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DESY 13-060CERN-PH-TH/2013-062On the non-linear sale ofosmologial perturbation theoryDiego Blasa, Mathias Garnyb, Thomas Konstandinba CERN, Theory Division, 1211 Geneva, Switzerlandb DESY, Notkestr. 85, 22607 Hamburg, GermanyAbstratWe disuss the onvergene of osmologial perturbation theory. Weprove that the polynomial enhanement of the non-linear orretionsexpeted from the e�ets of soft modes is absent in equal-time or-relators like the power or bispetrum. We �rst show this at leadingorder by resumming the most important orretions of soft modes toan arbitrary skeleton of hard utuations. We derive the same resultin the eikonal approximation, whih also allows us to show the abseneof enhanement at any order. We omplement the proof by an expliitalulation of the power spetrum at two-loop order, and by furthernumerial heks at higher orders. Using these insights, we argue thatthe modi�ation of the power spetrum from soft modes orrespondsat most to logarithmi orretions. Finally, we disuss the asymptotibehavior in the large and small momentum regimes and identify theexpansion parameter pertinent to non-linear orretions.
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1 IntrodutionThe theory of osmologial perturbations is the standard tool to understandthe emergene of the large sale struture of the Universe [1, 2℄. This ap-proah is based on the assumption that small perturbations around an other-wise homogeneous and isotropi Universe grow with time due to their gravi-tational interation. This growth is partiularly eÆient for sales inside theHubble horizon and in the matter-dominated epoh [1℄. The tiny amplitudeof the primordial perturbations allows for a perturbative treatment of thisnon-linear problem, but the aforementioned growth eventually invalidatesthis approah. The sale at whih this happens has been traditionally iden-ti�ed with moments of the linear power spetrum. A partiularly interestingsale is reated by the enhanement of non-linearity oming from the ou-pling of modes of small momenta (soft) to the modes of the sale of interest(hard), k�2NL � Z dqPL(q; �) ; (1)where PL(q; �) is the linear power spetrum at time � (we will be morepreise about this point below). To study physis beyond this sale, it seemsunavoidable to resort to non-perturbative shemes. Partiularly well-suitedto deal with this e�et is the sheme known as renormalized osmologialperturbation theory (RPT) [3℄. This systemati approah to osmologialperturbation theory is based on the introdution of the non-linear propagator,for whih the non-linear e�ets assoiated to the sale (1) were derived in [4℄.These result in an exponential suppression ontrolled by kNL that was alsoonjetured to be the leading e�et in the matter power spetrum.The seminal work [3℄ was followed by many other resummation shemesput forward to ope with non-linear e�ets in an analytial way (i.e. withoutresorting to large N -body simulations) [5, 6, 7, 8, 9, 10℄. The hope is thatafter resummation of a subset of diagrams the resulting expansion is underbetter ontrol. For shemes related to the e�ets of the sale (1) in the powerspetrum this expetation is at odds with two results. First, it is known sinea long time that the leading ontributions to the power spetrum from softmodes at arbitrary loop order anel [11, 12℄. In the above mentioned re-summation shemes this anellation is not expliit. Seond, one an try tosystematially understand the e�ets of soft modes on hard modes by usingthe eikonal approximation [13℄. In this ase, it was shown that the men-tioned suppression for the propagator is present while the power spetrum is2



unhanged [14℄. A �rst aim of this work is to reonile both approahes andunderstand how the eikonal result an be reovered from the diagrammatitehnique of resummation of soft modes.The anellation of the e�ets from soft modes suggests that the onver-gene properties of standard perturbation theory (SPT) are not amelioratedby resuming the soft modes. It also suggests that the e�ets in the powerspetrum assoiated to kNL are spurious, whih immediately rises the ques-tion of what is the real parameter governing the non-linear orretions forthis observable, also in SPT. It is simpler to answer this point after imple-menting the eikonal approximation in a ontrollable way. We will do thisin the seond part of the paper. The sale (or parameter) ontrolling thenon-linear dynamis in this ase, and not (1), should be the one tamed byany resummation sheme with a better validity than the standard ase forthe non-linear dynamis.Our work is organized as follows: Setion 2 lari�es our notation andreviews standard perturbation theory (SPT). Next, setion 3 disusses thetwo main resummation shemes we are onerned with, namely renormalizedperturbation theory (RPT) and the eikonal approximation. In setion 4 wegeneralize the resummation of RPT to a larger lass of soft orretions thatare relevant to the power spetrum and other equal-time orrelators. Thismotivates the disussion of next-to-leading order orretions in the eikonalapproximation presented in setion 5. The main result is that no enhane-ment from soft verties should be present in equal-time orrelators. Finally,we further support this laims by expliit analyti and numerial results pre-sented in setion 6 before we onlude in setion 7. Some tehnial detailsare relegated to the Appendies.2 Standard osmologial perturbation theoryIn this setion we set up the system of equations relevant for our disussion.As stated in the introdution, we are interested in understanding some fea-tures about the behavior of osmologial perturbations when their amplitudegrows to the point that non-linear orretions are important. For this prob-lem it is enough to onsider sub-horizon perturbations in a matter-dominated3



era. We will also assume1 that the matter in the Universe is a perfet uiddesribed by a density �eld �(x; �) = �(t)(1 + Æ(x; �)) and a veloity �eldvi(x; �) de�ned at a onformal time � � R dt=a(t). In this ase the New-tonian osmologial perturbations yield an aurate desription [1℄. Finally,we will redue our analysis to the ase without vortiity where � � �ivi. Inthis ase, the perturbations an be written in a two-omponent form [2, 17℄,��	a(k; �) + 
ab	b(k; �) = ab(k1; k2)	b(k1; �)	(k2; �) ; (2)where 	1(k; �) � Æ(k; �); 	2(k; �) � � �(k; �)f+(�)H ; (3)and we have introdued the funtions H � d ln a(�)d� and f+(�) � d lnD+(�)d ln a(�) andthe time � � lnD+(�), with D+(�) being the linear growing mode of thedensity ontrast ÆL(k; �) = D+(�)Æ0(k): (4)The momenta k; k1; k2 are vetors and the equation is understood as beingsummed over double indies and integrated over the two momenta k1 andk2 with the measure Æ(3)(k � k1 � k2) on the right-hand side. This �xes ouronvention for Fourier transforms. In the following we only write indies andintegrations when the notation of an equation ould be ambiguous.The matrix  onstituting the mode oupling an be written in symmetriform with the elements121 = �(k1; k2)=2; 112 = �(k2; k1)=2; 222 = �(k1; k2); (5)with �(k1; k2) � (k1 + k2) � k1k21 ; (6)�(k1; k2) � (k1 + k2)2k1 � k22k21k22 ; (7)and all other elements vanishing.1Deviations from this assumption an be taken into aount by using the e�etivelanguage of [15℄ (see also [16℄). Sine we fous on the �rst non-linear e�ets those deviationsare not important for our results. 4



