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Abstract

In our previous paper (Nucl. Phys. B 870 (2013) 243) we showed that multi-fold Mellin-
Barnes (MB) transforms of the Usyukina-Davydychev (UD) functions may be reduced to two-
fold MB transforms. The MB transforms were written there as polynomials of logarithms of
ratios of squares of the external momenta with certain coefficients. We also showed that these
coefficients have a combinatoric origin. In this paper we present an explicit formula for these
coefficients. The procedure of recovering the coefficients is based on taking the double uni-form
limit in certain series of smooth functions of two variables which is constructed according to a
pre-determined iterative way. The result is obtained by using basic methods of mathematical
analysis. We observe that the finiteness of the limit of this iterative chain of smooth functions
should reflect itself in other mathematical constructions, too, since it is not related in any way
to the explicit form of the MB transforms.
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1 Introduction

Mellin-Barnes transformation is an efficient method for calculation of Feynman diagrams [1, 2, 3].
This method played important role in multi-loop calculations for the maximally supersymmetric
Yang-Mills theory [4, 5] in which the class of contributing master integrals for the Feynman diagrams
is reduced to the integrals corresponding to scalar ladder diagrams [4] at least at the level of the
first three loops in momentum space.

The scalar ladder diagrams at any order in loops in d = 4 space-time dimensions have been
studied for the first time in Refs. [6, 7, 8] in momentum space. The result of calculation of
the momentum integrals are UD functions [7, 8]. Their MB transforms have been investigated in
Refs. [9, 10]. These functions have remarkable properties, in particular they possess invariance
with respect to Fourier transformation [11, 12]. Later, this property has been generalized to any
three point Green’s function in the massless theory via MB transform for an arbitrary spacetime
dimension [9, 13]. Due to this invariance with respect to Fourier transformation the UD functions
appear in the results of calculation of the Green functions in position space [14, 15, 16, 17, 18, 19, 20].

In Ref.[10] the multi-fold MB transforms of UD functions have been reduced to the two-fold
MB transforms. This result allows us to simplify the analysis of the recursive property of the MB
transforms of the UD functions to the analysis of the recursive property for the smooth functions
that appear in the integrand of the MB transformation [10]. The MB transform of the UD function
with number n turns out to be a linear combination of three MB transforms of the UD function
with number n — 1 where each of these three MB transforms depends on two independent variables
€1,€2 in its proper well-defined manner. The coefficients in front of these combinations of the MB
transforms with lower indices are singular in these two independent variables in the limit in which
these variables vanish. However, these singularities cancel each other and the double uniform limit
always exists and is finite for each number n.

This limit is a sum of powers of logarithms of certain arguments multiplied by derivatives of
the Euler I'-function constructed in a such way that the sum of the power of logarithm and of the
derivative order is a fixed number which depends on the number of the corresponding UD function
which in turn coincides with number of the rungs in the given ladder diagram. We have constructed
the recursive procedure but have not considered the MB transforms of the higher UD functions in
Ref. [10]. In the present paper we find the explicit form of the MB transforms of the higher UD
functions by establishing the coefficients in front of the powers of logarithms. The arguments of
logarithms are ratios of squares of the external incoming momenta of the ladder diagrams. As we
have mentioned in Ref. [10] the coefficients have an origin in the combinatorics and are certain
combinations of the combinatoric numbers C7,.

2 Recursive relations for MB transforms

In Ref. [10] the MB transform of the second UD function has been found in terms of the double
MB transform,
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has been introduced. In the limit of vanishing ¢; which always are subject to the condition
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we may write
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As we can see, a finite limit exists. This is expectable, since this expression has been constructed
from another expression for which a finite limit exists.
To be more concise, we introduce another notation
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With this notation, we write instead of the previous integral relation the following relation
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The formula of Ref.[10], relating the MB transformations of the third and the second UD
functions is
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in which we use the definitions of Ref.[10]. The finite limit of vanishing ¢; exists and is given by
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This limit should be taken after substituting the expression for M> of Eq.(1) into the expression
for M3 of Eq. (3). The coefficient J is defined in Ref.[10] as
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According to formulae of Section 4.4 of Ref.[10], we have the expression for the MB transform
My, of the fourth UD function in terms of the MB transform M3 of the third UD function as
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By going further according to the construction described in Ref.[10] for the higher UD functions
with number n > 4 we may write
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To simplify the presentation in the previous ladder construction for higher UD functions we
define

o) = %a(s)f‘(—u )T (=0 + )T (—w) D (—0) T2 (1 + u + v). (8)

