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Two-fold Mellin-Barnes transforms of Usyukina-DavydyhevfuntionsBernd Kniehl (a); Igor Kondrashuk (b;); Eduardo A. Notte-Cuello (d);Ivan Parra Ferrada (e); Marko Rojas-Medar (b)(a) II. Institut fur Theoretishe Physik, Universitat Hamburg,Luruper Chaussee 149, 22761 Hamburg, Germany(b) Grupo de Matem�atia Apliada, Departamento de Cienias B�asias,Universidad del B��o-B��o, Campus Fernando May, Casilla 447, Chill�an, Chile() Faulty of Physis, University of Bielefeld, D-33501 Bielefeld, Germany(d) Departamento de Matem�atias, Faultad de Cienias, Universidad de La Serena,Av. Cisternas 1200, La Serena, Chile(e) Carrera de Pedagogia en Matem�atia, Faultad de Eduai�on y Humanidades,Universidad del B��o-B��o, Campus Castilla, Casilla 447, Chill�an, ChileAbstratIn our previous paper (Nul. Phys. B 870 (2013) 243) we showed that multi-fold Mellin-Barnes (MB) transforms of the Usyukina-Davydyhev (UD) funtions may be redued to two-fold MB transforms. The MB transforms were written there as polynomials of logarithms ofratios of squares of the external momenta with ertain oeÆients. We also showed that theseoeÆients have a ombinatori origin. In this paper we present an expliit formula for theseoeÆients. The proedure of reovering the oeÆients is based on taking the double uni-formlimit in ertain series of smooth funtions of two variables whih is onstruted aording to apre-determined iterative way. The result is obtained by using basi methods of mathematialanalysis. We observe that the �niteness of the limit of this iterative hain of smooth funtionsshould reet itself in other mathematial onstrutions, too, sine it is not related in any wayto the expliit form of the MB transforms.Keywords: Bethe-Salpeter equation; Mellin-Barnes transform; Usyukina-Davydyhev funtionsPACS: 02.30.Gp, 02.30.Nw, 02.30.Uu, 11.10.St
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1 IntrodutionMellin-Barnes transformation is an eÆient method for alulation of Feynman diagrams [1, 2, 3℄.This method played important role in multi-loop alulations for the maximally supersymmetriYang-Mills theory [4, 5℄ in whih the lass of ontributing master integrals for the Feynman diagramsis redued to the integrals orresponding to salar ladder diagrams [4℄ at least at the level of the�rst three loops in momentum spae.The salar ladder diagrams at any order in loops in d = 4 spae-time dimensions have beenstudied for the �rst time in Refs. [6, 7, 8℄ in momentum spae. The result of alulation ofthe momentum integrals are UD funtions [7, 8℄. Their MB transforms have been investigated inRefs. [9, 10℄. These funtions have remarkable properties, in partiular they possess invarianewith respet to Fourier transformation [11, 12℄. Later, this property has been generalized to anythree point Green's funtion in the massless theory via MB transform for an arbitrary spaetimedimension [9, 13℄. Due to this invariane with respet to Fourier transformation the UD funtionsappear in the results of alulation of the Green funtions in position spae [14, 15, 16, 17, 18, 19, 20℄.In Ref.