In the ase where one of the momenta owing into the vertex is soft(k1 � k or k2 � k) the previous vertex redues toijk ! �ijk � Æj2Æik k2 � k12k21 + Æk2Æij k2 � k12k22 : (8)The matrix 
 depends on the underlying osmology and an depend on theonformal time � (but not on momentum). It may also ontain informationabout modi�ations of gravity [9℄. Remarkably, our main results will be validfor any 
. For ompleteness let us remind that in a at matter-dominatedEinstein-de Sitter Universe for whih 
m = 1 and D+(�) = a(�) it reads
 = � 0 �1�3=2 1=2� : (9)Note also that the ommon Zel'dovih approximation [18℄ di�ers from theexat dynamis (2) only by the hoie of the 
-matrix [2, 19, 20℄
ZA = �0 �10 �1� : (10)The equations (2) an be solved perturbatively by treating the right side ofthe equation that mixes modes with di�erent momentum as a perturbationto the linear equation ��	L(k; �) + 
(�)	L(k; �) = 0 : (11)This perturbative sheme, known as standard perturbation theory or SPT, isbased on the assumption that the amplitude of the perturbations 	 is small.The solution to the previous equation an be easily written in term of theGreen's funtion and the initial onditions 	(k; �0) as	L(k; �) = e� R ��0 d~�
(~�)	(k; �0)�(� � �0) � g(�; �0)	(k; �0) ; (12)where we used the notation �(x) for the Heaviside step funtion to avoidonfusion with the veloity �eld �. If the matrix 
 is independent of �, theGreen's funtion depends only on the di�erene � � �0. For the ase (9), itsexpliit form isg(�; �0) = e(���0)5 �3 23 2��(���0)+ e�3(���0)=25 � 2 �2�3 3 ��(���0) ; (13)5



from where we an readily identify the growing and the deaying mode. Thesolution to the equation (2) an formally be written	a(k; �) = gab(�; �0)	b(k; �0)+ Z ��0 gab(�; ��)bd(k1; k2)	(k1; ��)	d(k2; ��) : (14)The perturbative solution (in powers of 	a(k; �0)) an then be obtained bysuessively reinserting the left-hand side into the mode funtion	a(k; �) = gab(�; �0)	b(k; �0)+ Z ��0 d�� g(�; ��)abbd(k1; k2) [ge(��; �0)	e(k1; �0)℄ [gdf (��; �0)	f(k2; �0)℄+ � � � : (15)Physial observables an be evaluated by performing statistial averages overthese �elds. A partiularly useful one is the power spetrum given byh	a(k1; �)	b(k2; �)i � Æ(3)(k1 + k2)Pab(k1; �): (16)The onservation of momentum in the mode oupling term ensures that thetwo point orrelator (16) is proportional to the delta funtion at all times.This reets the translation invariane of the system. The leading orderontribution to it in SPT is the so-alled linear power spetrumPLab(�) � ga(�; �0)gbd(�; �0)P 0d(k) : (17)where we have introdued the initial power spetrumh	a(k1; �0)	b(k2; �0)i � Æ(3)(k1 + k2)P 0ab(k1) : (18)Thus, Pab(k; �) = PLab(�) + � � � : (19)In the following we only deal with Gaussian initial onditions that are uniquelyspei�ed by the initial power spetrum P 0(k).The perturbative expansion an be pitorially represented by lassialFeynman rules [3℄ (see also [21, 22℄ for the similar treatment of the uidequations in the ontext of turbulene). The two building bloks are thevertex and the Green's funtion displayed in Fig. 1. The ausal struture ofthe integral (15) enfores a ow of time that is indiated by the arrow. Theinitial power spetrum is indiated by a box. The leading topologies thatontribute to the power spetrum are shown in Fig. 2.6



(η, a) (η̄, b)

gab(η, η̄)

(k1, b)

(k2, c)

γabc(k1, k2)
P 0

ab
(k)

(k1 + k2, a) (−k, b)(k, a)Figure 1: Building bloks of the Feynman rules of standard perturbation theory.
Figure 2: All tree level and one-loop ontributions to the power spetrum.3 Renormalized perturbation theory and theeikonal approximationThe expansion in loops is reasonable even though the equations (2) do nothave an intrinsi small expansion parameter, a oupling onstant for instane.This is beause every loop omes with an additional initial power spetrumin SPT. This an serve as an expansion parameter as long as the powerspetrum is small in adequate units.Even in the limit of a small initial power spetrum, the onvergene ofthe perturbation theory is not guaranteed. The �rst reason is obvious fromEq. (15): the initial power spetrum appears in the perturbative expansionmultiplied by the Green's funtion. Sine the latter ontains a growing mode,perturbation theory tends to be worse behave as time grows. Another e�etthat an potentially lead to the breakdown of perturbation theory is relatedto the enhanement of the vertex (oupling) between hard and soft modes.For example, the diagram in Fig. 3 sales for k � q asgab(�; �0) Z ��0 d�� Z ���0 d~� g2(��; �0)g2d(~�; �0) Z d3q (k � q)2q4 P 0d(q) : (20)So even if the �nal integral is �nite and the growing of the Green's funtionsmall, there results an enhanement from attahing more soft loops to a line7



(k, b)(k, a)

q−q

k + qFigure 3: One-loop ontribution to the propagator.with momentum k if k is large enough, i.e. if k �d � 1, where�2d(�; �) � 1k2 Z � d3q (k � q)2q4 PL(q; �) = 4�3 Z � dq PL(q; �) ; (21)where PL � PL22 and � represents the sale at whih we ut-o� the initialpower spetrum. This is preisely the sale of non-linearity disussed in theintrodution, Eq. (1). In partiular, k2�2d an be larger than the dimensionlessvariane of the density �eld [12℄�2l (�; �) � 4� Z � dq q2PL(q; �); (22)whih would ontrol the non-linear sale in the absene of vertex enhane-ment2. At this stage it seems that to be able to desribe physis beyond thesale �d one should �rst be able to sum up all soft ontributions to the prop-agation of hard modes. One this is done, one expets to �nd a perturbationtheory with better onvergene properties. This idea was put in a �rm basisin the theory of renormalized osmologial perturbations (RPT) [3, 4℄ (seealso [21, 22℄ for similar resummations in the ase of uid dynamis). In thisase, the role of the Green's funtion (13) in the Feynman rules is played bythe propagator G(1)ab (k; �; ��)Æ(3)(k � k1) � � Æ	a(k; �)Æ	b(k1; ��)� ; (23)that in terms of perturbation theory ontains all diagrams with exatly oneinoming and one outgoing line and arbitrary (soft or not) loop orretionsto it 3.2We hose the notation for these two quantities that best adapts to previous literature.We also de�ne �d;l(�) � �d;l(�; � = 0) for the values today, and �d � �d(� ! 1);note that this limit exists for realisti power spetra. In ontrast, �l(�) has a logarithmisensitivity to �, as will be disussed in detail in setion 7.3The meaning of the supersript (1) is lari�ed below.8



As we will review in the next setion, the leading behavior for large mo-menta k (and onsidering only the ontribution from the growing mode) anbe resummed for the propagator of renormalized perturbation theory [3℄G(1)RPT (k; �; ��) = gab(�; ��) exp��12k2�2d(a(�)� a(��))2� ; (24)where we used a(�) ' e� and set a = 1 today. Even if the vertex is notmodi�ed in this framework, the steep suppression of the propagator at large k,in priniple ompensates the enhanement provided by soft loops attahed tothis propagator, whih makes one expet a better onvergene of perturbationtheory in this ase, with the non-linear sale set beyond �d.The perturbative expansion in RPT an be formulated in terms of then-point propagators de�ned as [23℄G(n)aai :::an(ki; �; ��)Æ(3)(k �X ki) � 1n! � Æn	a(k; �)Æ	a1(k1; ��) � � � Æ	an(kn; ��)� : (25)In terms of those, the power spetrum at late times an be written asPab(k; �) = Xn n!  nYi=1 Z d3ki P 0aibi(ki)! Æ(3)(k �X ki)�G(n)aa1:::an(ki; �; �0)G(n)bb1:::bn(�ki; �; �0) : (26)Pitorially, G(n) is the sum of all diagrams with n inoming lines and oneoutgoing line. As long as the resummed n-point funtions G(n) are wellbehaved for large k, the sum should onverge. It was shown in [23℄ thatthe orretions from soft modes to the individual n-point propagators alsogenerate an exponential suppression related to the sale �d.For the power spetrum and related observables, the previous resultsprovide only a partial resummation of the e�ets of soft modes. This isommonly enoded in an expression of the form (ompare with (19))P = �G(1)RPT�2 P 0 + PMC ; (27)where the piee PMC ontains all the ontributions from other diagrams.From the previous arguments, one may expet PMC to be better behavedthan the orretions in Eq. (19) and that RPT with the leading e�et of the9



