectors are analogous to the well-known ones for the case of Abelian point groups
(see e.g. Table 1 in Ref. [2] and Table 5.2 in Ref. [32]). Furthermore, the gauge embedding can
be diagonalized such that its action is parametrized by a shift, similarly as in the Abelian case.
For the standard embedding, we choose V = (vy,vs,v3,05)(0%). In order to compute the twisted
matter, one may need a basis change for each twisted sector of a non—Abelian orbifold. However,
for each individual sector one can use the standard tools and the intuition developed from the
well-known Abelian case, such as the usual masslessness equations for left— and right—-movers and
their solutions.

Invariance of twisted matter. In this way one can construct the Hilbert space 4 of massless
twisted strings with constructing element g. However, not all states from #, are necessarily
invariant under the full orbifold action. One has to consider projections, i.e. one has to project
the Hilbert space H[4 of massless strings to the invariant subspace with respect to all space group
elements h that commute with the constructing element g, gh = hg. The set of commuting elements
is called the centralizer of g. It is important to note that the rotational part of ¢ and h and their
gauge embeddings can be diagonalized simultaneously, as they commute.
For each constructing element g € [g] one distinguishes two cases:

1. In the first case, g is related to a fixed point (not a fixed torus). Then, ten—dimensional N' = 1
supersymmetry is broken down to A" = 1 in four dimensions at the fixed point of g, and the
Hilbert space H4 only respects 4D N = 1. Fixed points with these properties contribute
only one twisted 27—plet, which can be related to one twisted Kahler modulus (i.e. blow—up
mode), but no 27-plet and therefore no twisted complex structure modulus. In other words,
the constructing element g yields a contribution (1,0) to the Hodge numbers (h% ’1), hr(g ’1)).
Let us point out that Hg and H[,-1) are not independent, since H4-1] contains the CPT

conjugate partners of H . Thus, it suffices to consider only H[, in the computations.

2. In the second case, g has a fixed torus. Considering only the action of g (and g~!) on the
internal space, the theory on this fixed torus has A/ = 1 in six dimensions (i.e. 4D N = 2)
with E7 observable gauge group and a twisted 56 hypermultiplet (or half-hypermultiplet). In
terms of 4D A = 1 this twisted 56-plet originates from the sector g contributing a left—chiral
superfield, which transforms as 56 of E7, and from the sector g—! contributing another left—
chiral superfield, which transforms in the complex conjugate representation, e.g. as a 56-plet
with negative U(1) charge. However, in the case g = g~ ! (or [g] = [g"!]) the twisted 56-plet
is real, e.g. a 56-—plet with zero U(1) charge. Hence, it transforms as a half-hypermultiplet.



From the full 4D perspective the E7; is broken to Eg and the left—chiral 56—plet from g branches
into 27@®27 plus two singlets. Thus, 4D matter originates from A/ = 2 (half-)hypermultiplets
and in terms of 4D N' = 1 a constructing element g with fixed torus contributes both, one
twisted 27-plet and one twisted 27-plet, to the Hilbert space H[g- This would result in one
twisted Kahler modulus and one twisted complex structure modulus per fixed torus.

However, in the whole orbifold one has to perform the projection on invariant states: if there
is (at least) one element in the centralizer of g which breaks A’ = 1 in six dimensions to
N =1 in four dimensions, the twisted 27-plet is removed from H(g and, consequently, the
twisted complex structure modulus of this orbifolded fixed torus is projected out. Then, the
fixed torus of g contributes (1,0) to the Hodge numbers. On the other hand, if all elements
of the centralizer keep N' = 1 in six dimensions, the twisted 27— and 27-plet and hence
the respective moduli survive this projection. In this case, the fixed torus is not orbifolded
further by the action of the centralizer and the twisted complex structure modulus describes
the shape of this torus. Then, the fixed torus of g contributes (1,1) to the Hodge numbers.

Based on these observations, we notice that it is enough to know the geometrical aspects (space
group, constructing elements, etc.) of the orbifold and not the details of the gauge embedding in
order to arrive at the Hodge numbers. As a test, we have first used this procedure to corroborate
the Hodge numbers for all 138 orbifolds with Abelian point groups of Ref. [32] (originally obtained
using the orbifolder [55]). Then, we applied this procedure to the 331 orbifolds with non-Abelian
point groups. The results are listed in Table 2] of Appendix[Al We discuss three examples in detail
in Section Bl It is interesting to note that, like in the Abelian case of Ref. [32], also the Hodge
numbers of most non—Abelian cases satisfy the empiric rule

AN — (Y =0 mod 6, (13)

for which we have not found an explanation yet (see also Ref. [26]). In the cases where Equation (I3))
is satisfied and the Euler number y = 2(h(:Y) — A(31) does not vanish, it seems conceivable that
the addition of discrete Wilson lines [2], 56] can lead to candidate models with three generations of
standard model particles.

2.2 Fundamental group
The fundamental group m; of a toroidal orbifold is given by the following quotient group [I}, [57]

™ = S/{F), (14)

where S is the space group that defines the orbifold, F' is the set of all constructing elements and
(F) is the group generated by the elements of F'.

There are two possible origins for a generator of m: either it arises from a roto—translation
(i.e. from the orbifolding group G) or from a pure translation (i.e. from the lattice A). In order
to identify this, we compute in addition to m; = S/(F) also G/Gr and A/Ap, where Gr C G is
generated by the roto—translations of (F') and Ap C A is the lattice of (F').

In total we find that 38 out of 331 orbifolds with non—Abelian point group and N/ = 1 have a
non-trivial fundamental group, for example my = Zo, Zs3, Zo X Zy and Zs X Zs. They are listed



in Table ] of Appendix [Al In the next section we discuss one of them in detail. Combined with
the results of [32] we have a complete list of (toroidal, N = 1) orbifold geometries which offer a
non-trivial fundamental group: there are 69 cases out of 469. These cases are of special interest
for phenomenology as they may allow for non-local GUT breaking [35] B6] 7). Therefore, the
gauge embeddings of the (freely—acting) elements of the fundamental group and the conditions
from modular invariance must be analyzed, cf. [I1].

Example: D4 orbifold. Let us discuss the case Dy—1-5 (i.e. Z—class #1, affine class #5) with
Hodge numbers (6, 6) in detail. Dy is generated by ¥ and w fulfilling 92 = w? = (Yw)* = 1. In the
case (1-5) the space group S is generated by g1 = (¥, %el + %65) and g2 = (w,0), where

1 0 0 0 0 O 001 0 0 O
0o 0 0 -1 0 O 010 0 0 O
o 0 -1 0 0 O 1 00 0 O O
%=109 10 0 0 o0 and we =g 99 _1 9 o |» 9
o 0 0 O -1 0 000 O -1 0
o 0 0o o0 0 -1 000 0O O 1
and by the lattice A = {ey,...,es}.
On the other hand, the group (F') is generated by two roto—translationsﬁ
h1 = (w,0) and hy = g19291 = (Jw?, %(el +e3+e5)) (16)

and six translations (1,e;) for ¢ = 2,4,5,6, (1,e; + e3) and (1, —e; + e3), which define a (six—
dimensional) sublattice Ap C A.

As a subgroup of G the roto—translations hy and hy generate Gg = Zo X Zy and one can show
that D4/ (Zo x Zsy) = Zs, which is generated by g; using g7 = (1,e;) ~ (1,0) in the orbifolding
group. Furthermore, one can take the quotient of the respective lattices and obtains A/Ap = Zs,
which is generated by (1, e3) using (1,e3)(1,e3) = (1, 2e3) ~ (1,0) (or equivalently generated by
(1,e1) using (1, e1)(1L,e1) = (1,2e1) ~ (1,0)).

The full fundamental group m; = S/(F) of the orbifold D4s—1-5 is generated by g;. Then,
97 = (1, e1) (not identified with (1,0) in m), g} = (9, 3e1 + Les) and gf = (1, 2e1) ~ (1,0). Thus,
we find m = Zg4, see Table Bl

3 Examples

In this section we discuss three examples of orbifolds with non—Abelian point group in detail. The
first example in Section [3.1] considers Ss [34], the easiest non—Abelian case, which unfortunately
yields only non—chiral spectra. Then, in Section we discuss a T7 orbifold which yields chirality.
Furthermore, this model has the interesting property of having just one untwisted Kahler modulus
and no untwisted complex structure modulus. Last, in Section B3] we describe a A(27) orbifold
which possesses a non—trivial fundamental group and gives chirality.

®Note that w and dw?d belong to the same conjugacy class of Dj.



3.1 The heterotic S; orbifold

The symmetric group S3 is generated by two generators ¢ and w of orders 2 and 3, i.e. 92 = w3 = 1.
They fulfill the relation Yw? = w?. Ss has 3! = 6 elements which split into three conjugacy classes
as follows:

[]]'] = {]1} ’ v[ll} = (0’070) )
[w] = {w’w2} ) Vw] = (%, _%,0) ) (17)
[19] = {"-9"'-9(*)"'-9(*)2}’ V) — (%a _%,0) ’

where we listed for later use the corresponding twist vectors related to the corresponding SU(3)-
compatible point—group generators given below in Equation (I9) (obtained by choosing appropriate
bases that diagonalize the respective rotation matrices).

From crystallography [45] [32], we know that for this Q—class (i.e. point group P = S3), there are
six Z—classes (i.e. inequivalent lattices) and in total eleven affine classes (i.e. for each lattice except
for lattice #6 there are two affine classes: first the trivial affine class without roto—translations and
a second affine class where g, is a roto—translation), see Table 2l

Let us discuss the first affine class, i.e. S3—1-1. In this case the generators of the S3 orbifolding
group are gy = (9,0) and g, = (w,0), where

1 -1 0 0 0 0 110 0 00
0 -1 0 0 0 0 10 0 0 00
00 0 -1 0 0 00 0 1 00
=19 0 -1 0 0 o0 and - we = 0 0 -1 100 | 8
00 0 0 -1 0 00 0 0 10
00 0 0 0 -1 00 0 0 01

given in the lattice basis as matrices from GL(6,7Z), for example, ¥,y = e;. One can go to the
SO(6) form by a basis change ¥ = B, ¥, B! and w = B, w, B!, where the columns of B, are the
basis vectors e;, i = 1,...,6. In the SU(3) basis these generators read (see Table C.2 of [32])

100 1 0 0
93) — 0 0 1 and w® = 0 e 2mi3 0 . (19)
0 10 0 0 iz

These matrices generate a reducible three-dimensional representation 3 of S3, which decomposes
into irreducible representations as 3 = 2 @ 1’. Furthermore, there exists one additional irreducible
representation of Ss3: 1, the trivial singlet.

As discussed in Section .11 the number of untwisted Kahler and complex structure moduli is
determined by the tensor products of the three-dimensional representation of Equation (I9), i.e.

303 = (201)0(281) w2282 0161, (20a)
33 = 201)0(201) 202020 1'®lal. (20b)

Since Equation (20a) contains two trivial singlets 1, there are two orbifold-invariant untwisted
Kéhler moduli from the states given in Equation (#al). Further, also Equation (20b) contains two



singlets 1 and hence there are also two orbifold-invariant untwisted complex structure moduli from
Equation (4h). In total, we find

(M D) = (2,2) . (21)

Next, we discuss the contributions from the two twisted sectors of the Ss orbifold, specified
by the inequivalent conjugacy classes given in Equation (I7)). The [w] twisted sector has nine

inequivalent constructing elements g e S i=1,...,9 on the torus,
g(l) = (w,O) ’ 9(2) = (w,€4) ) 9(3) = (w,264) )
g = (w, ) , 90 = (w, ez + ea) , 99 = (w, e+ 2e4) (22)

9 =(wer+e) , g® =(w,er+eat+eq) , g% = (w,e1+ex+2e4) .

These constructing elements by themselves lead to a six-dimensional N' = 1 supersymmetric theory,
where the six dimensions include the uncompactified 4D space along with the two—torus defined by
the basis vectors es and eg.

Finally, the [J] sector has four inequivalent constructing elements on the torus,

(19, nses + nﬁeﬁ) with ng,ng =0,1, (23)

which are also inequivalent on the orbifold. As the [w] sector, the [J] twisted sector yields an N’ = 1
supersymmetric theory in the six dimensions composed of the uncompactified 4D space and the
two—torus defined by the basis vectors e; and e4 — e3.

The centralizer elements of the constructing elements of both twisted sectors do not further
break supersymmetry in their respective six—-dimensional N' = 1 theories. Therefore, all 9 + 4 fixed
tori are endowed with both a 27— and a 27-plet in four dimensions, contributing with as many
twisted Kahler and complex—structure moduli as the number of inequivalent constructing elements.

In summary, the Hodge numbers are (') h(31)) = (15,15) arising from the various sectors as

(2,2)U +(9,9)T},) + (4,4) T, (24)

confirming the results of [34]. Unfortunately, in the standard heterotic CFT description the Ss
orbifold necessarily leads to a non—chiral spectrum in 4D, as we can see from the Hodge numbers
(D) = h(21) | Hence, the S3 orbifold seems phenomenologically not promising. It might be possible
to circumvent this by introducing magnetized tori [54].

3.2 The heterotic T, orbifold

The Frobenius group T is generated by two generators ¥ and w of orders 3 and 7, i.e. 92 = w™ = 11.
They fulfill the relation wd = Yw?. Ty has 21 elements, they split into five conjugacy classes, i.e.

[]1] = {]1} ) U] (070’0) )

[w] {w, 0? Wi}, W = (5373,

[w?] = {o® % w0}, vt = (—1,-%32), (25)
W] = {9,9w,9w? dw?, dwt, 9uwd, dwb} | vy = (3,-%,0) ,

[192] = {92,9%w, 9%w?, 92w3, 92wt 92wP, 92w8} | Vg = (%,—%,0) .
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where, as in the S3 example, we provide for later use the corresponding twist vectors associated
with Equation (27]).

From crystallography [45] [32] we know that for this Q—class (i.e. point group P = T%), there
are three Z—classes (i.e. inequivalent lattices) and in total three affine classes (i.e. for each lattice
there is only the trivial affine class without roto—translations), see Table [2

Let us discuss the first Z-class, i.e. Ty—1-1. In this case the generators of the 7% orbifolding
group are gy = (9,0) and g, = (w,0), where

0O -1 0 0 -1 0 0O -1 0 0 0 -1
0 -1 0 1 -1 0 1 -1 0 0 0 -1
0 1 o -1 1 -1 -1 1 0 0 -1 1
=110 0 0 o 1| ®™w=1,1 910 10 [
0 0 -1 0 1 O -1 1 0 0 0 O
1 0 0 0 1 0 -1 1 0 -1 0 O
given in the lattice basis as matrices from GL(6,7), for example, ¥.e; = —e4q + eg. One can go to

the SO(6) form by a basis change ¥ = B, 9, B, ! and w = B, w, B, !, where the columns of B, are
the basis vectors e;, i = 1,...,6. In the SU(3) basis these generators read (see Table C.2 of [32])

010 i 0 0
93 = | 0 0 1 and w® = 0 e2mii 0 : (27)
100 0 0 e2riz

These matrices generate an irreducible three—dimensional representation 3 of T%. Furthermore,
there exist four additional irreducible representations of T%: 3 is the complex conjugate of 3, 1’
and its complex conjugate 1’ are two non—trivial one-dimensional representations and, finally, 1 is
the trivial singlet.