[10℄ the multi-fold MB transforms of UD funtions have been redued to the two-foldMB transforms. This result allows us to simplify the analysis of the reursive property of the MBtransforms of the UD funtions to the analysis of the reursive property for the smooth funtionsthat appear in the integrand of the MB transformation [10℄. The MB transform of the UD funtionwith number n turns out to be a linear ombination of three MB transforms of the UD funtionwith number n� 1 where eah of these three MB transforms depends on two independent variables"1; "2 in its proper well-de�ned manner. The oeÆients in front of these ombinations of the MBtransforms with lower indies are singular in these two independent variables in the limit in whihthese variables vanish. However, these singularities anel eah other and the double uniform limitalways exists and is �nite for eah number n:This limit is a sum of powers of logarithms of ertain arguments multiplied by derivatives ofthe Euler �-funtion onstruted in a suh way that the sum of the power of logarithm and of thederivative order is a �xed number whih depends on the number of the orresponding UD funtionwhih in turn oinides with number of the rungs in the given ladder diagram. We have onstrutedthe reursive proedure but have not onsidered the MB transforms of the higher UD funtions inRef. [10℄. In the present paper we �nd the expliit form of the MB transforms of the higher UDfuntions by establishing the oeÆients in front of the powers of logarithms. The arguments oflogarithms are ratios of squares of the external inoming momenta of the ladder diagrams. As wehave mentioned in Ref. [10℄ the oeÆients have an origin in the ombinatoris and are ertainombinations of the ombinatori numbers Cnm:2 Reursive relations for MB transformsIn Ref. [10℄ the MB transform of the seond UD funtion has been found in terms of the doubleMB transform, IC du dv xu yvM (u;v)2 ("1; "2; "3) =J2 IC du dv xu yv �a("1)"2"3 y"2 [x"1�(�u� "1)�(�v + "1) + y"1�(�u+ "1)�(�v � "1)℄1



+a("3)"1"2 �x�"3�(�u+ "3)�(�v � "3) + y�"3�(�u� "3)�(�v + "3)�+a("2)"1"3 x"1 [x"2�(�u� "2)�(�v + "2) + y"2�(�u+ "2)�(�v � "2)℄����(�u)�(�v)�2(1 + u+ v); (1)where the de�nition a(") = [�(1� ")�(1 + ")℄�1 ; a(n)0 = (a("))(n)"=0has been introdued. In the limit of vanishing "i whih always are subjet to the ondition"1 + "2 + "3 = 0;we may write lim"2!0;"1!0 IC du dv xu yvM (u;v)2 ("1; "2; "3) =IC du dv xu yv�(�u)�(�v)�2(1 + u+ v) �32 (a(")�(�u� ")�(�v + "))(2)0 +32 ln xy (a(")�(�u� ")�(�v + "))00 + 14 ln2 xy�(�u)�(�v)� : (2)As we an see, a �nite limit exists. This is expetable, sine this expression has been onstrutedfrom another expression for whih a �nite limit exists.To be more onise, we introdue another notationM (u;v)1 (") � 12 [x"a(")�(�u� ")�(�v + ") + y"a(�")�(�u+ ")�(�v � ")℄��(�u)�(�v)�2(1 + u+ v):With this notation, we write instead of the previous integral relation the following relationIC du dv xu yvM (u;v)2 ("1; "2; "3) =J IC du dv xu yv � 1"2"3 y"2M (u;v)1 ("1) + 1"1"2M (u;v)1 (�"3) + 1"1"3x"1M (u;v)1 ("2)� :The formula of Ref.[10℄, relating the MB transformations of the third and the seond UDfuntions is IC du dv xu yvM (u;v)3 ("1; "2; "3) =IC du dv xu yv � 1"1"2x�"1y�"2M (u;v)2 ("1; "2; "3) + J"2"3x�"1M (u;v)2 ("1) + J"1"3 y�"2M (u;v)2 ("2)� ; (3)in whih we use the de�nitions of Ref.[10℄. The �nite limit of vanishing "i exists and is given bylim"2!0;"1!0 IC du dv xu yvM (u;v)3 ("1; "2; "3) =2