soft modes to the propagator resummed have better onvergene propertiesthan SPT.To hek this, one needs to deal with all soft orretions to the hardskeletons behind observables. This is the purpose of the eikonal approxima-tion [13℄. The main observation of this approah is that in (2) the ontribu-tion from the soft modes to the mode oupling is approximated byZ d3k1d3k2 ab(k1; k2)	b(k1; �)	(k2; �)Æ(3)(k � k1 � k2) (28)' 	a(k; �) Z d3q k � qq2 	2(q; �) : (29)Using this relation in (2) leads to the result (f. (12))	(k; �) = g(�; �0) exp �Z ��0 d~� Z d3qk � qq2 	2(q; ~�)�	(k; �0) : (30)In turn, for the propagator (23) in the eikonal approximation this yieldsimmediatelyG(1)eikonal(k; �; ��) = g(�; ��)�exp �Z ��� d~� Z d3qk � qq2 	2(q; ~�)�� ; (31)that for Gaussian initial onditions is (in leading order, see (12)) given bythe seond umulantG(1)eikonal(k; �; ��) = g(�; ��) exp�22 � ; (32)with 2 �*�Z ��� d~� Z d3qk � qq2 	2(q; ~�)�2+onneted '� Z ��� d�̂ d~� g2a(�̂; �0)g2b(~�; �0) Z d3q (k � q)2q4 P 0ab(q) ; (33)To ompare it with (24), we onsider only the growing mode, for whih2 = �k2�2d(a(�)� a(��))2; (34)whih shows that the eikonal approximation indeed resums the leading softorretions. A possible physial interpretation of this propagator is that the10



k k k kFigure 4: Two-loop ontributions to the propagator.modes of hard momentum k are sattered by the bakground of soft modes.This deorrelates the modes over time what leads to the exponential fall-o�of the propagator for late times.One of the advantages of the eikonal approximation is that it allows to gobeyond the propagator and ompute the e�ets of the soft modes in the powerspetrum [13℄. Sine the exponent in (30) is odd under a sign ip of k and thepower spetrum involves the ombination h	(k)	(k0)i / Æ(k + k0), the twoexponential fators anel and the resulting power spetrum is unsuppressed.Hene, the omplete resummation of the leading e�et of soft modes does notprodue an expression as (27) (see also (26)), but leaves (19) unhanged [13℄.This result an also be derived in the diagrammati language of RPT, whihwe do in the next setion.4 Resummation of general skeleton diagramsLet us start this setion by reviewing the resummation of the leading ontri-butions to the propagator as �rst given in [3℄. We want to resum all leadingsoft orretions in the limit of large k. A vertex with one soft and one hardinoming mode is enhaned by a fator k � q=q2, while a vertex with twosimilar modes is not enhaned. Hene, for �xed loop order the dominantontribution omes from attahing all soft modes diretly to the hard modethat ows through the linearized propagator. Possible diagrams at one andtwo loop order are shown in Figs. 3 and 4. In the limit of soft orretions,the vertex is proportional to the Kroneker delta (8). The inowing momen-tum an be negleted at leading order and the Green's funtions g(�i+1; �i)along the hard mode ombine to one linearized propagator involving onlythe very �rst and the very last time, g(�; �0). This is a generi result thathinges on the group struture of the propagators. In partiular it is valid11



q1 q2 q2n−1q2n

· · ·

k, η0k, η
k

Figure 5: Soft modes attahed to a hard linearized propagator. If the inow ofmomentum is negleted, the order of the verties is irrelevant.for any expansion history of the Universe and beyond the restrition to thegrowing mode ase. A diagram with n loops involves attahing 2n linearizedpropagators of the form depited in Fig. 5. As long as the inow of softmomentum is negleted, the order of all the verties is irrelevant. The timeintegrations involves (with �2n+1 � �)2nYi=0 Z �i+1�0 d�i g2a(�i; �0) : (35)Sine we are onsidering the e�et of all possible ontrations with the initialpower spetrum, the symmetries of the resulting expressions allow us torewrite the time integrations as1(2n)! 2nYi=0 Z ��0 d�i g2a(�i; �0): (36)In total, there are (2n�1)!! possibilities to ontrat the soft modes with initialpower spetra. Thus, at n-loop order one �nds a ontribution (2=2)n=n! andsumming over loops the eikonal result (32) is reovered. Notie that thisresult is valid for any matrix 
, whih just hanges the form of the linearizedpropagator and hene the partiular value of �d.4.1 Power SpetrumNext, we onsider all soft orretions to the power spetrum. A generi graphat four-loop order is shown in Fig. 6. Imagine there are nll loop orretionsto the left hard linearized propagator and nrr loop orretions to the right12



k −kFigure 6: A ontribution to the power spetrum at four-loop order with nll = 2,nlr = 1 and nrr = 1.linearized hard propagator. In addition, we denote the number of soft looporretions onneting the left linearized hard propagator with the right oneby nlr. Following the same logi that applied for the propagator, one anextend all time integrations from �0 to � what leads to a fator 1=(2nll+nlr)!for the left linearized hard propagator and 1=(2nrr + nlr)! for the right one.There are �2nll+nlrnlr � ombinations to split the soft modes onneted to theleft branh into the two groups, suh that the ombinatorial fator beforeontration is 1=(2nll)!nlr! and similarly for the right soft modes one �nds1=(2nrr)!nlr!. As before, there are (2nll � 1)!! possibilities to ontrat theleft loops and (2nrr � 1)!! to ontrat the right ones. In addition there arenlr! ombinations to ontrat the left modes with the right ones. Finally,notie that the left and right loops produe a fator 2 while the soft loopsonneting the left branh with the right one leads to a fator �2. Insummary, one �nds that the leading orretions from soft modes for thepower spetrum of a hard mode redue to the fatorXnll;nlr;nrr 1nll!nlr!nrr! �22 �nll �22 �nrr (�2)nlr = e2=2�2+2=2 = 1 : (37)Thus, the orretions that onnet the di�erent branhes exatly ompensatesfor the exponential suppression found in resumming the soft orretions tothe propagators. This is in omplete aord with the eikonal approximationthat predits a suppression in the propagator but not in the power spetrum.This anellation of the leading soft orretions to the power spetrum wasalso observed in [11℄.The previous result implies that the expansion (26) does not neessarilyimprove the onvergene in the power spetrum ompared to standard per-turbation theory. Aording to the above resummation, in the limit where allki but one momentum are soft the n-point funtions G(n) are enhaned suh13