One can think of the 7% orbifold as a standard Zr orbifold generated by w with an additional,
non—freely acting Zs generated by 9 that permutes the three complex planes (z1,29,23) as z; —
23 > 29 > 27,

As discussed in Section 211 the number of untwisted Kahler and complex structure moduli is
determined by the tensor products of the three-dimensional representation of Equation (27)), i.e.

393 — 3a3¢1al' al’, (28a)
33 — (3®3),83,, (28b)
where s and a denotes the symmetric and anti-symmetric part, respectively. As Equation (28a))
contains one singlet 1, there is one orbifold—invariant untwisted Kahler modulus from Equation (4al).

Furthermore, Equation (28] does not contain the singlet 1 and hence there is no orbifold-invariant
untwisted complex structure modulus from Equation (D). In summary, we find

(M, ) = (1,0) . (29)

Next, we study the contributions from the four twisted sectors of the T; orbifold arising from its
conjugacy classes (see Equation (28])). The [w] twisted sector has seven inequivalent constructing
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elements ¢() € S, i=1,...,7, on the torus:

g(l) = (w,O) ) 9(2) = (wael + 62) )
9B = (w,e1 +ex +eq) , 9@ =(w,e1+e3+es+eg) ,
(5) — 6) _ (30)
gV = (w,2e1 + 2e5 + €g) , 9% = (w,2e1 +e2+e3+e5+es)
g(7) = (w,2e1 + e2 + e3 + e5 + 2e5)

They are also inequivalent on the orbifold. The corresponding fixed points are given in the e, basis
by f@ =1fWe,, i=1,...,7, with

f® =(0,0,0,0,0,0)
f®=(4,1,2,2,4,2)
M =(5,3,6,6,5,6) .

f@=241121 , fO=(124414),

f®) =(3,6,5,5,3,5) , f© =(6,5,3,3,6,3) , (31)
As these are fixed points (and not tori) and the centralizers of ¢ are trivial, the [w] twisted sector
combines with the inverse twisted sector [w®] = [w®] and gives seven left-chiral 27-plets plus their

CPT conjugate partners. Hence, this sector contributes with (7,0) to the Hodge numbers.
The [9] twisted sector has one inequivalent constructing element with associated fixed torus,

(9,0)  with f = (f1, f2,0,—f1 + f2, —f1 — fo, = f2) » (32)

where the torus is parametrized by fi, fo € R. As the centralizer of this sector is trivial, the [J]
twisted sector feels the full /' = 1 in six dimensions and hence contributes (1,1) to the Hodge
numbers.

Finally, the [9?] is very similar to the [J] twisted sector. It has one inequivalent constructing
element with associated fixed torus,

(19270) with f: (f17f2707_f1 +f27_f1_f27_f2) ) (33)

where the torus is parametrized by fi, fo € R. Again, as the centralizer is trivial, it gives rise to
one twisted Kdhler and one twisted complex structure modulus and therefore contributes (1,1) to
the Hodge numbers.
In summary, the Hodge numbers are (h(1:1) h(21)) = (10,2), distributed in the various sectors
according to
(1, O)U + (7, 0>T[w] + (]., 1>T[19] + (]_, 1)T[192] . (34)
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3.3 The heterotic A(27) orbifold

The group A(27) is generated by two generators ¢ and w both of order 3, i.e. such that 93 = w3 = 1.
A(27) has 27 elements, they split into the following eleven conjugacy classes

[1] = {1}, v =(0,0,0),
[w] = {w,dwd? dw?9?w?} Vi) = (%, —%,0) )
[w?] = {w?, 9w?9?, Jwidw} V[w?] = (%, —%,0) )
[9] = {9, wiw? wiw}, V[y) = (%, _%’0) )
[92] = {9? w20, wd?w?} V2] = (3.—30)
[wd] = {w?,w?9w? Juw}, Vo) = (%, —%,0) , (35)
[wd?] — (w2, 92w, w20%?) Vg2 = (%,—%,0) ,
[w219] = {w?d,9w? wiw}, Vw29 = (%, —%,0) )
W% = {w??,wid’w,9%w?) vrgr) = (3-3,0)
[Pw?w?] = {Jwd?w?}, Vihwd2w?] = (53 —3)
[Pw?Pw] = {Ju?P?w}, Vgwrorw) = (3.3 73) »
where we also give the corresponding twist vectors obtained, as before, by choosing bases in which

the rotation matrices are diagonal, as in Equation (37)).

Once again, it is known that there are three lattices and a total of ten affine classes (three
orbifolding groups without roto—translations and seven ones which include them) for the point
group P = A(27).

Let us discuss the fourth affine class of the first Z—class, i.e. A(27)-1-4, see Table 2 In this
case the generators of the A(27) orbifolding group are gy = (¥, §(2e2+e3+2e5)) and g, = (w, 3e1),
where

010 0 1 0 1 1 -1 0 0 -1
000 0 0 1 0 -1 1 -1 0 1
010 -1 2 1 00 0 -1 0 -1

b= 1001 -1 1 1 and we = | 0 g o o 1 _1 |° (36)
000 0 1 0 o1 0 0 0 -1
100 0 -1 0 0 -1 0 1 -1 0

given in the lattice basis as matrices from GL(6,7Z), for example, ¥,y = eg. One can go to the
SO(6) form by a basis change ¥ = B, 9, B, ! and w = B, w, B, !, where the columns of B, are the
basis vectors e;, ¢ = 1,...,6. In the SU(3) basis these generators read (see Table C.2 of [32])

01 0 1 0 0
93 — 0 0 1 and w® = 0 e2is 0 ; (37)
100 0 0 e2mii

which generate an irreducible three-dimensional representation 3 of A(27).
The number of untwisted moduli corresponds to the number of invariant singlets within the
tensor products of the three-dimensional representation and its conjugate:
303 - 100110013014 01;01led 1y 1s, (38a)
33 — 339393, (38b)
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where only 1¢ in Equation (B8al) denotes a A(27)-invariant singlet. Therefore, by using Equa-
tion ([7), we conclude that there is only one orbifold—invariant untwisted Kédhler modulus and no
orbifold—invariant untwisted complex—structure modulus, i.e.

(R3D BED) = (1,0) . (39)

The only nonvanishing contributions to the Hodge numbers from the twisted sectors arise from
the 27 fixed points of the Tjy,g2,2) sector, which are inequivalent on the torus. The constructing

elements associated to these fixed points are ¢ = (19w192w2, )\(i)) with:

A = 3(—2e1 +5ez + e3 — es — e5 + bes) A® = 3(—2e1 + 5ez + e3 + 2eq — e5 + 5es)
2@ = %(61 + 2ez +e3 —eq —e5 + 2es), A® = %(61 + 2e2 + e3 + 2e4 — e5 + 2es)
A = L(e; + 2 +e3 + bes — es + 2es) A®) = L(e; +5es +e3 — es — €5 + 2e6),
A = L(e1 + Bea + €3 + 2e4 — 5 + 2e5) A® = L(es + bea + e3 + bea — e5 + 2eq)
A®) = 1(—2e; + 5es — 2e3 — es —4des + 5eg), A1V = 1(—2e; + 5es — 2e5 — es — e5 + Hes)
A = 1(—2e; +5ex + e3 —es —4des + 5es), AP = 1(—2e1 + 5ea + e3 + 2e4 — des + Hes)
A3 = 1(—2e1 + 8ez — 2e3 — eq — des + 5eg) , A = 1(—2e1 + 8ex + e3 — es — des + Ses) (40)
A5 — 3(—2e1 + 8ez + e3 + 2e4 — des + 5es) , A0 — 3(e1 + 2e2 — 2e3 — eq — des + 5es) ,
)\(17) = %(61 + 2e2 — 2e3 + 2e4 — 4des + 566) )\(18) = %(61 + 2es5 + e3 + 2e4 — des + 566)
A9 = %(61 + bes — 2e3 — eg — des + beg) 20 — %(61 + bea — 2e3 + 2e4 — des + beg)
ACD = 1(e1 + bez + es — es — des + 2eq), PG 1(e1 + bea + es + 2eq — des + 2e) ,
A2 = 3(e1 + bez + e3 + 2eq — des + Hes) , ACY = 3(e1 + 5ez + e3 + bea — des + 2es) ,
Ag: = %561 + 8ea — 2e3 —eq — 4des + 566; 2320 = %(61 + 8es — 2e3 + 2e4 — des + beg)
A = 2(e1 + 8es + e3 + 2e4 — 4des + Heg

3

Out of these 27 constructing elements, only three are inequivalent on the orbifold. We choose
g™, ¢@ and ¢®). The corresponding fixed points are localized at @ = %fg)ea, it =1,2,3, with

fM=(1,1,6,56,7), f®=(1,1,3,8,6,7), fG® =(41,62,3,1) . (41)

Since these are fixed points (and not tori) and the centralizers of g(¥) are trivial, the T9uws2w?)
twisted sector combines with the inverse twisted sector Ty, 242, yielding three left—chiral 27—plets
plus their CPT conjugate partners. Hence, the only twisted contribution to the Hodge numbers is
(3,0).

In summary, the Hodge numbers are (h(M1) h(31)) = (4,0) originating from the various sectors
as

(1,0)U + (3, O)Twwmwﬂ . (42)

The main feature that distinguishes this case from the previous examples is the existence of
a non-trivial fundamental group m; = S/(F). The group (F') generated by the set F of the
constructing elements listed in Equation (40) contains the full lattice A of the space group S and
a (normal subgroup) Zs C A(27) generated by dwd?w?. Thus, we identify the fundamental group
of the A(27)-1-4 orbifold as

™ = S/<F> = A(27)/Z3 = ZgXZg. (43)

14



4 Summary and Discussion

We have computed systematically the number of (untwisted and twisted) moduli and fundamental
groups of all 331 recently classified [32] A/ = 1 non-Abelian (symmetric) orbifold compactifica-
tions of the Eg x Eg heterotic string with standard gauge embedding. We have developed the
tools that allow us to determine the number of Kahler and complex—structure moduli by using
group—theoretical and geometrical properties of the orbifolds rather than by direct computation.
Our results are presented in Table 2] where the Hodge numbers, classified by sector, are displayed.
Furthermore, we list all 38 non—trivial fundamental groups in Table[3l Further details (such as orb-
ifold generators, constructing elements, non—trivial centralizer elements, compactification lattices,
etc.) are made available at
http://einrichtungen.physik.tu-muenchen.de/T30e/codes/NonAbelianOrbifolds/

in a Mathematica—compatible format.

Most of the fundamental groups (35 out of 38) are Abelian (see Table[]), such as Zs, Zs3, Z4 and
Zy X Zzﬁ. In 14 cases the fundamental group is generated by translations, in 16 cases all generators
are rotations and in the remaining 8 cases the fundamental group is generated by translations
and rotations. From a phenomenological point of view, orbifolds with non-trivial fundamental
groups are very interesting as they may allow for non-local GUT breaking, which can improve
gauge coupling unification. Furthermore, it would be interesting to study the connection of these
orbifolds to smooth Calabi-Yau spaces [40, 11], since the standard model gauge group (especially
the hypercharge) can survive a full blow—up of the orbifold to a smooth Calabi-Yau when the
fundamental group of the orbifold is non-trivial and the gauge group is broken non-locally.

Besides the fact that, like almost all Abelian cases, most non—Abelian orbifold geometries
satisfy the relation x =0 mod 12, for which we have no explanation, we observe that, in contrast
to Abelian orbifolds, there is a large number of geometries (and a greater number of models) with
the overall volume modulus as the only untwisted modulus available. These models should be
further analyzed in the context of no—scale supergravity. Note also that this might be a positive
feature for moduli stabilization, although unfortunately it prevents anisotropic compactifications,
which are desirable to solve the tension between the string scale and the GUT scale [60), [36].

An interesting observation is that 42 out of the 331 orbifold geometries have vanishing Euler
numbers y (i.e. ALY = h(21). In these cases we note that we have h%’l) = hg’l) and h%’l) = hg’l),
independently. The latter, hsrl - hr(g ’1), is related to higher—dimensional supersymmetry. Hence,
4D chiral spectra can never be obtained in these cases using standard heterotic orbifold CFT
techniques alone. The inclusion of magnetized tori [61], 54] may offer a plausible way to circumvent
this hurdle. However, their description is only known in blow—up, but not on the singular orbifold.

Furthermore, it would be interesting to analyze the cases of vanishing Euler numbers in the
context of [62], which states that type II string theory compactified on Calabi—Yau threefolds
with vanishing Euler numbers leads to N' = 4 enhanced supersymmetry (spontaneously broken to
N = 2). Translated to the case of heterotic orbifolds with standard embedding and vanishing Euler
numbers, one might expect N' = 2 enhanced supersymmetry (spontaneously broken to A' =1). In

addition, we find cases where hr(; D hr(g b - 0, for example, D4 — 1 — 6 has only untwisted Hodge

This is in contrast to smooth Calabi-Yau spaces, which have a much wider variety of fundamental groups, see
e.g. [58, 59| for fundamental groups of complete intersection Calabi—Yau threefolds.
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numbers (2,2) (see Table 2]) and there are few other similar cases in Abelian orbifolds [32]. One
might conjecture that these cases give even higher enhanced supersymmetry, i.e. (spontaneously
broken) N' = 4. On the other hand, there are cases of orbifolds with vanishing Euler numbers where
the orbifold intuition naively contradicts the general results of [62]: e.g. consider the first case of
Table 2 S3-1-1, with Hodge numbers (15,15) decomposed as (2,2)U + (4,4)Tig + (9,9)T1,- In
this case, the two twisted sectors T}y and Tj,) both feel N = 2 supersymmetry, while the untwisted
sector U is N' = 1 in four dimensions. However, Tiy) has different N = 2 than T, as one can
easily verify by noticing that the generators ¥ and w leave untouched different two-tori. This
implies that the full action of the orbifold breaks explicitly (not spontaneously) N' =2 to N =1
supersymmetry, even though y = 0.