IC du dv xu yv�(�u)�(�v)�2(1 + u+ v) � 512 (a(")�(�u� ")�(�v + "))(4)0 +56 ln xy (a(")�(�u� ")�(�v + "))(3)0 + 12 ln2 xy (a(")�(�u� ")�(�v + "))(2)0+ 112 ln3 xy (a(")�(�u� ")�(�v + "))00� : (4)This limit should be taken after substituting the expression for M2 of Eq.(1) into the expressionfor M3 of Eq. (3). The oeÆient J is de�ned in Ref.[10℄ asJ = �(1� "1)�(1� "2)�(1� "3)�(1 + "1)�(1 + "2)�(1 + "3) : (5)Aording to formulae of Setion 4.4 of Ref.[10℄, we have the expression for the MB transformM4 of the fourth UD funtion in terms of the MB transform M3 of the third UD funtion asIC du dv xu yvM (u;v)4 ("1; "2; "3) = IC du dv xu yv J"2"3M (u;v)3 ("1)+ IC du dv xu yv 1"1"2M (u;v)3 ("1; "2; "3) + IC du dv xu yv J"1"3M (u;v)3 ("2) =IC du dv xu yv � J"2"3M (u;v)3 ("1) + 1"1"2M (u;v)3 ("1; "2; "3) + J"1"3M (u;v)3 ("2)� : (6)By going further aording to the onstrution desribed in Ref.[10℄ for the higher UD funtionswith number n > 4 we may writeIC du dv xu yvM (u;v)n ("1; "2; "3) = IC du dv xu yv J"2"3M (u;v)n�1 ("1)+ IC du dv xu yv 1"1"2M (u;v)n�1 ("1; "2; "3) + IC du dv xu yv J"1"3M (u;v)n�1 ("2)= IC du dv xu yv � J"2"3M (u;v)n�1 ("1) + 1"1"2M (u;v)n�1 ("1; "2; "3) + J"1"3M (u;v)n�1 ("2)� : (7)To simplify the presentation in the previous ladder onstrution for higher UD funtions wede�ne f(") = 12a(")�(�u� ")�(�v + ")�(�u)�(�v)�2(1 + u+ v): (8)Sine the ontour of integration in the MB transformations of UD funtions in Eqs.(1),(3) and(7) passes between the leftmost of the right poles and the rightmost of the left poles in the planes ofomplex variables u and v whih are variables of integration, we may work with the limits in Eqs.(2) and (4) at the level of integrands. The dependene on the integration variables u and v may beomitted to simplify the analysis sine this dependene on u and v follows from the dependene ofM1 on them for the higher number of n in Mn: Due to this observation it is onvenient to establisha new notation M (u;v)n ("1; "2; "3) � �n("1; "2; "3):3



We may analyse funtions �n("1; "2; "3) as ertain funtions of three variables and representthe ladder relations of Eqs.(6) and (7) in the form �1(") = x"f(") + y"f(�")�2("1; "2; "3) = J � 1"2"3 y"2�1("1) + 1"1"2�1(�"3) + 1"1"3x"1�1("2)��3("1; "2; "3) = 1"1"2 y�"2x�"1�2("1; "2; "3) + J"2"3x�"1�2("1) + J"1"3 y�"2�2("2)�4("1; "2; "3) = J"2"3�3("1) + 1"1"2�3("1; "2; "3) + J"1"3�3("2): (9)For an arbitrary number n > 4 we may write�n("1; "2; "3) = J"2"3�n�1("1) + 1"1"2�n�1("1; "2; "3) + J"1"3�n�1("2):In the next setion we alulate the values �n(0) of the �nite uniform double limit�n(0) = lim"1!0;"2!0�n("1; "2; "3):These values will orrespond to the representation of the MB transformations of UD funtionsdesribed in Conlusion of Ref.[10℄.3 �n(0) in terms of di�erential operatorAording to Eq. (9), the expression for �2 may expliitly be written asJ�1�2("1; "2; "3) = 1"2"3 y"2 [x"1f("1) + y"1f(�"1)℄ + 1"1"2 �x�"3f(�"3) + y�"3f("3)�+ 1"1"3x"1 [x"2f("2) + y"2f(�"2)℄ :To simplify the analysis, we introdue a notation ~�2("1; "2; "3) � y�"2x�"1�2("1; "2; "3): For thisquantity we may writeJ�1 ~�2("1; "2; "3) = 1"2"3 �f("1) + !�"1f(�"1)�+ 1"1"2 �!"2f("1 + "2) + !�"1f(�"1 � "2)�+ 1"1"3 [!"2f("2) + f(�"2)℄ ;where we have de�ned ! � x=y: For the future use, it is more onvenient to represent ~�2("1; "2; "3)in the formJ�1 ~�2("1; "2; "3) = !�"1"1 !"1+"2f("1 + "2)� !"1f("1)"2 + !�"1"1 f(�"1 � "2)� f(�"1)"2+ 1"1("1 + "2) �!�"1f(�"1) + f("1)� !"2f("2)� f(�"2)� :4