that the sum produes an exponential that anels the exponential suppres-sion in eah of the G(n) observed in RPT [23℄. Parametrially, the leadingsoft orretions to the di�erent ontributions to the sum (26) with resummedn-point propagators sale as P � Pn 1n!(k �d(�))2n exp(�k2�d(�)2). So forlarge k2�d(�)2 � 1, the sum an only start onverging after n ' k2�d(�)2terms are taken into aount. In fat the situation is even worse, sine re-produing the leading k-behavior order by order is not enough to ensure theanellation of subleading terms in the regime of large k as we show below.4.2 General SkeletonThe soft orretions to arbitrary skeletons of hard modes an also be re-summed. For example onsider any of the one-loop ontributions to thepower spetrum depited in Fig. 2 in a regime where none of the involvedmomenta is soft. The diagram involves several linearized propagators withmomenta ki. Soft loops an onnet arbitrary linearized propagators andwe denote the aording number as nij. The total number of soft lines ata linearized propagator i is then Ni = 2nii +Pj 6=i nij. As before, the softlines are time ordered and extending the time integrations over the full rangeleads to a fator 1=Ni!. The full range is hereby given by the time the originallinearized propagator in the skeleton diagram depends on that we denote �iand ��i. Splitting the soft lines into groups yields several binomial fatorsthat ontribute fators of the form 1=(2nii)!=Qj 6=i nij!. This is valid for anarbitrary skeleton of hard modes.Conneting a soft line of a linearized propagator i with a soft line of alinearized propagator j gives the integral� Z d3qki � qq2 kj � qq2 P 0ab(q) ; (38)and the time dependene4Z �i��i d~� g2a(~�; �0) Z �j��j d�̂ g2b(�̂; �0) : (39)4 Note that, sine time has to inrease along the arrows of eah linearized propagator,f. (13), the time ~� of a soft vertex that is attahed between verties at ��i and �i has tolie within the time interval ��i < ~� < �i. 14



k1, η0

k2, η0

η1η2

k1 + k2

Figure 7: An example of several ontributions to Yab that an be ombined.With the orresponding ombinatorial fator to onnet soft lines, the �nalorretion to the diagram readsexp ��12 Z d3qY2aY2bP 0ab(q)� ; (40)with Yab �Xi Z �i��i d~� ki � qq2 gab(~�; �0) : (41)This result is atually expeted from the eikonal approximation as we willsee in the next setion.Depending on the skeleton diagram, the funtion Yab an be further sim-pli�ed. Consider two linearized propagators that originate from two initialpower spetra and end in a ommon vertex. The two orresponding on-tributions to Yab then share the same range of time integration and an beombined to one ontribution that is proportional to the sum of the two mo-menta of the skeleton diagram. Hene, this term an also be ombined withthe subsequent propagator. An illustration of this is given in Fig. 7. Thisfragment of a diagram aquires through soft orretions the ontributionYab 3 Z �1�0 d~�k1 � qq2 gab(~�; �0) + Z �1�0 d~�k2 � qq2 gab(~�; �0)+ Z �2�1 d~� (k1 + k2) � qq2 gab(~�; �0)= Z �2�0 d~� (k1 + k2) � qq2 gab(~�; �0): (42)Remarkably, the funtions Yab vanish for any equal-time orrelator as forexample the power spetrum and the bispetrum.15



We will see in the next setion that this will allow us to go beyond theleading order onsidered in previous analysis [11, 13℄ and show that the e�etsof soft modes over hard modes k produe at most an enhanement of log kompared to the linear power spetrum.5 Eikonal approximation - the higher ordersIn this setion we extend the previous results and show that also subleadingsoft orretions anel eah other in equal-time orrelators. This is doneusing the language of the eikonal approximation [11, 13℄.We want to separate in a systemati way the ontribution in (2) thatinorporates the enhanement from soft modes and that is used to resumthe leading term in the previous analysis. To this aim we add and subtratseveral terms to the right-hand side of (2), and rewrite it in the equivalentform5��	a(k; �) + 
ab	b(k; �) =2F�(k1; k)~ab(k1; k2)	b(k1; �)	(k; �)+2F�(k1; k)~ab(k1; k2)	b(k1; �)(	(k2; �)�	(k; �))F�(k1; k) (ab(k1; k2)� ~ab(k1; k2))	b(k1; �)	(k2; �)F�(k2; k) (ab(k1; k2)� ~ab(k2; k1))	b(k1; �)	(k2; �)+(1� F�(k1; k)� F�(k2; k))ab(k1; k2)	b(k1; �)	(k2; �) ; (43)where we use the notation~ab(k1; k2) � Æb2Æak1 � (k1 + k2)2k21 : (44)The funtion F� is a �lter that distinguishes soft modes from hard modes,for example the Heaviside step-funtion F�(k1; k) = �(�jkj � jk1j). In theprevious onstrution only the �rst term on the right side beomes large inthe limit jk1j � jkj. This term an be resummed and absorbed into theGreen's funtiongeikonal(k; �; �0) � g(�; �0) exp �Z ��0 d~� Z d3q F�(q; k)k � qq2 	2(q; ~�)�� g(�; �0)�(k; �; �0): (45)5Reall that a term Æ(3)(k1 + k2 � k) and integrations in k1 and k2 are present in allthe non-linear terms. 16



The four remaining terms in (43) an be treated perturbatively. Thealulation of averaged quantities at a given order involves mixed umulantsof the �eld due to the exponentiation of soft �elds in (45). At leading orderin the soft bakground �eld, these umulants reprodue the Y funtions (41)appearing in (40) [13℄.The perturbative expansion de�ned out of (43) with the propagator (45)seems better behaved than the one of SPT. This is beause it tames thee�ets related to the sale (21). This advantage would justify its use despiteits higher degree of omplexity oming from the proliferation of verties6and the appearane of mixed umulants mentioned above. But the resultsfrom the previous setion show that the leading e�et in �d anels for equal-time orrelators and suggest that this may be a spurious sale. We are nowgoing to prove this for all subleading e�ets. Thus, for these observables theonvergene of any sheme based on resumming the e�ets related to (21)annot be better than SPT.We support this laim by interpreting the split of (43) in terms of di-agrams. In any diagram, the putative enhanement at sales k �d � 1 isrelated to soft momenta dressing a hard skeleton with momenta of order k.In the previous setion, we showed that the leading e�et (whih at n-looporder sale as (k �d)2n) anels. To prove the anellation of the subleadingterms down to order O(k0), we need to use the perturbation theory basedon (43). In omparison to the eikonal limit this requires to aount for themomentum injeted into the diagram from the soft loops, for the full vertexompared to (44) and �nally for the self-oupling of soft modes (i.e. softmodes oupled to other soft modes). Notie �rst that the verties omingfrom the last three terms in (43) do not produe any enhanement and anbe treated perturbatively. The self-oupling of the soft modes is in (43) rep-resented by the fat that we resum the time-dependent ontribution 	(q; �)(the whole non-linear form). Whenever this propagator is used for vertiesthat onserve momentum, the phase will disappear. Thus, the only plaewhere the sale �d may appear is in the term that does not onserve momen-tum, 2F�(k1; k)~ab(k1; k2)	b(k1; �)(	(k2; �)� 	(k; �)): (46)6 In partiular some of the terms that have been added and subtrated in (43) are nottranslation invariant, whih leads to an apparent violation of momentum onservation inindividual verties and a perturbative expansion where single ontributions to the powerspetrum are non-diagonal in momentum spae (although the full theory still respetstranslation invariane). 17