In addition, we have presented the details of three sample models with the point groups S3
(confirming the results of Ref. [34]), 7% and A(27). We have chosen these point groups because
they illustrate the main properties of non—Abelian orbifold compactifications and because of their
relevance in particle physics, for example in the context of neutrino mixing and family symmetries
(see e.g. [63] 64, [65]). As in the Abelian case, we expect the (non—Abelian) point group of the
orbifold to be in close connection with the family symmetry of the 4D effective theory via string—
selection rules [22]. If this was the case, our examples would be of phenomenological interest. Yet
the specifics of the string selection rules for non—Abelian orbifolds should still be worked out.

The results of this work lay the foundation stone of future phenomenological studies based on
non—Abelian orbifolds and can be extended in various ways. Particularly, it would be interesting to
extend this study to type ITA strings on orientifolds [66] [67, 27], where appealing phenomenology
can also emerge. Likewise, it might be desirable to apply our techniques to compactifications of
the heterotic strings on four—dimensional orbifolds, in order to reveal further connections to K3
manifolds [68] [69]. Finally, one is now in position to tackle the technical details of the gauge
embedding in order to possibly arrive at promising constructions. In this respect, it is phenomeno-
logically relevant to emphasize that in general the rank of the gauge group shall be reduced for
non—Abelian orbifolds, which is in contrast to the situation in Abelian orbifolds, where the rank is
always 16 after compactification. This can help avoiding multiple Higgs mechanisms to arrive at
phenomenologically viable constructions from string theory.
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A Results

In this appendix we list the generators of the orbifolding group, the total Hodge numbers, their contributions from the
various twisted and untwisted sectors and the mechanism of higher—dimensional gauge group breaking (local or non-local,
see Table [3]) for all 331 orbifolds with non-Abelian point group. For example, consider the S3 point group with Z—class #
6 and affine class # 1 (i.e. no roto—translations and the orbifolding group is generated by (9,0) and (w,0)). The higher—
dimensional gauge group is broken locally in higher dimensions, which corresponds to a trivial fundamental group. The
Hodge numbers are (7,7), where (2,2) originate from the untwisted sector U, (4,4) from the twisted sector T}y and, finally,
(1, 1) from T[w}.

Q-class (P), Z— affine generators of G
GAPID, class class,
CARAT index (A) | breaking | contributions to (h™"Y A%V from U and T sectors (-1 p(21)
S3 1 1 (9,0), (w,0)
[6,1] local (2,2)U + (4,4)T191 + (9, 9) 110 (15,15)
2262 2 (9,0), (@, 2es)
non-local | (2,2)U + (4,4)T1y (6,6)
2 1 (19’ 0)’ (w’o)
local (2,2)U + (4,4)T191 + (9,9) 110 (15,15)
2 (19,0),((,0,%65)
non-local | (2,2)U + (4,4)T}y (6,6)
3 1 (9,0), (,0)
local (2, 2)U + (4, 4)T[,9] =+ (3, 3)T[w] (9, 9)
2 (19’0)’(‘*}’%81)
non-local | (2,2)U + (4,4)T1y (6,6)
4 1 (9,0), (w,0)
local (2,2)U + (4,4)T191 + (9,9) 110 (15,15)
2 (19,0),((,0,%65)
local (2, 2)U + (4, 4)T[,9] (6, 6)
5 1 (9,0), (,0)
local [ (2,2)0 + (40110, ¥ (,3Tu) (9,9)
2 (19,0),((.0,%61)
local [ (2,2)U + (4, 4)Tjg) (6,6)
6 1 (9,0), (w,0)
local [ (2,2)0 + (&, 010+ (L, DT) (.7

continued ...
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Q-class (P), Z— affine generators of G
GAPID, class class,
CARAT index (A) | breaking | contributions to (A=Y A%V from U and T sectors (R p(21)
Dy 1 1 (9,0), (w,0)
8, 3] local (2,2)U + (8,0) 197 + (8,0) 1101 + (4,4)T901 + (9, 1) T1wwvw (31,7)
4682 2 (¥, ze1), (w,0)
local (2,2)U + (S,O)T[w] + (4 4)T[,9w] + (7 3)T[§w§w (21,9)
3 (19,%61),((,0,%62
non-local | (2,2)U + (4,4)T}9.] + (5,5)T[9wow (11,11)
4 (19,%65),((,0,0)
local (2,2)U + (4,4)T191 + (4, 4) 110 (10,10)
5 (9, ze1 + zes), (w,0)
non-local | (2,2)U + (4,4)T[‘,,] (6,6)
6 (v, %61 + z€5), (W, 7€2)
non-local | (2,2)U (2,2)
7 (19,%65),((,0,0)
local (2, 2)U =+ 8,0)T[,9] =+ (8, O)T[w] + (9 1) Ywdw] (27, 3)
3 (19’%(61—"65))’(‘*}’0)
non—local (2, 2)U + (8, O)T[w] + (7, 3)T[19‘,“9w] (17, 5)
9 (19,%(61-{-65)),(60,%62)
non-local | (2,2)U + (5,5)T}9wow] (7,7)
2 1 (9,0), (w,0)
local (2a 2)U + ( 70)T[19] (8 O)T[w] + (2a 2)T19w] + (6 O)T[ﬂwﬂw (2274)
2 (19’% 5), (w,0)
local (2,2)U + (4, O)T[,g] (4, 4)T[w] + (3, 1)T[,9‘,“9w] (13,7)
3 (3,0, @ Ze)
local (2, 2)U (4, O)TW] + (2 2)T[§w (4, 2)T[§w§w] (12, 6)
4 (19,%65),((,0,%6 )
non-local | (2,2)U + (4,0)T19; + (3, 1)T{ywve] (9,3)
5 (19’%63)5 w,O)
local (2, 2)U + (2, Q)T[,g] + (4, 4)T[w] (8, 8)
6 (19,%63),((.0,%61)
non-local | (2,2)U + (2,2)T}y (4,4)
7 (19,%63),((,0,0)
local (2a 2)U (47 O)T[ﬂ] + (Sa O)T[w] + (Ga O)T[ﬂwﬂw] (207 2)
8 (19’%63)3(‘*}’%61)
non-local | (2,2)U + (4,0)T}s; + (4, 2)Tjvwow) (10,4)
3 1 (9,0), (w,0)
local (2,2)U + (4,0)T197 + (4,0)T10) + (2,2)T1901 + (5, 1) T{gwvaw] (17,5)
2 (19,%63),((,0,0)
local (2, 2)U + (4, O)Tw] + (4, O)T[w] + (4, O)T[ﬂwﬂw] (].47 2)

continued ...
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Q-class (P), Z— affine generators of G
GAPID, class class,
CARAT index (A) | breaking | contributions to (A=Y A%V from U and T sectors (R p(21)
3 (19,%81),(&),0)
local (2, 2)U + (2, Q)T[,g] + (2, Q)T[w] (6, 6)
4 (19,%81),(&),0)
local (2,2)U + (4, O)T[g] + (4, O)T[w] + (5, 1)T[,9w,9w] (15,3)
4 1 (¥,0), (w,0)
local (23 2)U + (4a O)T[ﬂ] + (43 O)T[w] + (13 1)T[19w] + (43 O)T[ﬂwﬂw] (15, 3)
2 (19,%63),((,0,0)
local (2a 2)U (47 O)T[ﬂ] + (2a 2)T[w] + (2a O)T[ﬂwﬂw] (107 4)
3 (19’%63)3(‘*}’%64)
local (2, 2)U + (2, Q)T[,g] + (2, Q)T[w] + (1, 1)T[,9‘,“9w] (7, 7)
5 1 (9,0), (w,0)
local (2,2)U + (4, O)TW] + (16, O)T[w] + (4, 4)T[,9w] + (10, O)T[gwgw] (36,6)
2 (19,0),((.0,%61)
local (2, 2)U + (4, O)Tw] + (4, 4)T[19w] + (6, 4)T[19w19w] (16, 10)
3 (19,%85),(&),0)
local (2, 2)U + (2, Q)T[,g] + (8, S)T[w] (12, 12)
4 (19,%65),((.0,%61)
non-local | (2,2)U + (2,2)T}y (4,4)
5 (19,%65),((,0,0)
local (2,2)U + (4,0)T}9) + (16,0)T1,; + (10,0)T}9u 9w) (32,2)
6 (19’%65)3(‘*}’%61)
non-local | (2,2)U + (4, O)T[,g] + (6, 4)T[,9w,9w] (12,6)
6 1 (9,0), (w,0)
local (2,2)U + (4, O)T[g] + (8, O)T[w] + (2, 2)T[,9w] + (6, O)T[gwgw] (22,4)
2 (19,0),((.0,%64)
local (2a 2)U + (27 2)TW] + (Sa O)T[w] + (4a O)T[ﬂwﬂw] (167 4)
3 (19’0)’(‘*}’%61)
non-local (2a 2)U + (47 O)T[ﬂ] + (2a 2)T'[i%l] + (47 Q)T[ﬂwﬂw] (127 6)
4 (19,0),((.0,%(61 +€4))
non-local | (2,2)U + (2,2)T}9 + (2, 2)T{ywvw] (6,6)
5 (19,%63),((,0,0)
local (2, 2)U + (2, Q)T[,g] + (4, 4)T[w] (8, 8)
6 (19’%63)3(‘*}’%61)
non-local | (2,2)U + (2,2)T}y (4,4)
7 (19,%63),((,0,0)
local (2,2)U 4, O)T[g] + (8, O)T[w] + (6, O)T[,gw,gw] (20,2)
8 (U, 2es3), (w, 31
non-local | (2,2)U + (4, O)T[,g] + (4, Q)T[,gw,gw] (10,4)

continued ...
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Q-class (P), Z— affine generators of G
GAPID, class class,
CARAT index (A) | breaking | contributions to (A=Y A%V from U and T sectors (R p(21)
7 1 (9,0), (w,0)
local (2? 2)U + (47 O)TW] + (4a O)T[W] + (1a 1)T[190J] + (4a O)T[ﬂwﬂw] (157 3)
2 (19’0)’(‘*}’%64)
local | (2,2)U + (2,2)T19) + (4, 0)T0] + (2, 0)Tigwou] (10, 4)
8 1 (¥,0), (w,0)
local (2, 2)U =+ (4, O)TW] =+ (4, O)T[w] + (4, 4)T[19w] + (7, 3)T[§w§w] (21, 9)
2 (19’%65% w,O)
IlOIl*lOC&l (2, 2)U (2, Q)T[,g] —+ (2, Q)T[w] (6, 6)
3 (19’%65)3(‘*}’0)
local (2a 2)U + (47 O)TW] + (4a O)T[w] + (7a 3)T[19w19w] (177 5)
9 1 (9,0), (w,0)
non-local (2, 2)U + (4, O)TW] + (4, O)T[w] + (2, 2)T[,9w] + (5, 1)T[§w§w] (17, 5)
2 (19,%61),((,0,0)
non-local | (2,2)U + (2,2)Tg; + (2, 2)Tiu] (6,6)
3 (19,%81),(&),0)
non—local (2, 2)U (4, O)T[,g] + (4, O)T[w] + (5, 1)T[,9‘,“9w] (15, 3)
4 (19’0)7(“}7%(62 + %63'1’65))
local (2,2)U + (2, 2)T[§] + (2, 2)T[w] + (2, 2)T[,9w,9w] (8,8)
5 (19’0)7(“}7%63)
local (2? 2)U + (47 O)TW] + (4a O)T[W] + (2a 2)T[190J] + (5a 1)T[19w19w] (177 5)
A4 1 1 (19’0)7 (w,O)
[12, 3] local (1, 1)U =+ (1, 1)T[,9] =+ (3, 1)T[w] + (1, 1)T[,92] (6, 4)
4893 5 1 3,0), (@, 0)
non-local | (1,1)U + (1,1)Tjy) + (8,0)Tuy + (1, 1) T2 (11,3)
2 (19’0)7(“}7%(61'1’62))
non-local | (1, 1)U + (1,1)Tg) + (1, 1)T1g2y (3,3)
3 (19,0),(&),%(61 +83))
local (L, 1)U + (1,1) Ty + (4,4) 110y + (1, l)Twz] (7,7)
3 1 (¥,0), (w,0)
local (1, 1)U + (1, 1)T[,9] + (4, O)T[w] + (1, 1)T[,92] (7,3)
4 1 (9,0), (w,0)
non-local | (1,1)U + (1,1)Tjy) + (4,0)T]uy + (1, 1) T2 (7,3)
2 (19’0)7(“}7%(61 +€3))
non—local (1, 1)U + (1, 1)T[,9] + (2, Q)T[w] + (1, 1)T[,92] (5, 5)
5 1 (9,0), (w,0)
non-local | (1,1)U + (1,1)Tjy) + (4,0)T]uy + (1, 1) T2 (7,3)
2 (0, 3 (e1 + e5)), (w, 5(e2 + e5))
local (1, 1)U + (1, 1)T[,9] + (2, Q)T[w] + (1, 1)T[,92] (5, 5)

continued ...
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Q-class (P), Z— affine generators of G
GAPID, class class,
CARAT index (A) | breaking | contributions to (A=Y A%V from U and T sectors (R p(21)
6 1 (9,0), («,0)
local (1, 1)U + (1, 1)Tiey + (16,0) T} + (1,1)Tlg2) (19,3)
2 (19’0)7(“}7%(62 +€4))
non-local | (1,1)U + (1, 1)Tpe; + (1, 1) T}y (3,3)
7 1 (9,0), («,0)
local (1, 1)U + (1, 1)T[,9] + (8, O)T[w] + (1, 1)T[,92] (11,3)
2 (19’%(61+€3+€5)),(w,%(€1+62))
lOC&l (1,1)U+ (1,1)T[§] -+ 1,1)T[192] (3,3)
8 1 (9,0), («,0)
local (1, 1)U + (1, 1)T[,9] =+ (4, O)T[w] + (1, 1)T[,92] (7, 3)
9 1 (9,0), (w,0)
local (L, 1)U + (1,1) Ty + (4,0)T1y + (1, l)Twz] (7,3)
Dg 1 1 (9,0), (w,0)
[12,4] local (2,2)U + (4,0)T19; + (1, 1)1y + (4,0)T19.7 + (5, 5)T[w2] + (5, 1)T[w3] (21,9)
2258 2 (0,0), (w, %65)
local (2, 2)U + (2, Q)T[,g] + (2, Q)T[,gw] (6, 6)
3 (19’0)7(“}7%65)
local (2,2)U + (4,0)T19; + (4,0)T1901 + (5, 1)T},3 (15,3)
4 (19’0)’(‘*}’%65)
local (2, 2)U + (2, Q)T[,g] + (2, Q)T[,gw] + (5, 5)T[w2] (11, 11)
2 1 (9,0), (w,0)
local (2,2)U + (4,0)T19; + (1, 1) Ty + (4,0)T19.7 + (5, 5)T[w2] + (5, 1)T[w3] (21,9)
2 (19’0)’(‘*}’%65)
local (2, 2)U + (2, Q)T[,g] + (2, Q)T[,gw] (6, 6)
3 (19’0)’(‘*}’%65)
local (2,2)U + (4,0)T19; + (4,0)T1901 + (5,1)T},3 (15,3)
4 (19’0)7(“}7%65)
local (2, 2)U + (2, Q)T[,g] + (2, Q)T[,gw] + (5, 5)T[w2] (11, 11)
Zig X Zia 1 1 (’19, 0), (w, 0)
[16, 6] local (2,0)U + (4,0)T79 + (8,0)T7,7 + (10, O)TWZ] + (4,0)T19. + (4,0)T[§2w] + (5, 1)T[,94] (37,1)
6222 2 (U, z(e2 +e4)), (w, 3(e1 + €2 + €3 + €4))
local (2,0)U + (4,0)T19) + (4,0)T7u) + (6,0)T192) + (4,0)Tiow) + (2, 2)T 9241 + (5, 1) Tie (27,3)
3 (19’0)’(‘*}’%(65 +66))
local (2,0)U + (4,0)T19; + (4,0)T7,1 + (6, 0)T[,02] + (4,0)T19.; + (5, 1)T[§4] (25,1)
4 (0,3 (e2 +e4)), (w, 3(e1 + €2+ €3+ ea + €5 + €6))
local (2,0)U + (4,0)Tp9; + (4,0)T7u) + (6,0)T192) + (4,0) 9w + (5, 1) T 4 (25,1)
2 1 (19’ 0)’ (w’o)
local (2,0)U + (4,0)T19; + (6,0)T7,1 + (8, 0)T[,02] + (4,0)T19.) + (2, 0)T[§2w] + (4, 0)T[,94] (30,0)
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(e