We an take the limit with respet to the seond variables "2 and the result is~�2("1) = lim"2!0 ~�2("1; "2; "3) = 1"1!�"1 (!"1f("1) + f(�"1))0+ 1"21 �f("1) + !�"1f(�"1)� 2f(0)� : (10)The quantity�2(0) = ~�2(0) = lim"2!0;"1!0 ~�2("1; "2; "3) = 12 ln2 !f(0) + 3 ln!f (1)(0) + 3f (2)(0) (11)may be written in another form�2(0) = 12 h2f (2)(0) + 2 ln!f (1)(0) + ln2 !f(0)i+ 2f (2)(0) + 2 ln!f (1)(0)= 12 hf (2)(") + !�" ln2 !f(�") + 2!�" ln!f (1)(�") + !�"f (2)(�")i"=0+ hln!f (1)(") + f (2)(") + !�" ln!f (1)(�") + !�"f (2)(�")i"=0= 12 ��2"!�"(!"f(") + f(�"))�"=0 + ��"!�"�"(!"f(") + f(�"))�"=0= 12 ��"[�"!�" + 2!�"�"℄(!"f(") + f(�"))�"=0 : (12)Neither this formula nor Eq. (11) play any important role in the further onstrution. However,representation (12) is neessary to observe that it is a partiular ase of the general formula for anarbitrary number n of �n(0):The next step is to do the following operationlim"2!0 �"2J�1 ~�2("1; "2; "3) = 12"1!�"1�2"1(!"1f("1) + f(�"1))� 1"31 (!�"1f(�"1) + f("1)� 2f(0))� 1"21 lim"2!0 �"2(!"2f("2) + f(�"2)): (13)As may be seen from Eq. (11), the value ~�2["1; "2; "3℄ does not have any singularity in variables "1and "2: The same statement is true for its derivative with respet to the variable "2:The operation (13) is neessary to �nd a value of the following term in the hain of funtions�n(0): Indeed, for �3 we may write�3("1; "2; "3) = 1"1"2 � ~�2("1; "2; "3)� J ~�2("1)�+ 1"1("1 + "2) �J ~�2("1)� J ~�2("2)� :Taking into aount Eq.(13), we may write�3("1) = lim"2!0 J�1�3("1; "2; "3) = 12"21!�"1�2"1(!"1f("1) + f(�"1))� 1"41 (!�"1f(�"1) + f("1)� 2f(0))� 1"31 lim"2!0 �"2(!"2f("2) + f(�"2))+ 1"21 � ~�2("1)� ~�2(0)� : (14)5



This quantity by onstrution does not have any singularity in the variable "1: The onstantslike ~�2(0) and lim"2!0 �"2(!"2f("2) + f(�"2)) are multiplied by the negative powers of "1 andshould disappear in Eq. (14) at the end. From Eq. (10) we onlude that the seond term inEq.(14) will be aneled by the orresponding term in ~�2("1) and we onlude from Eq. (14) that�3(0) = lim"2!0;"1!0 J�1�3("1; "2; "3) = lim"1!0 � 12"21!�"1�2"1(!"1f("1) + f(�"1))+ 1"31!�"1�"1 (!"1f("1) + f(�"1))� 1"31 lim"2!0 �"2(!"2f("2) + f(�"2))� 1"21 ~�2(0)� =lim"!0 14!�2" [4�"!�"�" + 6!�"�2" ℄(!"f(") + f(�")):As we an see, the result has a similar struture to Eq. (12), that is a di�erential operator ofertain struture ating on !"f(") + f(�"): We will show that suh a struture survives in moreompliated ases.Repeating for quantity �3("1; "2; "3) steps whih we did for ~�2("1; "2; "3) we may writelim"2!0 �"2J�1�3("1; "2; "3) = 16"21!�"1�3"1(!"1f("1) + f(�"1))+ 1"51 (!�"1f(�"1) + f("1)� 2f(0)) + 1"41 lim"2!0 �"2(!"2f("2) + f(�"2))� 12"31 lim"2!0 �2"2(!"2f("2) + f(�"2))� 1"31 � ~�2("1)� ~�2(0)�� 1"21 lim"2!0 �"2 ~�2("2): (15)Then, for �4 we obtain�4("1; "2; "3) = 1"1"2 (�3("1; "2; "3)� J�3("1)) + 1"1("1 + "2) (J�3("1)� J�3("2)) :Taking into aount Eq. (15) we may write an analog of Eq.(14) for �3 as�4("1) = lim"2!0 J�1�4("1; "2; "3) = 16"31!�"1�3"1(!"1f("1) + f(�"1))+ 1"61 (!