If k1 � k, the vertex is enhaned but the ontribution omes with a fator7(	(k2; �)� 	(k; �)) ' g(�; �0)�(k2; �; �0)� [	(k2; �0)�	(k; �0)�(k � k2; �; �0)℄ : (47)For equal-time orrelators the fator �(k2; �; �0) will ombine with the remain-ing fators of the diagram to yield unity, while the seond term in braketsis not enhaned in k any more and an be treated perturbatively (reall thefator F�(k1; k) in (46))�(k � k2; �; �0) = �(k1; �; �0) ' 1 + Z ��0 Z d3q k1 � qq2 	2(q; �) : (48)Hene, (	(k2; �)�	(k; �)) is of order k1=k, whih anels the enhanementoming from ~, and the fators �(k; �; �0) also anel in this vertex.This proofs that the enhanement from soft modes haraterized by thesale �d is ompletely absent in equal-time observables. This inludes thematter power spetrum and any other n-point orrelation funtion, like thebispetrum. Notie that the argument in this setion is rather general.The main assumption is that the leading term in (43) an be treated non-perturbatively and that the resulting umulants are not enhaned for largek. Another assumption is that the Gaussian random �eld 	(k) an be ex-panded in a Taylor series, see also [11℄. On the other hand, the preise formof the verties is irrelevant for the argument to work as far as the full vertiesrespet translation invariane and provided that the soft-enhaned terms areproportional to the unit matrix ~ab / Æa suh that � has no matrix stru-ture. The latter ondition is for example violated in a multi-omponent uidfor the non-adiabati deaying isodensity modes [14℄. Notie also that, sinethe proof does not rely on the form of the linear part 
 (given by (9) for Ein-stein de-Sitter), it is true for any osmologial expansion history, inludingany possible term that modi�es the linear term. This means that it is validas well for the Zel'dovih approximation (10), in aordane with [12℄.In the next setion we omplement the general proof presented above byan expliit hek of the anellation for the matter power spetrum in anEinstein-de Sitter osmology at two-loop order, and for the loop integrandup to four-loop order.7This expression is preise to order O(�).18



6 Matter power spetrumIn this setion we want to larify the onsequenes of the anellation ofsubleading orretions related to the sale �d for the matter power spetrum.The absene of physial e�ets related to the sale �d was already derived atleading order and all loops for the matter power spetrum in [11℄. This wasinterpreted in [12℄ as a onsequene of Galilean invariane. In [12, 24℄ theexpliit alulation for the matter power spetrum and bispetrum to twoloops and with sale invariant initial power spetrum was performed, and noenhanement was found (the orretions are related to the sale �l). Notethat for sale-invariant initial spetra with a power-law index smaller than�1 the anellation of soft orretions is losely related to the anellationof infrared divergenes [12℄.Even if our proof of setion 5 for the absene of enhanement by softmodes is valid for any initial power spetrum, in this setion we will workwith a realisti �CDM form. For this, an analyti expression is given by theprominent �t by Eisenstein and Hu [25℄. For analyzing the leading asymptotibehavior of loop orretions, it is often suÆient to onsider the restritionof this �t to the Einstein-de Sitter ase with spetral index ns = 1,P 0(k; �0) � � k L2(L+ C�2k2)2 ; (49)withL � ln(e + 1:84�k) ; C � 14:4 + 3251 + 60:5(�k)1:08 ; � ' 6:86Mp : (50)For the normalization of the spetrum we �t the previous formula to thelinear power spetrum at z = 0 found in [26℄, whih yields � ' 17000Mp4.Note that, for our numerial analysis, we use as input a linear power spetrumobtained with CAMB for WMAP5 parameters as provided in [26℄.6.1 FormalismThe di�erent ontributions to the power spetrum in standard perturbationtheory at n-loop order an be written shematially asPn�loop(k; �) = n+1Xm=1 Z d3k1 : : : d3kn+1A(n)m (k1; : : : ; kn+1)�PL(k1; �) : : : PL(kn+1; �) Æ(3)(k � k1 � � � � km) : (51)19



For example at one-loop level, the two diagrams in Fig. 2 involve the spetraldependene P 0(k)P 0(q) and P 0(k � q)P 0(q), whih orresponds to m = 1and m = 2, respetively (as well as q � k2). Those diagrams are related tothe terms denoted by8 P13 and P22 in the standard perturbation theory [2℄.The expression of A(n)m in terms of the symmetrized kernels Fn(k1; : : : ; kn)that haraterize the non-linear evolution of the density �eld in the growingmode in an Einstein-de Sitter Universe [2, 24, 27℄ is shown in Eq. (80).We are interested in the ase where the momentum k is muh larger thanthe sale ��1d . In this ase, the previous integral seems to be dominated by theregime in whih all but one of the modes ki are soft. This happens beause theA(n)m are homogeneous rational funtions in the momenta and in the previousregime the largest enhanement is of order A(n)m / Qi(k � ki=k2i )2 / jkj2n.Furthermore, the steep fall-o� of the power spetrum (49) at high k impliesthat the regime k �d � �l(k) exists. Thus, we may onentrate on the non-linearities assoiated to �d. The results in the previous setion imply thatthis is a naive expetation: there must be a anellation between di�erentterms that eliminate this e�et. To �nd this anellation at di�erent looporders, we �rst use the Dira-delta funtion to perform the integration over k1in (51). For large k, enhaned ontributions from soft modes would originatefrom the domain jkij � jkj for i = 2; ::; n+ 1 and k1 ' k. In order to isolatethese terms, we Taylor expandPL(k1; �)��k1=k�k2����km =Xl=0 bl(k; q)[k�k℄lPL(k; �); (52)where q � k2 + � � �+ km. The oeÆients sale as bl / (jqj=jkj)l. Therefore,sine the A(n)m grow as jkj2n, we need to expand up to l � 2n to aptureall terms that an potentially be a�eted by enhanement for large k. Byolleting all terms arising from the l-th term in the Taylor expansion, and re-labelling the momenta, the n-loop power spetrum for large k an be writtenin the formPn�loop(k; �) ! Xl�2n Z d3k1 : : : d3knB(n)l (k; k1; : : : ; kn)� [k�k℄l PL(k; �)PL(k1; �) : : : PL(kn; �) ; (53)8These quantities PIJ have nothing to do with the quantities Pab introdued above. Itis always lear from the ontext to whih quantity we refer.20