Q-class (P), Z— affine generators of G
GAPID, class class,
CARAT index (A) | breaking | contributions to (A=Y A%V from U and T sectors (R p(21)
2 (9, 5(e2 + es +es)), (w, 3(e2 + €3 + €4 + €6))
local (2, O)U + (4 O)T[,g] (2, 2)T[w] + (6, O)Twz] + (4, O)T[ﬂw] + (3, 1)Tw4] (21, 3)
3 (19’0) (wv 2(61 +€3))
local (2,0)U + (4,0)T19) + (6,0)T7u) + (8,0)T 92 + (4,0)Tiow) + (2,0) T2, + (4, 0) T4 (30,0)
3 T (9,00
local (2, 0) ( )T[,g] (3 O)T[w] + (7, O)Twz] + (4, O)T[ﬂw] + (1, O)T[gzw] + (3, 0)T[,94] (24, 0)
2 (0, ge1), (w7%(€1+€3+€4+€6))
local (2,0)U + (4,0)T19; + (1, 1)T7.7 + (6, O)Twz] + (4,0)Tiv.) + (2, 0)T[,94] (19,1)
4 1 (19’0)’ (w,O)
local (2, O)U + (4 O)T[,g] (12, O)T[w] + (10, O)T[igz] + (4, O)T[ﬂw] + (4, O)T[ﬂzw] + (6, O)TW‘}] (42, 0)
2 (0, 3(es + €4)), (w, 3(e1 + €2 + €3 + e4))
local (2,0)U + (4,0)T19; + (6,0) 1921 + (4,0)Tiww] + (2, 2) T2, + (4, 2)T 94 (22,4)
3 (19’0)’(“‘)’%( 5+86))
local (2,0)U + (4,0)T91 + (8,0)T1w) + (6,0)T921 + (4,0)Ti9w] + (6,0)T 199 (30,0)
4 (¥, 3 (es + eq)), (w,2(€1+€2+€3+64+€5+66))
local (2,0)U + (4,0)T19; + (6,0) 7921 + (4,0)Tiwe] + (4,2)T194 (20,2)
5 1 (¥,0), (,0)
local (2,0)U + (4,0)T9) + (6,0)T1u) + (8,0)T921 + (4,0)Tiww] + (2,0)Tj92,1 + (4,0) T4 (30,0)
2 (9, 3(e1 +e2+es +e4)), (w, 3(e1 + eo))
local (2,0)U + (4,0)T19) + (6,0)T7u) + (8,0)T 92 + (4,0)Tpou + (2,0)T 9241 + (4, 0) T4 (30,0)
3 (9,3 (e1 + e2)), (w, 3(e1 + €2+ €3 + es + e5))
local (2,0)U + (4, O)T[,g] + (6, O)T[igz] + (4, O)T[ﬂw] + (3, 1)T[194] (19,1)
6 1 (9,0), (w,0)
local (2,0)U + (4,0)Tp) + (4,1) Ty + (7,0)T192) + (4,0)Tpow) + (1,0)T 9241 + (3, 0)Tie (25,1)
2 (9,5 (e1 + ea + e4)), (w, 3(e1+ es + €5 + es))
local (2, O)U + (4, O)Tw] ( ,O)T[igz] + (4, O)T[ﬂw] + (2, 0)T[194] (18, 0)
QDlﬁ 1 1 (19’0)’ (w,O)
[16, 8] local (2, 1)U + (4, 4)T[,9] + (4, O)T[w] + (5, 2)T[192] + (8, O)Tww] + (3, 1)T[19w19w] (26, 8)
5650 2 (¥, 3¢€6), (w,0)
local (2, 1)U + (4, O)T[w] + (5, 2)T[192] + (8, O)T[,gw] + (3, 1)T[§w§w] (22,4)
3 (19,%81),(&),0)
local (2,1)U + (4,4)T19) + (4,0)T{u) + (5,2)T192) + (8, 0)T(ww) + (3, 1) Tjwwow] (26,8)
4 (19’%(61'1'66))’(("}70)
local (2, 1)U + (4, O)T[w] + (5, 2)T[192] + (8, O)T[,gw] + (3, 1)T[§w§w] (22,4)
2 1 (19’0)’ (w,O)
local (2, 1)U + (2, 2)T[,9] + (4, O)T[w] + (4, 1)T[192] + (8, O)T[ﬂw] + (2, O)T[ﬂwﬂw] (22, 4)
2 (19,%61),((,0,0)
local (2,1)U + (4,0)T1.,; + (4, 1)T[,92] +(8,0)T19w] + (2,0) 19000 (20,2)

continued ...
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Q-class (P), Z— affine generators of G
GAPID, class class,
CARAT index (A) | breaking | contributions to (A=Y A%V from U and T sectors (R p(21)
3 (9, 5(e2 + e3 + eq)), (w,0)
local (2, 1)U + (4, O)T[w] + (3, O)Twz] + (8, O)T[ﬂw] + (2, O)T[ﬂwﬂw] (19, 1)
3 1 (9,0), (w,0)
local (2,1)U + (4,4)T197 + (8,0)T1. + (6, 1)T[02] +(8,0)T1yw) + (3, 1)Tpwow (31,7)
2 (193%66 ,(w,O)
local (2, 1)U + S,O)T[w] + (6, 1)T[,92] + (8, O)T[ﬂw] + (3, 1)T[19w19w] (27, 3)
3 (19’%(61'1'62))’(("}7%61)
local (2, 1)U + (4, 4)T[§] + (4, 3)T[,92] + (8, O)T[gw] + (3, 1)T[,9w,9w] (21, 9)
4 (9, 5(e1 + e2 + o)), (w, 5€1)
non—local (2, 1)U + (4, 3)T[§2] + (8, O)T[ﬂw] + (3, 1)T[19w19w] (17, 5)
4 1 (9,0), (w,0)
local (2, 1)U + (2, 2)T[§] + (4, O)T[w] + (4, l)Twz] + (8, O)T[,gw] + (2, O)T[gwgw] (22,4)
2 (19,%81),(&),0)
local (2, 1)U + (4, O)T[w] + (4, 1)T[,92] + (8, O)T[ﬂw] + (2, O)T[ﬂwﬂw] (20, 2)
3 (9, Llea + ea)), (0,0)
local (2, 1)U + (2, 2)T[§] + (4, O)T[w] + (4, l)Twz] + (8, O)T[,gw] + (2, O)T[gwgw] (22,4)
(Z‘l X Zz) X Zia 1 1 (19,0),((,0,0),({),0)
[16,13] local (2,1)U + (8,0)T197 + (8,0)T1w) + (16,0)T7,) + (4, 0)T9w) + (4,0)T19,) + (4,0)T0 )
5645 +(8, O)T[I%JPS] + (7, O)T[pz] (61,1)
2 (19,%65),((.0,0),(,0,%65)
local (2,1)U + (8,0)T197 + (4,0)T11 + (8,0)T7,) + (4,0)T19, + (4, O)Tww‘,S] + (7, O)T[pZJ (37,1)
3 (’19,%(81+83)),(w,0),(p,%(61+63))
local (2, 1)U -+ (8, O)T[w] -+ (8, O)T[p] -+ (2, 2)T[,9w] -+ (2, 2)T[§p] -+ (4, O)T[wp] -+ (4, O)T[ﬂwp:‘]
—+(6, 1)T[p2] (36,6)
4 (9, 3(e1 +es + e5)), (@,0), (p, 3(e1 + €3 + €3))
local (2, 1) + (4, O)T[w] + (4, O)T[p] + (2, 2)T[,9p] + (4, O)T[Igw‘,S] + (6, 1)T[p2] (22, 4)
IR DA (G
local (2, 1) (8, O)T[w] =+ (8, O)T[p] =+ (2, 2)T[19w] =+ (2, 2)T[,9p] —+ (4, O)T[wp] —+ (5, 2)T[p2] (31, 7)
6 (9, %(614‘65)) (w,0), (p, z(e1 + €4 +€5))
local (2, 1)U (4,0)T[w] + (4, O)T[p] +(2,2)T9, + (5, 2)T[pz] (17,5)
7 (9, %(63+65)) (@,0), (p, 5(es + €4 + e5))
local (2, )U (4,0)Tw] 4, O)T[w] + (4,0)T,) + (2,2)T19p) + (6,1) T2 (22,4)
8 (19 % ) (w,O),(p,2(e5+ ))
local (2, 1)U 4,0)T[§] + (4, O)T[w] + (4, O)T[p] + (4, O)Tww‘,S] + (7, O)T[,J (25,1)
9 (9, 3(e1 + €3+ e5)), (,0), (p, 5(e1 + e3))
local (2,1)U + (8,0)T7,; + (8,0)T7, + (4,0)T1,,) + (4,0)T[,9W,3] + (6, 1)T[p2] (32,2)
10 (9, 3 (e1 + €3 + €6)), (w,0), (p, 5(e1 + €3 + €5 + €6))
local (2,1)U + (4,0)T}.; + (4,0)T7,) + (4, O)Tww‘,S] + (6, 1)T[p2] (20,2)
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Q-class (P), Z— affine generators of G
GAPID, class class,
CARAT index (A) | breaking | contributions to (A=Y A%V from U and T sectors (R p(21)
11 (9, 3(e1 + e5)), (w,0), (p, 5 (e1 + €a))
non-local | (2,1)0 + (8,0)T}o) + (8,0)T 1, + (4,0)T1up + (5, )T}z, (27,3)
12 (9, 3(e1 + €6)), (w,0), (p, 5(e1 + es + e5 + e6))
non-local | (2,1)U + (4,0)T1,1 + (4,0)T1,) + (5,2)T] 2 (15,3)
13 (19 %(62+84)),(w,0),(p,%(62+64))
local | (2, 1)U + (4,0)T1o; + (4,0)T1u) + (4,0)T1p) + (2,2)Tww) + (2, 2)T(op) + (2, 2)Tjwp)
+(4,0)Trg,,5 + (7,0) T2 (31,7)
14 (79,%(62+64+65)) (@,0), (p, 3(e2 + €4 +e5))
local [ (2,1)0 + (4,0)T19) + (&, 0)T}0] + (& 0)T1) + (2, 2)T1ap) + (4 0) Trgupe] + (7, 00112, (27,3)
15 (0, 3(e1 + €2 + e4)), (w,0), (p, 3(e1 + e2))
local (2, 1)U + (4,0)T1; + (4,0)T7,) + (2,2)T1gw) + (2,2) T, + (2, 2) T, + (5, 2)T[pz] (21,9)
16 (9, 5(e1+e2+estes)), (w,0), (P,%(61+62+65))
local (2, 1)U =+ (4 O)T[w] =+ (4, O)T[p] (2 2)T[19p (5 2)T[p2] (17, 5)
17 (9, 3(e2 + ea + €6)), (w,0), (p, 3(e2 + €4 + €5 + €q))
local (2, 1)U + (4, O)Tw] + (4, )T[w] + (4, O)T[p] + (4, O)Tww‘,S] + (7, O)T[,J (25,1)
18 (9, 5(e1+e2 +es+e5)), (w,0), (p, 3(e1 + €2))
non local [ (G0 T @, 070w+ (40T + 2T + i T0e) (17,5)
19 (v, %(61 +e2+es+eq)), (w,0), (p, 5(e1 +e2 + €5 + e6))
non-local | (2,1)U + (4,0)T{1 + (4,0)T1,) + (5,2)T] 2 (15,3)
20 (19,%61),(&) %(61+64)),(p,264)
local (2, 1)U =+ (4,0)T[p =+ (2 2)T[19w =+ (2, 2)T[19p] —+ (2, 2)T[wp] =+ (4, 3)T[pz] (16, 10)
21 (9, 3(e1 + e5)), (w, 3(e1 + ea)), (p, 3(ea + €5))
non-local | (2,1)U + (4,0)T,1 + (2,2)Tt,] + (4,3)T1,2) (12,6)
22 (9, 5(e1 + eo)), (w, 5(e1 + 1)), (p, 5(ea + €5 + €6))
non-local | (2, 1)U + (4,0)Ti,) + (4,3)T],2 (10,4)
2 1 (9,0), (w,0), (p, 0)
local [ (2, 1)U + (4,0)Tjs + (4, 0)T}0] + (10, 0)T; + (2, 0)T19a + (2, 0010 + (2 0)T(up]
+(6,0)T(py9 + (5,0) Ty (37,1)
2 (9, 3€6), (w,0), (p, 3 (€5 + €c))
local  [(Z,1)U + (4,0)Ti9] + (2,00T}u] + (6,00T1 + (2,009, + (3,007 2] (19,1)
3 (19’0) (wao)a(pa%el)
local [ (Z,1)U ¥ (2,0)T10) + (2,0)Tju] + (6,0)T 15 + (2,0)T1wa) + (6,0)T1gaps] + (5, 0)Tp2) (25,1)
4 (19,%6@,((,0,0),(,0,%(61+€5+€6))
local | (2,1)U + (2,0)Tjg) + (2,0)T1u) + (4,0)T3) + (3,0)T,2) (13,1)
5 (ﬂ,%eg),(w,%(ez—i—ee)) (pa;e5)
local (2,1)U + (2,0)T1y + (2,0)T1u) + (4,0)T1,) + (1, 1)Tigw) + (2, 2)T[,9wp + (3, O)T[pz] (16,4)
6 (19,%61),((.0,0),( E 1)
local (2, 1)U 4, )T[,g] (2 )T[w] =+ (6, O)T[p] =+ (2, O)T[ﬂp] =+ (4, O)T[ﬂpr] —+ (5, O)T[pz] (25, 1)