�"1f(�"1) + f("1)� 2f(0)) + 1"51 lim"2!0 �"2(!"2f("2) + f(�"2))� 12"41 lim"2!0 �2"2(!"2f("2) + f(�"2))� 1"41 � ~�2("1)� ~�2(0)�� 1"31 lim"2!0 �"2 ~�2("2) + 1"21 (�3("1)��3(0)) : (16)This quantity by onstrution does not have any singularity in the variable "1: The onstants like~�2(0); �3(0); lim"2!0 �"2(!"2f("2) + f(�"2)) and lim"2!0 �2"2(!"2f("2) + f(�"2)) are multipliedby the negative powers of "1 and should �nally disappear in Eq. (16). From Eq. (14) we onludethat the seond term on the r.h.s. of Eq. (16) will be aneled by the orresponding term in �3("1);6



while the �rst term in the last line of Eq. (16) will be aneled by another term in �3("1): Weonlude from Eq. (16) that�4(0) = lim"2!0;"1!0 J�1�4("1; "2; "3) = lim"1!0 � 16"31!�"1�3"1(!"1f("1) + f(�"1))+ 12"41!�"1�2"1 (!"1f("1) + f(�"1))� 12"41 lim"2!0 �2"2(!"2f("2) + f(�"2))� 1"31 lim"2!0 �"2 ~�2("2)� 1"21�3(0)� == lim"!0 16!�3" (15�"!�"�2" + 20!�"�3" )(!"f(") + f(�")):We may proeed further for the higher number n and �nd the following relations~�2(0) = lim"!0 12!�" �C02�"!�"�0" + C12!�"�"� (!"f(") + f(�"))�3(0) = lim"!0 14!�2" �C14�"!�"�" + C24!�"�2" � (!"f(") + f(�"))�4(0) = lim"!0 16!�3" �C26�"!�"�2" + C36!�"�3" � (!"f(") + f(�")):The result for an arbitrary n > 4 is�n(0) = lim"!0 1(2(n� 1))!�n�1" hCn�22(n�1)�"!�"�n�2" + Cn�12(n�1)!�"�n�1" i (!"f(") + f(�")):4 ConlusionThe expliit form of the oeÆients found in the present paper allows us on one hand, to write asum of all the ladder diagrams whih presents the solution to the Bethe-Salpeter equation in ase iff is hosen to be Euler � funtion as in Ref. [21℄, and on the other hand, to write the expliit formof the integration formulae derived in Ref. [10℄. All the values �n(0) have been found in the formof the di�erential operators ating on the �rst term of the hain of MB transforms. It is plausiblethat for other funtions f distint from � funtion, these reursive relations may be mapped toreursive relations of other integrable systems in quantum mehanis or ondensed matter theory.As the onsequene of the main result of the paper, we onlude that the higher UD funtions anbe obtained via appliation of ertain di�erential operator to a simple generalization of the �rstUD funtion.AknowledgmentsThe work of B.A.K. was supported in part by the German Siene Foundation (DFG) withinthe Collaborative Researh Center 676 \Partiles, Strings and the Early Universe" and by theGerman Federal Ministry for Eduation and Researh (BMBF) through Grant No. 05H12GUE.I.K. was supported by Fondeyt (Chile) grants 1040368, 1050512, 1121030, by DIUBB (Chile)Grants 121909 GI/C-UBB and 102609. His work is also supported by Universidad del Bio-Bio andMinisterio de Eduaion (Chile) within the projet MECESUP UBB0704-PD018. He is grateful to7



Physis Faulty of Bielefeld University for aepting him as a visiting sientist, for kind hospitalityand exellent onditions of work. The work of E.A.N.C. was supported in part by Direi�on deInvestigai�on de la Universidad de La Serena (DIULS) through Grant No. PR 12152. I.P.F. issupported by Fondeyt (Chile) Grant 1121030. The work of M.R.M. was supported by Projet No.MTM2012-32325, by Ministerio de Cienia e Innovai�on, Espa~na, and Fondeyt (Chile) Grant Nos.1080628 and 1120260, and by DIUBB (Chile) Grant No. 121909 GI/C-UBB.Referenes[1℄ V. A. Smirnov, \Evaluating Feynman Integrals," Springer Trats Mod. Phys. 211 (2004) 1[2℄ E. E. Boos and A. I. Davydyhev, \A Method of evaluating massive Feynman integrals," Theor.Math. Phys. 89 (1991) 1052 [Teor. Mat. Fiz. 89 (1991) 56℄.