up to terms that are suppressed by the hard external momentum, O(ki=k).The B(n)l are linear ombinations of the A(n)m for 1 � m � n + 1 multi-plied by the appropriate oeÆients bl and we provide expliit expressionsin Appendix A, Eq. (82). Therefore, without any anellations, one wouldexpet that B(n)l / jkj2n�l for large k. The results from [11℄ show that theleading ontribution anels, whih means that the enhanement is at mostB(n)l / jkj2(n�1)�l. Our results of the previous setion imply that this anel-lation is also valid for the subleading terms and thatB(n)l (k; k1; : : : ; kn)! C(n)l (k1; : : : ; kn) +O(ki=k) ; (54)where B(n)l approahes a onstant, denoted by C(n)l , for large k.6.2 ResultsAn expliit analytial alulation showing the anellation of k4- and sublead-ing k2-ontributions to the integrand kernels B(n)l up to two loops is presentedin the Appendix A. Expliit results for the asymptoti limit Eq. (54) are givenin Eq. (68) and Eq. (74) for the one- and two-loop orders, respetively. Inaddition, we heked numerially for various momentum on�gurations thatthe anellation of polynomially growing ontributions and the asymptotibehavior Eq. (54) is indeed orret up to four loop order, see Figs. 8 and 9.Using the analytial results Eq. (68) and Eq. (74) for the asymptotivalues of the integrand kernels B(n)l it is possible to derive approximate ex-pressions9 (up to O(1=k2) and subleading logarithmi orretions) for thepower spetrum at large k,P1�loop(k) � �1:14PL(k)� 0:55k�kPL(k) + 0:1[k�k℄2PL(k)��2l (k) ;P2�loop(k) � �2:14PL(k)� 1:62k�kPL(k) + 0:55[k�k℄2PL(k)� 0:082[k�k℄3PL(k) + 0:005[k�k℄4PL(k)��4l (k) : (55)From these expressions, it is lear that the expansion parameter at large k isgiven by powers of �2l (k). We also see that even though all the funtions B(n)lare of order unity, a logarithmi enhanement in the �nal power spetruman arise depending on the preise shape of the initial power spetrum. For9We do not write expliitly the dependene on � in the rest of this setion, sine it istrivial to retrieve. 21
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the one- and two-loop expressions10, we �ndP1�loop(k) ! � 61105k2PL(k)4�3 Z 10 dqPL(q) = � 61105k2�2dPL(k) ;P2�loop(k) ! � 44764143325k2PL(k)4�3 Z 10 dqPL(q)J(q) ; (56)where we introdued the (dimensionless) funtionJ(q) = 4� Z q0 dp p2g(p=q)PL(p) : (57)An expliit form for g(x) is given in Appendix B. The relevant aspets arethat it is a smooth funtion satisfying p2 g(p=q) = q2 g(q=p). This meansthat g is almost onstant as long as p and q are not of the same order andtends to zero for large argument. Thus, it further uts-o� the integrals ofthe form (57) at large value of the integration variable. We �nd g(0) = 1:54,g(1) = 1 and g(1) ! 0. Thus, a good approximation for J(q) in theregime of integration of (57) is given by taking g(p=q) � 1, whih meansthat J(q) ' �2l (q). Therefore, the relative importane of the two-loop resultswith respet to the one-loop ase is again related to the sale �l(q). Notie,however, that in the low-k ase this funtion is integrated over (f. (57)).The previous alulations on�rming the results of setion 5 an be ex-tended to higher loops. Even if the analytial alulations are very umber-some in this ase, one an still �nd general arguments about the di�erentbehaviors that may be heked with numerial omputations. For the largek regime, as long as k is larger than the momenta one integrates over in(53), the results of setion 5 imply a roughly onstant B(n)l in (53). If oneof the momenta ki beomes larger than k, additional polynomial suppression/ k2=k2i arises in the funtions B(n)l what renders the integrals in internalmomenta �nite. Therefore, k e�etively ats as a UV uto� for the ki inte-grations, and one an estimate the integral to ontain at n-loop ontributionsof order (l � 2n) Pn�loop 3 �[k�k℄lPL(k)� �2nl (k) : (58)Subleading logarithms depend on how the integrals are preisely ut o� andan give sizable orretions.10In the analyti alulations we assume a at matter-dominated osmology and onlyonsider the growing mode. 24
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the two-loop ase at very large k is expeted beause (55) aptures only theleading logarithmi behavior. It is remarkable that even for very small mo-menta, the two-loop ontribution is only mildly suppressed ompared to theone-loop ontribution. Naively, one might expet a suppression by a powerk20�2d � O(10�2), where k0 is the position of the maximum of PL(k). How-ever, the integral over J(q) � �2l (q) in (56) is sensitive to the power spetrumat smaller sales, and yields only a mild suppression with respet to the one-loop orretion. Aording to (59), the three-loop result should even exeedthe one-loop ontribution at asymptotially small momenta for z = 0. A-tually, we heked numerially for a few values of the momentum that thisis indeed the ase, and it is also in aordane with the �ndings of [28℄. Thesame is true for the large k regime. Here, the logarithmi dependene in�2l (k) is learly seen in the numerial results.7 DisussionCosmologial perturbation theory provides a very suessful framework tounderstand the gravitational lustering in the Universe, responsible for itsstruture at the largest sales. Despite of this suess, its range of validity (inthe sense of onvergene of the perturbative series to the non-linear solution)is limited due to the growth of the importane of the non-linear ontributionswith time. To devise methods that deal with these non-linear orretions itis ruial to understand whih e�ets are behind the failure of perturbationtheory. This is even more important when one realizes that a large amountof information about osmologial evolution lies at sales lose to the linearsales where these methods may be very useful. An example is provided bythe baryoni aousti osillations (BAO) at low redshift [3, 29, 30℄.A �rst look at the struture of the standard formulation of osmologialperturbation theory (SPT) singles out the funtionsk2�2d(�; �) = 4�k23 Z � dqPL(q; �); (60)�2l (�; �) = 4� Z � dq q2PL(q; �); (61)as responsible for the failure of the linearized approah for sale k, one oneof them beomes big. The �rst quantity, whih is strongly k dependent, issmall at the peak of the power spetrum k0, �2dk20 ' 0:0135 at z = 0 and26



k0 ' 0:02Mp�1 (see (49)). This number grows very fast with momenta,whih is a onsequene of the enhanement oming from the vertex ijk for alarge hierarhy between the momenta of the two inoming modes, see (8). Atn-loop order, this an potentially lead to orretions to the power spetrumthat sale at large k as / (k2�2d)nPL(k; �). It is well known that theseleading soft orretions anel when summing over all n-loop diagrams [11℄.However, there are also subleading soft orretions, growing like k2 at two-loop, like k4 and k2 at three-loop, et. In our analysis we showed that,when summing over all n-loop diagrams all polynomially growing orretions/ k2m with 1 � m � n anel in the limit of large k. This anellationhad not been proven before to the best of our knowledge. Remarkably, thesame anellation happens for any hard skeleton orresponding to n-pointorrelation funtions evaluated at equal-time. While the general proof relieson the eikonal approximation, we also heked expliitly that the subleadingk2-terms anel at two-loop, and furthermore heked numerially that allsubleading k2m-terms anel up to four loop order. The anellation of theleading soft orretions was related to Galilean invariane in [12℄. Physially,it seems plausible that similar arguments ould explain our results, thoughwe are not aware of any expliit alulation.Our result also implies that in numerial alulations in SPT it is advan-tageous to sum over all relevant diagrams (and to symmetrize them appro-priately) before any integration is performed. In this way, the anellation ofdi�erent ontributions ours already on the level of the integrand and doesnot rely on the numerial auray of the integration.Even though the polynomially growing terms anel, there remains a log-arithmi enhanement at large k for the matter power spetrum, see Eq. (53).We �nd that the leading logarithmi (LL) ontributions at large k are givenby 11 PLLn�loop(k; �) ' 2nXl=0 (n)l [k�k℄lPL(k; �) �2nl (k; �) ; (62)with some oeÆients (n)l of order unity. This expression implies a growthwith k of the expansion parameter �2l (k; �) whih is logarithmi. Note that�2l (k; �) also ontrols the loop expansion at the opposite limit of small k, seeEq. (59).The funtion �2l (k; �) is not only sensitive to the high-momentum tail of11 See Eq. (55) for the expliit expressions at one and two loops.27