continued ...
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Q-class (P), Z— affine generators of G
GAPID, class class,
CARAT index (A) | breaking | contributions to (A=Y A%V from U and T sectors (R p(21)
7 (9, 3(e1 + e6)), (w, 5(e2 + €q)), (p, 5 (€1 +e5))
local [ (Z,1)U + (2,0)T1g) + (2,00T10] + (&, 00T, + (2, 2) Tigups) + (3,002 (15,3)
3 1 (9,0), (,0), (p, 0)
local [ (BT + (3,0) Ty 3,00 Tia + (7,071 F 4,0 To0m 7 (1,00 Trwn T (1,071
+(3,0)T 909 + (4,0)Ty o) (25,1)
2 (19’%(62+€6))a(w70)a(p7%(62+66))
local (2 1)U + (3,001 + (3,0)Tj0] + (7,0) T} + (1, 0)Tiga) + (L, 0)T1op) + (1,0)T 1]
3, O)Twwpii] + (4, O)T[pZ] (25, 1)
3 (0, 3 (e1 + 2e2 + 2e3 + 3es + 3es + 3e6)), (w,0),
local (p, % (e1 + 3e2 + es + 2e4 + 3eq))
(2,1)U + (1, 1)Ti9) + (1, 1) Ty + (4,0)T(p) + (1, ) Tjgwps) + (1,0)Tfp2 (10,4)
4 (0,3 (e1+es+es +es)), (w,0), (p, %(e1+ez+es+ee))
local [ (2,110 F (3,00T1) F (3,07} + (720075 + (1, 0)T(a0; + (1, 0)Tfap F (1,01 Th
+(3,0) Ty 31 + (4, 0)T7 29 (25,1)
4 1 (ﬂ’o)’(w’o)’(p’o)
local (2, 1)U + (4, O)Tw] + (4, O)T[w] + (12, O)T[p] + (4, O)T[,gw] + (3, 1)T[,9p] + (3, 1)T[wp]
+ 12,0)T[,9w‘,3] + (7, O)T[,J (51,3)
2 (9, 3(e1 + €2)), (w,0), (p, %( e1+eq))
local (2, 1)U + (4, O)Tw] + (4, )Tw] + (8, O)T[p] + (2, 2)T[,9w] + (3, 1)T[§p] + (3, 1)T[wp]
+(5,2) T2 (31,7)
3 (9,0), (w,0), (p, 7€5)
local [ (Z,1)U + (2,0)T10] + (2,0)T10] + (8,007 + (4, 0)Trwe) + (12,0) T pmps) + (7,001 12 (37,1)
4 (9, 3(e1 + e2)), (w 0), (p, 3(e1 + ea + €3))
local (2, 1)U + (2,0)Tj9) + (2,0)T{u; + (4,0)T1p) + (2,2) 9w + (5, 2) T2 (17,5)
5 (19 %66) (w,O),(p,%ee)
local (2,1)U + (4,0)T197 + (2,0)T701 + (6,0)T7,) + (3,1) T, + (8, O)T[I%JPS] —+ (7, O)T[pz] (32,2)
6 (9, 5(e1 + e2 + €6)), (w,0), (p, 5(e1 + €1 + €6))
local (2,1)U + (4,0)T}s) + (2,0)T}u; + (6,0)T},) + (3, 1)T1wp) + (5,2) T2 (22,4)
7 (19’% ) (w,O) (pv 2(e5+66))
local (2, 1)U 2, )TW] + (2, O)T[w] + (4, O)T[p] + (8, O)T[I%JPS] + (7, O)T[pz] (25,1)
8 €2 %(61+62+66)) (@,0), (p, 5(e1 + €4 + €5 + €6))
local | (2,1)U + (2,0)Tjg) + (2,0)Tj) + (4,0)T3) + (5,2)T,2) (15,3)
5 1 (9,0), (w,0), (p,0)
local [ (& DU + (4,0)T0) ¥ (4,00 T (10,075, (2,00 Tiou1 + & 0T + (2,070
+(6,0)T 19,3 + (5,0) T2, (37,1)
2 (19,%6 ), (w,0), (p, 5€1)
local [ (2,1)T + (4,0)Tp] + (2,00 0] + (6,0) 70 + (2,0)T10,] + (4 0)T1guo1 + (5,001, (25,1)

continued ...
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Q-class (P), Z— affine generators of G
GAPID, class class,
CARAT index (A) | breaking | contributions to (A=Y A%V from U and T sectors (R p(21)
3 (9, 3(e2 + es + es +e5)), (w,0), (p, 3(e2 + ea + ea + es))
local (2, 1)U =+ (2,0)T[,9] =+ (2, O)T[w] =+ (6, O)T[p] =+ (2, O)T[ﬂw] =+ (1, 1)T[,9p] =+ (1, 1)T[wp]
+(6,0) o) + (5,0) T (27,3)
4 (9, 3 s(e1+ea+es+es+tes)), (w,0),(p, %(61 +ex+e3+es+es))
local [ (2,1)0 + (2,0)T19] + (2, 0T10] + (4, 0) T} + (L, DTiap + (4 0)Trgupe) + (5,072, (20,2)
5 (19 %(63+€4)),(w,0),(p,%(€2+63))
local (2,1)U + (4,0)T197 + (2,0)T0) + (6,0)T1,) + (1, 1)Tigw) + (2,0)T19,) + (1,1)T1w
+ 4, )T[pZ] (22,4)
6 (ﬁ’%(61+63+64)) (wvo)a(p7%(61+62+e3))
local [ (2,1)0 + (&,0)T19) + (2,0T}0] + (6,0)T1) + (2,009, + (4, VT2 (20,2)
7 (9, 3(e1 +e2 + e5)), (w,0), (p, 3(e1 + ea + es5))
local (2,1)U + (2,0)T19 + (2, O)T[w] +(4,0)T,) + (1,1) Ty, + (4, l)T[pz] (15,3)
8 (9, 5(e2 + €6)), (w,0), (p, 5(e2 + €6))
local (2 1)U + (4 O)T[,g] (2, O)T[w] + (8 O)T[p] + (2, O)T[ﬂw] + (2, O)T[ﬂp] + (1, 1)T[wp]
+ 6 O)Twwpii] + (5 O)T[pZ] (32,2)
9 (9, 5(e2 + es + ea + €6)), (,0), (p, 5 (es + €6))
local | (2, 1)U + (4,0)T1s) + (4,0)T1w + (8,0)T1) + (1, 1) Tww) + (2,0)T(w,) + (2, 0)Twp)
+(4,1)T} 2 (27,3)
10 (79,%(65+66)) (@,0), (p, 5(e2 + es + €5 + e6))
local [ (2,1)0 F (2,071 + (20T} F (4,007, + (1, Vg + (1, Doy (4, DT,
(4, )T}, (17,5)
T (9,0), @0, o)
local [ (Z,1)U ¥ (2,0)T1o) + (2,0)Tju] + (6,007 + (2,0)T1wa) + (6,0)T1gmps] + (5, 0) 112 (25,1)
12 (19’%(63'1‘64))’( 0), (b, 3(e1 + €2 + e3))
local (2,1)U + (2,0)T; [9] + (2, O)T[w] + (4, O)T[p] + (1, 1)T[19w] + (4, 1)T[p2] (15,3)
13 (9, 3(e2 + €6)), (w,0), (p, (1 + €2 + €6))
local [ (2,100  (2,0)Tw, + (2, 0T i1 T (6,075) & 0Tl + 6,00 Tgugs, T 5,007, (25,1)
14 (0, 5(e2 + €3 + ea + €6)), (w,0), (p, 5(e1 + €3 + €6))
local (2, 1)U + (2,0)T[,9] ( 3 )T[w] + (4 O)T[p] (1, 1)T[19w] + (4, 1)T[p2] (15, 3)
Zis X Ss 1 1 (’19, 0), (w, 0)
[18, 3] local [ (2,000 + (9,0)T79] + (3,0)T10] + (15,0)T102] + (9, 0)Tip202] + (2 )Tis] + (9, 0) Tigzan] (49, 1)
4235 2 (9,0), (w, 3 (es + €4))
local (23 O)U + (3 )TW] + (33 O)T[w] + (63 O)T[wz] + (2a 1)T[w3] (16, 4)
3 (910 T o)), (,0)
local  [(2,0)0 + (3,0)T}0) + (6,00 2] + (3,3)Tig2u] + (& Do) + (3 3) T fozas] (19,7)
T (0 1(es T e)), (@, Klea T ea)
local [ (2,000 + (3,0)Tju] -+ (6,0)T},2 + (2, DT, (13,1)

continued ...
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Q-class (P), Z— affine generators of G
GAPID, class class,
CARAT index (A) | breaking | contributions to (A=Y A%V from U and T sectors (R p(21)
2 1 (9,0), (w,0)
local (2,0)U + (3,0)T19; + (3,0) 171 + (9, O)T[w2] + (3, O)T[,gzwz] + (2, 1)T[w3] + (3, 0)T[192W4] (25,1)
2 (0, 3(2e1 + €5)), (w, 5(2e2 + e3))
local (2,0)U +(3,0)T1.1 + (6,0)Ty,2) + (2,1)T,3 (13,1)
3 1 (9,0), (w,0)
local (2,0)U + (5,2)T197 + (3,0) 111 + (9, O)T[w2] + (3, O)T[,gzwz] + (2, 1)T[w3] + (3, O)T[,gzw‘;] (27,3)
2 (19’0)7(("}7%(61 +€3))
local (2,0)U + (3, 3)T[19] + (3, O)T[w] + (6, O)T[wz] + (2, 1)T[w3] (16,4)
3 (19’%(285 +66))a(wa0)
local (2,0)U + (3,0)T7,; + (6, O)T[w2] + (1, l)Twzwz] + (2, 1)T[w3] + (1, 1)T[§2w4] (15,3)
4 (9, 5(2e5 + e6)), (w, 5(e1 + e3))
local (2,0)U +(3,0)T1.1 + (6,0)Ty,2) + (2,1)T,3 (13,1)
4 1 (9,0), (w,0)
local (2,0)U + (3,0)T19; + (3,0) 171 + (9, O)T[w2] + (3, O)T[,gzwz] + (2, 1)T[w3] + (3, 0)T[192W4] (25,1)
2 (19’0)7(("}7%(62 +€4))
lOC&l (2, O)U -+ (1, 1)T[§] -+ (3, O)T[w] -+ (6, O)T[WZ] -+ (1, 1)T[192w2] -+ (2, 1)T[w3] -+ (1, 1)T[192w4] (16, 4)
3 (9, 3(es + eo)), (w, 3(e1 + e2))
local (2,0)U + (3,0)T7,; + (6, O)T[w2] + (2, 1)T[w3] (13,1)
5 1 (9,0), (w,0)
local (2, O)U + (1, O)TW] + (3, O)T[w] + (7, O)T[WZ] + (1, O)Twsz] + (2, 1)T[w3] + (1, O)T[192W4] (17, 1)
6 1 (9,0), (w,0)
local (2,0)U + (5,2)T191 + (3,0) 111 + (9, O)T[w2] + (3, O)T[,gzwz] + (2, 1)T[w3] + (3, O)T[,gzw‘;] (27,3)
2 (19’%(265 +€6))a(w70)
lOC&l (2, O)U -+ (3, O)T[w] -+ (6, O)T[WZ] -+ (1, 1)T[192w2] -+ (2, 1)T[w3] -+ (1, 1)T[192w4] (15, 3)
Frobenius 1% 1 1 (9,0), (w,0)
[21,1] local (1,0)U + (1,1)T197 + (7,0) 170y + (1,1)T[192] (10,2)
2935 2 1 (v,0), (w,0)
local (1, O)U + (1, 1)T[,9] =+ (7, O)T[w] =+ (1, 1)T[192] (10, 2)
3 1 (9,0), (w,0)
local (1,0)U + (1,1) Ty + (7,0) 17y + (1, 1)T[,92] (10,2)
Zizs X Zisg 1 1 (19,0),((,0,0)
[24,1] local (2,0)U + (4,0)T19; + (3, 2)T10 + (6, O)T[,ng] + (4, O)Twa] + (4, O)Twzw] + (3, 1)T[,94]
6266 + 1,0)T[,94w] (27,3)
SL(2,3)-1 1 1 (9,0), (w,0)
[24, 3] local (2, O)U + (3, O)T[,g] + (4, 4)T[w] + (3, O)T[Igz] + (12, O)Twzw] + (5, 1)T[w2] (29, 5)
6743 2 (9,0), (w, ze5)
local (2, O)U + (3, O)TW] + (3, 0)T[192] + (12, O)Twzw] + (5, 1)T[w2] (25, 1)