Since the contour of integration in the MB transformations of UD functions in Eqgs.(1),(3) and
(7) passes between the leftmost of the right poles and the rightmost of the left poles in the planes of
complex variables v and v which are variables of integration, we may work with the limits in Egs.
(2) and (4) at the level of integrands. The dependence on the integration variables v and v may be
omitted to simplify the analysis since this dependence on u and v follows from the dependence of
M on them for the higher number of n in M,,. Due to this observation it is convenient to establish
a new notation
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We may analyse functions A,,(g1,€2,€3) as certain functions of three variables and represent
the ladder relations of Eqgs.(6) and (7) in the form
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For an arbitrary number n > 4 we may write
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In the next section we calculate the values A, (0) of the finite uniform double limit

An(O) = E1—>1(%g‘12—>0 An(El,Sg,Eg).

These values will correspond to the representation of the MB transformations of UD functions
described in Conclusion of Ref.[10].

3 A,(0) in terms of differential operator

According to Eq. (9), the expression for Ay may explicitly be written as
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To simplify the analysis, we introduce a notation A2(81,62,83) =y 22"t Ay(e1,€2,€3). For this
quantity we may write
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where we have defined w = z/y. For the future use, it is more convenient to represent As(e1,e2,63)
in the form
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We can take the limit with respect to the second variables €2 and the result is
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Neither this formula nor Eq. (11) play any important role in the further construction. However,
representation (12) is necessary to observe that it is a particular case of the general formula for an
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arbitrary number n of A, (0).
The next step is to do the following operation
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As may be seen from Eq. (11), the value Ay[e;, €2, €3] does not have any singularity in variables £,

and e5. The same statement is true for its derivative with respect to the variable &5.
The operation (13) is necessary to find a value of the following term in the chain of functions
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This quantity by construction does not have any singularity in the variable €;. The constants
like Ay(0) and lim., . 8.,(w" f(e2) + f(—€2)) are multiplied by the negative powers of ; and
should disappear in Eq. (14) at the end. From Eq. (10) we conclude that the second term in
Eq.(14) will be canceled by the corresponding term in Ay(e;) and we conclude from Eq. (14) that
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As we can see, the result has a similar structure to Eq. (12), that is a differential operator of
certain structure acting on w®f(e) + f(—¢). We will show that such a structure survives in more

complicated cases. _
Repeating for quantity Asz(e1,€2,€3) steps which we did for As(e1,€2,£3) we may write
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Then, for A4 we obtain
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Taking into account Eq. (15) we may write an analog of Eq.(14) for A3 as
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This quantity by construction does not have any singularity in the variable ;. The constants like
A2(0), A3(0), lim., 0 -, (w2 f(e2) + f(—e2)) and lim., 0 02, (w2 f(2) + f(—€2)) are multiplied
by the negative powers of £; and should finally disappear in Eq. (16). From Eq. (14) we conclude
that the second term on the r.h.s. of Eq. (16) will be canceled by the corresponding term in Az (ey),



while the first term in the last line of Eq. (16) will be canceled by another term in As(e1). We
conclude from Eq. (16) that
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We may proceed further for the higher number n and find the following relations
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The result for an arbitrary n > 4 is
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4 Conclusion

The explicit form of the coefficients found in the present paper allows us on one hand, to write a
sum of all the ladder diagrams which presents the solution to the Bethe-Salpeter equation in case if
f is chosen to be Euler T function as in Ref. [21], and on the other hand, to write the explicit form
of the integration formulae derived in Ref. [10]. All the values A, (0) have been found in the form
of the differential operators acting on the first term of the chain of MB transforms. It is plausible
that for other functions f distinct from I' function, these recursive relations may be mapped to
recursive relations of other integrable systems in quantum mechanics or condensed matter theory.
As the consequence of the main result of the paper, we conclude that the higher UD functions can
be obtained via application of certain differential operator to a simple generalization of the first
UD function.
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