the spetrum (whih makes it inrease logarithmially) but for the realistiase (49) it is also numerially rather large for small redshift z � 0,�2l (k; �) ' 0:15� 11 + z�2 � ln(e+ 1:84�k)�3 : (63)We �nd that this funtion is the true expansion parameter of standard per-turbation theory for the equal-time power spetrum. For k � 1Mp�1 it is�2l (k; z = 0) � 3:42. This large value arises partially due to the logarithmidependene but also beause the initial power spetrum (49) is parametri-ally enhaned by a fator (C�2k20)�2 � 16. Aording to our arguments asmaller value for �l would improve the onvergene of linearized perturbationtheory remarkably. We show this in Appendix C by using a fake initial powerspetrum with the same �d as �CDM but smaller �l. The results are shownin Fig. 11, whih should be ompared with Fig. 10.Our onlusions about the matter power spetrum also hold for any or-relation funtion at equal times. In these observables, the e�ets related tothe sale �d are absent, and the departure from the linear regime will bedominated by �l. The analysis is equally valid for arbitrary osmologies,or even for departures from the standard equations, as the Zel'dovih ap-proximation. We would like to emphasize that this is not the ase for otherosmologial observables. For instane, the propagator as de�ned in (23)is ertainly a�eted by the enhanement of soft modes related to the sale�d. Its measurement in simulations on�rms this behavior [4℄, and it wouldbe very interesting to extrat it from real data. Furthermore, orrelationsbetween di�erent redshift bins are also used for lensing tomography [31℄.All resummation shemes in the literature resum only ertain subsets ofdiagrams of SPT. Notie that those subsets do not neessarily reprodue theanellation we found for equal-time orrelations. Thus, the non-linearityassoiated with the sale �d may be reintrodued as a purely spurious e�et.We would like to emphasize that our results do not imply that standard per-turbation theory is superior to resummation shemes as e.g. RPT. It mightwell be that at intermediate sales, these shemes resum just the right sub-diagrams to lead to aurate results [32℄. In addition, they are very usefulto desribe orrelations at unequal times. Still, our analysis supports thatat large momenta resummation shemes that involve only the sale �d an-not improve the determination of the equal-time orrelators systematially.We hope that our results are helpful to identify approximation shemes that28



respet the anellation of soft orretions and, at least partially, resum or-retions related to the sale �l.AknowledgementsWe would like to thank Martin Kunz, Julien Lesgourgues, Valeria Pettorino,Antonio Riotto and Rom�an Soimarro for very useful disussions. DBwould like to thank IPMU and DESY for their warm hospitality during thedevelopment of this work. This work has been partially supported by theGerman Siene Foundation (DFG) within the Collaborative Researh Center676 \Partiles, Strings and the Early Universe".A The power spetrum in the hard regimeIn this appendix12 we disuss the asymptoti behavior of loop orretionsto the power spetrum at large wavenumbers k (small sales). It is possibleto rewrite the loop ontributions suh that the anellation of polynomiallygrowing orretions / knPL(k), with n > 0, is manifest. We �rst demon-strate this for the one-loop orretions P1�loop = 2P13 + P22, withP13(k) = 3PL(k) Zq F s3 (~k; ~q;�~q)PL(q) ; (64)P22(k) = 2 Zq hF s2 (~q;~k � ~q)i2 PL(q)PL(j~k � ~qj) ;where F sn(~q1; : : : ; ~qn) are the symmetrized PT kernels entering at the dif-ferent orders of SPT (see e.g. [2℄), Rq � R d3q and q � j~qj. For large kthe two ontributions asymptotially grow as P13 ! �k2�2dPL(k)=2 andP22 ! k2�2=2PL(k), and it is evident that the quadratially growing or-retions anel [33℄. At two-loop, P2�loop = 2P15 + 2P24 +P33, the individual12To improve readability we will not write expliitly the dependene on � in the ap-pendies, sine it is trivial to retrieve. In addition we display arrows on three vetors tofailiate disrimination from absolute values.
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ontributionsP15(k) = 15PL(k) Zp;q F s5 (~k; ~p;�~p; ~q;�~q)PL(p)PL(q) ; (65)P24(k) = 12 Zp;q F s2 (~q;~k � ~q)F s4 (~q;~k � ~q; ~p;�~p)PL(p)PL(q)PL(j~k � ~qj) ;P33(k) = 9 Zp;q F s3 (~k; ~p;�~p)F s3 (~k; ~q;�~q)PL(p)PL(q)+ 6 Zp;q F s3 (~p; ~q;~k � ~p� ~q)2PL(p)PL(q)PL(j~k � ~p� ~qj) ;grow asymptotially as k4�4dPL(k). Again, it is straightforward to hek thatthe k4 terms anel eah other. However, there exist also subleading termsthat grow as k2. In order to show that they also anel in the sum of alltwo-loop ontributions, it is onvenient to rearrange the various terms. Todemonstrate this, we �rst disuss an analogous rearrangement for the one-loop terms, P1L(k) = PL(k) Zq B(1)0 (k; q)PL(q) + ~P22(k) ; (66)where (d
q � sin �qd�qd�q)B(1)0 (k; q) � 14� Z d
q �6F s3 (~k; ~q;�~q) + 4F s2 (~q;~k � ~q)2� ; (67)~P22(k) � 4 Zq F s2 (~q;~k � ~q)2PL(q)��(j~k � ~qj � q)PL(j~k � ~qj)� PL(k)� :In the latter ontribution we subtrated a term / PL(k), suh that thedi�erene in the braket sales as (~k~qk2 +O(q2=k2))k�kPL(k) for large k. Thelinear term / ~q=k vanishes when integrating, suh that the braket leadsto a q2=k2 suppression that ompensates the quadrati enhanement omingfrom the kernel (F s2 )2 � (~k~q=q2)2=4. Note that we also inserted a Heavisidefuntion ompared to P22 and multiplied by two, whih does not hange P22due to the symmetry ~q ! ~k�~q. Using the expliit expressions for the kernels,it is also easy to hek that quadratially growing terms � k2=q2 anel in theombination B(1)0 after averaging over angles (or alternatively symmetrizing
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the integrand w.r.t. ~q $ �~q). The expliit result an be easily alulated,B(1)0 (k; q) = 625882 � 11k4294q4 � 523k21764q2 � q212k2� k2 � q2q2 � 11k31176q3 + 9k112q + 8q49k � q348k3� ln�k � qk + q�2! 25192205 +O(q2=k2) for k !1 : (68)A similar rearrangement an be done for the two-loop ontributions to thepower spetrum. In order to extrat subleading k2-terms apart from theleading k4, we have to re-shu�e terms proportional to the �rst and seondderivatives of the power spetrum ( 0 � d=d lnk),PL(j~k � ~qj) = PL(k) + b1(~k; ~q)PL0(k) + b2(~k; ~q)PL00(k) + : : : ; (69)where bl(~k; ~q) = 1l! "ln j~k � ~qjj~kj !#l : (70)After this rearrangement, the two-loop ontribution an be rewritten asP2L(k) = PL(k) Zp;qB(2)0 (k; p; q)PL(q)PL(p)+ PL0(k) Zp;qB(2)1 (k; p; q)PL(q)PL(p)+ PL00(k) Zp;qB(2)2 (k; p; q)PL(q)PL(p) + 2 ~P24(k)+ ~P33(k) ; (71)where B(2)l (k; p; q) � 1(4�)2 Z d
q Z d
p�30F s5 (~k; ~p;�~p; ~q;�~q)Æl0+ 9F s3 (~k; ~p;�~p)F s3 (~k; ~q;�~q)Æl0+ 18F s3 (~p; ~q;~k � ~p� ~q)2bl(~k; ~p+ ~q)+ 24F s2 (~q;~k � ~q)F s4 (~q;~k � ~q; ~p;�~p)bl(~k; ~q)+ 24F s2 (~p;~k � ~p)F s4 (~p;~k � ~p; ~q;�~q)bl(~k; ~p)� ; (72)31