continued ...
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Q-class (P), Z— affine generators of G
GAPID, class class,
CARAT index (A) | breaking | contributions to (A=Y A%V from U and T sectors (R p(21)
2 1 (¥,0), (w,0)
local (2, O)U + (3, O)T[,g] + (4, 4)T[w] + (3, O)T[Igz] + (12, O)T[igzw] + (5, 1)T[w2] (29, 5)
2 (19,0),((,0,%65)
local (2, O)U -+ (3, O)TW] -+ (3, 0)T[192] -+ (12, O)Twzw] -+ (5, 1)T[w2] (25, 1)
3 1 (¥,0), (w,0)
local (2, O)U + (3, O)T[,g] + (4, 4)T[w] + (3, O)T[Igz] + (12, O)T[igzw] + (5, 1)T[w2] (29, 5)
2 (19,0),((,0,%65)
local (2, O)U -+ (3, O)TW] -+ (3, 0)T[192] -+ (12, O)Twzw] -+ (5, 1)T[w2] (25, 1)
4 1 (¥,0), (w,0)
local (2,0)U + (3, O)T[,g] + (1, 1)T[w] + (3, O)T[igz] + (12, O)Twzw] + (4, O)T[WZ] (25,1)
Zis X Ss 1 1 (’19, 0), (w, 0)
[24, 5] local (2,1)U + (4, O)T[,g] + (4, O)T[w] + (3, 1)T[,9w] + (1, O)T[wz] + (4, O)Twwe] + (8, O)T[WS]
3414 +(3, 1)T[19w11] + (3, 2)T[w4] + (4, 1)T[w6] (36,6)
2 (19,0),((,0,%65)
local (2, 1)U + (2, O)Tw] + (4, O)T[w] + (1, O)T[wz] + (2, O)Twwe] + (4, O)T[WSJ + (3, 2)T[w4]
+ 4,1)T[w6] (22,4)
(Ze X Zz) X Zz 1 1 (19,0), (w,O)
[24, 8] local (2, 1)U + (4, O)T[g] + (8, O)T[w] + (4, 4)T[,9w] + (4, 1)T[w2] + (4, O)T[WS] + (4, 1)T[,9w,9w]
3408 +(1, 0)T[0w0w5] (31,7)
2 (19’0)7(("%%65)
local (2, 1)U + (2, 2)T[,9] =+ (6, O)T[w] + (4, 1)T[w2] =+ (2, O)T[wa] (16, 4)
3 (19’0)’(‘*}’%85)
local (2, 1)U =+ (4, O)TW] =+ (8, O)T[w] + (4, 1)T[w2] =+ (4, O)T[WS] =+ (4, 1)T[19w19w] =+ (1, O)T[I%M%JS] (27, 3)
2 1 (9,0), (w,0)
local (2, 1)U + (4,0)T[,9] + (8, O)T[w] + (4, 4)T[19w] + (4, 1)T[w2] + (8, O)T[wa] + (5, O)T[ﬂwﬂw]
+ 1,0)T[,9w,9w5] (36,6)
2 (19’0)’(‘*}’%85)
local (2, 1)U + (2, 2)T[,9] =+ (6, O)T[w] + (4, 1)T[w2] + (4, 2)T[w3] (18, 6)
3 (19,0),((,0,%65)
local (2,1)U + (4,0)T197 + (8,0)T7) + (4, 1)T[w2] + (8, O)T[wa] + (5,0)T{wvwn) + (1, O)T[0w0w5] (32,2)
Zs % Ds T 1 @,0), @.0)
[24, 10] local (2,0)U + (6, O)T[,g] + (2, O)T[w] + (3, O)Tww] + (6, O)T[w2] + (2, O)T[mgw] + (2, O)T[WS]
4326 +(2, 1) Tgw3) + (2, 0)Twwow) + (4,0)Tgwsws) (31,1)
2 1 (¥,0), (w,0)
local (2,0)U + (2, O)Tw] + (2, O)T[w] + (3, O)Tww] + (6, O)T[wz] + (2, O)T[u”gw] + (2, O)T[WS]
+(1,0)T19u31 + (2, 0)Tivwow) + (2,0)T 19w ows] (24,0)

continued ...




6¢

Q-class (P), Z— affine generators of G
GAPID, class class,
CARAT index (A) | breaking | contributions to (A=Y A%V from U and T sectors (R p(21)
Zs3 x QS 1 1 (19’ O)a (wa 0)
[24, 11] local (2, O)U + (2, 1)T[,9] + (3, O)T[w] + (3, 2)T[w5] + (3, O)T[ﬂw] + (3, O)T[w2] + (3, O)T[ing]
6735 +(6 O)T[ws] + (2, D)Ty3) + (2, 1) Tpgws (29,5)
2 A NC)
local (2,0)U + (1 0)T7e1 + (3,0) Tt + (2, 1)T 67 + (3, 0)T1gw) + (3,0) T2 + (3, 0) T8
+(6,0)T; 5, + (1,0)T} 5 + (1,0) g5, (25,1)
Sa 1 1 (9,0), (w,0)
[24,12] local (1L,)U + (1, 1)T) + (4, 4) T + (4,0)Tiw) + (10,0)T,2) (20,6)
4895 2 (v, i(el + 63)), (w, (e1 + 3e2))
local 1, +(1 ,1)T + (2, Q)T[,gw (4,4)
3 (79,%(61+63)),(w,2(61+62))
local [ (T, 1)U + (1, D) + (4,0)T (9] + (10,007}, 2] (16,2)
2 1 (9,0), (w,0)
local (1,1)U + (1, 1)Te1 + (2,2) 10 + (4,0) 190 + (6, O)T[wz] (14,4)
2 (19’0)’ (w 65)
local (1, 1)U =+ ( 1)T[,9] =+ (4 O)T[ﬂw + (3 1)T[w2] (9,3)
3 (v, i(€1+€2))’(w,i(€2+3€3))
local (L, 1)U + (1,1) Ty + (2, 2)Tige (4,4)
4 (9, %(61+62)),(w %(62+63))
local (1, 1) ( R 1)T[ (4 O)T[,gw] + (6, O)T[wz] (12, 2)
3 1 (9,0), (w,0)
local (L, 1)U + (1, D)Tig) + (2, 2) 1) + (4,0)Tw) + (6,0)T)u2) (14,4)
2 [ (9, Lea), (, L(es +5))
local (1, 1) ( 1)T[,9] (2, Q)T[,gw + (4, O)T[wz] (8, 4)
3 (19,%(61+€2)),(w,4(62+3€3))
local (L, 1)U + (1,1) Ty + (2, 2)Tvw) (4,4)
4 (ﬁ’é(el+€2))’(w,2(€2+€3))
local (1, 1) (1, 1) [9] (4 O)T[,gw] + (6, O)T[wz] (12, 2)
4 1 (19’0)’ (w,O)
local (L,O)U + (1,1) Ty + (1, 1) Ty + (4,0)T19.) + (4, O)T[wz] (11,3)
2 (19’0)7(“}7%64)
local (1, 1)U + (1, 1)T[,9] =+ (4, O)T[,gw] =+ (2, O)T[wz] (8, 2)
5 1 (19’0)’ (w,O)
local (L,O)U + (1,1) Ty + (1, 1)1y + (4,0)T19.7 + (4 O)T[w (11,3)
2 (19’%62%(“}7%61)
local (1, 1)U + 1, 1)T[,9] + (2 Q)T[,gw] =+ (Q,O)T[wz] (6,4)
3 (9, 3(ea + €5)), (w, 3€4)
local (L, 1)U + (1,1)T1e7 + (4,0) 1) + (2, O)T[wz] (8,2)

continued ...
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Q-class (P), Z— affine generators of G
GAPID, class class,
CARAT index (A) | breaking | contributions to (A=Y A%V from U and T sectors (R p(21)
4 (9, 3(e2 + ea +e5)), (w, 5(e1 + €a))
local (1, 1)U + (1 1)T[,9] + (2, 2)T[,9w] + (1, 1)T[w2] (5, 5)
6 1 (9,0), (w,0)
local (1, 1)U + (1, 1)T[§] + (1, 1)T[w] + (4, O)T[,gw] + (4, O)T[w (11,3)
2 (19’% ) (wa 263)
local (1, 1)U + (1 1)T[,9] + (2, 2)T[,9w] =+ (2,0)T[w2] (6,4)
A(27) 1 1 (9,0), (w,0)
[27, 3] local (1 0) T (3,00T19) + (3, 0)T1w) + (3,00 T 192, + (3,0) T 1] + (3,0)T(g70; + (3,00 T2
2864 L 0) Ty pu] + (3,0) T p20] + (11,0) Thgp 02,021 (36,0)
2 (19,%(624-65)),((,0,0)
lOC&l (1, O)U -+ (1 1)T[w] -+ 1, 1)T[19w] -+ (1 1)T[w (1, 1)T[w192w] -+ (3, 0)T[0w02w2] (8,4)
3 (9, 3 (2e1 + 2e3 + es5)), (w, 5€1)
non-local | (1,0)U + (3,0)T}9.; + (3 ,O)T[w,gzw] + (5,0)T9w9202) (12,0)
4 (19’%(262 +€3+2€5))7(wa
non-local | (1,0)U + (3,0)T1y, 92,2 (4,0)
2 1 (9,0), (@, 0)
local (1,0)U + (1,0)T[,9] (9, O)T[w] + (1, O)Twz (1, O)Tww] + (1, O)T[gzw] + (9, O)T[WZ]
+(1,0)Twww) + (1,0) T, 924] + (11, 0)Tigu9202] (36,0)
2 (9, 3(2es + e4)), (w, 5(e1 +e4))
lOC&l (1, O)U -+ (1, O)TW] -+ (1, 0)T[192] -+ (1, O)T[ﬂw] -+ (1, O)Twzw] -+ (1, O)T[wﬂw] -+ (1, O)T[‘“gzw]
+ 5,0)T[190“92w2] (12,0)
3 1 (9,0), (,0)
local [ (L,0)U + (3,0)T10] + (3, 0)T10] + (3, 0)T 102 + (35 0)Tiww] + (35 0) Tjg20] + (3,0) T 2]
+(3,0) T ow] + (3,0) T 920 + (11, 0)T1gy 9242 (36,0)
2 (9, 3(e2 + €4 + e6)), (w,0)
local [ (T,0)U + (3,0)T10) + (3,0)T0] + (3, 0)T92, + (3,00 T2) + (7, 0 Tigwozar] (20,0)
3 (v, %(262+2€4+€5+66)) (w,0)
non-local | (1,0)U + (3,0)T1,1 + (3,0)T(,2) + (5, 0) T}y 9242 (12,0)
4 (ﬂaé(@+64+65)),(w,3(61+63))
non-local | (1,0)U + (3,0)T9.92.2] (4,0)
(Z4 X Z4) X Zia 1 1 (’19,0), (w,O)
32, 11] local [ (2,0)U + (4,0)Tg) + (&, 0)T}0) + (9, 0)T1g2; + (4, 0) 190 + (3, ) 7ig20; + (6,0)Trgay
6337 +(12,0)Tpg5,] + (4,0)Tio70) + (9,0)Tivwse] + (4, 0)Tigwss,) (61,1)
2 (ﬁv %66) (wv %65)
local [ (2,0)U + (4,0)T(9) + (2, 0)Tj0] + (3, 0) 192, + (2,0) 9] + (6,0)T(ga] + (8,0) T oo,
+(2,0)Tig70] + (7,0)Tpw ] (36,0)

continued ...




1€

Q-class (P), Z— affine generators of G
GAPID, class class,
CARAT index (A) | breaking | contributions to (A=Y A%V from U and T sectors (R p(21)
3 (19,%(61+83)),(w,0)
local (2,0)U + (4,0)Tiy) + (4,0)T10) + (7,0)Tpg2) + (3, 1) Tz + (4,0)T19a) + (4,0)Trps4)
+(7,0)Tivwvw] + (2,0)T1w 93] (37,1)
4 (9, 3(e1 + €3 + €q)), (w, 3€5)
local (2, O)U + (4 O)TW] + (2 O)T[w] + (3 O)Twz (4, 0)T[194] + (4, O)Twa] + (5, O)T[ﬂwﬂw] (24, 0)
5 (9, 5¢€5), (w,0)
local ( O)U + (4 O)T[,g] (2, O)T[w] + (7, O)Twz] + (4, O)T[ﬂw] + (6, 0)Tw4] + (12, O)T[193w]
+(4,0)Tpy741 + (9,0)Tvwvw] + (4,0) Ty, 93,1 (54,0)
6 (19,%(61+63+e5)),(w,0)
local (2,0)U + (4,0)Tig) + (2,0)T1u) + (5,0)Tg2) + (4,0)Ti9a) + (4,0)T (93, + (7,0)Tivwow)
+ O)T[0w193w] (30, 0)
3 1 @.0), (@,0)
local (2,0)U + (4,0)T19) + (4, O)T[w] +(7,0)T192) + (2,0)T79w] + (2, 0)T9207 + (4,0)T19e
+(8,0)T1p301 + (2,0)T1y7u) + (5,0) Twwow) + (2,0) Tivwoz) (42,0)
2 (19,%65),((,0,0)
local (2,0)U + (4,0)T79 + (2, O)T[w] + (5,0) T2y + (2,0)Ti9w) + (1, 1) Tigz2e) + (4, 0)Tga
+(8,0)Tpy341 + (2,0)T 971 + (5, 0) Tiwwvw] + (2,0)T oy 9341 (37,1)
3 (19’%82)3(‘*}’0)
local (2,0)U + (4,0)Tiy) + (2,0)T1w) + (5,0)Tpg2) + (2,0)Tigw) + (4,0)T(94; + (8,0)T g3y,
+(2,0)T1y7) + (5,0)Tiwwow] + (2,0)Tywv3a] (36,0)
T @i+ o)), @,0)
lOC&l (2 O)U -+ (4,0)TW] -+ ( ,0 T[w] -+ (4 O)Twz (1, 1)T[192w] -+ (3,0)T[194] -+ (4, O)T[193w]
+(4, O)T[gwyw] +(1,0)T [Pwddw] (25,1)
5 (19,%(61+83+65)),(w,0)
local (2,0)U + (4,0)T79; + (4 ,O)T[w] +(6,0)T792) + (2,0)Tp20) + (3,0)Tpa; + (4,0)Tgs,)
+(4,0)Tivwvw] + (1,0) Ty 93 (30,0)
6 (19,%(61+82+63)),(w,0)
local (2 O)U =+ (4 O)TW] =+ (2, O)T[w] + (4 O)T[192 (3, 0)T[194] + (4, O)T[ﬂ:;w] + (4, O)T[gwgw]
+ 1 O)T[190M93w] (24,0)
3 1 (9, 0) (w,0)
local (2,0)U + (4,0)T79) + (8, O)T[w] + (10,0)T1y2) + (2,0)Tjww) + (4,0) 11920 + (5, 0) T4y
+(8,0) T3] + (2,0)T1970) + (6, 0)Tivwvw] + (3, 0)Tivwosw) (54,0)
2 (¥, zes5), (w,0)
local (2 O)U (4 O)T[,g] (4 O)T[w] + (6, O)Twz] + (2, O)T[ﬂw] + (5, 0)Tw4] + (S,O)T[gsw]
+(2,0)T1y7) + (6,0)Tiwwow] + (3,0)Twvsa] (42,0)
3 (19’ %86) (wa 265)
local (2,0)U + (4,0)T19) + (4,0)T70) + (3,0)T192) + (1,0) 1w + (5,0)T19a; + (6,0)T19s,,)
+(1, O)T[197w] + (4 O)T[ﬂwﬂw (307 0)

continued ...