[3℄ A. I. Davydyhev, \Reursive algorithm of evaluating vertex type Feynman integrals," J. Phys.A 25, 5587 (1992).[4℄ Z. Bern, L. J. Dixon and V. A. Smirnov, \Iteration of planar amplitudes in maximally su-persymmetri Yang-Mills theory at three loops and beyond," Phys. Rev. D 72 (2005) 085001[hep-th/0505205℄.[5℄ V. Del Dua, C. Duhr and V. A. Smirnov, \An Analyti Result for the Two-Loop HexagonWilson Loop in N = 4 SYM," JHEP 1003 (2010) 099 [arXiv:0911.5332 [hep-ph℄℄.[6℄ V. V. Belokurov and N. I. Usyukina, \Calulation Of Ladder Diagrams In Arbitrary Order,"J. Phys. A 16 (1983) 2811.[7℄ N. I. Usyukina and A. I. Davydyhev, \An Approah to the evaluation of three and four pointladder diagrams," Phys. Lett. B 298 (1993) 363.[8℄ N. I. Usyukina and A. I. Davydyhev, \Exat results for three and four point ladder diagramswith an arbitrary number of rungs," Phys. Lett. B 305 (1993) 136.[9℄ P. Allendes, N. Guerrero, I. Kondrashuk and E. A. Notte Cuello, \New four-dimensional inte-grals by Mellin-Barnes transform," J. Math. Phys. 51 (2010) 052304 [arXiv:0910.4805 [hep-th℄℄.[10℄ P. Allendes, B. Kniehl, I. Kondrashuk, E. A. Notte Cuello and M. Rojas Medar, \Solu-tion to Bethe-Salpeter equation via Mellin-Barnes transform," Nul. Phys. B 870 (2013) 243[arXiv:1205.6257 [hep-th℄℄.[11℄ I. Kondrashuk and A. Kotikov, \Fourier transforms of UD integrals," arXiv:0802.3468 [hep-th℄,in Analysis and Mathematial Physis, Birkh�auser Book Series Trends in Mathematis, editedby B. Gustafsson and A. Vasil'ev, (Birkh�auser, Basel, Switzerland, 2009), pp. 337-348[12℄ I. Kondrashuk and A. Kotikov, \Triangle UD integrals in the position spae," JHEP 0808(2008) 106 [arXiv:0803.3420 [hep-th℄℄.[13℄ I. Kondrashuk and A. Vergara, \Transformations of triangle ladder diagrams," JHEP 1003(2010) 051 [arXiv:0911.1979 [hep-th℄℄. 8



[14℄ G. Cveti�, I. Kondrashuk and I. Shmidt, \E�etive ation of dressed mean �elds for N = 4super-Yang-Mills theory,"arXiv:hep-th/0407251, Mod. Phys. Lett. A 21 (2006) 1127[15℄ G. Cveti�, I. Kondrashuk, A. Kotikov and I. Shmidt, \Towards the two-loop L vertex inLandau gauge," Int. J. Mod. Phys. A 22 (2007) 1905 [arXiv:hep-th/0604112℄.[16℄ G. Cveti and I. Kondrashuk, \Further results for the two-loop L vertex in the Landaugauge," JHEP 0802 (2008) 023 [arXiv:hep-th/0703138℄.[17℄ G. Cveti and I. Kondrashuk, \Gluon self-interation in the position spae in Landau gauge,"Int. J. Mod. Phys. A 23 (2008) 4145 [arXiv:0710.5762 [hep-th℄℄.[18℄ I. Mitra, \On onformal invariant integrals involving spin one-half and spin-one partiles," J.Phys. A 41 (2008) 315401 [arXiv:0803.2630 [hep-th℄℄.[19℄ I. Mitra, \Three-point Green funtion of massless QED in position spae to lowest order," J.Phys. A 42 (2009) 035404 [arXiv:0808.2448 [hep-th℄℄.[20℄ I. Mitra, \External leg amputation in onformal invariant three-point funtion," Eur. Phys. J.C 71, 1621 (2011) [arXiv:0907.1769 [hep-th℄℄.[21℄ D. J. Broadhurst and A. I. Davydyhev, \Exponential suppression with four legs and an in�nityof loops," Nul. Phys. Pro. Suppl. 205-206 (2010) 326 [arXiv:1007.0237 [hep-th℄℄.

9