for l = 0; 1; 2 with b0 � 1, and~P24(k) � 24 Zp;q F s2 (~q;~k � ~q)F s4 (~q;~k � ~q; ~p;�~p)PL(p)PL(q)��(j~k � ~qj � q)� PL(j~k � ~qj)� PL(k)� b1(~k; ~q)PL0(k)� b2(~k; ~q)PL00(k)� ;~P33(k) � 18 Zp;q F s3 (~p; ~q;~k � ~p� ~q)2PL(p)PL(q)��(j~k � ~p� ~qj � q)� �(j~k � ~p� ~qj � p)PL(j~k � ~p� ~qj)� PL(k)� b1(~k; ~p+ ~q)PL0(k)� b2(~k; ~p+ ~q)PL00(k)� : (73)The subtrated terms inside the brakets in the last two expressions areonstruted suh that, after angular integration, they ompensate the termsgrowing as k4 and k2 oming from the PT kernels for k ! 1. Thus, itremains to be shown that the funtions B(2)l in (71) do not grow with k. Forthat purpose, we expand the integrand for large k and use that the angularintegration an equivalently be performed over k and p while keeping thediretion of q �xed along the z-axis (see e.g. [12℄). We �nd that indeed thek4 and k2 terms anel. For the leading ontributions in the limit k ! 1(whih are / k0) we �ndB(2)0 (k; p; q)! 27113392702610 �f(p=q) + 595172936813399 �+O(1=k2) ;B(2)1 (k; p; q)! 537712677280 �f(p=q)� 30888826680655 �+O(1=k2) ;B(2)2 (k; p; q)! 11532928 ��f(p=q) + 4527582875 �+O(1=k2) ;B(2)3 (k; p; q)! 33920 �f(p=q)� 488245 �+O(1=k2) ;B(2)4 (k; p; q)! 1200 +O(1=k2) ;
(74)

wheref(x) � 8x23 + 83x2 � x4 � 1x4 � 14x5 (x2 + 1)(x2 � 1)4 ln�x� 1x+ 1�2 : (75)The results for l = 3; 4 are shown for later use, and B(2)l = O(1=k2) for l � 5.For ompleteness, we also quote the large-k limits for the higher-derivative32



ontributions at one-loop whih are given byB(1)1 (k; q)! �2342 ; B(1)2 (k; q)! 110 ; B(1)l�3(k; q)! O(1=k2): (76)The rearrangement presented above is useful to show that polynomiallygrowing orretions anel out. The leading orretion for large k is thusa logarithmi one. It is possible to extrat an analyti expression for theleading logarithmi orretions by performing a similar rearrangement, butinluding terms up to [k�k℄2PL at one-loop and up to the fourth derivative[k�k℄4PL at two-loop. This yields approximate expressions for large kP1�loop(k) ! �25192205PL(k)� 2342k�kPL(k) + 110[k�k℄2PL(k)� �2l (k) ; (77)P2�loop(k) ! (4�)2 4Xl=0 [k�k℄lPL(k) Z k0 dqq2PL(q) Z k0 dpp2PL(p)B(2)l (k; p; q)�  1490372537695269575 PL(k)� 77197874753980k�kPL(k) + 112327205800[k�k℄2PL(k)� 120714700[k�k℄3PL(k) + 1200[k�k℄4PL(k)!�4l (k) : (78)Here we assumed that the main ontribution to the integrals in (78) omesfrom the integration range p; q < k, whih given the form (49) is valid athigh k up to logarithmi orretions. Besides, in the last line we substitutedf(p=q) � 1, whih is valid for p� q (or, equivalently, q � p). One an easilyget onvined that this estimate is adequate for f(x) given by (75).It is straightforward to extend the rearrangement to n loops. The n-loopontribution given in Eq. (51) an be rewritten by integrating over k1. Dueto the symmetry in the momenta k1; : : : km, one may restrit the range ofintegration to the ase where jk1j is larger than any of the jkij for 1 < i � m,and multiply by a fator m,Pn�loop(k; �) = n+1Xm=1m Z d3k2 : : : d3kn+1A(n)m (~k1; : : : ; ~kn+1)��(jk1j � jk2j)� � � � � �(jk1j � jkmj)�PL(k1; �) : : : PL(kn+1; �)��~k1=~k�~k2����~km : (79)33



The integration kernels in the notation of Eq. (51) are given byA(n)m (~k1; : : : ; ~kn+1) = n�m+1XnL=0 (2nL +m)!(2nR +m)!2nL+nRm!nL!nR!� F s2nL+m(~k1; : : : ; ~km; ~p1;�~p1; : : : ; ~pnL;�~pnL)� F s2nR+m(~k1; : : : ; ~km; ~q1;�~q1; : : : ; ~qnR;�~qnR) ; (80)where nR � n + 1 � m � nL, ~pi � ~km+i, ~qi � ~km+nL+i. In the usual PIJnotation, a given term in the sum in (80) ontributes to P2nL+m;2nR+m. Dia-grammatially, a given summand orresponds to a diagram with two `blobs'that are onneted by m lines, and have nL and nR lines onneted to them-selves. By adding and subtrating the terms obtained from a Taylor expan-sion of PL(k1; �0) around k up to order 2n, one obtains the rearrangementanalogous to the one- and two-loop ase disussed above. The oeÆients ofthe terms ontaining the Taylor-expanded power spetrum in (53) after therearrangement areB(n)l (k; k1; : : : ; kn) � 1(4�)n Z d
k1 � � �Z d
knB(n)l (~k;~k1; : : : ; ~kn) ; (81)whereB(n)l (~k;~k1; : : : ; ~kn) = A(n)1 (~k;~k1; : : : ; ~kn)Æl0+ n+1Xm=2mA(n)m (~k � ~k1 � � � � ~km�1; ~k1; : : : ; ~kn)�bl(~k;~k1 + � � �+ ~km�1)���symm : (82)Here, the right-hand side is to be fully symmetrized w.r.t. permuting the ~kiand w.r.t. inverting the sign ~ki ! �~ki of eah momentum. We note that inour numerial results (up to four loop order) we �nd that the anellation ofterms growing with k an even be observed at the level of the non-averagedexpression.
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B The power spetrum in the soft regimeIn the limit k ! 0, the dominant ontribution to the n-loop orretion tothe power spetrum is given by [24, 34℄Pn�loop(k) ! 2 (2n+ 1)!!PL(k) Zq1 � � �Zqn F s2n+1(~k; ~q1;�~q1; : : : ; ~qn;�~qn)� PL(q1) � � �PL(qn) : (83)Due to the well-known property F s2n+1 / k2 of the PT kernels [27℄, theseorretions sale as k2PL(k). All other loop orretions would lead to termssaling as k4 or k4PL(k), respetively, that are parametrially smaller fork ! 0 for a power spetrum PL(k) / kns with ns . 1. The funtionappearing in the two-loop orretion (56) is given byg(x) = 1179056x6 (x2 + 1) �128258x4 � 5760(x8 + 1)� 13605(x6 + x2)�� 154x(x2 � 1)4 �384(x4 + 1) + 2699x2� ln�x� 1x+ 1�2! : (84)C Convergene and �titious power spetraIn this setion, we present a two-loop result for a �titious power spetrumwith better onvergene behavior than (49). Let us onsider an initial powerspetrum of the form P0(k) / kk40 + k4 : (85)This spetrum is hosen suh that the expansion parameter of standard per-turbation theory �2l is not sensitive to the high momentum part of the spe-trum. Hene �2l is small as long as k20�2d is muh smaller than unity. Fig. 11shows a power spetrum with k20�2d ' 0:015 and �2l ' 0:02. Even though k20�2dis as large as in the physial ase at z � 0, the two-loop result is well belowthe one-loop ontribution and standard perturbation theory is expeted toonverge. Compare with Fig. 10.
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