(48

Q-class (P), Z— affine generators of G
GAPID, class class,
CARAT index (A) | breaking | contributions to (A=Y A%V from U and T sectors (R p(21)
4 (19,%(61+83)),(w,0)
local (2, O)U + (4, O)T[,g] + (4, O)T[w] + (3, O)Twz] + (2, 2)T[192w] + (4, O)TW‘I] + (4, O)T[193w]
+(3,0)Tivwvw] + (1, 1)Tw 30 (27,3)
5 (19,%(61+83+65)),(w,0)
local (2, O)U + (4, O)TW] + (4, O)T[w] + (3, O)Twz] + (4, 0)T[194] + (4, O)T[ﬂ:;w] + (3, O)T[gwgw]
+(1, DTy 9301 (25,1)
6 (19,%(61-1'63-1'66)),(60,%65)
local (2, O)U =+ (4, O)TW] =+ (4, O)T[w] + (3, O)Twz] + (4, 0)T[194] + (4, O)T[igsw] —+ (3, O)Tww,gw] (24, 0)
7 (19’%84)3(‘*}’%(61 +62))
local (2,0)U + (4,0)T79) + (6, O)T[,gz] (2,0)Tiyw) + (2,2) T2, + (4, 1)T19a) + (8,0)Tjys.,
+(2,0)T970) + (6, 0)Tivwvw] + (3,0) 1w 3w (39,3)
8 (19,%(64+€5)),(w,%(61+62))
local (2, O)U + (4, O)TW] + (6, O)T[,gz] + (2, O)T[gw] + (4, 1)T[194] + (8, O)T[193w] + (2, O)T[ﬂ7w]
+(6,0)Twwvw] + (3,0) T 19w o30] (37,1)
9 (0, 5 (ea + €6)), (w, 5(e1 + €2 + e5))
local (2, O)U + (4, O)Tw] + (3, O)Twz] + (1, O)T[ﬂw] =+ (4, 1)T[194] =+ (6, O)Twaw] =+ (1, 0)T[§7w]
+(4,0)Trgu v (25,1)
10 (9, 5(e1 + es + e4)), (w, 3 (e1 + €2))
local (2,0)U + (4,0)Tiy) + (3,0)T192) + (2,2)Tj920) + (3, 1) T94) + (4,0)T930) + (3,0)Tiwwow]
+(1, 1) T3] (22,4)
11 (9, z(e1 +es +es+es)), (w, %(e1+ez))
local (2, O)U + (4, O)TW] + (3, O)T 92] (3 1)T[194 + (4, O)Twa] + (3, O)T[ﬂwﬂw] + (1, 1)T[19w193w] (20, 2)
12 (U, 2(e1 +es + es + €6)), (w, %(61+ez+es))
local (2,0)U + (4, O)T[,g] (3, O)T 92] + (3, 1)T[§4 + (4, O)T[igsw] + (3, O)T[ﬂwﬂw] (19,1)
1 T [ (9,0),,0)
lOC&l (2, O)U -+ (4 O)TW] -+ (4 O)T[w] -+ (7 O)Twz (2, O)T[ﬂw] -+ (2, O)Twzw] -+ (4, O)Tw‘l]
+(8,0) 719341 + (2,0) 19741 + (5,0)Tiwwsw) + (2,0)T 19y 93] (42,0)
2 (19,%(€2+€3+€4+€5+€6)),(w7%(€1+€2+€4))
local (2,0)U + (4,0)T19) + (2,0)T1u) + (3,0) T2y + (2,0)Trgay + (4,0) Tz + (2, 1) Tvwow] (19,1)
3 (19’%83)3(‘*}’%62)
lOC&l (2, O)U -+ (4, O)TW] -+ (2, O)T[w] -+ (4, O)Twz] -+ (1, O)T[ﬂw] -+ (4, 0)T[194] -+ (6, O)T[ﬂ:;w]
+(1,0)Tjy7) + (5, 0) Twwow) + (1,0)Tjyw o8] (30,0)
5 1 (9,0), (w,0)
local (2,0)U + (4,0)T79) + (3, O)T[w] + (5, O)Twz (1,0)Ti9u) + (1, O)Twzw] + (3, 0)T[194]
+(6a O)T[193w] + (13 O)T[ﬂ7 (3 O)T[ﬂwﬂw] + (1 )T[0w193 (30, 0)
2 (9, 5(e1+e2) + %(63+364)) (w,0)
local (2, O)U =+ (4,0)T[,9] + (1, 1)T[w] =+ (3, O)Twz] =+ (1, 0)T[194] =+ (4, O)T[193w] =+ (1, O)Twwgw] (16, 1)

continued ...




€¢

Q-class (P), Z— affine generators of G
GAPID, class class,
CARAT index (A) | breaking | contributions to (A=Y A%V from U and T sectors (R p(21)
3 (19’%(63—"64))’(“)’0)
local (2 O)U + (4,0)T[,9] + (3, O)T[w] + (5 O)Twz (1 )T[ﬂw] + (1, O)T[igzw] + (3, 0)T[,94]
+(6,0)T 3] + (1,0) 1970 + (3, 0)Twwow) + (1, 0)Tjywssw) (30,0)
Zg X (Zg X Z4) 1 1 (’19,0) (w 0)
[36, 6] local (2,0)U + (5,0)T1g] + (3,0)T10] + (3,0 (2] + (6,0)T1g22] + (2, D) Tiys) + (9,00 101
4353 +(6,0)Tpp204 + (3,0)T151 + (3, D T61 + (1,0)Tp2,61 + (6,0)Trg2,51 + (2, 1) Tj0; (51,3)
Zg X A4 1 1 (’19,0) (w 0)
36, 11] local (1,0)U + (1,0)T1g) + (2,0)T10) + (1,00 92) + (1, 0)T1ge) + (L, 0) 1924 + (5, 001102
2875 +(1 o)Tww (1,0)T}, 920 + (6,0)T},3 (20,0)
2 1 (19,0) (@,0)
local (1,0)U + (1, O)T[ + (2,0)T1) + (1,0)Tig2; + (1, 0)Tpgw) + (1, 0)Tig2,) + (5, 0) T2
+(1, 0)Tiw9w) + (1,0)T}y924) + (2,0)T],3 (16,0)
3 T @.0),(@.0)
local {, 0)U+ (1,0)Tj9) + (2,0)T 1) + (L, 0)T1g2] + (L, 0)Tfgw] + (1, 0) (g2, + (5,0) 2]
+@d O)T[um?w (1 O)T[wﬂzw] + (23 )T[ (16,0)
Ze X S3 1 1 (19,0) (w 0)
36, 12] local 2,000 + (2,0)To; + (1, O)T[w] + 9, o)T[,,z +(2,0)Tpw) + (2,0)T (g3, + (6,0)T g2,
4356 + O)Twa] + (5 O)T[w (6 O)Twz 2 (6, 0)T[194w2] + (3,0)T[w3] + (2, O)Twzw:i] (48, 0)
2 (9,0), (w, 3(es + eq))
local (2 O)U + (2 O)T[,g] (4 O)T[igz] + (2 O)T[ﬂw (2 )Twa (4, O)T[ﬂzw] + (2,0)T[§3w]
+(2 l)Twz 21+ (2, 1)Tw4 21+ (3, O)T[w +(1 ,O)T[,gz 3] (26,2)
2 1 (19,0) (@,0)
local (2,000 + (2,0)To; + (1, O)T[w] + (6, O)Twz T (2,0)T10) + (2,0)T(g3] + (6,0)T 124
+(2 O)T[193w] + (3, 1)T[w + (3, O)Twz 2] (3,0)T[194 2] (3,0)T[w3] + (Q,O)Twzw3] (37,1)
2 [ (2,0), .1 (2 + o))
local @, 0)U+ (2,0)Ti9) + (4,0)T1g2) + (2, O)TWW (2,0)T(p5 + (4,0)T (520 + (2,0)T(p50;
+(1,0)Tjy24,2) + (1,0)T 9421 + (3,0) 13 + (1,0)Tpy2,,3) (24,0)
A(48) T T [ (9,0),(@,0)
[48, 3] local (1, )U + (1 1)T[,9] (4, O)T[w] + (1, 1)T[,92] + (9, O)T[WZ] + (4, O)T[wa] + (12, O)T[0w2192w3] (32, 2)
2774 2 (9, 2 (e1 + e2)), (w, 3 (e1 + e3))
lOC&l (1, O)U -+ (1 1)TW] -+ (1 1)T[192] -+ (5 O)T[WZ] -+ (4 0)T[§w2192 3] (12, 2)
2 1 (9,0), («,0)
local (1, O)U + (1 1)T[,9] (2, O)T[w] + (1, 1)T[,92] + (5, O)T[WZ] + (2, O)T[wa] + (8,0)T[§w2§2w3] (20, 2)
2 (9,0), (w, 5(e1 + €3))
lOC&l (1, O)U -+ (1 1)TW] -+ (1 1)T[192] -+ (2 1)T[w2] -+ (4 0)T[§w2192 3] (9,3)
3 (0,1t ew), (@,0)
local (1, O)U + (1, 1)T[,9] (1, O)T[w] + (1, 1)T[,92] + (5, O)T[WZ] + (1, O)T[wa] + (6,0)T[§w2§2w3] (16, 2)

continued ...




28

Q-class (P), Z— affine generators of G
GAPID, class class,
CARAT index (A) | breaking | contributions to (A=Y A%V from U and T sectors (R p(21)
3 1 (19’0)’ (w,O)
local (1,0)U + (1,1)T19; + (2,0) 177 + (1, 1)T[,92] + (5, O)T[w2] + (2, O)T[wa] + (S,O)T[gw2§2w3] (20,2)
4 1 (9,0), (w,0)
lOC&l (1, O)U -+ (1, 1)TW] -+ (1, O)T[w] -+ (1, 1)T[192] -+ (3, O)T[WZ] -+ (1, O)T[WS] -+ (6, O)T[,ng,gzws] (14, 2)
2 (9, 5(e1 + e3)), (w, 5(e1 + e2))
local (1, O)U + (1, 1)T[,9] + (1, 1)T[§2] =+ (1, O)T[wz] =+ (4, 0)T[§w2§2w3] (8, 2)
GL(2,3) 1 1 (9,0), (w,0)
[48,29] local (2, 1)U + (5,5)T19) + (8,0)T1w) + (4,0)Tiww) + (3, 1) T2y + (1, 1) Ty 924 + (3,0) T4 (26,8)
5713 2 (¥, 3€6), (w, 5€6)
local (2, 1)U + (8, O)T[w] + (4, O)T[,gw] + (3, 1)T[w2] + (3, O)T[w4] (20,2)
3 (ﬂ,%e2+§e5),(w,%ez+§e5)
local (2, 1)U + (S,O)T[w] + (4, O)T[ﬂw] + (3, 1)T[w2] + (3, O)T[w‘l] (20, 2)
4 (19’%62)’(("%%62)
local (2,1)U +(5,5)T19) + (8,0)T}u) + (4, 0)Tiyu) + (3, 1) T2 + (1, 1) T, 92,1 + (3,0) T4 (26,8)
SL(2,3) x Zs 1 1 (9,0), (w,0)
[48, 33] local (2, 1)U + (4,0)Tiy) + (4,0)T1w) + (3,0)T6) + (4,0)Tp,71 + (1,0)Tiw2) + (3, 2) Tiwsw)
5712 +(8,0)T 51 + (8,0) T, 2901 + (3,2)T a1 + (1, 0)T1, 101 (41,5)
2 (9, 5(e1 + e3)), (w, 5(e1 + e3))
local (2, 1)U + (2,2)T191 + (4,0)T1) + (2, 1)Tiye; + (4,0)T7) + (1,0)To2) + (3, 2) Tiwvaw)
+(4, O)T[wa] + (3, 2)T[w4] + (1,0)T[w10] (26,8)
3 (U, 3(e1 +ea+es+ed)), (w, z(e1 +ea+ €3+ €4))
local (2,1)U + (2, 2)T[19] + (4, O)T[w] + (3, O)T[WG] + (4, O)T[w7] + (1, O)T[wz] + (3, 2)T[u“9w]
+(4,0)T, 51 + (4,0) T, 290 + (3,2) T4 + (1, 0)T1, 109 (31,7)
A(54) 1 1 (9,0), (,0), (p, 0)
[54, 8] local (1,0)U + (2, 1)T1y + (9,0) 70 + (1,0)Tp1 + (3, 0)T1wp) + (1,0)Twp) + (1,0)T,2,
2897 +(7,0)T1y p202,) (25,1)
2 (0,0), (w, 5 (ex + €2 + 2e3 + 2e4 + €5 + €6)),
local (p, 2(e1 + €2+ 2e5 + 2e4 + €5 + €q))
(13 O)U + (2a 1)T[19] + (13 O)T[ﬂ] + (3a O)T[ﬂp] + (1a O)T[wﬂ] + (1’ O)T[wzp] + (4a O)T[wpzwzp] (13, 1)
2 1 (19,0),(w,0),(p,0)
local (1, O)U + (2, 1)T[,9] + (3, O)T[w] + (3, O)T[p] + (3, O)Twp] + (3, O)T[wp] + (3,0)T[wzp]
+ 7,0)T[wp2w2p] (25,1)
2 (0, 5(2e1 + €2 + €3 + 2e5)), (w, 3 (e1 + €3 + e4)),
local (p, 2(e1 + €3 + e4))
(1,0)U + (2, 1)Tiey + (3,0)T1p) + (3,0)Ti9p) + (3,0) T2, + (5,0)Tjwp2u2, (17,1)
3 (U, 5 (2e1 + 2e3 + €4 + 2e5 + €6)), (w, 5 (2e2 + 2e3 + €6)),
local (p, 3 (2e2 + 2e3 + €6))
(1,0)U + (2, 1)T[,9] + (3, O)Twp] + (3, O)T[wzp] + (4, O)T[wpzwzp] (13,1)

continued ...




q¢

Q-class (P), Z— affine generators of G
GAPID, class class,
CARAT index (A) | breaking | contributions to (A=Y A%V from U and T sectors (R p(21)
4 (9,0), (w, 5(e2 +es + ea)), (p, 5(e2 + €5 + 2eq))
local (1 O)U + (2, 1)T[,9] + (3, O)Twp] + (3, O)T[wpzwzp] (9, 1)
3 1 (9,0), (,0), (p, 0)
local (1,0)U + (2, 1)T[§] + (3, O)T[w] + (3, O)T[p] + (3, O)T[,gp] + (3, O)T[wp] + (3,0)T[w2p]
+ 7,0)T[wpzwzp] (25,1)
2 (19,%(261 +€3+€4+2€6)),(w,%(261 + 2e3 + e4)),
local (p, 5(2e1 + 2e3 + e4))
(1,0)U + (2, 1)T[i9] + (1, 1)T[,J (3 ,O)TW‘,] + (1, 1)T[w2p] + (3, O)T[wpzwzp] (11,3)
3 (9, 5(e2 + es5)), (w, 5(e2 + 2e3)), (p ,%(62+263))
local (1, O)U =+ (2 1)T[,9] (3 O)Twp] =+ (3, O)T[w p (4, O)T[wpzwzp] (13, 1)
4 (0, 5(ex + e2 + e3 + ea + 2e6)), (w, 3(2e1 + €2 + 2e3 + €1)),
local (p, %(81 + 2e3 + 2e4 + 2e5 + e6))
(1,0)T + (2, )Tig] + 3,010y + (3,070 202y (9,1)
Zs x SL(2,3) 1 1 (9,0), (w,0)
[72,25] local [ (2,00 + (3,0)T(g + (3,0)T}0] + (3,0) 17 + (3, 1)T[,,w] F(6,0)Trg20; + (3,0) T2y
6988 +(1,0) T 5201 + (2, )T + (6,0)Tpgs) + (6,0)Ths; + (3,0)Thyg2,5) + (3,0)Trgus
+(3, O)T[ws] + (1,0)T[§w7] + (3, 1)T[w§2w7] (51,3)
2 (9, 3(e5 + e6)), (w, 5(e5 + e6))
lOC&l (2, O)U -+ (1, O)TW] -+ (3, O)T[w] -+ (1, O)Twz (4 )Twz (1 )T[WZ] -+ (2, 1)T[w3]
+ 4, O)T[19¢,J3] + (2, O)T[w‘l] + (1, O)T[‘“gzws (1, )TWWS] + (3, )T[WG] (25, 1)
Z3 X ((Ze X ZQ) A ZQ) 1 1 (19,0) (w,O)
= Zs x GAPID[24, §] local [ (2,0)U + (2,0)T10) + (4, 0)Tj0] + (6, 0)T192; + (3,0)Tww] + (2, 0)T1go] + (4, 0) Trg2,;
[72, 30] +(2,1)Tip30) + (1,0)Tipag) + (4, 0)Ty2) + (4,0)T1p242) + (4, 0)Tigaw2) + (4, 0)T1ys
4533 +(2,0)T192,3) + (1,0)T1y2451 + (2, 0) Tivwow] + (3,0)T19wesw] + (45 0)T19uvws)
+(1,0) Thgu 95,51 (55,1)
Zis X Sa 1 1 (’19,0) (w,O)
[72, 42] local (1, O)U =+ (1,0)T[,9] (3 O)T[w] =+ (2, O)T[ﬂw] =+ (2, O)T[wz] =+ (1, O)Twzws] —+ (2, 1)T[w3]
2924 +(2, O)T[w2,92 +(4 ,O)T[w4] + (1,0)T[w2192w8] + (4, O)T[ws] (23,1)
2 1 (9,0), (w,0)
local (1,00U + (1, O)TW] +(3,0)T1w) + (2,0)T19w) + (2, O)T[wz] + (1, O)T[ﬂzws] + (LO)T[W:‘]
+ 2, O)T[w202 (4 O)T[w4] + (1, O)T[w2192w8] + (2, O)T[WG] (20, 0)
3 1 (v,0), (w,0)
local (1, O)U + (1,0)T[,9] (3 O)T[w] + (2, O)T[ﬂw] + (2, O)T[wz] + (1, O)Twwa] + (1,0)T[w3]
+(2, O)T[w2,92 + (4 ,O)T[w4] + (1,0)T[w2192w8] + (2, O)T[ws] (20,0)
A(96) 1 1 (9,0), (w,0)
[96, 64] local (1,00U + (1, 1)T1g) + (4,0)T1w) + (3, 1) Tipw) + (9, 0) T2y + (4,0)T12920] + (6, 0)T1ue
2802 (4, 0) Tigu 3,1 (32,2)

continued ...




9¢

Q-class (P), Z— affine generators of G
GAPID, class class,
CARAT index (A) | breaking | contributions to (A=Y A%V from U and T sectors (R p(21)
2 (9, 3(es + ea)), (w, 5(ea + €5 + eq))
local (1,0)U + (1,1)T19; + (4,0)T11 + (3, O)T[w2] + (2, O)T[w2192w] + (4, O)T[w4] (15,1)
3 (19,0),((,0,%(644—66))
local (1, O)U -+ (1, 1)TW] -+ (4, O)T[w] -+ (7, O)T[WZ] -+ (2, O)T[w202w] -+ (6, O)T[w4] -+ (4, O)TWWST%J] (25, 1)
2 1 (19’ 0)’ (w’o)
local (1,0)U + (1, 1)T[,9] + (4, O)T[w] + (2, O)T[ﬂw] + (7, O)T[wz] + (4, O)T[wzigzw] + (4, O)T[w4]
+(2,0) 905 00] (25,1)
2 (9, 3(e1 + €2)), (w, 5(e3 + s + €5))
local (1, O)U + (1, 1)TW] + (4, O)T[w] + (4, O)T[WZ] + (2, O)T[w202w] + (4, O)T[w4] + (1, O)T[ﬂw319w] (17, 1)
3 (19,0),((.0,%(614-634-66))
local [ (T,0)U + (1, )Tig) + (&, 0)T0] + (3,00T102] + (2,001 2920] + (2, 00T} 0a] (13,1)
3 1 (19’0)’ (w,O)
lOC&l (1, O)U -+ (1, 1)TW] -+ (4, O)T[w] -+ (2, O)T[ﬂw] -+ (7, O)T[WZ] -+ (4, O)T[w2192w1 -+ (4, O)T[w4]
+(2,0) 7194390 (25,1)
2 (0, 3(e2 + €3 + e4)), (w, 3(ea + €5 + €6))
local (1,0)U + (1,1)T19y + (4,0) Ty + (1,1)T190) + (5, O)T[wz] + (2, O)T[w2§2w] + (4, O)T[w4]
+(2,0) T390 (20,2)
3 (19’0)’(‘*}’%84)
local [ (1,000 + (1, 1)Tig] + (&, 0T10] (5,00 2] + (2, 00T 02920] + (&, 0 T0a] + (2 0) Tt 0a] (19,1)
4 1 (9,0), (w,0)
lOC&l (1, O)U -+ (1, 1)TW] -+ (4, O)T[w] -+ (1, O)T[ﬂw] -+ (5, O)T[WZ] -+ (3, O)T[w2192w1 -+ (3, O)T[w‘l]
+(1,0)Tjyu39w] (19,1)
2 (U, 3 (3e1 + 3e2 + 3es + €5)), (w, 3 (3e2 + €5))
local [ (T,0)U + (1, )Tig) + (&, 0)T10] + (3,012 + (L, DT jn2920) + (1, 00T} 0a] (11,2)
3 (9, 3(e1+ex+es+es)), (w, 5(e2 +e5))
lOC&l (1, O)U -+ (1, 1)TW] -+ (4, O)T[w] -+ (1, O)T[ﬂw] -+ (5, O)T[WZ] -+ (3, O)T[w2192w1 -+ (3, O)T[w‘l]
+(1,0) 194390 (19,1)
SL(2,3) x Za 1 1 9,0), (@,0)
96, 67] local [ (2,0)U + (3,2)T0) + (8, 0)Tj0] + (4, 0)T1ge) + (2, 0) 19201 + (6,0)T102) + (4, 0) T(ege]
6512 +(2,0) T} 29u] + (1,0)Tjw24390] (3, 0) 92039201 + (6, 0)Tivwow] + (3, 0) Tivwo2wvw?] (44,2)
2 (0, 5e1), (w, 5(e1 +e2 +e3))
local (2a O)U + (37 2)T[19] + (4a O)T[w] + (4a O)T[ﬂw] + (3a O)T[w2] + (4a O)T[wﬂw] + (17 O)T[192w319w]
+(1, 1)T[,92w3192w] +(3,0)Twvw) + (2, O)T[Igwigzwng] (27,3)
£(36¢) 1 1 (9,0), (w,0)
108, 15] local [ (1,000 + (1,0)T19) + (3,0)T10] + (& Doz + (3, 0)T0m) + (1, 007195 + (3, 0) Tgmom]
2806 +(3,0)Tpwv20] + 3:0)Tipwpwssut + (55 0) T vutwse] (25,1)

continued ...




RS

Q-class (P), Z— affine generators of G
GAPID, class class,
CARAT index (A) | breaking | contributions to (A=Y A%V from U and T sectors (R p(21)
2 (9, 2(e1 + €4)), (w, 3(e1 + 2e2 + 2e3 + €4 + €5 + €6))
local (1,0)U + (1,0)T[,9] + (2, 1)T[§2] + (370)T[19w] + (1, O)T[,ga] + (3, O)Twwgw]
+(3,0)Ti9wwo3w] + (3,0)Tvwdwiwsw] (17,1)
2 1 (19,0) (w,0)
local (1,0)U + (1, O)Tw] + (3, O)T[w] + (2, 1)T[02 (3, O)T[,gw] + (1, 0)T[,93] + (3,0)T[§w§w]
+(3,0)T19y930] + (3, 0) 1w vw3w] + (5,0) Tvwowswsw] (25,1)
2 (U, 3 (2e3 + €4)), (w, 5 (e1 + 2e4 +265 + 2e6))
local (1, O)U + (1, O)TW] + (2, 1)T[§2] + (3, O)T[gw] + (1, O)T[,ga] + (3, O)Tww,gw]
+(3,0) Ty 9w93w] + (3, 0) T vwdwsw] (17,1)
A(108) 1 1 @,0), (@,0)
[108, 22] local (1,0)U + (1, O)TW] + (4, O)T[w] + (1 O)Twz (1, O)T[,gw] + (1, 0)T[§2w] + (4, O)T[WZ]
2810 +(130)T[w19w (1 0)T[w192w] + (4 0 T[ (4 O)T[w (2 O)T[19W4192 5]
+(1,0)T[19w3192 4 (4 O)T[0w202 3] + (1 O)T[ﬂw4192w] + (5 0)T[§w2192 4] (36,0)
PSL(3,2) 1 1 (9,0), (w,0)
[168, 42] local (1, O)U + (1, 1)T[§] + (4, O)T[w] + (7, O)T[,gw] + (1, 1)T[192w19w] (14, 2)
2934 2 (9,0), (w, 3 (es + €6))
local (1, O)U + (1, 1)T[,9] (1, 1)T[w] + (7, O)T[ﬂw] (10, 2)
3 (9,0), (w, 3(e1 +e2 +es + es5))
local (1,0)U + (1,1) 197 + (2,0)T10) + (7,0)T19. (11,1)
5(729) T T [0.0L0)
[216, 88] local (1,0)U + (1,0)T19; + (3,0) 7wy + (2, 1)T1g2) + (3,0) 19w + (1,0) T2, + (1, 0)T s,
2846 +(3, O)T[wz] + (3, O)T[mgzw] + (3, O)T[mgsw] + (4, )T[w4] (25,1)
2 1 (9,0), (w,0)
local (1,0)U + (1,0) 197 + (3,0) 11 + (2, l)T[,gz (3,0)T9u) + (1, O)Twzw] + (1, O)T[,gaw]
+(3,0)Ty 21 + (3,0) Ty 9201 + (3,0) T 934, + (4,0)T,4 (25,1)
A(216) 1 1 (9,0), (,0), (p, 0)
[216, 95] local (1 0)U + (1, O)Tw] + (2, 1)T[w] + (1, O)T[p] + (2, O)T[,gw] + (1, O)T[wp] + (4, O)Twz
2851 3, O)T[WZ] + (2 O)T[wp] + (3 O)Twzwsp (1 O)T[wpﬂw3p2] + (4 O)T[w p19w ol
+(4,0)Twpwp] + (2,0)T743 503, (31,1)

Table 2: Hodge numbers of heterotic orbifolds with non—Abelian point
group.




point group P Z— and Hodge numbers || origin of m; generators: || fundamental group
(Q-class) affine class || (A1, R(2D) G/(GF) A/AR m = S/(F)
S3 1-2 (6,6) 1 Z3 X Zg Z3 X Zg
2-2 (6,6) 1 Zs3 Zs3
3-2 (6,6) 1 Zs3 Zs3
Dy 1-3 (11,11) Zs 77 Zo x 77
1-5 (6,6) Zio Zs Zy
1-6 (2,2) Dy VA S
1-8 (17,5) Zs 1 Zs
1-9 (7, 7) Zg X Zg Z2 (Zg X Zg) X Z2
2-4 (9,3) Zo 1 Zo
2—-6 (4,4) Zo Zo Zy
2-8 (10,4) Zs 1 Zs
54 (4, 4) Zz Zg X Zz Z4 X Zz
5—6 (12,6) Zs 1 Zs
6-3 (12,6) 1 Zo Zo
6-4 (6,6) Zio 1 Zo
66 (4, 4) Zz Zg X Zz Z4 X Zz
6-8 (10,4) Zz Zz Zg X Zz
82 (6,6) 1 Zs Zs
9-1 (17,5) 1 Zo Zo
9-2 (6,6) 1 Zo Zo
9-3 (15,3) 1 Zo Zo
Ay 2-1 (11,3) 1 Zs Zs
2-2 (3,3) 1 Zy Zy
4-1 (7, 3) 1 Zg X Zg Zg X Zg
4-2 (5,5) 1 Zs Zs
5-1 (7,3) 1 Zs Zs
62 (3,3) 1 Zs Zs
QD1 3-4 (17,5) Zo 1 Zo
(Z4 X Zg) A Zz 1-11 (27, 3) Zz 1 Zz
1-12 (15,3) Zo 1 Zo
1-18 (17,5) Zo 1 Zo
1-19 (15,3) Zs 1 Zs
1-21 (12,6) Zs 1 Zs
1-22 (10,4) Zz X Zg 1 Zg X Zz
A(27) 1-3 (12,0) Zs 1 Zs
14 (4, 0) Zg X Zg 1 Zg X Zg
3-3 (12,0) Zs3 1 Zs3
34 (4, 0) Zg X Zg 1 Zg X Zg

Table 3: List of all non-trivial fundamental groups for orbifolds with non-Abelian P. The first
column specifies P and the second column enumerates the respective Z— and affine classes. In
the third column we list the Hodge numbers in order to identify those cases which allow for chiral
spectra, c.f. [54]. The forth and fifth column help to identify the origin of the generators of m;
from the orbifolding group G and from the lattice A, respectively. Finally, the last column lists 7.
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